ADDENDUM NO. 2 – DECEMBER 2, 2020

North White Plains Community Center 10 Clove Road, White Plains NY 10603

The following clarifications / modifications to the Bidding and Contract Documents are to be incorporated into the work and shall be included in your bid and acknowledged on bid form:

BID DATE:

No Changes

BID FORM:

No Changes

SCHEDULE OF ADDENDUM DRAWINGS:

None

TECHNICAL SPECIFICATIONS:

See addendum 1 Prior issued Architectural Specifications and Divisions 21,22,23 and 26 issued in this addendum 2.

SKETCHES:

None

ALTERNATES:

No Changes

CLARIFICATIONS AND ADDITIONS:

ARCHITECTURAL: None

ENGINEERING: None

SUBMITTED QUESTIONS:

- 1. Drawing A9.0 Elevation 1 Women's Room at the top of the wall the note calls for new Stonepeak Simply Modern porcelain tile. Elevation 3,4 Women's Room at the top of the wall the note calls for paint. Please clarify. Response SA The tile does not go full height as shown. The top of the wall is painted as indicated the leader should extend to the top row of tile. The tile breaks with accent band.
- 2. Drawing A9.1 Elevation 1,4 Men's Room at the top of the wall the note calls for new Stonepeak Simply Modern porcelain tile. Elevation 2,3 at the top of the wall the note calls for paint. Please clarify. Response SA The tile does not go full height as shown.

© 2020 Sullivan Architecture, PC

The top of the wall is painted as indicated the leader should extend to the top row of tile. The tile breaks with accent band.

- 3. Drawing A9.2 The plan calls this room out as the Unisex shower. The 4 elevations however call this room out as the Men's Room. Elevation 2,4 Men's Room at the top of the wall the note calls for Stonepeak Simply Modern porcelain tile. Elevation 1,3 at the top of the wall the note calls for paint. Please clarify. Response SA The unisex shower room is technically a men's shower, but available for all to use as a single user room both designations describe the room. The enlarged plan and elevations are all on sheet A9.2. The tile does not go full height as shown. The top of the wall is painted as indicated the leader should extend to the top row of tile. The tile breaks with accent band.
- Drawing A2.0 @ New Gym storage addition the wall section is called to be shown on 1/A-11, There is no wall section on A-11. There is a wall section on drawing A-12. Please clarify. Response SA Correct section should direct you to A-12.
- 5. Drawing A6.0 calls out door number 102 on the door schedule. On Drawing A2.0 this door designation is not shown. Please clarify the location of this door. Response SA Door 102 has been removed from project. Please also note door 101 is not oak veneer as per schedule it is exterior Marvin door to match the look of the existing library door as elevated for this type.
- 6. Drawings M3.1, M7, 2, and P5.1 are missing from the bid set. Please advise. Response SA - Please reference the list of drawings at the end of the bid specification package (Section M) and the list of drawings on the Architectural title sheet A0.0 of the documents. Not all sheets are sequential on the engineering document list.
- 7. Gas Booster Spec Response SA Please see drawing P0.1 Equipment Notes note no. 1 and associated sections.
- Please advise if there are specifications for MEP's (electrical, plumbing and HVAC), none are in the documents Response SA The front end bid information in (Section M) Specification List is correct, please find MEP specifications attached in addendum 2.
- Please advise if this project is registered with Con-Ed and if a service layout is available. Response SA – Yes, the project is registered - <u>Case Number MC-407408</u>. The desired option is Diesel as shown and natural gas is the alternate as per bid documents. No service layout is available other that MEP documents, at this time.
- 10. There is a specification 101400 for signs, but none are shown on the drawings, please advise Response SA Signage is only for items 1 thru 3 noted in section 101400. Item 4 is not in the project (no exterior signage). Please add to bid new men's and women's and unisex ada toilet signage. Standard signage with braille. See below for links for suggested designs. The balance of signage is simple panel signage and no designs are required.

Signage links:

https://adasignfactory.com/ocart2/STATE-COMPLIANT-SIGNS/NY-CT-ADA/MEN-ACCESSIBLE-NY-CT https://adasignfactory.com/ocart2/STATE-COMPLIANT-SIGNS/NY-CT-ADA/WOMEN-ACCESSIBLE-RESTROOM-NY-CT https://adasignfactory.com/ocart2/STATE-COMPLIANT-SIGNS/NY-CT-ADA?product_id=232

END OF ADDNDUM NO. 2

SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1-GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Division 1, Section 016116 VOC Content Restrictions
- C. Division 1, Section 018113 Sustainable Design Requirements
- D. Division 1, Section 017419 Construction Waste Management
- E. Division 1, Section 015721 Indoor Air Quality Management and Plan
- F. Division 1, Section 019113- Commissioning

1.2 SUSTAINABLE DESIGN OBJECTIVES

- A. The City requires the contractor to implement practices and procedures to meet the project's environmental performance goals, which include;
 - 1. Minimize the environmental impacts of the construction and operation of the project during the construction phase. The project shall implement the following procedures singly or in combination:
 - a. Select products that minimize consumption of non-renewable resources, consume reduced amounts of energy, minimize environmental pollution, and to utilize recycled and/or recyclable materials.
 - b. Reduce sources of potential Indoor Air Quality pollutants by controlled selection of materials and processes used in project construction. (015721)
 - c. Minimize waste produced by construction through efficient construction practices and landfill diversion, as detailed in the Construction Waste Management Plan. (017419)
 - 2. Products and processes that achieve the above objectives have been selected and included in the Construction Documents.

1.3 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Grout.

© 2020 OLA Consulting Engineers, P.C.

- 3. Fire-suppression equipment and piping demolition.
- 4. Equipment installation requirements common to equipment sections.
- 5. Painting and finishing.
- 6. Concrete bases.
- 7. Supports and anchorages.

1.4 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.5 SUBMITTALS

- A. Welding certificates.
- B. Coordination drawings.
- C. LEED Building Submittal Requirements:
 - 1. Provide for all field-applied adhesives, sealants (used as fillers), and paints: Material Safety Data Sheets, for all applicable products. Applicable products include, but are not limited to adhesives, sealants, paints and coatings applied on the interior of the building. Material Safety Data Sheets shall indicate the Volatile Organic Compound (VOC) limits of products submitted (If an MSDS does not include a product's VOC limits, then product data sheets, manufacturer literature, or a letter of certification from the manufacturer can be submitted in addition to the MSDS to indicate the VOC limits).

1.6 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- D. LEED Building Requirements
 - 1. General Requirements: The City of New York requires the Contractor to implement practices and procedures to meet the project's environmental goals, which include achieving a LEEDTM Green Building rating. Specific project goals which may impact this area of work are listed in the applicable paragraphs of this specification section. The Contractor shall ensure that the requirements related to these goals, as defined in the sections below and in related sections of the contract documents, are implemented to the fullest extent. Substitutions, or other changes to the work proposed by the Contractor or their Subcontractors, shall not be allowed if such changes compromise the stated LEED BUILDING criteria.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Comply with the requirements of the construction indoor air quality management plan and the construction waste plan.

1.8 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."
- D. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate

construction operations included in different Sections that depend on each other for proper installation, connection, and operation.

- E. Coordination: Each contractor shall coordinate its construction operations with those of other contractors and entities to ensure efficient and orderly installation of each part of the Work.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components with other contractors to ensure maximum accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
 - 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components, including mechanical and electrical.

1.9 DELIVERY, STORAGE AND HANDLING

A. Comply with the requirements of the Construction Indoor Air Quality Management Plan and the Construction Waste Management Plan.

PART 2-PRODUCTS

2.1 PRODUCT REQUIREMENTS FOR SUSTAINABLE DESIGN- GENERAL

- A. All field applied paints, coatings, sealants, sealer, adhesives in this section shall meet the requirements of VOC limits in 016116- Indoor Finishes Performance Requirements.
- B. All Products in this Section shall be free of Materials of Concern as noted in 015721-Indoor Air Quality Control (where achievable).

2.2 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.3 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.4 JOINING MATERIALS

- A. Refer to individual Division 21 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.5 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3-EXECUTION

3.1 FIRE-SUPPRESSION DEMOLITION

- A. Refer to Division 02 Section "Selective Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove fire-suppression systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.

- 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
- 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
- 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
- 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to City of New York.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

- - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
 - E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
 - F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
 - G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
 - H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PAINTING

- A. Painting of fire-suppression systems, equipment, and components shall be as required by NYC Local Law 58109.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - Install anchor bolts according to anchor-bolt manufacturer's written instructions.
- 7. Use 4000-psi, 28-day compressive-strength concrete and reinforcement.

2.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

2.7 GROUTING

6.

- A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 210500

SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. Jay R. Smith Mfg. Co.
- 2. Zurn Industries, LLC.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Advance Products & Systems, Inc</u>.
 - 2. Metraflex Company (The).
 - 3. <u>Proco Products, Inc</u>.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Advance Products & Systems, Inc.</u>
 - 2. <u>Metraflex Company (The)</u>.
 - 3. <u>Proco Products, Inc</u>.
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
 - 4. Sleeves for building service piping shall be one nominal pipe size larger than the service pipe.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Install sleeves in seismic applications to provide adequate clearance according to NFPA 13 recommendations unless otherwise indicated.
 - 4. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

- 2. Install fittings in seismic applications to provide adequate clearance according to NFPA 13 recommendations unless otherwise indicated.
- 3. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing.
- 4. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
- 5. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- 6. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves or Galvanized-steel wall sleeves or Galvanized-steel-pipe sleeves or Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves or Galvanized-steel wall sleeves or Galvanized-steel-pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:

- a. Piping [All Sizes]: Cast-iron wall sleeves with sleeve-seal system or Galvanizedsteel wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 3. Concrete Slabs-on-Grade:
 - a. Piping [All Sizes]: Cast-iron wall sleeves with sleeve-seal system or Galvanizedsteel wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves or Stack-sleeve fittings or Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves or Stack-sleeve fittings.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 210517

SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass or split-casting brass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or splitplate, stamped-steel type with concealed hinge.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - 2. Escutcheons for Existing Piping:
 - a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 - g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.

- h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
- i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chromeplated finish.
- j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518

SECTION 210523 - GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Two-piece ball valves with indicators.
 - 2. Bronze butterfly valves with indicators.
 - 3. Iron butterfly valves with indicators.
 - 4. Check valves.
 - 5. Bronze OS&Y gate valves.
 - 6. Iron OS&Y gate valves.
 - 7. NRS gate valves.
 - 8. Trim and drain valves.

1.3 DEFINITIONS

- A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- B. NRS: Non-rising stem.
- C. OS&Y: Outside screw and yoke.
- D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and weld ends.
 - 3. Set valves open to minimize exposure of functional surfaces.

- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
- D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:
 - 1. Main Level: HAMV Fire Main Equipment.
 - a. Level 1: HCBZ Indicator Posts, Gate Valve.
 - b. Level 1: HLOT Valves.
 - 1) Level 3: HLUG Ball Valves, System Control.
 - 2) Level 3: HLXS Butterfly Valves.
 - 3) Level 3: HMER Check Valves.
 - 4) Level 3: HMRZ Gate Valves.
 - 2. Main Level: VDGT Sprinkler System & Water Spray System Devices.
 - a. Level 1: VQGU Valves, Trim and Drain.
- B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:
 - 1. Automated Sprinkler Systems:
 - a. Indicator posts.
 - b. Valves.
 - 1) Gate valves.
 - 2) Check valves.
 - a) Single check valves.
 - 3) Miscellaneous valves.
- C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

D. ASME Compliance:

- 1. ASME B16.1 for flanges on iron valves.
- 2. ASME B1.20.1 for threads for threaded-end valves.
- 3. ASME B31.9 for building services piping valves.
- E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
- F. NFPA Compliance: Comply with NFPA 24 for valves.
- G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.
- H. Valve Sizes: Same as upstream piping unless otherwise indicated.
- I. Valve Actuator Types:
 - 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 - 2. Handwheel: For other than quarter-turn trim and drain valves.
 - 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 TWO-PIECE BALL VALVES WITH INDICATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>NIBCO INC</u>.
 - 2. <u>Victaulic Company</u>.
- B. Description:
 - 1. UL 1091, except with ball instead of disc and FM Global standard for indicating valves (butterfly or ball type), Class Number 1112.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body Design: Two piece.
 - 4. Body Material: Forged brass or bronze.
 - 5. Port Size: Full or standard.
 - 6. Seats: PTFE.
 - 7. Stem: Bronze or stainless steel.
 - 8. Ball: Chrome-plated brass.
 - 9. Actuator: Worm gear or traveling nut.
 - 10. Supervisory Switch: Internal or external.
 - 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.
 - 12. End Connections for Valves NPS 2-1/2: Grooved ends.

2.3 BRONZE BUTTERFLY VALVES WITH INDICATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Fivalco Inc</u>.
 - 2. <u>Globe Fire Sprinkler Corporation</u>.
 - 3. <u>Milwaukee Valve Company</u>.
- B. Description:
 - 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
 - 2. Minimum: Pressure rating: 175 psig.
 - 3. Body Material: Bronze.
 - 4. Seat Material: EPDM.
 - 5. Stem Material: Bronze or stainless steel.
 - 6. Disc: Bronze or Stainless steel with EPDM coating.
 - 7. Actuator: Worm gear or traveling nut.
 - 8. Supervisory Switch: Internal or external.
 - 9. Ends Connections for Valves NPS 1 through NPS 2: Threaded ends.
 - 10. Ends Connections for Valves NPS 2-1/2: Grooved ends.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Anvil International</u>.
 - 2. <u>Globe Fire Sprinkler Corporation</u>.
 - 3. <u>Kennedy Valve Company; a division of McWane, Inc</u>.
- B. Description:
 - 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
 - 4. Seat Material: EPDM.
 - 5. Stem: Stainless steel.
 - 6. Disc: Ductile iron, and EPDM or SBR coated.
 - 7. Actuator: Worm gear or traveling nut.
 - 8. Supervisory Switch: Internal or external.
 - 9. Body Design: Lug or wafer or Grooved-end connections.

2.5 CHECK VALVES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>NIBCO INC</u>.
 - 2. <u>Victaulic Company</u>.
- B. Description:
 - 1. Standard: UL 312 and FM Global standard for swing check valves, Class Number 1210.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Type: Single swing check.
 - 4. Body Material: Cast iron, ductile iron, or bronze.
 - 5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
 - 6. Clapper Seat: Brass, bronze, or stainless steel.
 - 7. Hinge Shaft: Bronze or stainless steel.
 - 8. Hinge Spring: Stainless steel.
 - 9. End Connections: Flanged, grooved, or threaded.

2.6 BRONZE OS&Y GATE VALVES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Milwaukee Valve Company</u>.
 - 2. <u>NIBCO INC</u>.
 - 3. <u>United Brass Works, Inc</u>.
- B. Description:
 - 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Yand NRS-type gate valves).
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body and Bonnet Material: Bronze or brass.
 - 4. Wedge: One-piece bronze or brass.
 - 5. Wedge Seat: Bronze.
 - 6. Stem: Bronze or brass.
 - 7. Packing: Non-asbestos PTFE.
 - 8. Supervisory Switch: External.
 - 9. End Connections: Threaded.

2.7 IRON OS&Y GATE VALVES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>NIBCO INC</u>.

- 2. <u>Victaulic Company</u>.
- 3. Watts; a Watts Water Technologies company.
- B. Description:
 - 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Yand NRS-type gate valves).
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body and Bonnet Material: Cast or ductile iron.
 - 4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
 - 5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
 - 6. Stem: Brass or bronze.
 - 7. Packing: Non-asbestos PTFE.
 - 8. Supervisory Switch: External.
 - 9. End Connections: Flanged or Grooved or Threaded.

2.8 NRS GATE VALVES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>American Cast Iron Pipe Company</u>.
 - 2. <u>NIBCO INC</u>.
 - 3. <u>Victaulic Company</u>.
- B. Description:
 - 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Yand NRS-type gate valves).
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body and Bonnet Material: Cast or ductile iron.
 - 4. Wedge: Cast or ductile iron with elastomeric coating.
 - 5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
 - 6. Stem: Brass or bronze.
 - 7. Packing: Non-asbestos PTFE.
 - 8. Supervisory Switch: External.
 - 9. End Connections: Flanged or Grooved or Threaded.

2.9 TRIM AND DRAIN VALVES

- A. Ball Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Apollo Valves; Conbraco Industries, Inc</u>.
 - b. <u>NIBCO INC</u>.

- c. <u>Potter Roemer LLC</u>.
- 2. Description:
 - a. Pressure Rating: 175 psig or 300 psig.
 - b. Body Design: Two piece.
 - c. Body Material: Forged brass or bronze.
 - d. Port size: Full or standard.
 - e. Seats: PTFE.
 - f. Stem: Bronze or stainless steel.
 - g. Ball: Chrome-plated brass.
 - h. Actuator: Handlever.
 - i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 - j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.
- B. Angle Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Fire Protection Products, Inc.</u>
 - b. <u>NIBCO INC</u>.
 - c. <u>United Brass Works, Inc</u>.
 - 2. Description:
 - a. Pressure Rating: 175 psig or 300 psig.
 - b. Body Material: Brass or bronze.
 - c. Ends: Threaded.
 - d. Stem: Bronze.
 - e. Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron, bronze, or aluminum.
- C. Globe Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>NIBCO INC</u>.
 - b. <u>United Brass Works, Inc</u>.
 - 2. Description:
 - a. Pressure Rating: 175 psig or 300 psig.
 - b. Body Material: Bronze with integral seat and screw-in bonnet.
 - c. Ends: Threaded.
 - d. Stem: Bronze.

