

BOILER SCHEDULE (SEE HPE SCHEDULE FOR ELECTRICAL SERVICE) SYMBOL LOCATION SERVICE TYPE BOILER PRESS. INPUT WATER VALVE GAS | INLET | BLOWER | GAS | FOUND. BASIS NOTE 2 HP PSIG MBH MBH GPM LWT °F SETTING CFH BTU/ PRESS. KW VENT TYPE REMARKS CU. FT. IN. WG. PSIG DESIGN COND | 45 | 30 | 1,500 | 1,320 | 105 | 180 BASEMENT MER 90 | 1,500 | 1,000 | 7" - 14" | 1.7 | 8 NOTE 1 CLEAVER BROOKS CFC-E 1500 B-1 ARCHIVES 1. PROVIDE BOILER WITH GAS TRAIN, RELIEF VALVE, FM & IRI SAFETY CONTROLS, COMPLETE CONTROL SYSTEM, BAROMETRIC DAMPER, MODULATING 2. COND=CONDENSING

AHU COMPONENT DIAGRAM LEGEND:

LIGHT SWITCH (BY UNIT MFG.)

LIGHT SWITCH - 3-WAY (BY UNIT MFG.)

MOTOR OPERATED DAMPER (BY UNIT MFG.)

GFI DUPLEX RECEPTACLE (BY UNIT MFG.)

LIGHT - JELLY JAR W/COMPACT FLUORESCENT LAMP

DESIGN

SEMCO - XPH

OUTSIDE AIR UNIT SCHEDULE (SEE HPE SCHEDULE FOR ELECTRICAL SERVICE) TYPE CFM CFM ESP IN.WG. (SEE NOTE 1) TER **ARCHIVES** 0.75 | 2.5 | 92 | 75 | 76 | 63.2 | 65 | 52 | 87.3 | 71.6 | 2 | 1 | 39.4 | 34.9 | 65 | 52 | 13.2 | 12.8 | NOTES 2,3,4,5,6,7

BASIS OF DESIGN

NORTEC EL150

NORTEC EL010

NORTEC EL020

NORTEC EL020

BASIS OF DESIGN

MUNTERS HCD-1125

MUNTERS HC-150

ENT AIR LVG AIR

O. OTHERED WITHER ENT. TO I GENT OUT.	14. COLLET VIAD VETOVALLATION OF OPE OFF OF TO THE OLIVE MINIMUM LANGUE DE CLASS DE CLASS DE COLOR COMPLICATION.
6. LOC - PRE = PREHEAT LOCATION; RE = REHEAT LOCATION	15. COOLING COIL MUST BE SPLIT HORIZONTALLY AND STAGGERED.
7. PRIMARY HEATING WATER EWT = 180°F & LWT = 140°F.	16. PROVIDE SPARE SET OF ALL FILTERS.
PREHEAT COILS HAVE CIRCULATING PUMPS THAT MAINTAIN CONSTANT FLOW RATE THRU THE COIL. COIL CAPACITY IS CONTROLLED	17. UNIT MUST BE 100% KNOCKDOWN CONSTRUCTION. EACH COMPONENT MUST FIT THROUGH A 3'-0" WIDE BY 7'-0" HIGH OPENING.
CHANGING THE COIL EWT. THIS IS ACCOMPLISHED THRU A CONTROL VALVE THAT MIXES PRIMARY HEATING WATER & COIL CIRC. WATER.	18. PROVIDE FACTORY SUPERVISION DURING FIELD ASSEMBLY AND FIELD LEAK TESTING UPON COMPLETION.