- e. Disc Holder and Nut: Bronze.
- f. Disc Seat: Nitrile.
- g. Packing: Asbestos free.
- h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

- A. Comply with requirements in the following Sections for specific valve installation requirements and applications:
 - 1. Section 211200 "Fire-Suppression Standpipes" for application of valves in firesuppression standpipes.
 - 2. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, firesuppression sprinkler systems.
 - 3. Section 211316 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, firesuppression sprinkler systems.
- B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above the pipe center.
- E. Install valves in position to allow full stem movement.

- F. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.
- G. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.
- H. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 210523

SECTION 210529 - HANGERS AND SUPPORTS FOR FIRE SUPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal hanger-shield inserts.
 - 5. Fastener systems.
 - 6. Equipment supports.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- 1.5 QUALITY ASSURANCE
 - A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
 - B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.
- C. NFPA Compliance: Comply with NFPA 13.
- D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot-dip galvanized.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe and Tube Hangers:
 - 1. Description: Copper-coated-steel, factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>B-line, an Eaton business</u>.
 - b. <u>Flex-Strut Inc</u>.
 - c. <u>Unistrut; Part of Atkore International</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 4. Channels: Continuous slotted carbon-steel channel with inturned lips.
 - 5. Channel Width: Selected for applicable load criteria.
 - 6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 7. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 8. Metallic Coating: one of the following Pregalvanized G90, Electroplated zinc, Hot-dip galvanized.
 - 9. Paint Coating: Green epoxy, acrylic, or urethane.
- B. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Anvil International</u>.
 - b. <u>CADDY; a brand of nVent</u>.
 - c. <u>Carpenter & Paterson, Inc</u>.
 - d. <u>Empire Industries, Inc</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 4. Channels: Continuous slotted carbon-steel channel with inturned lips.
 - 5. Channel Width: Select for applicable load criteria.
 - 6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 7. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 8. Metallic Coating: one of the following Pregalvanized G90, Hot-dip galvanized.
 - 9. Paint Coating: Green epoxy, acrylic, or urethane.

2.5 THERMAL HANGER-SHIELD INSERTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carpenter & Paterson, Inc</u>.
 - 2. <u>National Pipe Hanger Corporation</u>.
 - 3. <u>Pipe Shields Inc</u>.
 - 4. <u>Piping Technology & Products, Inc</u>.
 - 5. <u>Rilco Manufacturing Co., Inc</u>.
- B. Insulation-Insert Material: one of the following Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psi, ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
- F. Use thermal hanger shield for all insulated piping. This typically occurs where piping is heat traced.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: NFPA-approved, UL-listed, or FM-approved threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hilti, Inc</u>.
 - b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - c. <u>MKT Fastening, LLC</u>.
 - d. <u>Simpson Strong-Tie Co., Inc</u>.
- B. Mechanical-Expansion Anchors: NFPA-approved, UL-listed, or FM-approved, insert-wedgetype anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>B-line, an Eaton business</u>.
 - b. <u>Hilti, Inc</u>.
 - c. ITW Ramset/Red Head; Illinois Tool Works, Inc.

- 2. Indoor Applications: Zinc-coated or Stainless steel.
- 3. Outdoor Applications: Stainless steel.

2.7 EQUIPMENT SUPPORTS

A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.8 MATERIALS

- A. Aluminum: ASTM B221.
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

- 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
- 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal strut systems.
- D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.

- b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove welding flux immediately.
- 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1" inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications. (this includes all outdoor and garage applications)
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

- H. Use thermal hanger-shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 1/2 to NPS 24 if little or no insulation is required.
 - 3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 6. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Comply with NFPA requirements.
- L. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. C-Clamps (MSS Type 23): For structural shapes.
 - 3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- M. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.

- 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- N. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 210529

SECTION 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Stencils.
 - 5. Valve tags.
 - 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.
- D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Craftmark Pipe Markers</u>.

- c. <u>Marking Services, Inc</u>.
- d. <u>Seton Identification Products</u>.
- 2. Material and Thickness: Brass, 0.032-inch or aluminum, 0.032-inch thick, with predrilled holes for attachment hardware.
- 3. Letter Color: White.
- 4. Background Color: Red.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Craftmark Pipe Markers</u>.
 - c. <u>Marking Services, Inc</u>.
 - d. <u>Seton Identification Products</u>.
 - 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch or 1/8-inch thick, with predrilled holes for attachment hardware.
 - 3. Letter Color: White.
 - 4. Background Color: Red.
 - 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 8. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and

title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Craftmark Pipe Markers.
 - 3. <u>Marking Sevices Inc</u>.
 - 4. <u>Seton Identification Products</u>.
- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16inch or 1/8-inch thick, with predrilled holes for attachment hardware.
- C. Letter Color: Yellow.
- D. Background Color: Black.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- H. Fasteners: Stainless-steel rivets or self-tapping screws.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Craftmark Pipe Markers</u>.
 - 3. <u>Marking Sevices Inc</u>.
 - 4. <u>Seton Identification Products</u>.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping with at least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.
- F. Pipe-Label Colors:
 - 1. Background Color: Safety Red.
 - 2. Letter Color: White.

2.4 STENCILS

- A. Stencils for Piping:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Craftmark Pipe Markers</u>.
 - b. <u>Marking Sevices Inc</u>.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping with at least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.
 - 3. Stencil Material: Fiberboard or metal.
 - 4. Stencil Paint: Safety Red, exterior, gloss, acrylic enamel. Paint may be in pressurized spray-can form.
 - 5. Identification Paint: White, exterior, acrylic enamel. Paint may be in pressurized spraycan form.

2.5 VALVE TAGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Craftmark Pipe Markers</u>.
 - 3. <u>Marking Sevices Inc</u>.
 - 4. <u>Seton Identification Products</u>.

- B. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch or aluminum, 0.032-inch thick, with predrilled holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain, beaded chain or S-hook.
 - 3. Valve-Tag Color: Safety Red.
 - 4. Letter Color: White.
- C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Craftmark Pipe Markers</u>.
 - 3. <u>Marking Sevices Inc</u>.
 - 4. <u>Seton Identification Products</u>.
- B. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Safety Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- B. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit a view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:
 - 1. Valve-Tag Size and Shape:

- a. Fire-Suppression Standpipe: 1-1/2 inches, round.
- b. Wet-Pipe Sprinkler System: 1-1/2 inches, round.
- c. Dry-Pipe Sprinkler System: 1-1/2 inches, round.
- d. Foam-Water System: 1-1/2 inches, round.
- e. Clean-Agent Fire-Extinguishing System: 1-1/2 inches, round.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 210553

SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Specialty valves.
 - 3. Sprinklers.
 - 4. Alarm devices.
 - 5. Pressure gages.
- B. Related Requirements:
 - 1. Section 211119 "Fire Department Connections" for exposed-, flush-, and yard-type fire department connections.
 - 2. Section 230523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.

1.3 DEFINITIONS

- A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.
- B. High Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175-psig but not higher than of 300-psig maximum.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For wet-pipe sprinkler systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.

C. DELEGATED-DESIGN SUBMITTAL: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified Licensed Professional Engineer, (in the state where work is being performed), responsible for their preparation. This shall include fire hydrant flow test results and data, sprinkler system and standpipe system hydraulic calculations.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Domestic water, sanitary and storm piping.
 - 2. Compressed air and medical gas piping.
 - 3. HVAC ductwork and piping.
 - 4. Items penetrating finished ceiling include the following:
 - a. Lighting fixtures and ceiling mounted controllers.
 - b. Air outlets and inlets.
 - c. Fire Alarm initiating and signaling devices.
- B. Qualification Data: For qualified Installer and professional engineer.
- C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations and seismic calculations.
- D. Welding certificates.
- E. Fire-hydrant flow test report, recent within one (1) year.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping" and fire pump test reports.
- G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of

sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.9 FIELD CONDITIONS

- A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 - 1. Notify Architect, Construction Manager, Owner and Engineer no fewer than two days in advance of proposed interruption of sprinkler service.
 - 2. Do not proceed with interruption of sprinkler service without Architect's, Construction Manager's, Owner's and Engineer's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13 as amended by Appendix Q (BCNYC).
- B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- C. High-Pressure Piping System Component: Listed for 300-psig working pressure.
- D. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design wet-pipe sprinkler systems.
 - 1. Available fire-hydrant flow test records: Refer to Fire Protection contract drawings.
 - 2. Sprinkler system design shall be approved by authorities having jurisdiction.

- a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
- b. Sprinkler Occupancy Hazard Classifications: According to NFPA 13 recommendations unless otherwise indicated.
- 3. Minimum Density for Automatic-Sprinkler Piping Design: According to NFPA 13 recommendations unless otherwise indicated.
- 4. Maximum Protection Area per Sprinkler: According to UL listing.
- 5. Maximum Protection Area per Sprinkler: According to NFPA 13 recommendations unless otherwise noted.
- E. Total combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated.
- F. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.2 STEEL PIPE AND FITTINGS

- A. Standard-Weight, Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Schedule 10, Black-Steel Pipe: ASTM A 135/A 135M or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.
- C. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- D. Uncoated-Steel Couplings: ASTM A 865/A 865M, threaded.
- E. Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- F. Malleable- or Ductile-Iron Unions: UL 860.
- G. Cast-Iron Flanges: ASME 16.1, Class 125.
- H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 - 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8-inch thick or ASME B16.21, nonmetallic and asbestos free or EPDM rubber gasket.
 - a. Class 125 and Class 250, Cast-Iron, Flat-Face Flanges: Full-face gaskets.
 - b. Class 150 and Class 300, Ductile-Iron or -Steel, Raised-Face Flanges: Ring-type gaskets.
 - 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.
- I. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.

- 1. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- J. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Anvil International</u>.
 - b. <u>Tyco Fire Products LP</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Pressure Rating: 175-psig minimum or 300-psig where exposed to higher system pressures.
 - 3. Uncoated Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting, with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

- A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
- B. Pressure Rating:
 - 1. Standard-Pressure Piping Specialty Valves: 175-psig minimum.
 - 2. High-Pressure Piping Specialty Valves: 300-psig.
- C. Body Material: Cast or ductile iron.
- D. Size: Same as connected piping.
- E. End Connections: Flanged or grooved.
- F. Automatic (Ball Drip) Drain Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Reliable Automatic Sprinkler Co., Inc. (The)</u>.
 - b. <u>Tyco Fire Products LP</u>.
 - 2. Standard: UL 1726.
 - 3. Pressure Rating: 175-psig minimum.
 - 4. Type: Automatic draining, ball check.

- 5. Size: NPS 3/4.
- 6. End Connections: Threaded.

2.4 SPRINKLER PIPING SPECIALTIES

- A. Branch Outlet Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Anvil International</u>.
 - b. <u>Tyco Fire Products LP</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Standard: UL 213.
 - 3. Pressure Rating: 175-psig minimum or 300 psig.
 - 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.
 - 5. Type: Mechanical-tee and -cross fittings.
 - 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 - 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 - 8. Branch Outlets: Grooved, plain-end pipe, or threaded.
- B. Flow Detection and Test Assemblies:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Reliable Automatic Sprinkler Co., Inc. (The)</u>.
 - b. <u>Tyco Fire Products LP</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Standard: UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
 - 3. Pressure Rating: 175-psig minimum or 300 psig.
 - 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded or grooved.
- C. Branch Line Testers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Elkhart Brass Mfg. Co., Inc</u>.
 - b. <u>Fire-End & Croker Corporation</u>.

- c. <u>Potter Roemer LLC</u>.
- 2. Standard: UL 199.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Brass.
- 5. Size: Same as connected piping.
- 6. Inlet: Threaded.
- 7. Drain Outlet: Threaded and capped.
- 8. Branch Outlet: Threaded, for sprinkler.
- D. Sprinkler Inspector's Test Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Tyco Fire Products LP</u>.
 - b. <u>Victaulic Company</u>.
 - c. <u>Viking Corporation</u>.
 - 2. Standard: UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
 - 3. Pressure Rating: 175-psig minimum or 300 psig.
 - 4. Body Material: Cast- or ductile-iron housing with sight glass.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- E. Adjustable Drop Nipples:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>CECA, LLC</u>.
 - b. <u>Corcoran Piping System Co</u>.
 - c. <u>Merit Manufacturing</u>.
 - 2. Standard: UL 1474.
 - 3. Pressure Rating: 250-psig minimum or 300 psig.
 - 4. Body Material: Steel pipe with EPDM-rubber O-ring seals.
 - 5. Size: Same as connected piping.
 - 6. Length: Adjustable.
 - 7. Inlet and Outlet: Threaded.
- F. Flexible Sprinkler Hose Fittings: Not permitted in NYC
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>FlexHead Industries, Inc</u>.

- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175-psig minimum or 300 psig.
- 5. Size: Same as connected piping, for sprinkler.

2.5 SPRINKLERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Reliable Automatic Sprinkler Co., Inc. (The)</u>.
 - 2. <u>Tyco Fire Products LP</u>.
 - 3. <u>Victaulic Company</u>.
 - 4. <u>Viking Corporation</u>.
- B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
- C. Pressure Rating for Residential Sprinklers: 175-psig maximum.
- D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.
- E. Pressure Rating for High-Pressure Automatic Sprinklers: 300 psig.
- F. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.
 - 2. Nonresidential Applications: UL 199.
 - 3. Residential Applications: UL 1626.
 - 4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- G. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat or Chrome-plated steel, two piece, with 1-inch vertical adjustment.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
- H. Sprinkler Guards:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Reliable Automatic Sprinkler Co., Inc. (The)</u>.
 - b. <u>Tyco Fire Products LP</u>.

- c. <u>Victaulic Company</u>.
- d. <u>Viking Corporation</u>.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.6 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Electrically Operated Alarm Bell:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Fire-Lite Alarms, Inc.; a Honeywell International company</u>.
 - b. <u>Notifier</u>.
 - c. <u>Potter Electric Signal Company, LLC</u>.
 - 2. Standard: UL 464.
 - 3. Type: Vibrating, metal alarm bell.
 - 4. Size: 8-inch minimum diameter.
 - 5. Finish: Red-enamel factory finish, suitable for outdoor use.
 - 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Water-Flow Indicators:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Potter Electric Signal Company, LLC</u>.
 - b. <u>System Sensor</u>.
 - c. <u>Viking Corporation</u>.
 - d. <u>Watts; a Watts Water Technologies company</u>.
 - 2. Standard: UL 346.
 - 3. Water-Flow Detector: Electrically supervised.
 - 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 5. Type: Paddle operated.
 - 6. Pressure Rating: 250 psig.
 - 7. Design Installation: Horizontal or vertical.

- D. Pressure Switches:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Potter Electric Signal Company, LLC</u>.
 - b. <u>System Sensor</u>.
 - c. <u>Tyco Fire Products LP</u>.
 - d. <u>Viking Corporation</u>.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised water-flow switch with retard feature.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design Operation: Rising pressure signals water flow.
- E. Valve Supervisory Switches:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Fire-Lite Alarms, Inc.; a Honeywell International company</u>.
 - b. <u>Potter Electric Signal Company, LLC</u>.
 - c. <u>System Sensor</u>.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled valve is in other than fully open position.
 - 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 PRESSURE GAGES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>AGF Manufacturing Inc</u>.
 - 2. <u>AMETEK, Inc</u>.
 - 3. <u>Brecco Corporation</u>.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0 to 300 psig.
- E. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article. Flow test utilized for calculations shall be recent within one (1) year.
- B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Engineer before deviating from approved working plans.
 - 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
- B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.
- C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- K. Install alarm devices in piping systems.

- L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."
- M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.
- N. Fill sprinkler system piping with water.
- O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Section 210533 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Section 210700 "Fire-Suppression Systems Insulation."
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping." Sleeves for building service shall be one nominal line size greater than the service pipe.
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."
- S. Paint all sprinkler piping valves and accessories, (that are not brass or chrome), with red enamel.

3.3 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- J. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- K. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. Install valves in vertical position for proper direction of flow, in main supply to system.
 - 2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.
 - 3. Install deluge valves in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.5 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
- C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.6 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13. Comply with requirements for identification specified in Section 210553 "Identification for Fire-Suppression Piping and Equipment".
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Coordinate with fire-pump tests. Operate as required.
 - 7. Verify that equipment hose threads are same as local fire department equipment.
- B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.8 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain sprinkler system and components.

3.10 PIPING SCHEDULE

- A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends, cast-iron threaded fittings, and threaded joints or grooved ends, grooved-end fittings, grooved-end-pipe couplings, and grooved joints. Where piping between fire department connection and check valve is routed below grade, piping and fittings shall also be externally coated and wrapped per AWWA C203 or C105.
- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Standard-pressure, wet-pipe sprinkler system, NPS 1-1/2 and smaller, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 2 and Larger, shall be one of the following:
 - 1. Standard Weght black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
 - 4. Schedule 10 black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 5. Schedule 10 black-steel pipe with plain ends; welding fittings; and welded joints.
- E. High-pressure, wet-pipe sprinkler system, [All Sizes], shall be one of the following:
 - 1. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types as indicated on Fire Protection contract drawings.

END OF SECTION 211313

SECTION 22 05 00 COMMON WORK RESULTS FOR PLUMBING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. These basic requirements apply to all Division 22000 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>Plumbing and related</u> work for this project, as required by the contract documents.

1.02 RELATED SECTIONS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.03 REFERENCES

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. ASPE American Society of Plumbing Engineers.
- C. UL Underwriters Laboratory.
- D. NFPA National Fire Protection Association.

1.04 REGULATORY REQUIREMENTS

- A. IECC 2020
- B. IPC 2020
- C. IFGC 2020

1.05 QUALITY ASSURANCE

- A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field, which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the Contract, or otherwise performing work required by the Contract.
- B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.06 PROJECT/SITE CONDITIONS

- A. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.07 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all Plumbing work indicated on plan and in the specifications and related work including but not limited to the following:
 - Domestic Water Recirculation Pumps
 - Domestic Hot Water Heaters and Expansion tanks
 - Plumbing Fixtures
 - Piping, Valves and fittings and specialties
 - Domestic systems
 - Drain, Waste, and Vent
 - Gas
 - Storm
 - Hangers and Supports
 - Backflow Preventers
 - Equipment Insulation
 - Pipe Insulation
 - Identification
 - Coordination
 - Phasing
 - Shop Drawings
 - As-Built Drawings and Maintenance Manuals
 - Warrantees

PART 2 - PRODUCTS – NOT USED

PART 3 – EXECUTION

3.1 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Where corrosion can occur, appropriate corrosion resistant materials and assembly methods must be used including isolation of dissimilar metals against galvanic interaction. Resistance to corrosion must be achieved by the use of the appropriate base materials. Coatings shall be restored to only when specifically permitted by the Specification.

- C. Construct all equipment in accordance with requirements of all applicable codes. All pressure vessels and safety devices that fall within the scope of the ASME Code shall conform to the Code and bear the ASME label or stamp.
- E. Match and balance all system components to achieve compatibility of equipment or satisfactory operation and performance throughout the entire operating temperature and control ranges. All installations shall be in accordance with manufacturer's recommendations.
- F. Provide all controls, wiring, piping, valves, accessories and other components necessary to make all systems complete and operable.
- G. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of year from the date of acceptance by the owner, in writing. Certain equipment, such as underground fuel tanks, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.2 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

- A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of the all items listed in the following paragraph.
- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all equipment noted and scheduled on plans including but not limited to the following:
 - Domestic Water Recirculation Pumps
 - Domestic Hot Water Heaters and Expansion tanks
 - Hot water heater
 - Gas booster
 - Plumbing Fixtures
 - Piping, Valves and fittings and specialties
 - Domestic systems
 - Drain, Waste, and Vent
 - Gas
 - Storm
 - Hangers and Supports
 - Backflow Preventers
 - Equipment Insulation
 - Pipe Insulation
 - Hangers and Inserts
 - Roof Drains
 - Floor Drains
 - Insulation
 - Piping Layout (3/8 scale)

- Controls
- D. The contractor shall, upon award, submit a schedule for the engineers review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manor as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.
- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- F. Coordination shop drawings shall indicate all new lights, walls, piping, ductwork, structural elements, existing work, etc. and dimension locations of plumbing piping including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have been reviewed, said review does not mean that drawings have been checked in detail; said review does not substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications.
- H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.
 - I. Approval of shop drawings
 - 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
 - 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
 - 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
 - 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.

3.3 CHARTS AND TAGS

- A. The Contractor shall provide three sets of charts and diagrams of all piping systems indicating the number and location of valves, etc.
- B. All valves, and controls shall be designated with brass tags. Refer to section 22 05 23 Identification for HVAC Piping and equipment
- C. General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section

3.4 CODES AND STANDARDS

- A. All equipment and installation methods shall conform to the applicable standards and/or recommendations set forth in but not limited to the following;
 - IECC 2018
 - IPC 2018
 - IFGC 2018
- B. As well as all applicable referenced standards.

3.5 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required for his work.

3.6 PAINTING

- A. All piping shall be painted in colors conforming with OSHA Standards.
- B. All hangers, nuts bolts and fasteners shall be galvanized steel or nickel plated supports shall be painted

3.7 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- D. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- E. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- F. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.7 CUTTING AND PATCHING

A. All cutting and patching required for piping, etc., passing through walls, floors, and roof shall be provided by the General Contractor under this contract unless otherwise noted. This Contractor shall be responsible for any damage done to the structure due to his negligence.

- B. Patching materials and application shall match existing construction.
- C. Where applicable, new holes for piping installation shall be core drilled.
- D. Pipe Sleeves & Fire-stopping
 - 1. Provide for all pipes and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe.
 - 2. Where pipes penetrate fire rated assemblies, or where holes or voids are created to extend systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- G. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.

3.8 PROTECTION-COORDINATE WITH DIVISION 1

- A. Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with in-so-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.
- F. All openings cut in walls, floors, roof or ceilings of the building, for pipe, etc., shall be closed off with box-type temporary protective enclosures of ¹/₄" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and water tight.
- G. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of ¹/₄" hardboard, "Masonite", laid with joints taped together.

3.9 EQUIPMENT SUPPORTS

- A. Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.
- 3.10 WELDING SOLDERING BRAZING

- A. All equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- C. Provide all temporary exhaust, and ventilation air systems required during welding operations as required by OSHA. At no time shall the owner's new or existing HVAC equipment be used for ventilation during construction.

2.11 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing actual installation and locations of all piping and roof drains.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1.

3.12 CONDITIONS

- A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.
- B. Discrepancies: In the event of discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.13 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.14 CLOSING-IN OF UNINSPECTED WORK

- A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.
- B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.15 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction to suit conditions. Provide all labor and material to facilitate installation.

3.16 COOPERATION WITH OTHER TRADES / PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- D. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.
- E. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipments, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, roof drains, etc.
- F. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the PLUMBING contractor shall submit a schedule in writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner. The contractor shall include in his bid all costs associated with providing temporarily piping, pumps, hot water heaters, to maintain operations outside the area of work while work is being performed.. It shall also be noted that piping will have to be extended through the other areas in order to reach the area(s) under construction as part of this work. The contractor shall include in his bid all provisions to perform such phasing work. This note is typical for phases.

3.17 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.18 COMPLETENESS

A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer.

3.19 FIRE PREVENTION DURING HOT WORK

- A. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. Contractor shall furnish suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- B. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- C. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings and roofs from the operations.

3.22 SAFETY MEASURES

- A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to assure that each area is safe. The Contractor is responsible for arranging and paying for each test.
- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.
- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.

- G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.
- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. Suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor form performing his work within the Contract period for the Contract price.

3.23 USE OF OWNERS EQUIPMENT

A. The contractor shall not use any the owner's HVAC system or equipment, new or existing, for any purpose. The contractor shall provide temporary HVAC equipment, ductwork, power, and controls for use during construction for the purpose of ventilation, or heating during the construction process. All such equipment, ductwork, power, and controls shall be removed and the completion of work.

END OF SECTION

SECTION 22 05 17 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For sealants, indicating VOC content.
 - 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 80, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 80, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Description:
 - 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 2. Designed to form a hydrostatic seal of 20 psig minimum.
 - 3. Sealing Elements: EPDM-rubber or Nitrile (Buna N) interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 4. Pressure Plates: Carbon steel, Stainless steel, Stainless steel, Type 316.
 - 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 63,3 Stainless steel, Stainless steel, Type 316 of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.
- B. Rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.6 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications. Premixed and factory packaged.
- C. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls. Sleeves for building service piping shall be one nominal line size larger than the service pipe.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

- 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
- 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
- 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
- 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Use grout to seal the space around outside of sleeve-seal fittings.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves, or Steel pipe sleeves with Sleeve-seal fittings.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch minimum annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system or Steel pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch minimum annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch minim annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system or Steel pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch minimum annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves or Stack-sleeve fittings.
 - b. Piping NPS 6 and Larger: Steel pipe sleeves or Stack-sleeve fittings.
 - 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 220517

SECTION 22 05 18 ESCUTCHEOUNS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass or split-casting brass type with polished, chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or splitplate, stamped-steel type with concealed hinge.
 - g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
 - 2. Escutcheons for Existing Piping:
 - a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - e. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 - f. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

© 2020 OLA Consulting Engineers, P.C.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518

SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bimetallic-actuated thermometers.
 - 2. Liquid-in-glass thermometers.
 - 3. Thermowells.
 - 4. Dial-type pressure gages.
 - 5. Gage attachments.
 - 6. Test plugs.
 - 7. Test-plug kits.
 - 8. Sight flow indicators.
- B. Related Requirements:
 - 1. Section 221119 "Domestic Water Piping Specialties" for water meters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Trerice, H. O. Co</u>.
 - 2. <u>WATTS</u>.
 - 3. <u>Weiss Instruments, Inc</u>.
 - 4. <u>Weksler Glass Thermometer Corp.</u>

2.2 BIMETALLIC-ACTUATED THERMOMETERS

- A. Standard: ASME B40.200.
- B. Case: Liquid-filled and sealed type(s); stainless steel with 5-inch nominal diameter.
- C. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F and deg C.
- D. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.
- E. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
- F. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- G. Window: Plain glass.
- H. Ring: Stainless steel.
- I. Element: Bimetal coil.
- J. Pointer: Dark-colored metal.
- K. Accuracy: Plus or minus 1 percent of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum; 6-inch nominal size.
 - 3. Case Form: Back angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.

© 2020 OLA Consulting Engineers, P.C.

- 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
- 6. Window: Glass or plastic.
- 7. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 8. Connector: 3/4 inch, with ASME B1.1 screw threads.
- 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 - 3. Case Form: Adjustable angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass.
 - 7. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.5 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

© 2020 OLA Consulting Engineers, P.C.

- 1. Standard: ASME B40.100.
- 2. Case: Liquid-filled AND Sealed Solid-front, pressure relief type(s); cast aluminum or drawn steel; 6-inch nominal diameter.
- 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 5. Movement: Mechanical, with link to pressure element and connection to pointer.
- 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 7. Pointer: Dark-colored metal.
- 8. Window: Glass.
- 9. Ring: Brass OR Stainless steel.
- 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
- B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Liquid-filled and Sealed type; cast aluminum or drawn steel; 4-1/2-inch OR 6-inch nominal diameter with back or front flange and holes for panel mounting.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Stainless steel.
 - 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.6 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.7 TEST PLUGS

- A. Description: Test-station fitting made for insertion into piping tee fitting.
- B. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- C. Thread Size: or NPS 1/2, ASME B1.20.1 pipe thread.
- D. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- E. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.8 TEST-PLUG KITS

- A. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- B. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- C. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
- D. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- E. Carrying Case: Metal or plastic, with formed instrument padding.

2.9 SIGHT FLOW INDICATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ARCHON Industries, Inc</u>.
 - 2. <u>Dwyer Instruments, Inc</u>.
 - 3. <u>Ernst Flow Industries</u>.
 - 4. John C. Ernst Co., Inc.
- B. Description: Piping inline-installation device for visual verification of flow.
- C. Construction: Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.
- D. Minimum Pressure Rating: 150 psig.
- E. Minimum Temperature Rating: 200 deg F.
- F. End Connections for NPS 2 and Smaller: Threaded.
- G. End Connections for NPS 2-1/2 and Larger: Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- H. Install remote-mounted pressure gages on panel.
- I. Install valve and snubber in piping for each pressure gage for fluids.
- J. Install test plugs in piping tees.
- K. Install thermometers in the following locations:
 - 1. Inlet and outlet of each water heater.
 - 2. Inlets and outlets of each domestic water heat exchanger.
 - 3. Inlet and outlet of each domestic hot-water storage tank.
- L. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.
 - 4. Downstream of back flow preventer.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 PRESSURE GAGE AND THERMOMETER SCHEDULE

A. Install large size thermometers where ever space is available. Where space is limited or use compact style.

- B. Install all pressure gages locally unless space does not permit or the location is not readily visible. Then use remote reading pressure gage and install in location accessible and readily visible, as close to the point of reading as possible.
 - 1. Test plug with EPDM self-sealing rubber inserts.
- C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
- B. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F.
- C. Scale Range for Domestic Cooled-Water Piping: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Water Service Piping: 0 to 200 psi.
- B. Scale Range for Domestic Water Piping: 0 to 160 psi.
- C. Scale Range for Domestic Water Piping: 0 to 300 psi.

END OF SECTION 220519

SECTION 22 05 29 GENERAL-DUTY VALVES OR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Brass ball valves.
- 2. Bronze lift check valves.
- 3. Bronze swing check valves.
- 4. Bronze gate valves.
- 5. Iron gate valves.
- 6. Bronze globe valves.
- 7. Iron globe valves.
- B. Related Sections:
 - 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 - 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Non-rising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.
- D. Every pipe, fixture, and fitting used to convey water for potable use shall contain less than 0.25% of lead by weight according to lead free law "reduction of lead in drinking water act", nsf/ansi standard 372.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set gate valves closed to prevent rattling.
 - 4. Set ball valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:

- 1. Handwheel: For valves other than quarter-turn types.
- 2. Handlever: For quarter-turn valves NPS 6 and smaller.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.
 - 4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

- A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Forged brass.
 - f. Seats: PTFE or TFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- B. Two-Piece, Regular-Port, Brass Ball Valves with Brass Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Forged brass.
 - f. Seats: PTFE or TFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. Iron, Single-Flange Butterfly Valves with EPDM or NBR Seat and Aluminum-Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Jenkins Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. NIBCO INC.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 250 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM or NBR.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Aluminum bronze.

2.4 IRON, GROOVED-END BUTTERFLY VALVES

- A. Iron, Grooved-End Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kennedy Valve; a division of McWane, Inc.
 - b. Shurjoint Piping Products.
 - c. Tyco Fire Products LP; Grinnell Mechanical Products.
 - d. Victaulic Company.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating, NPS 8 and Smaller: 300 psig.
 - c. CWP Rating, NPS 10 and Larger: 200 psig.
 - d. Body Material: Coated, ductile iron.
 - e. Stem: Two-piece stainless steel.
 - f. Disc: Coated, ductile iron.
 - g. Seal: EPDM.

2.5 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
- 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Disc: Bronze.

2.6 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Disc: Bronze.

2.7 BRONZE GATE VALVES

- A. Class 125, NRS Bronze Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Milwaukee Valve Company.

- e. NIBCO INC.
- f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze, or aluminum.
- B. Class 125, NRS Bronze Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze, or aluminum.

2.8 IRON GATE VALVES

- A. Class 150, OS&Y, Iron Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Milwaukee Valve Company.

- e. NIBCO INC.
- f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.
- B. Class 250, OS&Y, Iron Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 500 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.

2.9 BRONZE GLOBE VALVES

- A. Class 125, Bronze Globe Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:

- a. Standard: MSS SP-80, Type 2.
- b. CWP Rating: 200psig.
- c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
- d. Ends: Threaded or solder joint.
- e. Stem: Bronze.
- f. Disc: Bronze, PTFE, or TFE
- g. Packing: Asbestos free.
- h. Handwheel: Malleable iron, bronze, or aluminum.

2.10 IRON GLOBE VALVES

- A. Class 125, Iron Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-85, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Packing and Gasket: Asbestos free.

2.11 LUBRICATED PLUG VALVES

A. Plug valves are specified in Specification section 221114 Natural gas piping

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.

- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.
- F. All valves used in any system shall have a pressure class that exceeds the pressure of the system it is installed in.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated on plan, use the following:
 - 1. Shutoff Service: Ball, butterfly, or gate valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service: Globe or ball valves.
 - 4. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 - b. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:

- 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
- 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
- 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
- 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
- 5. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Brass Valves: May be provided with lead free solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two piece, full port, brass with brass trim. Class 150
 - 3. Bronze Swing Check Valves: Class 150, bronze disc.
 - 4. Bronze Gate Valves: Class 150.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM, NBR seat, aluminum-bronze disc.
 - 3. Iron, Grooved-End Butterfly Valves: 175 CWP.
 - 4. Iron Gate Valves: Class 150.

3.6 SANITARY WASTE AND STORM-DRAINAGE VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Swing Check Valves: Class 150, nonmetallic disc.
 - 3. Bronze Gate Valves: Class 150.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Gate Valves: Class 150.
 - 3. Iron Swing Check Valves: Class 150.
 - 4. Iron Globe Valves: Class 150.

END OF SECTION 220523

SECTION 22 05 29 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Pipe stands.
 - 6. Pipe positioning systems.
- B. Related Sections:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 fire-suppression piping Sections for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Sustainable Design Submittals:
 - 1. <u>Environmental Product Declaration</u>: For each product.
 - 2. Health Product Declaration: For each product.
 - 3. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.
- C. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Fiberglass strut systems.
 - 4. Pipe stands.
- D. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.
- E. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe Hangers:

- 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
- 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. National Pipe Hanger Corporation.
 - 2. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 3. Rilco Manufacturing Co., Inc.
 - 4. Other manufacturers offering equivalent products.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.6 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

© 2020 OLA Consulting Engineers, P.C.

2.8 VIBRATION ISOLATION HANGERS

A. Vibration isolation pipe hangers; pre-compressed and locked at the rated deflection by means of a resilient up-stop to keep the piping or equipment at a fixed elevation during installation. The hangers shall be designed with a release mechanism to free the spring after the installation is complete and the hanger is subjected to its full load. Deflection shall be clearly indicated by means of a scale. Submittals shall include a drawing of the hanger showing the 30° capability. Hangers shall be type PC30N as manufactured by Mason Industries, Inc

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe Stand Installation:
 - 1. Pipe Stand: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, **NPS 2-1/2** and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping that will not have field-applied finish.

- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, and metal trapeze pipe hangers and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.

structural steel.

11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to

- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
 - 9. Install vibration isolation hangers on all piping connected to motor driven equipment for a distance of 20' or the first two hangers.