REMARKS

(NOTES 1, 2, 3, 4)

AHU-1

VAV 2-2

VAV 2-5

VAV 2-17

1. TER = TOTAL ENERGY RECOVERY (SENSIBLE & LATENT TRANSFER)

4. UNIT TO BE FLOOR MOUNTED AND OF DOUBLE WALL CONSTRUCTION

3. FANS ARE TO BE INTERNALLY ISOLATED WITH SPRING ISOLATORS (2" DEFLECTION)

SERVICE

ARCHIVES

B2 CORR 2

WORK ROOM

B2 CORR 1

B1 CORR 1

COORDINATE INTERFACE REQUIREMENTS WITH THE DIV.25 CONTRACTOR. 2. ALL HUMIDIFIERS MUST HAVE MODULATING STEAM OUTPUT (25% TO 100% CAPACITY). 3. PROVIDE INSULATED STEAM TUBING AND DUCT-MOUNTED STEAM DISTRIBUTOR. 4. PROVIDE INTERNAL PRIMARY FINSHING OPTION FOR SCCR OF 100 KA. HUM 1-1 ONLY.

LOCATION

BSMT MER

BSMT MER

2.35

3. PROVIDE FACTORY SUPERVISION DURING FIELD ASSEMBLY AND FIELD LEAK TESTING UPON COMPLETION.

2. UNIT MUST BE 100% KNOCKDOWN CONSTRUCTION. EACH COMPONENT MUST FIT THROUGH A 3'-0" WIDE BY 7'-0" HIGH OPENING.

1. PROVIDE PACKAGED CONTROLS WITH USER DISPLAY. PACKAGED CONTROLS MUST INTERFACE WITH THE BAS.

5. UNIT MUST BE PROVIDED WITH SINGLE POINT POWER ENTRY AND MUST COME FACTORY EQUIPPED WITH DDC CONTROLS. ALL CONTROL DEVICES, WIRING, ETC MUST BE INTEGRAL WITH THE UNIT. THE BAS MUST ENABLE AND DISABLE THE UNIT, ADJUST SETPOINTS, AND

DISCHARGE

LBS. STM/

HR.

145

HUMIDIFIER SCHEDULE (SEE HPE SCHEDULE FOR ELECTRICAL SERVICE)

56.1

3.7

7.5

7.5

CFM

6,500

450

615

735

AIRFLOW DUCT

WxH (IN.)

32x26

14x8

16x8

14x12

DEHUMIDIFIER SCHEDULE (SEE HPE SCHEDULE FOR ELECTRICAL SERVICE) REACTIVATION AIR

KW CFH MBH IN. WG. HP CFM DB GR/LB DB CFM DB GR/LB DB GR/LB CFM (NOTE 1)

- 72 66.8 0.5 2 282 285 82.4 127 1,010 66 44.7 110 3.8 1,990 NOTES 2, 3

30 | 250 | 126.6 | 120 | 150 | 60 | 26.4 | 86 | 5.1

ESP MOTOR AIRFLOW ENT AIR LVG AIR AIRFLOW

MUST RECEIVE COMMON ALARM FROM UNIT - PROVIDE ALL NECESSARY INTERFACE HARDWARE AND SOFTWARE.

2. PROVIDE RETURN AIR AND OUTSIDE AIR FILTERS.

6. PROVIDE LOCAL DISCONNECT. 7. PROVIDE SPARE SET OF ALL FILTERS.

LOCATION

BSMT MER

BSMT MER

MECH SERVICE

MECH SERVICE

SERVICE

ARCHIVES

COLD STORAGE

PROVIDE SPARE SET OF ALL FILTERS.