- O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

SECTION 22 05 53 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels
- 2. Warning signs and labels.
- 3. Pipe labels.
- 4. Stencils.
- 5. Valve tags.
- 6. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass 0.032-inch, stainless steel 0.025-inch, aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Letter Color: Black, Blue, Red, White, Yellow. As per ANSI depending on service
 - 3. Background Color: Black, Blue, Red , White, Yellow as per ANSI depending on service
 - 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 6. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black, Blue, Red, White, Yellow as per ANSI depending on service
 - 3. Background Color: Black, Blue, Red, White, Yellow ANSI depending on service
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

- B. Letter Color: White.
- C. Background Color: Black.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Paint: Exterior, gloss, black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 2. Identification Paint: Exterior, enamel in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."
- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.

- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feetalong each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- E. Pipe Label Color Schedule:
 - 1. Low-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 2. High-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 3. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.
 - 4. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Safety black
 - b. Letter Color: White

3.3 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

22 05 53 - 5 of 6

- 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inchesround.
 - b. Hot Water: 1-1/2 inchesround.
 - c. Sanitary waste and storm drainage: 1-1/2 inches round.
- 2. Valve-Tag Color:
 - a. Cold Water: Green.
 - b. Hot Water: Green.
 - c. Sanitary waste and storm drainage: Natural.
- 3. Letter Color:
 - a. Cold Water: White.
 - b. Hot Water: White.
 - c. Sanitary waste and storm drainage: white.

3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553

SECTION 22 07 19 PLUMBING PIPING INSULATION AND JACKETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Sanitary waste piping exposed to freezing conditions.
 - 5. Storm-water piping exposed to freezing conditions.
 - 6. Roof drains and rainwater leaders.
 - 7. Supplies and drains for handicap-accessible lavatories and sinks.
- B. Related Sections:
 - 1. Section 221116 "Domestic Water Piping."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at pipe expansion joints for each type of insulation.
 - 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 4. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 5. Detail application of field-applied jackets.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - 2. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - 3. Sheet Jacket Materials: 12 inches square.

4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for

installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Pittsburgh Corning Corporation; Foamglass</u>.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 5. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Aeroflex USA, Inc.; Aerocel</u>.
 - b. <u>Armacell LLC; AP Armaflex</u>.
 - c. <u>K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS</u>.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
 - b. Johns Manville; Microlite.
 - c. <u>Knauf Insulation; Friendly Feel Duct Wrap</u>.
 - d. <u>Manson Insulation Inc.; Alley Wrap</u>.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Fibrex Insulations Inc.; Coreplus 1200.</u>
 - b. Johns Manville; Micro-Lok.
 - c. <u>Knauf Insulation; 1000-Degree Pipe Insulation</u>.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Super-Stik</u>.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Thermokote V</u>.

- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote</u>.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 81-84</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Aeroflex USA, Inc.; Aeroseal</u>.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers." Formaldehyde emissions shall not exceed 9 mcg/cu. m or 7 ppb, whichever is less.
 - 4. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
 - 5. Wet Flash Point: Below 0 deg F.
 - 6. Service Temperature Range: 40 to 200 deg F.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-127</u>.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
- 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-82</u>.
 - b. <u>Eagle Bridges Marathon Industries; 225</u>.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-20.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Dow Corning Corporation; 739, Dow Silicone</u>.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. <u>P.I.C. Plastics, Inc.; Welding Adhesive</u>.
 - d. <u>Speedline Corporation; Polyco VP Adhesive</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 SEALANTS

- A. Joint Sealants:
 - 1. <u>Joint Sealants for Cellular-Glass and Phenolic Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- © 2020 OLA Consulting Engineers, P.C.
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. <u>Pittsburgh Corning Corporation; Pittseal 444</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - B. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - b. <u>Eagle Bridges Marathon Industries; 405</u>.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. <u>P.I.C. Plastics, Inc.; FG Series</u>.
 - c. <u>Proto Corporation; LoSmoke</u>.
 - d. <u>Speedline Corporation; SmokeSafe</u>.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- C. Metal Jacket:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; Metal Jacketing Systems</u>.
 - b. <u>ITW Insulation Systems; Aluminum and Stainless Steel Jacketing</u>.
 - c. <u>RPR Products, Inc.; Insul-Mate</u>.
 - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.

- b. Finish and thickness are indicated in field-applied jacket schedules.
- c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
- d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Pittsburgh Corning Corporation; Pittwrap</u>.
 - b. Polyguard Products, Inc.; Insulrap No Torch 125.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ABI, Ideal Tape Division; 428 AWF ASJ</u>.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. <u>Compac Corporation; 104 and 105</u>.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ABI, Ideal Tape Division; 491 AWF FSK</u>.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. <u>Compac Corporation; 110 and 111</u>.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
- 2. Width: 3 inches.
- 3. Thickness: 6.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ABI, Ideal Tape Division; 370 White PVC tape</u>.
 - b. <u>Compac Corporation; 130</u>.
 - c. <u>Venture Tape; 1506 CW NS</u>.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ABI, Ideal Tape Division; 488 AWF</u>.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. <u>Compac Corporation; 120</u>.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

A. Bands:

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ITW Insulation Systems; Gerrard Strapping and Seals</u>.
 - b. <u>RPR Products, Inc.; Insul-Mate Strapping and Seals</u>.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.9 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 - b. <u>McGuire Manufacturing</u>.
 - c. <u>Truebro; a brand of IPS Corporation</u>.
 - d. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Truebro; a brand of IPS Corporation</u>.
 - b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.

- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.

- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe

diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.

- 2. Install lap or joint strips with same material as jacket.
- 3. Secure jacket to insulation with manufacturer's recommended adhesive.
- 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FINISHES

- A. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- B. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. Smaller than NPS $1\frac{1}{2}$ ": Insulation shall be one of the following:
 - a. Cellular Glass: ¹/₂ inches thick.
 - b. Flexible Elastomeric: $\frac{1}{2}$ " inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 1 1/2 and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 1" inches thick.
 - b. Flexible Elastomeric: 1" inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1" inch thick.
- B. Domestic Hot and Recirculated Hot Water: $(T < 140^{\circ} F)$
 - 1. Smaller than NPS $1\frac{1}{2}$ ": Insulation shall be one of the following:
 - a. Cellular Glass: 1 inch thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 1 ¹/₂" and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 1-1/2 inches thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- C. Domestic Hot and Recirculated Hot Water: (T 141°F to 200° F)
 - 1. Smaller than NPS 1 ¹/₂": Insulation shall be one of the following:
 - a. Cellular Glass: 11/2" inch thick.
 - b. Flexible Elastomeric: $1 \frac{1}{2}$ " inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 11/2" inch thick.
 - 2. NPS 1 ¹/₂" and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches thick.
 - b. Flexible Elastomeric: 2 inches thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- D. Roof Drain; bodies, storm risers and horizontal offsets inside building:

- 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 11/2 inches thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- E. All Sanitary waste, storm and domestic piping in garages or areas not heated:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2" inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inch thick.
- F. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures not concealed by millwork:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1/2 inch thick cold water and drain, 1" hot water
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick old water and drain, 1" hot water
 - c. Jacket with protective shielding guards. Refer to section 2.9

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. ASJ
- D. Piping, Exposed:
 - 1. <u>All</u> exposed sanitary, waste, storm, hot water cold water, and vent piping and fittings which are exposed to view in public areas, (as well as insulated piping in equipment rooms), shall be completely covered with white Zeston 2000 PVC insulated piping and fitting covers. Apply as per manufacturer with Perma Weld adhesive. All labels and flow arrows shall be applied over PVC jacket

END OF SECTION 220719

SECTION 22 11 14 - NATURAL-GAS PIPING VALVES AND FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.
 - 6. Concrete bases.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

1.5 SUBMITTALS

A. Product Data: For each type of the following:

- 1. Piping valves and specialties.
- 2. Corrugated, stainless-steel tubing with associated components.
- 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
- 4. Pressure regulators. Indicate pressure ratings and capacities.
- 5. Dielectric fittings.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Shop Drawing Scale: 3/8 inch per foot.
 - 2. Detail mounting, supports, and valve arrangements for pressure regulator assembly.
- C. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- D. Qualification Data: For qualified professional engineer.
- E. Welding certificates.
- F. Field quality-control reports.
- G. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

1.8 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than one week in advance of proposed interruption of natural-gas service.
 - 2. Do not proceed with interruption of natural-gas service without Construction Manager's and Owner's written permission.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."
- C. Part 2 specifies general descriptions and minimum standards for pipe valves and fitting. All pipes valves fittings and specialties shall meet the requirements of the local utility and shall be listed and approved for use by the local utility.
- D. The contractor shall be responsible for all utility coordination. This will include but is not limited to field supervision by the utility, applications to the utility for service. Submit application, arrange field meetings and inspections as required. HDPE piping fusion welding shall only be performed by contractors having current certification, (by the utility), for both personal and equipment. Before service work begins determine service gas pressure and obtain service layout from the utility. Required gas service pressure shall be coordinated with equipment requirements.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.

- b. End Connections: Threaded or butt welding to match pipe.
- c. Lapped Face: Not permitted underground.
- d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
- e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
- 5. Mechanical Couplings:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dresser Piping Specialties; Division of Dresser, Inc.
 - 2) Smith-Blair, Inc.
 - 3) Other manufacturers offering similar products.
 - b. Steel flanges and tube with epoxy finish.
 - c. Buna-nitrile seals.
 - d. Steel bolts, washers, and nuts.
 - e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 - f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. HDPE Pipe: ASTM D 2513, SDR 11. (Underground piping only)

- 1. HDPE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
- 2. HDPE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
- 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: HDPE pipe complying with ASTM D 2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or flanged or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
- 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: HDPE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or flanged or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.

- e. Tracer wire connection.
- f. Ultraviolet shield.
- g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
- 5. Plastic Mechanical Couplings,NPS 1-1/2 and Smaller: Capable of joining PE pipe to PE pipe.
 - a. <u>Manufacturers:</u> Subject to approval of the utility and in compliance with requirements, provide products by one of the following:
 - 1) Lyall, R. W. & Company, Inc.
 - 2) <u>Mueller Co</u>.
 - 3) <u>Perfection Corporation</u>.
 - b. PE body with molded-in, stainless-steel support ring.
 - c. Buna-nitrile seals.
 - d. Acetal collets.
 - e. Electro-zinc-plated steel stiffener.
- 6. Plastic Mechanical Couplings,NPS 2 and Larger: Capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 - a. <u>Manufacturers:</u> Subject to approval by the utility and in compliance with utility requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Lyall, R. W. & Company, Inc.
 - 2) <u>Mueller Co</u>.
 - 3) <u>Perfection Corporation</u>.
 - b. Fiber-reinforced plastic body.
 - c. PE body tube.
 - d. Buna-nitrile seals.
 - e. Acetal collets.
 - f. Stainless-steel bolts, nuts, and washers.
- 7. Steel Mechanical Couplings: Capable of joining plain-end PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe.
 - a. <u>Manufacturers:</u> Subject to approval by the utility and in compliance with utility requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following
 - 1) <u>Dresser Piping Specialties</u>.
 - 2) <u>Smith-Blair, Inc</u>.
 - b. Stainless-steel flanges and tube with epoxy finish.
 - c. Buna-nitrile seals.
 - d. Stainless-steel bolts, washers, and nuts.
 - e. Factory-installed anode for steel-body couplings installed underground.

2.2 PROTECTIVE COATING FOR UNDERGROUND STEEL PIPING:

A. All buried steel piping shall be catholically protected as per the following:

- a. All buried steel pipe requires factory applied coating in accordance with gas specification g- 8062 titled "extruded polyolefin coating on steel gas pipe".
- b. Field installed joints and fittings will be coated in accordance with gas specification g-8209 titled "field coating of steel gas pipe and fittings installed underground and in subsurface structures".
- c. The new steel service pipe must have an insulating joint (ij) installed when a connection to existing steel or copper tubing is required.
- d. An insulating joint (ij) will be installed under the following conditions:
 - 1) Low pressure service after the service head valve (shv) but before the gas meter.
 - 2) Elevated pressure after the gas regulator but before the gas meter.
- e. Electrical continuity of all steel underground service pipes must be provided. Bonding must be installed across all compression couplings and fittings installed on buried service pipes as per gas drawing specification eo-4718 titled "bonding of compression couplings and valves on steel mains and services".
- f. Magnesium anodes are required on all new direct buried steel service pipes. Con Edison will furnish and install the required anodes on its portion of gas steel gas service pipe with the customer and/or his contractor responsible for the anode installation on the customer's portion of service pipe. All anode wires shall be afixed to the steel service pipe using the thermit welding process or by using an approved connector as per gas drawing specification eo-14134 titled "thermit weld process for attaching wire to pipe or fitting".

.....

<u>PIPE SIZES</u>	<u>PIPE LENGTH</u>	ANODE SIZE	<u>QUANTITY</u>
2"-4"	EVERY 100' OR LESS	32LB	1
6"-12"	EVERY 100' OR LESS	32LB	2

*REFER TO CON ED YELLOW BOOK FOR THE COMPLETE TABLE.

- g. When a steel gas service is installed that supplies more than one building, the anodes shall be installed after con edison personnel has tested the pipe to determine the acceptability of the pipe coating.
- h. Con edison will test the catholic protection on all new gas service installations. Proper catholic protection must exist prior to the final tie-in by con edison.
- i. Test stations shall be installed along with anodes on all buried steel service pipes greater than 100 lf or more in length. Anode test stations are to consist of #10 copper wire leads (white) thermit-welded to the steel service pipe along with anode leads (black) routed into a 4" x 4" box, flush to grade. Con edison's gas corrosion personnel will make final splice.

2. Mechanical Couplings:

- a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dresser Piping Specialties; Division of Dresser, Inc.
 - 2) Smith-Blair, Inc.
 - 3) Other manufacturers offering similar products.
- b. Steel flanges and tube with epoxy finish.
- c. Buna-nitrile seals.
- d. Steel bolts, washers, and nuts.
- e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
- f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

2.3 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Corrugated stainless-steel tubing with polymer coating.
 - 3. Operating-Pressure Rating: 0.5 psig.
 - 4. End Fittings: Zinc-coated steel.
 - 5. Threaded Ends: Comply with ASME B1.20.1.
 - 6. Maximum Length: 72 inches.
 - 7. Corrugated Stainless Steel Piping (CSST) installation <u>is not permitted</u> on distribution piping in New York City.
- B. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- C. Basket Strainers:
 - 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.

D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.5 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig.
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.

© 2020 OLA Consulting Engineers, P.C.

- 2. Body: Bronze, complying with ASTM B 584.
- 3. Ball: Chrome-plated bronze.
- 4. Stem: Bronze; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Threaded-body packnut design with adjustable-stem packing.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
 - c.

.

- 2. Body: Bronze, complying with ASTM B 584.
- 3. Plug: Bronze.
- 4. Ends: Threaded, socket, or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Operator: Square head or lug type with tamperproof feature where indicated.
- 6. Pressure Class: 125 psig.
- 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. McDonald, A. Y. Mfg. Co.
 - b. Mueller Co.; Gas Products Div.
 - c. Xomox Corporation; a Crane company.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig.

- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.6 AUTOMATIC GAS SHUTOFF VALVES

- A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33. and UL listed guide #YRPV2.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves where indicated. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 5. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
 - 6. Body; Aluminum
 - 7. Seals and disc; NBR
 - 8. Core tube; 305 stainless steel
 - 9. Core and plugnut; 430F stainless
 - 10. Springs; 302 stainless
 - 11. Valves shall be normally closed, cable operated and held open. Coordinate operating mechanism with fire protection contractor and equipment. Mechanism shall be designed to close valve when cable is pulled or released as required
- B. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38. and UL listed guide #YRPV2.
 - 1. CWP Rating: 125 psig.
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves where indicated.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
 - 5. Body; Aluminum
 - 6. Seals and disc; NBR
 - 7. Core tube; 305 stainless steel
 - 8. Core and plugnut; 430F stainless
 - 9. Springs; 302 stainless
 - 10. Valves shall be normally closed, cable operated and held open. Coordinate operating mechanism with fire protection contractor and equipment. Mechanism shall be designed to close valve when cable is pulled or released as required.

2.7 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.

- 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
- B. Service Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American Meter Company.
 - b. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 - 12. Maximum Inlet Pressure: 100 psig.

2.8 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - f. Wilkins; a Zurn company.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Matco-Norca, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
- 2. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.
 - c. Pressure Rating: 125 psig minimum at 180 deg F.
 - d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig.
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

2.9 LABELING AND IDENTIFYING

A. In accordance with ASME and Local utility requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to NFPA 54 and the New York State Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 and the New York State Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and Con Edison requirements for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install fittings for changes in direction and branch connections.
- D. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and the New York State Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.

- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Verify final equipment locations for roughing-in.
- K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-regulator outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- M. Extend relief vent connections for service regulators to outdoors and terminate with weatherproof vent cap.
- N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- O. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 - 2. Prohibited Locations:
 - a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 - b. Do not install natural-gas piping in solid walls or partitions.
- P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- Q. Connect branch piping from top or side of horizontal piping.
- R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- S. Do not use natural-gas piping as grounding electrode.

- T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

- F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.
- G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.8 CONNECTIONS

- A. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- B. Install piping adjacent to appliances to allow service and maintenance of appliances.
- C. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

- A. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

- B. Paint exposed, interior and exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (flat).
 - d. Color: yellow.
- C. Paint exposed, interior metal piping, valves, service regulators, and piping specialties, except components, with factory-applied paint or protective coating.
- D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54 and the New York Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- F. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.13 PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. PIPE SIZE AND PRESSURE LIMITATION FOR GAS PIPING

PSIG	Gas Pipe Installation
In Excess of 1/2 psig - 5 psig	Gas distribution pipe operating size 4-inch or larger must be welded.
In Excess of 5 psig	All gas distribution pipes sizes operating above 5 psig must be welded.
All welding of gas distribution pipe shall be subject to DOB special inspection (NYCFGC Section.403)	
All piping 4-Inch or larger operating in excess of 5 psig must be butt-welded,	
Subject to DOB special inspection and radio-graphed	
Threaded piping may be used up to 4-inch at pressure no greater than ½ psig.	