SYMBOL

HUM 1-1

HUM 2-1

HUM 2-2

HUM 2-3

DHU-1

DHU-2

2. UNITS HAVE CO2 R	ESET AND/OR PURGE MODE. TAB CFM INDICATES THE OUTSIDE AIRFLOW THAT THE UNITS ARE TO BE BALANCED TO AND THE	9. ALL PREHEAT COILS MUST BE PARALLEL FLOW TYPE SIZED FOR MINIMUM TUBE VELOCITY OF 3 FT/S.
COIL DESIGN CFM I	NDICATES THE DESIGN OUTSIDE AIR FOR COIL SIZING	10. FILTERS - "PF"=PREFILTER LOCATION, "AF"=AFTERFILTER LOCATION, "PL"=PLEATED, "CART"=CARTRIDGE, "GAS"=GAS PHAS
3. TOTAL SP IS AN ES	TIMATED VALUE BASED ON INFORMATION OF ONE MANUFACTURER OF AHU'S. ADJUST TOTAL	11. SEE DIAGRAM ABOVE FOR ADDITIONAL ACCESSORY AND ARRANGEMENT INFORMATION
AS REQUIRED BASE	ED ON ACTUAL UNIT AND COIL LOSSES AND SPECIFIED EXTERNAL AND FILTER FINAL SP.	12. FANS ARE TO BE INTERNALLY ISOLATED WITH SPRING ISOLATORS (2" DEFLECTION)
4. TYPE - BI= BACKWA	RD INCLINED, AF = AIR FOIL, FC = FORWARD CURVED	13. PROVIDE TWO VFDs FOR THE SUPPLY FANS, AND TWO VFDs FOR THE RETURN FANS FOR EACH AIR HANDLING UNIT.
5. CHILLED WATER EV	VT = 43°F & LWT = 56°F.	14. SUPPLY AND RETURN FAN ARRAYS TO BE SIZED FOR TOTAL CFM. MINIMUM FAN HERTZ MUST BE 67 AT DESIGN CONDITION
6. LOC - PRE = PREHE	AT LOCATION; RE = REHEAT LOCATION	15. COOLING COIL MUST BE SPLIT HORIZONTALLY AND STAGGERED.
7. PRIMARY HEATING	WATER EWT = 180°F & LWT = 140°F.	16. PROVIDE SPARE SET OF ALL FILTERS.
PREHEAT COILS HA	IVE CIRCULATING PUMPS THAT MAINTAIN CONSTANT FLOW RATE THRU THE COIL. COIL CAPACITY IS CONTROLLED	17. UNIT MUST BE 100% KNOCKDOWN CONSTRUCTION. EACH COMPONENT MUST FIT THROUGH A 3'-0" WIDE BY 7'-0" HIGH OPE
CHANGING THE CO	IL EWT. THIS IS ACCOMPLISHED THRU A CONTROL VALVE THAT MIXES PRIMARY HEATING WATER & COIL CIRC. WATER.	18. PROVIDE FACTORY SUPERVISION DURING FIELD ASSEMBLY AND FIELD LEAK TESTING UPON COMPLETION.

	AIR HANDLING UNIT SCHEDULE (SEE HPE SCHEDULE FOR ELECTRICAL SERVICE)																																									
					MIN O/A C	FM (NOTE 2)	SUPPL	Y FAN DATA (S	SEE NOTES 3, 4	1, 14)	RE	TURN FAN D	ATA (SEE	NOTES 3, 4,	4)					COOLING	G COIL (SEE I	NOTE 5)							Pl	REHEAT/HEA	TING COIL (SE	E NOTES 6, 7, 8	, 9)				FILTE	ERS (SEE NOTE	E 10)			BASIS
SYMBOL	TYPE	SERVICE	LOCATION	TOTAL	TAB	COIL	SP/IN.WG.		MIN. MAX	MOTOR	SP/IN.WG).	M	IN. MAX	MOTOF	EAT °F	LA	T °F	MBH	MAX. FAC	E APD/	'	WATER	MIN.	MAX	ATC		EAT LA	AT T	FACE VEL.	APD/	PRIMARY WATE	R CIRC.	WATER	ATC	AP	D/IN WG	QTY.			REMARKS	OF
	(SEE NOTE 1)			CFM	CFM	DESIGN	EXT. TOT	TYPE	QTY. BHP E	A. HP EA.	EXT. T	OT. TY	PE Q	TY. BHP E	A. HP EA.	DB W	B DB	WB	TOT. SENS	S. VEL./ FPI	M IN. WG	G GPM	PD/FT. WG	ROWS	S FINS/IN	I. VALVE	LOC	°F °	F MBH	FPM	IN. WG	GPM	GPM	PD / FT.	VALVE	LOC INIT.	FINAL	HIGH WIDE	MERV TY	YPE (N	NOTES 11, 13, 14, 15, 16)	DESIGN
			BASEMENT																																	PF 0.23	0.46	2 2	"	" PL.		
AHU-1	VAV	ARCHIVE	MER	6,500	800	800	2.0 6.0	PLENUM	4 2.71	5	-	- -	-	- -	-	74.8 54	.9 51.5	47.6	132.5 125	500	0.44	20	14	5	10	2-WAY	-	- -	. -	-	-	-	-	-	-	0.17	0.34	2 2	6 4" (GAS.	NOTES 17, 18	INGENIA CUSTOM
								ARRAY																												AF 0.36	0.72	2 2	14 12" (CART.		
			NORTH																																	PF 0.23	0.46	1.5 2.5	8 2"	" PL.		
AHU-2	VAV	BUFFER	SERVICE	8,000	1,600	1,600	2.3 5.0	PLENUM	4 2.69	5	1.5	2.0 PLEI	NUM	4 1.22	3	78.2 66	.9 51.7	51.2	377 233	500	0.66	57	14	7	10	2-WAY	PRE	55 7	1 142	450	0.05	7	10	8	2-WAY						-	INGENIA CUSTOM
			YARD					ARRAY				ARF	RAY																							AF 0.36	0.72	1.5 2.5	13 12" (CART.		
			ABOVE																																	PF 0.23	0.46	2.5 2.5	8 2"	" PL.		
AHU-3	VAV	HALLS	STAGE	13,000	1,100	4,400	2.3 5.0	PLENUM	4 4.23	7.5	-	- .	-	- -	-	81.7 67	7.7 51.5	50.9	657 432	500	0.77	98	14	7	10	2-WAY	PRE	55 70	0.0 206	543	0.06	11	14	10	2-WAY						NOTES 15, 17, 18	INGENIA CUSTOM
								ARRAY																												AF 0.36	0.72	2.5 2.5	13 12" (CART.		
<u>NOTES:</u> 1. V	S:S: 1. VAV = VARIABLE AIR VOLUME (W/ VFD) CV - CONSTANT VOLUME 8. CONTROL VALVE FLOW IS SCHEDULED AS PRIMARY WATER GPM.																																									