- B. Aboveground, branch piping smaller than 4" NPS and less than ½ psi shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
- C. All welded distribution piping shall be one of the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
- D. Underground, piping shall be one of the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
 - 2. HDPE pipe and Fittings with fusion welded joints
- E. All piping buried under buildings shall be in containment piping;
 - 1. Containment Conduit for gas pipe: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 - 2. Containment Conduit for gas vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.14 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at regulator shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Valves for pipe sizes NPS 2-1/2 and larger at service regulator shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:

- 1. Two-piece, full-port, bronze ball valves with bronze trim.
- 2. Bronze plug valve.
- 3. Cast-iron, nonlubricated plug valve.
- E. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.

3.15 UNDERGROUND GAS PIPING

- A. The contractor shall field verify the exact size, location, depth and invert of all existing utilities within the limits of work prior to commencing his operations, and report any discrepancies to the engineer for resolution.
- B. The contractor shall notify all utility companies 72 hours prior to the start of his operations and shall comply with the latest industrial code rule 53 regulations.
- C. Install all high pressure and low piping in accordance with **Con Edison** requirements. Provide minimum cover over the top of the service pipe of 24" in accordance with con Edison requirements. Use only Con Ed approved back fill material, yellow sand, clean of all stones and debris.
- D. Plastic and steel pipe shall be installed to allow thermal expansion and contraction. Joints shall be made under con Edison guidelines. Install tracer wire along the lengths of the pipe in accordance with con Edison guidelines. Plastic and steel pipe installation is subject to inspection by the utility.
- E. All buried piping shall have plastic warning tape installed 1'-0" above the pipe as per utility requirements
- F. All buried plastic pipe shall be installed with a #14 gage, red, insulated tracer wire from 1' above grade, taped to the meter riser, and along the entire continuous length of the servie pipe to a point 1' beyond the installation. The tracer with must not be electrically connected to any metallic pipe.
- G. Provide all pressure tests in accordance with con Edison requirements and nfpa 54. The contractor is responsible for all required paperwork and filing.
- H. Provide appropriate plugs and caps on open ended pipes.
- I. When steel service pipe is required, the service pipe will be installed as follows:
 - 1. Buried steel service pipe is to be joined with non-insulating compression-type couplings or by welding. Buried threaded joints or flanged joints are not permitted.
 - 2. Compression couplings may be used to join exposed meter piping as depicted on gas meter piping drawings. Refer to applicable drawings in reference section. All meter piping must be properly supported and a-fixed to building wall, floor or ceiling.
 - 3. Care should be taken in the use and application of pipe joint compound or teflon[™] tape. The compound shall only be applied to the male threaded end of the fitting. Teflon[™] tape may not be used on pipe joints on the inlet side of a gas rotary meter.

- 4. Lamp wick or cloth thread intended for the use as a seal in the root of threaded joints is not permitted.
- 5. Changes in the direction of gas service pipe may be made through the use of factory bends only.
- J. This project shall use HDPE pipe for underground service to the building. All above ground piping shall be steel as per the above specifications.

3.16 BELOW GROUND PIPING: LEAKAGE TESTING:

- A. All of the customer's service piping and meter piping shall be tested in accordance with the following requirements:
- B. All buried piping, before the building wall, shall be pressure tested per the requirement of Gas Specification G-8204, "Pressure testing Requirements for Gas Mains and Services".
- C. All buried piping shall be blocked, supported and held in place with sand bags for the leakage test and coating inspection.
- D. The test medium shall be either air, inert gas for testing pressures up to 150 psig. Water may be used for test pressures exceeding 150 psig.
- E. The pressure source shall be isolated from the piping prior to the start of the test.
- F. All joints, fittings, valves or other potential leak sources shall be checked for leakage during the pressure test using leak detection solution (soap water).
- G. Test duration times are to be measured after the test medium has stabilized.
- H. Pressure readings shall be performed using a calibrated pressure gauge.
- I. Prior to tie-in, Con Edison will pressure test buried pipe to the head of service/riser valve

3.17 REQUIREMENTS FOR BUILDINGS IN FLOOD ZONES:

- A. For buildings in flood zones with industrial meter sets or elevated pressure gas regulators, vent lines should be elevated so the terminus is 3' above the FEMA base flood elevation (BFE). If this is not feasible, a Vent Line Protector (VLP) shall be installed on the vent line to prevent water intrusion.
- B. Refer to Gas Specification G-8217, "Flood-Prone Areas for the Installation of Gas Service Regulator Vent Line Protectors (VLP's)" for location listings (by M&S Plate) where water intrusion protection devices shall be installed on vent lines of elevated pressure gas services in Category 3 hurricane flood prone areas.
- C. For those areas not listed in Gas Specification G-8217 where there is a potential for exposure to severe water or flooding, a water intrusion protection device should be considered for installation to prevent blocking of the service regulator vent line at Con Edison's discretion.

© 2020 OLA Consulting Engineers, P.C.

- D. All outside regulators and the outside terminus for inside service regulators shall have an approved vent line cap (peck vent) or water intrusion protection device aka vent line protector (VLP).
- E. Each Water Intrusion Protection Device shall:
 - 1. Terminate outdoors with VLP facing downward.
 - 2. Be weather and insect resistant.
 - 3. Not be covered or obstructed in any way that would prevent or interfere with the operation of the gas regulator.
 - 4. Have a minimum clearance of eighteen inches (18") from the final outdoor grade to the lower end of the protection device.
- F. Refer to Gas Specification G-699, "Installation and Inspection of Gas Service Regulator Vent Line Protectors (VLPs)" for proper sizing of device and properly matched 90 deg. elbow and pipe strap.

3.18 PROHIBITED LOCATIONS FOR SERVICE AND METERING EQUIPMENT OUTDOORS AND INDOORS:

- 1. Service head valves, meters, pressure regulators, and associated equipment shall not be located:
- 2. In a designated Boiler or Fire Pump room of a multi-family or commercial building.
- 3. Gas meters may be not be installed within three feet (3 ft.) of sources of ignition including burners, electric panel boxes or machinery.
- 4. Where they could become a hindrance, obstruction or exposed to mechanical damage.
- 5. In sleeping quarters, toilets, bathrooms, washrooms, unventilated closets, stairways and stair landings.
- 6. Indoors on walls of elevator or dumbwaiter shafts, over doorways.
- 7. Under water pipes or other pipes which may be subject to sweating.
- 8. In any recess or enclosure unless its design and location have been approved by Con Edison.
- 9. Gas piping shall not be installed within six inches of electric meter equipment.

END OF SECTION 221114

SECTION 22 11 16 DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings
 - 2. Ductile iron pipe and fittings
 - 3. Pipe joining materials
 - 4. Specialty valves
 - 5. Transition fittings
 - 6. Dielectric fittings.
- B. Related Section:
 - 1. Division 22 Section "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.3 SUBMITTALS

- A. Product Data: For the following products:
 - 1. Specialty valves.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Flexible connectors.
- B. Water Samples: Specified in "Cleaning" Article.
- C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Fire-suppression-water piping.
 - 2. Domestic water piping, storm water piping and sanitary piping.
 - 3. HVAC hydronic piping and Ductwork.
 - 4. Electrical conduits.

- D. Field quality-control reports.
- E. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 61 for potable domestic water piping and components.

1.5 PROJECT CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Construction Manager, Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not proceed with interruption of water service without Construction Manager's, Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."
- C. Comply with NSF Standard 372 for low lead.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
 - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- B. Copper Unions:

© 2020 OLA Consulting Engineers, P.C.

- 1. MSS SP-123.
- 2. Cast-copper-alloy, hexagonal-stock body.
- 3. Ball-and-socket, metal-to-metal seating surfaces.
- 4. Solder-joint or threaded ends.
- C. Copper-Tube, Extruded-Tee Connections:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Apollo Valves; Conbraco Industries, Inc</u>.
 - b. <u>Elkhart Products Corporation</u>.
 - c. <u>Mueller Industries, Inc</u>.
 - d. <u>NIBCO INC</u>.
 - 2. Description: Tee formed in copper tube according to ASTM F 2014.

2.3 DUCTILE-IRON SERVICE PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe:
 - 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Standard-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C110/A21.10, ductile or gray iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- C. Compact-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C153/A21.53, ductile iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- D. Plain-End, Ductile-Iron Pipe: AWWA C151/A21.51.

2.4 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.5 SPECIALTY VALVES

- A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
- B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.6 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - d. Zurn Plumbing Products Group; Wilkins Water Control Products.
 - 2. Description:
 - a. Pressure Rating: 150 psig at 180 deg F.
 - b. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. EPCO Sales, Inc.

- d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Factory-fabricated, bolted, companion-flange assembly.
 - b. Pressure Rating: 150 psig.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Kits:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig.
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.
- E. Dielectric Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.
 - 2. Description:
 - a. Galvanized-steel coupling.
 - b. Pressure Rating: 300 psig at 225 deg F.
 - c. End Connections: Female threaded.
 - d. Lining: Inert and noncorrosive, thermoplastic.
- F. Dielectric Nipples:
 - 1. Standard: IAPMO PS 66.
 - 2. Electroplated steel nipple complying with ASTM F1545.
 - 3. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 4. End Connections: Male threaded or grooved.
 - 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install domestic water piping level without pitch and plumb.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that spac
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping adjacent to equipment and specialties to allow service and maintenance.
- K. Install piping to permit valve servicing.
- L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and branch connections.
- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."

- Q. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."
- R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."
- V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Copper-Tubing Grooved Joints: Roll groove end of tube. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for roll-grooved joints.
- G. Joint Construction for Grooved-End, Ductile-Iron Piping: Make joints according to AWWA C606. Cut round-bottom grooves in ends of pipe at gasket-seat dimension required for specified (flexible or rigid) joint. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts

- H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2and larger.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
 - 2. Stop-and-Waste Drain Valves: Instead of hose-end drain valves where indicated.

3.4 DIELECTRIC FITTING INSTALLATION

- 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- 2. Dielectric Fittings for NPS 2and Smaller: Use dielectric couplings or nipples or unions.
- 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.

- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
- F. Install supports for vertical copper tubing every 10 feet
- G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:

- 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
- 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- C. Piping Tests:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports. Submit for engineers review and approval.

3.9 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.

- 4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
- 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
- 6. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
- 7. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- B. Prepare and submit reports of purging and disinfecting activities.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Under-building-slab, domestic water, building-<u>service piping</u>, NPS 3 and smaller, shall be one of the following:
 - 1. Soft copper tube, ASTM B 88, Type K, ASTM B 88 Type L; wrought-copper, solderjoint fittings; and brazed, copper pressure-seal fittings; and pressure-sealed joints.

- E. Under-building-slab, domestic water, building-<u>service piping</u>, NPS 4 to NPS 8 and larger, shall be one of the following:
 - 1. Soft copper tube, ASTM B 88, Type K, ASTM B 88, Type L; wrought-copper, solderjoint fittings; and brazed joints.
 - 2. Mechanical-joint, ductile-iron pipe; standard-pattern, mechanical-joint fittings; and mechanical joints.
- F. Under-building-slab, combined domestic water, building-<u>service</u>, and fire-service-main piping, NPS 6 to NPS 12, shall be the following:
 - 1. Mechanical-joint, ductile-iron pipe; standard-pattern, mechanical-joint fittings; and mechanical joints.
 - 2. Push-on-joint, ductile-iron pipe; standard-pattern, push-on-joint fittings; and gasketed joints.
- G. Under-building-slab, domestic water <u>distribution</u> piping, NPS 3 and smaller, shall be the following:
 - 1. Hard copper pipe type L, ASTM B42 or soft copper tube type L, ASTM B 88. wrought-copper, solder-joint fittings; and brazed joints.
- H. Aboveground domestic water distribution piping, NPS 2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; copper, solder-joint fittings; and joints.
- I. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and brazed soldered joints.
- J. Aboveground domestic water piping, NPS 5 to NPS 8, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and brazed soldered joints.
 - 2. Hard copper tube, ASTM B 88, Type L or; grooved-joint, copper-tube appurtenances; and grooved joints.
- K. Aboveground, combined domestic water-service and fire-service-main piping, NPS 6 to NPS 12, shall be one of the following:
 - 1. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.

3.12 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Memory-stop balancing valves.
 - 4. Drain Duty: Hose-end drain valves.

- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116

SECTION 22 11 19 DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves
 - 4. Balancing valves.
 - 5. Temperature-actuated water mixing valves.
 - 6. Strainers.
 - 7. Outlet boxes
 - 8. Hose bibbs.
 - 9. Wall hydrants.
 - 10. Drain valves.
 - 11. Water hammer arresters.
 - 12. Air vents.
 - 13. Trap-seal primer valves.
 - 14. Trap seal primer systems
 - 15. Flexible connections
- B. Related Sections include the following:
 - 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 - 2. Division 22 Section "Domestic Water Piping".

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.

C. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. FEBCO
 - b. Zurn Industries, LLC
 - c. Watts
 - d. Ames Co.
 - 2. Standard: ASSE 1001.
 - 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: Threaded.
 - 6. Finish: Chrome plated.
- B. Hose-Connection Vacuum Breakers:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. FEBCO
 - b. Zurn Industries, LLC
 - c. Watts
 - d. Ames Co.
- 2.
- 3. Standard: ASSE 1011.
- 4. Body: Bronze, nonremovable, with manual drain.
- 5. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 6. Finish: Chrome or nickel plated.
- C. Laboratory-Faucet Vacuum Breakers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. FEBCO
 - b. Zurn Industries, LLC
 - c. Watts
 - d. Ames Co.
 - 2.
 - 3. Standard: ASSE 1035.
 - 4. Size: NPS 1/4 or NPS 3/8 matching faucet size.
 - 5. Body: Bronze.
 - 6. End Connections: Threaded.
 - 7. Finish: Chrome plated.

2.4 BACKFLOW PREVENTERS

- A. Double-Detector Check Backflow-Prevention Assemblies:
 - 1. Ames Co. or a comparable product by one of the following as indicated on Drawings:
 - a. FEBCO; SPX Valves & Controls.
 - b. Zurn Plumbing Products Group; Wilkins Div.
 - c. Watts Industries
 - 2. Standard: ASSE 1015.
 - 3. Operation: Continuous-pressure applications, unless otherwise indicated.
 - 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 - 5. Size, Design Flow Rate: as indicated on drawings.
 - 6. Body: stainless steel.
 - 7. End Connections: Flanged.
 - 8. Configuration: Designed for horizontal, straight through flow.
 - 9. Accessories:
 - a. Valves: Outside screw and yoke gate-type with flanged ends on inlet and outlet.

- B. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Ames Co. model as indicated on Drawings, or a comparable product by one of the following as indicated on Drawings:
 - a. Watts Industries.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - 2. Standard: ASSE 1013.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 - 5. Body: Bronze for NPS 2 and smaller.
 - 6. End Connections: Threaded for NPS 2 and smaller.
 - 7. Configuration: Designed for horizontal, straight through flow.
 - 8. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- C. Beverage-Dispensing-Equipment Backflow Preventers:
 - 1. Ames Co. or a comparable product by one of the following as indicated on Drawings:
 - a. FEBCO; SPX Valves & Controls.
 - b. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1022.
 - 3. Operation: Continuous-pressure applications.
 - 4. Size: NPS 1/4 or NPS 3/8
 - 5. Body: Stainless steel.
 - 6. End Connections: Threaded.
- D. Dual-Check-Valve Backflow Preventers:
 - 1. Ames Co. or a comparable product by one of the following as indicated on Drawings:
 - a. FEBCO; SPX Valves & Controls.
 - b. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1024.
 - 3. Operation: Continuous-pressure applications.
 - 4. Size: [NPS 1/2] [NPS 3/4] [NPS 1] [NPS 1-1/4].
 - 5. Body: Bronze with union inlet.
- E. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
 - 1. Ames Co. or a comparable product by one of the following as indicated on Drawings:
 - a. FEBCO; SPX Valves & Controls.
 - b. Zurn Plumbing Products Group; Wilkins Div.
 - 2.
 - 3. Standard: ASSE 1032.

© 2020 OLA Consulting Engineers, P.C.

- 4. Operation: Continuous-pressure applications.
- 5. Size: NPS 1/4 or NPS 3/8 (DN 8 or DN 10).
- 6. Body: Stainless steel.
- 7. End Connections: Threaded.
- F. Backflow-Preventer Test Kits:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. FEBCO; SPX Valves & Controls.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

2.5 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. zurn
 - b. Watts
 - c. Josam.
 - 2. Standard: ASSE 1003.
 - 3. Pressure Rating: Initial working pressure of 150 psig.
 - 4. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
 - 5. Valves for Booster Heater Water Supply: Include integral bypass.
 - 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.
- B. Water-Control Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. FEBCO
 - b. Zurn Industries, LLC
 - c. Watts
 - d. Ames Co.
 - 2. Description: Pilot-operated, diaphragm-type, single-seated, main water-control valve.
 - 3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
 - 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.

- a. Pattern: Angle or Globe-valve design.
- b. Trim: Stainless steel.
- 5. Design Flow: as per plan
- 6. Design Inlet Pressure: as per plan
- 7. Design Outlet Pressure Setting: as per plan
- 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.6 BALANCING VALVES

- A. Memory-Stop Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valve Group
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 3. Pressure Rating: 400-psig minimum CWP.
 - 4. Size: NPS 2 or smaller.
 - 5. Body: Copper alloy.
 - 6. Port: Standard or full port.
 - 7. Ball: Chrome-plated brass.
 - 8. Seats and Seals: Replaceable.
 - 9. End Connections: Solder joint or threaded.
 - 10. Handle: Vinyl-covered steel with memory-setting device.

2.7 TEMPERATURE-ACTUATED WATER MIXING VALVES

- A. <u>Individual-Fixture</u>, Water Tempering Valves:
 - 1. Lawler Company Model 911, or a comparable product by one of the following:
 - a. Armstrong International, Inc.
 - b. Leonard Valve Company.
 - c. Powers; a Watts Industries Co.
 - d. Symmons Industries, Inc.
 - 2. Standard: ASSE 1016, thermostatically controlled water tempering valve.
 - 3. Pressure Rating: 125 psigminimum, unless otherwise indicated.
 - 4. Body: Bronze body with corrosion-resistant interior components.
 - 5. Temperature Control: Adjustable.
 - 6. Inlets and Outlet: Threaded.
 - 7. Finish: Rough or chrome-plated bronze.
 - 8. Tempered-Water Setting: 80°F

- B. <u>Primary</u> Thermostatic, Water Mixing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Holby Valve Co., Inc.
 - b. Lawler Manufacturing Company, Inc.
 - c. Leonard Valve Company.
 - d. Powers; a Watts Industries Co.
 - e. Symmons Industries, Inc.
 - 2. Standard: ASSE 1017.
 - 3. Pressure Rating: 125 psig.
 - 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
 - 5. Material: Bronze body with corrosion-resistant interior components.
 - 6. Connections: Threaded union inlets and outlet.
 - 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 - 8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 9. Tempered-Water Setting: 120°F
 - 10. Valve Finish: Rough bronze.
 - 11. Piping Finish: Copper
- C. Manifold, Thermostatic, Water Mixing-Valve Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Holby Valve Co., Inc.
 - b. Lawler Manufacturing Company, Inc.
 - c. Leonard Valve Company.
 - d. Powers; a Watts Industries Co.
 - e. Symmons Industries, Inc.
 - 2. Description: Factory-fabricated, cabinet-type, thermostatically controlled, water mixing-valve assembly in two or three-valve parallel arrangement.
 - 3. Large-Flow Parallel: Thermostatic, water mixing valve and downstream-pressure regulator with pressure gages on inlet and outlet.
 - 4. Intermediate-Flow Parallel: Thermostatic, water mixing valve and downstream-pressure regulator with pressure gages on inlet and outlet.
 - 5. Small-Flow Parallel: Thermostatic, water mixing valve.
 - 6. Thermostatic Mixing Valves: Comply with ASSE 1017. Include check stops on hot- and cold-water inlets and shutoff valve on outlet.
 - 7. Water Regulator(s): Comply with ASSE 1003. Include pressure gage on inlet and outlet.
 - 8. Pressure Rating: 125 psig minimum unless otherwise indicated.
 - 9. Cabinet: Factory fabricated, stainless steel, for recessed mounting and with hinged, stainless-steel door.
 - 10. Selected Large-Flow, Tempered-Water Valve Size: .
 - 11. Tempered-Water Setting: .
 - 12. Unit Tempered-Water Design Flow Rate: .
 - 13. Unit Minimum Tempered-Water Design Flow Rate: .

© 2020 OLA Consulting Engineers, P.C.

- 14. Selected Unit Flow Rate at 45-psig Pressure Drop: .
- 15. Unit Pressure Drop at Design Flow Rate: .
- 16. Unit Tempered-Water Outlet Size: end connection.
- 17. Unit Hot- and Cold-Water Inlet Size: end connections.
- 18. Thermostatic Mixing Valve and Water Regulator Finish: Polished, chrome plated.
- 19. Piping Finish: Chrome plated.

2.8 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 - 5. Perforation Size:
 - a. StrainersNPS 2 and Smaller: 0.033 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.062 inch.
 - 6. Drain: Factory-installed, hose-end drain valve.

2.9 WASHING MACHINE OUTLET BOXES (not used)

- A. Clothes Washer Outlet Boxes:
 - 1. Mounting: Recessed.
 - 2. Material and Finish: Enameled-steel or epoxy-painted-steel or box and faceplate.
 - 3. Faucet: Combination valved fitting or separate hot- and cold-water valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
 - 4. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
 - 5. Drain: NPS NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
 - 6. Inlet Hoses: Two 60-inch-long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
 - 7. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.
- B. Icemaker Outlet Boxes:
 - 1. Mounting: Recessed.
 - 2. Material and Finish: Enameled-steel or epoxy-painted-steel or Stainless-steel box and faceplate.
 - 3. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
 - 4. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.10 HOSE BIBBS

- A. Interior Mechanical Room Application:
 - 1. Available Manufacturers:
 - a. Watts.
 - b. Nibco.
 - c. Chicago.
 - 2. Standard: ASME A112.18.1 for sediment faucets.
 - 3. Body Material: Bronze.
 - 4. Seat: Bronze, replaceable.
 - 5. Supply Connections: NPS 3/4 threaded or solder-joint inlet.
 - 6. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 7. Pressure Rating: 125 psig.
 - 8. Vacuum Breaker: Integral, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 9. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 - 10. Operation for Equipment Rooms: Wheel handle or operating key.
 - 11. Include operating key with each operating-key hose bibb.
- B. Interior Toilet Room Application:
 - 1. Available Manufacturers:
 - a. Woodford Manufacturing.
 - b. Chicago Faucet.
 - 2. Body: Bronze or brass with integral mounting flange.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 3/4 threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig.
 - 7. Vacuum Breaker: Integral, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 8. Finish: chrome or nickel plated.
 - 9. Operation: Wheel handle or operating key.
 - 10. Include operating key with each operating-key hose bibb.

2.11 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants:
 - 1. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
 - 2. Pressure Rating: 125 psig.
 - 3. Operation: Loose key.
 - 4. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
 - 5. Inlet: NPS 3/4 or NPS 1.
 - 6. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.

- - -

- 7. Box: Deep, flush mounted with cover.
- 8. Box and Cover Finish: Polished nickel bronze or Chrome plated.
- 9. Outlet: Exposed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 10. Nozzle and Wall-Plate Finish: Polished nickel bronze in public area, Rough bronze in utility rooms.
- 11. Operating Keys(s): One with each wall hydrant.
- B. Nonfreeze, Hot- and Cold-Water Wall Hydrants:
 - 1. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
 - 2. Pressure Rating: 125 psig.
 - 3. Operation: Loose key.
 - 4. Casing and Operating Rods: Of length required to match wall thickness. Include wall clamps.
 - 5. Inlet: NPS 3/4 or NPS 1.
 - 6. Outlet: Concealed.
 - 7. Box: Deep, flush mounted with cover.
 - 8. Box and Cover Finish: Polished nickel bronze in exposed public area, or Chrome plated.
 - 9. Vacuum Breaker:
 - a. Nonremovable, manual-drain-type, hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 - b. Garden-hose thread complying with ASME B1.20.7 on outlet.
 - 10. Operating Key(s): One with each wall hydrant.
- C. Vacuum Breaker Wall Hydrants:
 - 1.
 - 2. Standard: ASSE 1019, Type A or Type B.
 - 3. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
 - 4. Classification: Type A, for automatic draining with hose removed or Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
 - 5. Pressure Rating: 125 psig.
 - 6. Operation: Loose key or wheel handle.
 - 7. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
 - 8. Inlet: NPS 1/2 or NPS 3/4.
 - 9. Outlet: Exposed with garden-hose thread complying with ASME B1.20.7.

2.12 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.

© 2020 OLA Consulting Engineers, P.C.

- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- B. Gate-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-80 for gate valves.
 - 2. Pressure Rating: Class 125.
 - 3. Size: NPS 3/4.
 - 4. Body: ASTM B 62 bronze.
 - 5. Inlet: NPS 3/4 threaded or solder joint.
 - 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- C. Gate-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-80 for gate valves.
 - 2. Pressure Rating: Class 125.
 - 3. Size: NPS 3/4.
 - 4. Body: ASTM B 62 bronze.
 - 5. Inlet: NPS 3/4 threaded or solder joint.
 - 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- D. Stop-and-Waste Drain Valves:
 - 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 - 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy or ASTM B 62 bronze.
 - 5. Drain: NPS 1/8 side outlet with cap.

2.13 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters:
 - 1. Available Manufacturers:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. PPP Inc.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
 - f. Jay R. Smith.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Stainless steel construction with metal bellows, precharged.
 - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.14 AIR VENTS

- A. Bolted-Construction Automatic Air Vents:
 - 1. Body: Bronze.
 - 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.
- B. Welded-Construction Automatic Air Vents:
 - 1. Body: Stainless steel.
 - 2. Pressure Rating: 150-psig minimum pressure rating.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

2.15 TRAP-SEAL PRIMER VALVES

- A. Supply-Type, Trap-Seal Primer Valves:
 - 1. PPP Inc Model P-2 with Distribution Unit DU-2 or a comparable product by one of the following:
 - a. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - 2. Standard: ASSE 1018.
 - 3. Pressure Rating: 125 psig minimum.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 - 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 - 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.16 TRAP-SEAL PRIMER SYSTEMS

- A. Trap-Seal Primer Systems:
 - 1. Standard: ASSE 1044.
 - 2. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
 - 3. Cabinet: Recessed-mounted steel box with stainless-steel cover.
 - 4. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
 - a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- © 2020 OLA Consulting Engineers, P.C.
 - 5. Vacuum Breaker: ASSE 1001.
 - 6. Number Outlets: Four.
 - 7. Size Outlets: NPS 1/2.

2.17 FLEXIBLE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Flex Pression Ltd.</u>
 - 2. Flex-Hose Co., Inc.
 - 3. Metraflex Company (The).
 - 4. <u>Universal Metal Hose</u>.
- B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.
- C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXCUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
- D. Install Y-pattern strainers for water on supply side of each control valve, solenoid valve, and pump, and where indicated on Drawings.
- E. Install water hammer arresters in water piping according to PDI-WH 201.
- F. Install air vents at high points of water piping.

- G. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- H. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- I. All valves, fittings and specialties shall have a pressure class rating that exceeds the pressure of the system it is installed in.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.
 - 2. Intermediate atmospheric-vent backflow preventers.
 - 3. Reduced-pressure-principle backflow preventers.
 - 4. Double-check, backflow-prevention assemblies.
 - 5. Carbonated-beverage-machine backflow preventers.
 - 6. Dual-check-valve backflow preventers.
 - 7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
 - 8. Double-check, detector-assembly backflow preventers.
 - 9. Water pressure-reducing valves.
 - 10. Calibrated balancing valves.
 - 11. Primary, thermostatic, water mixing valves.
 - 12. Manifold, thermostatic, water mixing-valve assemblies.
 - 13. Photographic-process, thermostatic, water mixing-valve assemblies.
 - 14. Primary water tempering valves.
 - 15. Outlet boxes.

- 16. Hose stations.
- 17. Supply-type, trap-seal primer valves.
- 18. Trap-seal primer systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer double-check, backflow-prevention assembly and double-check, detector-assembly backflow preventer backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119

SECTION 221123.21 - INLINE DOMESTIC-WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.
 - 2. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 - 3. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - 4. Vertically mounted, in-line, close-coupled centrifugal pumps.
- B. Related Requirements:
 - 1. Section 221123.13 "Domestic-Water Packaged Booster Pumps" for booster systems.
 - 2. Section 331113 "Potable Water Supply Wells" for well pumps.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction materials, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For pump controls.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Detail pumps and adjacent equipment. Show support locations, type of support, weight on each support, required clearances, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members to which pumps will be attached.
 - 2. Size and location of initial access modules for acoustical tile.
- B. Seismic Qualification Data: Certificates, for inline, domestic-water pumps, accessories, and components, from manufacturer.

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: UL 778 for motor-operated water pumps.
- C. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.

2.2 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong
 - 2. Bell and Gosset
 - 3. <u>Grundfos Pumps Corp</u>.
 - 4. <u>TACO Comfort Solutions, Inc</u>.

- C. Capacities and Characteristics:
 - 1. Capacity: Refer to plans and schedules
- D. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Minimum Working Pressure: 125 psig.
 - 3. Maximum Continuous Operating Temperature: 220 deg F.
 - 4. Casing: Bronze or Stainless steel, with threaded or companion-flange connections.
 - 5. Impeller: composite or stainless steel.
 - 6. Motor: Single

2.3 HORIZONTALLY MOUNTED, IN-LINE, SEPARATELY COUPLED CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, single-stage, separately coupled, overhungimpeller centrifugal pumps designed for installation with pump and motor shafts mounted horizontal.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Bell & Gossett; a Xylem brand</u>.
 - 2. <u>TACO Comfort Solutions, Inc</u>.
 - 3. <u>Thrush Co. Inc</u>.
 - 4. Armstrong
- C. Capacities and Characteristics:
 - 1. Capacity: Refer to plans and schedules.
- D. Pump Construction:
 - 1. Casing:
 - a. Radially split bronze or stainless steel with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 - b. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
 - c. Gauge port tappings at suction and discharge nozzles.
 - 2. Impeller: Bronze or stainless steel, statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve.

4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

- 5. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
- 6. Bearings: Grease-lubricated or permanently lubricated ball type.
- 7. Minimum Working Pressure: 125 psig.
- 8. Continuous Operating Temperature: 200 deg F.
- E. Motor: Single speed, with permanently lubricated ball bearings; and resiliently or rigidly mounted to pump casing.

2.4 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhungimpeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Bell & Gossett; a Xylem brand</u>.
 - 2. <u>TACO Comfort Solutions, Inc</u>.
 - 3. <u>Thrush Co. Inc</u>.
 - 4. Armstrong
- C. Capacities and Characteristics:
 - 1. Capacity: Refer to plans and schedules
- D. Pump Construction:
 - 1. Casing:
 - a. Radially split bronze or brass with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 - b. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
 - c. Gauge port tappings at suction and discharge nozzles.
 - 2. Impeller: Bronze or brass, statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
 - 4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
 - 5. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
 - 6. Bearings: Grease-lubricated or permanently lubricated ball type.
 - 7. Minimum Working Pressure: 175 psig.

- 8. Continuous Operating Temperature: 225 deg F.
- E. Motor: Single speed, with grease-lubricated ball bearings; resiliently or rigidly mounted to pump casing.

2.5 VERTICALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhungimpeller centrifugal pumps designed for installation with pump and motor shaft mounted vertical.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Armstrong Pumps, Inc</u>.
 - 2. <u>Bell & Gossett; a Xylem brand</u>.
 - 3. <u>PACO Pumps; Grundfos Pumps Corporation, USA</u>.
 - 4. TACO Comfort Solutions, Inc.
- C. Capacities and Characteristics:
 - 1. Capacity: Refer to plans and schedules.
- D. Pump Construction:
 - 1. Casing: Radially split bronze, with wear rings and threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections. Include pump manufacturer's base attachment for mounting pump on concrete base.
 - 2. Impeller: Bronze, brass or stainless steel, statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: stainless-steel shaft, with copper-alloy shaft sleeve.
 - 4. Shaft Coupling: Flexible or rigid type if pump is provided with coupling.
 - 5. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
 - 6. Bearings: Oil-lubricated; bronze-journal or ball type.
 - 7. Minimum Working Pressure: 175 psig.
 - 8. Continuous Operating Temperature: 225 deg F.
- E. Motor: Single speed, with grease-lubricated ball bearings; rigidly mounted to pump casing.

2.6 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.7 CONTROLS

- A. Timers: Electric, for control of hot-water circulation pump.
 - 1. Type: Programmable, seven-day clock with manual override on-off switch.
 - 2. Enclosure: NEMA 250, suitable for wall mounting.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement: 24 V ac or.
 - 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Mount pumps in orientation complying with manufacturer's written instructions.
- C. Pump Mounting:
 - 1. Install vertically mounted, in-line, close-coupled centrifugal pumps with cast-iron base mounted on concrete base using vibration isolation type and deflection as specified in Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.
 - 1. Vibration isolation pipe hangers; pre-compressed and locked at the rated deflection by means of a resilient up-stop to keep the piping or equipment at a fixed elevation during installation. The hangers shall be designed with a release mechanism to free the spring after the installation is complete and the hanger is subjected to its full load. Deflection shall be clearly indicated by means of a scale. Submittals shall include a drawing of the hanger showing the 30° capability. Hangers shall be type PC30N as manufactured by Mason Industries, Inc

- E. Install pressure switches in water-supply piping.
- F. Install thermostats in hot-water return piping.
- G. Install timers on wall in engineer's office, MER room where hot water heaters are located or as directed.
- H. Install time-delay relays in piping between water heaters and hot-water storage tanks.

3.3 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.
- C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 - b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 - d. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."
- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties." Comply with requirements for valves specified in the following:
 - 1. Section 220523. "General Duty Valves for Plumbing Piping."
 - 2. Install pressure gauge at suction of each pump and pressure gauge at discharge of each pump. Install at integral pressure-gauge tappings where provided or install pressure-gauge connectors in suction and discharge piping around pumps. Comply with requirements for pressure gauges and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring between temperature controllers and devices.
- C. Interlock pump between water heater and hot-water storage tank with water heater burner and time-delay relay.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections with the assistance of a factory-authorized service representative.
- E. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

3.7 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats, timers, for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 7. Start motor.

© 2020 OLA Consulting Engineers, P.C.

- 8. Open discharge valve slowly.
- 9. Adjust temperature settings on thermostats.
- 10. Adjust timer settings.