AHU-1 (COMPONENT DIA		l		\$ ₃			RVICE CORRIDOR SEC	CTION		\$ ₃				AHU-3 COMPON	IENT DIAGRA	M		<u> </u>	* PROVIE	E HOIST BEAM FOR FA								
, 110	OCMI ONENT DI	. 			A	EXHAUST	UNISTRUT			— (2)LEVELS OF U INTERIOR OF S	NISTRUT RUN ON ERVICE CORRIDOR				110 0 00Mi 0	ETT DIRTOIT				REMOV	KE (BT UNIT MPG.)								
AHU-2 COMPONENT DIAGRAM																													
											AIR HAI	NDLING UN	NIT SCHED	OULE (SEE HPE S	CHEDULE FOR ELE	CTRICAL SERV	ICE)												
				A CFM (NOTE 2)	SUPPLY FA	AN DATA (SEE NOTES 3, 4,		RETURN FAN DATA (SI		<u> </u>				COOLING COIL (SEE	NOTE 5)		,				COIL (SEE NOTES 6, 7,	-, -,				FILTERS (SEE N			
TYPE (SEE NOTE 1)	SERVICE L	OCATION T	MIN O	COIL	SP/IN.WG.	AN DATA (SEE NOTES 3, 4, MIN. MAX TYPE QTY. BHP EA	MOTOR SP/IN.	.WG.	EE NOTES 3, 4, 14 MIN. MAX QTY. BHP EA	MOTOR I	AIR HA	- M	МВН		NOTE 5) WATER	MIN.	MAX ATC FINS/IN. VALVE LOG	EAT		FACE VEL.	COIL (SEE NOTES 6, 7, PD/ PRIMARY WATI	ER CIRC. V		ATC	APD/IN	WG QTY	Υ.	TYPE (REMARK (NOTES 11, 13, 1
	AHU-1	AHU-1 COMPONENT DIA	AHU-1 COMPONENT DIAGRAM			AHU-1 COMPONENT DIAGRAM \$3	AHU-1 COMPONENT DIAGRAM	AHU-1 COMPONENT DIAGRAM \$3 EXHAUST AIR LOUVER UNISTRUT L	AHU-1 COMPONENT DIAGRAM SEXHAUST AIR LOUVER UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SERVICE CONNIDON SECTION WINISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SEXHAUST UNISTRUT UNDER SERVICE (2)LEVELS OF U INTERIOR OF S INTERIOR OF S INTERIOR OF S WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM S EXHAUST AIR LOUVER UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) (2) LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SEXHAUST UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) WALL (BY UNIT MFG.) AHU-1 COMPONENT DIAGRAM SEXHAUST (2)LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SEXHAUST UNISTRUT UNDER SERVICE CORRIDOR ROOF INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.) WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SEXHAUST SITURD ON SECTION WALL (BY UNIT MFG.) AIR LOUVER SEXHOUSE CONNIDON SECTION (2) LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SERVICE CONTIDOR SERVICE UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPON AHU-3 COMPON AHU-3 COMPON MALL (BY UNIT MFG.) AHU-3 COMPON MALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SENTING CONTRIBUTION OF SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPONENT DIAGRA (2) LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM SEXHAUST SITURD CONNIDOR SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM OUNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM OUNISTRUT UNDER SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM EXHAUST SILVING CONTIDOR SERVICE AIR LOUVER SILVING CONTIDOR SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM	AHU-1 COMPONENT DIAGRAM SERVICE CONNIDOR SECTION SERVICE CONNIDOR SECTION AHU-3 COMPONENT DIAGRAM EXHAUST SITURD UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) (2)LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM *3 EXHAUST SINVECT CONTRIDOR SERVICE PROVIDING REMOVAL SERVICE CORRIDOR ROOF INTERIOR OF SERVICE CORRIDOR ROOF WALL (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM *AHU-3 COMPONENT DIAGRAM ** AHU-3 COMPONENT DIAGRAM ** PROVIDING REMOVAL SERVICE CORRIDOR ROOF WALL (BY UNIT MFG.) ** ** AHU-3 COMPONENT DIAGRAM ** ** ** ** ** ** ** ** **	AHU-1 COMPONENT DIAGRAM ** AHU-3 COMPONENT DIAGRAM ** PROVIDE HOIST BEAM FOR FA REMOVAL (BY UNIT MFG.) ** PROVIDE HOIST BEAM FOR FA REMOVAL (BY UNIT MFG.) ** AHU-3 COMPONENT DIAGRAM ** PROVIDE HOIST BEAM FOR FA REMOVAL (BY UNIT MFG.) ** PROVIDE HOIST BEAM FOR FA REMOVAL (BY UNIT MFG.) ** PROVIDE HOIST BEAM FOR FA REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) EXHAUST AIR LOUVER (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) (2)LEVELS OF UNISTRUT RUN ON INTERIOR OF SERVICE CORRIDOR WALL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * EXHAUST SILVING CORRIDOR ROOF (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) * PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM EXHAUST AIR LOUVER UNISTRUT UNDER SERVICE CORRIDOR ROOF (BY UNIT MFG.) AHU-3 COMPONENT DIAGRAM PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)	AHU-1 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM AHU-3 COMPONENT DIAGRAM PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.) PROVIDE HOIST BEAM FOR FAN AND MOTOR REMOVAL (BY UNIT MFG.)

1	2	3	4	5	6	7	8	9	10
		O/A INTAKE WITH —	EACH O/A LOUVER MUST BE EQUIPPED WITH AN AIRFLOW MEASURING STATION.						
		O/A INTAKE WITH SEPARATE MIN. AND ECONO.			STAGGERED				

SHEET ID

M60²

of Engineers ®