3.8 ADJUSTING

- A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123.21

SECTION 22 13 16 SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.
- B. Related Requirements:
 - 1. Section 221313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 - 2. Section 221329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control reports.
- C. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

- 1. Notify Construction Manager, Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
- 2. Do not proceed with interruption of sanitary waste service without Construction Manager's, Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 300-foot head of water
 - 2. Waste, Force-Main Piping: 100 psig.

2.2 PIPING MATERIALS

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
- C. CISPI, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. MIFAB, Inc.
 - d. Tyler Pipe.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- D. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. ANACO-Husky.
- b. Dallas Specialty & Mfg. Co.
- c. MIFAB, Inc.
- d. Tyler Pipe.
- 2. Standards: ASTM C 1277 and ASTM C 1540.
- 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- E. Cast-Iron, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. MIFAB, Inc.
 - d. Tyler Pipe.
 - 2. Standard: ASTM C 1277.
 - 3. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- F. No Hub Fitting Restraints;
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Holdrite: 117 Series No Hub Fitting Restraints or comparable
 - 2. Description: CISPI Designation 301-12, large diameter no-hub cast iron fittings, 4" and over in size, shall be provided with supplemental support to minimize the risk of joints separation under high thrust conditions. Auxiliary restraint products used shall be manufactured assemblies with thrust pressure rating adequate for the specific installation. Field devised methods and materials shall not be used to accomplish this application solution.

2.4 DUCTILE-IRON, GRAVITY SEWER PIPE AND FITTINGS

- A. Pipe: ASTM A 746, for push-on joints.
- B. Standard Fittings: AWWA C110/A21.10, ductile or gray iron, for push-on joints.
- C. Compact Fittings: AWWA C153/A21.53, ductile iron, for push-on joints.
- D. Gaskets: AWWA C111/A21.11, rubber.

2.5 DUCTILE-IRON, PRESSURE PIPE AND FITTINGS

- A. Mechanical-Joint Piping:
 - 1. Pipe: AWWA C151/A21.51, with bolt holes in bell.

- 2. Standard Fittings: AWWA C110/A21.10, ductile or gray iron, with bolt holes in bell.
- 3. Compact Fittings: AWWA C153/A21.53, with bolt holes in bells.
- 4. Glands: Cast or ductile iron; with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
- 5. Gaskets: AWWA C111/A21.11, rubber, of shape matching pipe, fittings, and glands

2.6 PRESSURE-TYPE PIPE COUPLINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cascade Waterworks Mfg. Co</u>.
 - 2. Dresser, Inc.
 - 3. Jay R. Smith Mfg. Co.
 - 4. JCM Industries, Inc.
 - 5. <u>Victaulic Company</u>.
- B. Tubular-Sleeve Couplings: AWWA C219, with center sleeve, gaskets, end rings, and bolt fasteners.
- C. Metal, bolted, sleeve-type, reducing or transition coupling; for joining underground pressure piping. Include 200-psig minimum pressure rating and ends of same sizes as piping to be joined.
- D. Center-Sleeve Material: Stainless steel or Ductile iron.
- E. Gasket Material: Natural or synthetic rubber.
- F. Metal Component Finish: Corrosion-resistant coating or material
- 2.7 COPPER TUBE AND FITTINGS
 - A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 - B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
 - C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.
 - D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.
 - E. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 - F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.

- 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
- 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.8 SPECIALTY PIPE FITTINGS

- A. Non-pressure Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Concrete Pipes: ASTM C 443, rubber.
 - 3) For Fiberglass Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 4) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 5) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Shielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1460.
 - b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Ring-Type, Flexible Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fernco Inc.
 - b. Logan Clay Pipe.
 - c. Mission Rubber Company; a division of MCP Industries, Inc.
 - 2. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.
- C. Dielectric Fittings:

- 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- 2. Dielectric Unions:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Capitol Manufacturing Company.
 - 2) Hart Industries International, Inc.
 - 3) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 4) Wilkins; a Zurn company.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig minimum at 180 deg F.
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
- 3. Dielectric Nipples:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Grinnell Mechanical Products.
 - 2) Precision Plumbing Products, Inc.
 - 3) Victaulic Company.
 - b. Description:
 - 1) Electroplated steel nipple complying with ASTM F 1545.
 - 2) Pressure Rating: 300 psig at 225 deg F.
 - 3) End Connections: Male threaded or grooved.
 - 4) Lining: Inert and noncorrosive, propylene.

2.9 ENCASEMENT FOR UNDERGROUND METAL PIPING

- A. Standard: ASTM A 674 or AWWA C105/A 21.5.
- B. Material: high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.
- C. Form: Sheet or tube.
- D. Color: Black or natural.

2.10 EXPANSION JOINTS AND DEFLECTION FITTINGS

A. Ductile-Iron, Flexible Expansion Joints:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. EBAA Iron, Inc.
 - b. Romac Industries, Inc.
 - c. Star Pipe Products.
- 2. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.
- B. Ductile-Iron Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dresser, Inc.
 - b. EBAA Iron, Inc.
 - c. JCM Industries, Inc.
 - d. Smith-Blair, Inc.; a Sensus company.
 - 2. Description: Three-piece assembly of telescoping sleeve with gaskets and restrainedtype, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for expansion indicated.
- C. Ductile-Iron Deflection Fittings:
 - 1. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include rating for 250-psigminimum working pressure and for up to 15 degrees of deflection.

2.11 BACKWATER VALVES

- A. Cast-Iron Backwater Valves:
 - 1. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
 - 2. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. <u>Josam Company</u>.
 - c. <u>Watts; a Watts Water Technologies company</u>.
 - d. <u>Zurn Industries, LLC</u>.
 - 3. Horizontal type; with swing check valve and hub-and-spigot ends.

- 4. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
- 5. Terminal type; with bronze seat, swing check valve, and hub inlet.

2.12 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. Smith, Jay R. Mfg. Co.
 - c. Watts Water Technologies, Inc.
 - d. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 - 2. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.

- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building waste piping beginning at low point of each system.
 - 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 - 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 3. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."
- O. Install engineered soil and waste and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
 - 2. Hubless, Single-Stack Drainage System: Comply with ASME B16.45 and hubless, single-stack aerator fitting manufacturer's written installation instructions.
 - 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.
- P. Install underground, ductile-iron, force-main piping according to AWWA C600.
 - 1. Install buried piping inside building between wall and floor penetrations and connection to sanitary sewer piping outside building with restrained joints.
 - 2. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 3. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- Q. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- R. Install force mains at elevations indicated
- S. Plumbing Specialties:

- 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
- 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
- 3. Install backwater valves in sanitary waster gravity-flow piping.
 - a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
- T. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.2 PIPE JOINT CONSTRUCTION

- A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
- D. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.

- E. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.
- F. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 - a. Shielded flexiblecouplings for pipes of same or slightly different OD.
 - b. Unshielded, increaser/reducer-pattern, flexiblecouplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 - 2. Use pressure pipe couplings for force-main joints.
- G. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105/A21.5:
 - 1. Hubless cast-iron soil pipe and fittings.
 - 2. Ductile-iron pipe and fittings.
 - 3. Expansion joints and deflection fittings.
- H. Install No Hub Fitting Restraints on all piping 4 inch and over in size, shall be provided with supplemental support to minimize the risk of joints separation under high thrust conditions. Auxiliary restraint products used shall be manufactured assemblies with thrust pressure rating adequate for the specific installation. Field devised methods and materials shall not be used to accomplish this application solution

3.3 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads. H-50
- B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches Insert dimensions deep. Set with tops 1 inch above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

© 2020 OLA Consulting Engineers, P.C.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Shielded, non-pressure transition couplings.

B. Dielectric Fittings:

- 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
- 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples.
- 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

- A. Comply with requirements in Section 220523. General-duty valve installation requirements.
- B. Shutoff Valves:
 - 1. Install shutoff valve on each sewage pump discharge.
 - 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 - 3. Install gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 - 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 - 3. Install backwater valves in accessible locations.
 - 4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 4. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 5. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

- 6. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 7. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- C. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- D. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8 : 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- E. Install supports for vertical cast-iron soil piping every 15 feet and or at every floor
- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 8. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
 - 9. NPS 10 and NPS 12 : 12 feet with 7/8-inchrod
- G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.
 - 6. NPS 8: 10 feet with 3/4-inch rod
- H. Install supports for vertical copper tubing every 10 feet and at every floor

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

© 2020 OLA Consulting Engineers, P.C.

- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 6. Equipment: Connect waste piping as indicated.
 - a. Provide shutoff valve if indicated and union for each connection.
 - b. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials.
 - a. Isolate test source and allow to stand for four hours.
 - b. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

- A. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; heavy duty hubless-piping couplings; and coupled joints.
 - 3. Copper DWV tube, copper drainage fittings, and soldered joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.
- B. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 3. Galvanized-steel pipe, drainage fittings, and threaded joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.
- C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Copper DWV tube, copper drainage fittings, and soldered joints.
 - a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.
- D. Aboveground, vent piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 3. Galvanized-steel pipe, drainage fittings, and threaded joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.
- E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 - 1. Extra heavy class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.

- F. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Extra heavy class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, pressure transition couplings.
 - 3. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints
- G. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be any of the following:
 - 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 - 2. Galvanized-steel pipe, pressure fittings, and threaded joints.
- H. Aboveground sanitary-sewage force mains NPS 2-1/2 to NPS 6 shall be any of the following:
 - 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 - 2. Galvanized-steel pipe, pressure fittings, and threaded joints.
- I. Underground sanitary-sewage force mains NPS 4 and smaller shall be any of the following:
 - 1. Ductile-iron, mechanical-joint piping and mechanical joints.
 - 2. Fitting-type transition coupling for piping smaller than NPS 1-1/2 and pressure transition coupling for NPS 1-1/2 and larger if dissimilar pipe materials.
- J. Underground sanitary-sewage force mains NPS 5 and larger shall be any of the following:
 - 1. Ductile-iron, mechanical-joint piping and mechanical joints.
 - 2. Pressure transition couplings if dissimilar pipe materials.

END OF SECTION 221316

SECTION 22 13 19 SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
 - 1. Backwater valves
 - 2. Cleanouts.
 - 3. Air admittance Valves
 - 4. Roof flashing assemblies.
 - 5. Through-penetration firestop assemblies.
 - 6. Miscellaneous sanitary drainage piping specialties.
 - 7. Flashing Materials
 - 8. Solids interceptors.
- B. Related Sections include the following:
 - 1. Division 22 Section "Sanitary Waste and Vent Piping".

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. HDPE: High-density polyethylene plastic.
- C. PE: Polyethylene plastic.
- D. PP: Polypropylene plastic.
- E. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Grease interceptors.
- B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.
 - 1. Wiring Diagrams: Power, signal, and control wiring.

- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 BACKWATER VALVES

- A. Horizontal, Cast-Iron Backwater Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. Watts; a Watts Water Technologies company.
 - e. Zurn Industries, LLC.
 - 2. Standard: ASME A112.14.1.
 - 3. Size: Same as connected piping.
 - 4. Body: Cast iron.
 - 5. Cover: Cast iron with bolted or threaded access check valve.
 - 6. End Connections: Hubless.

- 7. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang open for airflow unless subject to backflow condition.
- 8. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to fieldinstalled cleanout at floor; replaces backwater valve cover.
- B. Drain-Outlet Backwater Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. Watts; a Watts Water Technologies company.
 - d. Zurn Industries, LLC.
 - 2. Size: Same as floor drain outlet.
 - 3. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
 - 4. Check Valve: Removable ball float.
 - 5. Inlet: Threaded.
 - 6. Outlet: Threaded or spigot.

2.3 CLEANOUTS

- A. Cast Iron Exposed Cleanouts:
 - 1. Available Manufacturers:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: cast-iron soil pipe T-branch or Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk or raised-head, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Closure: Stainless-steel plug with seal.
- B. Cast Iron Exposed Floor Cleanouts:
 - 1. Available Manufacturers:
 - a. Josam Company; Josam Div.
 - b. Watts Drainage Products Inc.
 - c. Zurn Plumbing Products Group; Light Commercial Operation.

- d. Wade
- e. Jay R. Smith.
- 2. Standard: ASME A112.36.2M.
- 3. Size: Same as connected branch.
- 4. Type: Threaded, adjustable housing.
- 5. Body or Ferrule: Cast iron.
- 6. Clamping Device: Required.
- 7. Outlet Connection: Threaded.
- 8. Closure: Brass plug with tapered threads.
- 9. Adjustable Housing Material: Cast iron.
- 10. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 11. Frame and Cover Shape: Round.
- 12. Top Loading Classification: Medium Duty.
- 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- 14. Standard: ASME A112.3.1.
- 15. Size: Same as connected branch.
- 16. Housing: Stainless steel.
- 17. Closure: Stainless steel with seal.
- 18. Riser: Stainless-steel drainage pipe fitting to cleanout.
- C. Cast-Iron Wall Cleanouts:
 - 1. Available Manufacturers:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
 - e. Wade
 - f. Jay R. Smith
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hub-and-spigot, cast-iron soil pipe T-branch, or Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: cast-iron plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
 - 8. Wall Access: Round, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

2.4 AIR-ADMITTANCE VALVES

- A. Fixture Air-Admittance Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ayrlett, LLC.
 - b. Durgo, Inc.

- c. Oatey.
- d. ProSet Systems Inc.
- 2. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
- 3. Housing: Plastic.
- 4. Operation: Mechanical sealing diaphragm.
- 5. Size: Same as connected fixture or branch vent piping.
- B. Stack Air-Admittance Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ayrlett, LLC</u>.
 - b. <u>Durgo, Inc</u>.
 - c. <u>Oatey</u>.
 - d. <u>ProSet Systems Inc</u>.
 - 2. Standard: ASSE 1050 for vent stacks.
 - 3. Housing: Plastic.
 - 4. Operation: Mechanical sealing diaphragm.
 - 5. Size: Same as connected stack vent or vent stack.
- C. Wall Box for Air-Admittance Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ayrlett, LLC</u>.
 - b. <u>Durgo, Inc</u>.
 - c. <u>Oatey</u>.
 - d. <u>ProSet Systems Inc</u>.
 - 2. Description: White plastic housing with white plastic grille, made for recessed installation. Include bottom pipe connection and space to contain one air-admittance valve.
 - 3. Size: About 9 inches wide by 8 inches high by 4 inches deep

2.5 FLOOR DRAINS

- A. Cast-Iron Floor Drains:
 - 1. Available manufacturers:
 - a. Josam Company; Josam Div.
 - b. Tyler Pipe; Wade Div.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Light Commercial Operation.
 - e. Jay R. Smith
 - 2. Standard: ASME A112.6.3.
 - 3. Pattern: Floor drain.
 - 4. Body Material: Gray iron.

© 2020 OLA Consulting Engineers, P.C.

- 5. Anchor Flange: Required.
- 6. Clamping Device: Required.
- 7. Sediment Bucket: Not required for finished areas.
- 8. Top or Strainer Material: Nickel bronze.
- 9. Top Shape: Round.
- 10. Top Loading Classification: Light Duty.
- 11. Trap Material: Cast iron.
- 12. Trap Pattern: Standard P-trap.
- 2.6 ROOF FLASHING ASSEMBLIES (all architectural specifications shall supersede this paragraph).
 - A. Roof Flashing Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Acorn Engineering Company; Elmdor/Stoneman Div.
 - b. Thaler Metal Industries Ltd.
 - B. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - 1. Open-Top Vent Cap: Without cap.
 - 2. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - 3. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.7 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ProSet Systems Inc.
 - 2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 3. Size: Same as connected soil, waste, or vent stack.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

2.8 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Open Drains:
 - 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564 rubber gaskets.
 - 2. Size: Same as connected waste piping.
- B. Deep-Seal Traps:
 - 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 - 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch-minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.
- C. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- D. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- E. Sleeve Flashing Device:
 - 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 - 2. Size: As required for close fit to riser or stack piping.
- F. Stack Flashing Fittings:
 - 1. Description: Counter-flashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- G. Vent Caps:

- 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
- 2. Size: Same as connected stack vent or vent stack.
- H. Frost-Resistant Vent Terminals:
 - 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
 - 2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.
- I. Expansion Joints:
 - 1. Standard: ASME A112.6.4.
 - 2. Body: Cast iron with bronze sleeve, packing, and gland.
 - 3. End Connections: Matching connected piping.
 - 4. Size: Same as connected soil, waste, or vent piping.

2.9 FLASHING MATERIALS

- A. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Applications: 12 oz./sq. ft. thickness.
 - 2. Vent Pipe Flashing: 8 oz./sq. ft. thickness.
- B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, millphosphatized finish for painting if indicated.
- C. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- D. Fasteners: Metal compatible with material and substrate being fastened.
- E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- F. Solder: ASTM B 32, lead-free alloy.
- G. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

2.10 SOLIDS INTERCEPTORS

A. Solids Interceptors:

- 1. Jay R. Smith Model 8710 or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Tyler Pipe; Wade Div.
 - c. Watts Drainage Products Inc.

- d. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Type: Factory-fabricated interceptor made for removing and retaining sediment from wastewater.
- 3. Body Material: Cast iron or steel.
- 4. Interior Separation Device: Screens.
- 5. Interior Lining: Corrosion-resistant enamel.
- 6. Mounting: Above floor.

2.11 CLAY INTERCEPTOR

- A. Solids Interceptors:
 - 1. Jay R. Smith Model 871 T0150 or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Tyler Pipe; Wade Div.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Type: Factory-fabricated interceptor made for removing and retaining sediment from wastewater.
 - 3. Body Material: ABS
 - 4. Interior Separation Device: Screens.
 - 5. 15 gpm
 - 6. $1\frac{1}{2}$ inlet / outlet
 - 7. Quick removal latches for top access sediment strainer removal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backwater valves in building drain piping.
 - 1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feetfor piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.

- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- F. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1inch total depression.
 - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- G. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
- H. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- I. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- J. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- K. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- L. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- M. Install air-gap fittings on indirect-waste piping discharge into sanitary drainage system.
- N. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- O. Install vent caps on each vent pipe passing through roof.

- P. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- Q. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- R. Install wood-blocking reinforcement for wall-mounting-type specialties.
- S. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.
- T. All valves, fittings and specialties shall have a pressure class rating that exceeds the pressure of the system it is installed in.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Grease Interceptors: Connect inlet and outlet to unit, and connect flow-control fitting and vent to unit inlet piping.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.

- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Intercepters.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

SECTION 221319.13 SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cast iron floor drains.
 - 2. Stainless steel floor drains
 - 3. Cast iron floor sinks
 - 4. Stainless steel floor sinks
 - 5. Trench drains.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene styrene.
- B. FRP: Fiberglass-reinforced plastic.
- C. HDPE: High-density polyethylene.
- D. PE: Polyethylene.
- E. PP: Polypropylene.
- F. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES

- A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary piping specialty components.

- C. All sanitary floor drains shall be provided with pro-vent trap guard size for each floor drain. Product shall be tested in accordance with ASSE 1072 test standard for ANSI/ASME A112.6.3
- D. Cast-Iron Floor Drains:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. Watts; a Watts Water Technologies company.
 - d. Zurn Industries, LLC.
 - 2. Standard: ASME A112.6.3.
 - 3. Pattern: Floor drain.
 - 4. Body Material: Gray iron.
 - 5. Seepage Flange: Required.
 - 6. Anchor Flange: Required.
 - 7. Clamping Device: Required.
 - 8. Outlet: Bottom or Side coordinate with filed conditions.
 - 9. Backwater Valve: Not required unless indicated on drawings.
 - 10. Coating on Interior and Exposed Exterior Surfaces: For laboratory applications Acid-resistant enamel.
 - 11. Sediment Bucket:
 - 12. Top or Strainer Material: Gray cast iron in mechanical equipment rooms, polished nickel bronze in all finished areas.
 - 13. Top Shape: Round or Square as scheduled
 - 14. Dimensions of Top or Strainer: Refer to schedule.
 - 15. Top Loading Classification: Heavy Duty 20 for any application subject to traffic like parking or repair garages.
 - 16. Funnel: Not required unless specified on plan or in schedule.
 - 17. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trapseal primer valve connection.
 - 18. Trap Material: Cast iron.
 - 19. Trap Pattern: Standard P-trap.
 - 20. Trap Features: Cleanout, Trap-seal primer valve drain connection where indicated in schedule.
- E. Stainless-Steel Floor Drains, ASME A112.3.1:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. Watts; a Watts Water Technologies company.
 - d. Zurn Industries, LLC.
 - 2. Outlet: Bottom or Side.
 - 3. Top or Strainer Material: Stainless steel.
 - 4. Top Shape: Round or Square.

© 2020 OLA Consulting Engineers, P.C.

- 5. Dimensions of Top or Strainer:
- 6. Seepage Flange: Required.
- 7. Anchor Flange: Required.
- 8. Clamping Device: Required.
- 9. Trap-Primer Connection: **Required where indicated on plan**
- 10. Trap Material: Stainless steel.
- 11. Trap Pattern: Standard P-trap.

2.2 FLOOR SINKS

- A. Cast-Iron Floor Sinks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2.
- a. Jay R. Smith Mfg. Co.
- b. Josam Company.
- c. Watts; a Watts Water Technologies company.
- d. Zurn Industries, LLC.
- 3. Standard: ASME A112.6.7.
- 4. Pattern: Funnel floor drain.
- 5. Body Material: Cast iron.
- 6. Anchor Flange: Required.
- 7. Clamping Device: Required.
- 8. Outlet: Bottom, no-hub connection.
- 9. Coating on Interior Surfaces: Not required
- 10. Sediment Bucket: .
- 11. Internal Strainer: Flat.
- 12. Internal Strainer Material: Aluminum.
- 13. Top Grate Material: loose,r hinged.
- 14. Top of Body and Grate Finish: Nickel bronze.
- 15. Top Shape: Round or Square.
- 16. Dimensions of Top Grate: as per plan.
- 17. Top Loading Classification: .
- 18. Funnel: Required..
- B. Stainless-Steel Floor Sinks, ASME A112.6.7:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2.
- a. Jay R. Smith Mfg. Co.
- b. Josam Company.
- c. Watts; a Watts Water Technologies company.
- d. Zurn Industries, LLC.
- 3. Standard: ASME A112.6.7.
- 4. Pattern: Funnel floor drain.
- 5. Body Material: Stainless steel.
- 6. Anchor Flange: Required.
- 7. Clamping Device: Required.

© 2020 OLA Consulting Engineers, P.C.

- 8. Outlet: Bottom, no-hub connection.
- 9. Sediment Bucket: .
- 10. Internal Strainer: Dome or Flat.
- 11. Internal Strainer Material: Stainless steel.
- 12. Top Grate Material: loose or hinged.
- 13. Top of Body and Grate Finish: Satin nickel or Stainless steel.
- 14. Top Shape: Round or Square.
- 15. Dimensions of Top Grate: refer to plan and schedule.
- 16. Top Loading Classification: No traffic.
- 17. Funnel: Required..

2.3 TRENCH DRAINS

- A. Trench Drains:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. Tyler Pipe; a subsidiary of McWane Inc.
 - e. Watts; a Watts Water Technologies company.
 - f. Zurn Industries, LLC.
 - 2. Standard: ASME A112.6.3 for trench drains.
 - 3. Material: Ductile or gray iron.
 - 4. Flange: Anchor and Seepage.
 - 5. Clamping Device: Required.
 - 6. Outlet: Bottom, End or Side coordinate with field conditions
 - 7. Grate Material: Stainless steel.
 - 8. Grate Finish: Brushed.
 - 9. Dimensions of Frame and Grate: refer to plan and schedule
 - 10. Top Loading Classification: Extra Heavy Duty. H-20
 - 11. Trap Material: Cast iron.
 - 12. Trap Pattern: Standard P-trap.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 - 3. Set with grates depressed according to the following drainage area radii:

- a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
- b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
- c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
- 4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 - a. Maintain integrity of waterproof membranes where penetrated.
- 5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- B. Install trench drains at low points of surface areas to be drained.
 - 1. Set grates of drains flush with finished surface, unless otherwise indicated.
- C. Comply with ASME A112.3.1 for installation of stainless-steel channel drainage systems.
 - 1. Install on support devices, so that top will be flush with adjacent surface.
- D. Install FRP channel drainage system components on support devices, so that top will be flush with adjacent surface.
- E. Install plastic channel drainage system components on support devices, so that top will be flush with adjacent surface.
- F. Install open drain fittings with top of hub 2 inches above floor.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.
- C. Comply with requirements in Section 221323 "Sanitary Waste Interceptors" for grease interceptors, grease-removal devices, oil interceptors, sand interceptors, and solid interceptors.
- D. Install piping adjacent to equipment to allow service and maintenance.
- E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319.13

SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Floor-mounted, bottom-outlet water closets.
 - 2. Wall-mounted water closets.- Back outlet.
 - 3. Flushometer valves.
 - 4. Toilet seats.
 - 5. Supports.
- B. Related Requirements:
 - 1. Section 221316 "Sanitary waste and vent piping
 - 2. Section 221319 "sanitary waste piping specialties.

1.3 DEFINITIONS

- A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.
- B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For water consumption.
- C. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

- A. Water Closets, Wall Mounted, Top Spud, Accessible P-1:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Standard</u>.
 - b. <u>Crane Plumbing, L.L.C</u>.
 - c. <u>Kohler Co</u>.
 - d. <u>Sloan Valve Company</u>.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard.
 - f. Rim Contour: Elongated.
 - g. Water Consumption: 1.28 gal. per flush.
 - h. Spud Size and Location: NPS 1-1/2; top.
 - 3. Flushometer Valve: model 6065.111, ADA compliant
 - 4. Toilet Seat: split front oval
 - 5. Support: Water closet carrier.
 - 6. Water-Closet Mounting Height: Standard height 15" <u>and Handicapped/elderly according</u> to ICC/ANSI A117.1. where indicated on architectural plans.

2.2 TOILET SEATS

A. Toilet Seats **P-1**:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Standard</u>.
 - b. <u>Church Seats; Bemis Manufacturing Company</u>.
 - c. <u>Kohler Co</u>.
 - d. <u>Zurn Industries, LLC</u>.
- 2. Standard: IAPMO/ANSI Z124.5.
- 3. Material: Plastic.
- 4. Type: Commercial (Standard).
- 5. Shape: Elongated rim, open front.
- 6. Hinge: Self-sustaining, check.
- 7. Hinge Material: Noncorroding metal.
- 8. Seat Cover: Not required.
- 9. Color: White.

2.3 SUPPORTS

- A. Water Closet Carrier:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.6.1M.
 - 3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.
- B. Examine walls and floors for suitable conditions where water closets will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Water-Closet Installation:
 - 1. Install level and plumb according to roughing-in drawings.

- 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
- 3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.
- B. Support Installation:
 - 1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
 - 2. Use carrier supports with waste-fitting assembly and seal.
 - 3. Install floor-mounted, back-outlet water closets attached to building floor substrate, onto waste-fitting seals; and attach to support.
 - 4. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.
- C. Flushometer-Valve Installation:
 - 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 - 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 - 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 - 4. Install actuators in locations that are easy for people with disabilities to reach.
 - 5. Install fresh batteries in battery-powered, electronic-sensor mechanisms.
- D. Install toilet seats on water closets.
- E. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- F. Joint Sealing:
 - 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 - 2. Match sealant color to water-closet color.
 - 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13

SECTION 22 42 16 - COMMERCIAL LAVATORIES AND FAUCETS

PART 1 - GENERAL

1.1 SECTION INCLUDES

- 1. Engineered stone commercial lavatory units.
 - a. Lavatory faucets.
 - b. Soap dispensers.
- 2. Vitreous China wall hung
- 3. Shields and Guards

1.2 RELATED SECTIONS

- 1. 221116 "Domestic Water Piping Specialties"
- 2. 221119 "Domestic Water Piping Specialties"

1.3 REFERENCES

- A. American Society of Sanitary Engineering (ASSE):
 - 1. ASSE 1070 Water Temperature Limiting Devices.
- B. American Society of Mechanical Engineers (ASME):
 - 1. ASME A112.18.1 Plumbing Fixture Fittings.
- C. ASTM International (ASTM):
 - 1. ASTM C 170 Standard Test Method for Compressive Strength of Dimension Stone.
 - 2. ASTM D 570 Standard Test Method for Water Absorption of Plastics.
 - 3. ASTM D 785 Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials.
 - 4. ASTM D 790 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
 - 5. ASTM E 84 Standard Test Method for Surface Burning Characteristics of Building Materials.
- D. International Code Council (ICC):
 - 1. ICC/ANSI A117.1 Accessible and Usable Buildings and Facilities.
- E. National Fire Protection Association (NFPA):

- 1. NFPA 70 National Electrical Code.
- F. Underwriters Laboratories, Inc. (UL):
 - 1. UL 723 Test For Surface Burning Characteristics of Building Materials.
 - 2. UL 1951 Electric Plumbing Accessories.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For water consumption.
- C. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.5 INFORMATION SUBMITTALS

- A. Sample warranty.
- B. Manufacturer's certificates.
- C. Indoor environmental quality certificates.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of automatic faucets.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

1.8 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Approved manufacturer listed in this section, with minimum 5 years experience in the manufacture of plumbing fixtures. Manufacturers seeking approval must submit the following:
 - 1. Product data, including test data from qualified independent testing agency indicating compliance with requirements.
 - 2. Samples of each component of product specified.
 - 3. List of successful installations of similar products available for evaluation by Architect.
 - 4. Submit substitution request not less than 15 days prior to bid date.
- B. Source Limitations: Obtain each type of plumbing fixture and compatible accessories through one source from a single approved manufacturer.
- C. Accessibility Requirements: Comply with requirements of ADA/ABA and with requirements of authorities having jurisdiction.
- D. Water Flow and Consumption Requirements: Comply with EPACT.
- E. Drinking Water Standard: Certified to NSF/ANSI 372.
- F. Electrical Components: Listed and labeled per NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- G. Indoor Environmental Quality Certification: Provide certificate indicated that products have been certified under the following programs, or a comparable certification acceptable to Owner:
 - 1. GREENGUARD Indoor Air Quality Certified.
 - 2. GREENGUARD Certified for Children and Schools.

1.9 WARRANTY

- A. Special Manufacturer's Warranty: Provide manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship within the following periods:
 - 1. Engineered natural quartz material: 10 years.
 - 2. Faucets: 1 year.
 - 3. WashBar: 1 year

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide products of Bradley Corporation
 - 1. Submit requests for substitution in accordance with Instructions to Bidders and Division 01 General Requirements.
- B. MATERIALS

2.2 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES (P-2)

- A. Lavatory P-2: Ledge back, vitreous china, wall mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>American Standard</u>.
 - b. <u>Kohler Co</u>.
 - c. <u>Peerless Pottery Sales, Inc</u>.
 - d. <u>Sloan Valve Company</u>.
 - 2. Fixture:
 - a. Standard: ASME A112.19.2/CSA B45.1.
 - b. Type: For wall hanging.
 - c. Nominal Size: Oval, **18 by 16 inches**
 - d. Faucet-Hole Punching: One hole.
 - e. Faucet-Hole Location: Top.
 - f. Color: White.
 - g. Mounting Material: Chair carrier.
 - 3. Faucet: Solid-Brass, Automatically Operated Lavatory Faucets" Article
 - 4. Support: Type II, concealed-arm lavatory carrier with escutcheons..
 - 5. Lavatory Mounting Height: Standard.

2.3 SENSOR-OPERATED LAVATORY FAUCETS

- A. Capacitive-Sensor-Operated Faucet with Remote Tempering Control: Vandal-resistant accessible faucet meeting ASME A112.18.1/CSA B125. ADA/ANSI A117.1 complaint.
 - 1. Basis of Design Manufacturer/Model: **Bradley CAP-DCA**.
 - 2. Body: Polished chrome plated commercial solid cast brass spout.
 - 3. Aerator: Flow rate 0.35 gpm at operating range of 20 to 80 psi
 - 4. Tempered Water Supply: Single thermostatic mixing valve.

- 5. Sensor Module: Water-conserving, vandal-resistant adjustable infra red sensor unit with timing turn-off delay and stationary object automatic timed cutoff, with battery diagnostic audible signal, remote serviceable.
 - a. Adjustable Sensing Distance: 0 to 3-1/2 inch (0 to 88.9 mm).
- 6. Power Supply: 120/24 VAC plug-in transformer.
- 7. Thermostatic Mixing Valve: Thermostatic mixing valve, ASSE 1070 listed, with stop/strainer/check valves, and flexible stainless steel connectors.
- 2.4 SOAP DISPENSERS
 - A. **Sensored Soap Dispenser**: Deck-mounted, sensor-operated, chrome-plated plastic, with LED soap level indicators, with 3 dispenser 120VAC power pack, 27 oz. (798 mL) capacity bottle 1000 shot soap.
 - 1. Basis of Design Manufacturer/Model: Bradley, Model 6315-KT0000.

2.5 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Co.
 - b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 - c. McGuire Manufacturing Co., Inc.
 - d. Plumberex Specialty Products Inc.
 - e. TCI Products.
 - f. TRUEBRO, Inc.
 - g. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. TRUEBRO, Inc.
 - 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Assemble fixtures, accessories, and associated fittings and trim in accordance with manufacturer's instructions.
- B. Install fixture supports firmly attached to building structure.
- C. Install fixtures level, plumb, and in accordance with manufacturer's rough-in instructions.
- D. Install water supply piping. Provide stop on each supply in readily-serviceable location. Fasten supply piping to supports or substrate.
- E. Install trap and waste piping to each fixture.
- F. Install escutcheons at exposed piping penetrations in finished locations and within cabinets.
- G. Seal joints between fixtures and walls, floors, and countertops with mildew-resistant silicone sealant meeting requirements in Division 07 Section "Joint Sealants."
- H. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."
- I. Exposed metal trim and roughing shall be chrome plated nickel brass. Chrome plated cast brass 'p' traps with screw plug cleanout, slip-joint inlet and female cast swivel threaded elbow outlet. Chrome plated brass nipple to wall with chrome plated escutcheon. Swing spouts shall have 140° swing limit stops.
- J. Wall hung lavatories, except as specifically noted otherwise, shall be supported on concealed chair carriers, single or double as required, with steel uprights, adjustable concealed arms and sleeves, alignment truss, and block bases. Carrier arms shall be provided with leveling device.
- K. Provide chrome plated traps, nipples, stop valves, and supplies for fixtures supplied by other sections.
- L. Provide protection shield guards on all exposed piping under sinks and lavatories.

3.2 CLEANING AND PROTECTION

- A. Repair or replace defective work, including damaged fixtures and components.
- B. At time of Substantial Completion:
 - 1. Clean unit surfaces, test fixtures, and leave in ready-to-use condition.
 - 2. Install new batteries in battery-operated devices.
 - 3. Fill soap dispensers.
 - 4. Turn over keys, tools, maintenance instructions, and maintenance stock to Owner.

C. Protect units with water-resistant temporary covering. Do not allow temporary use of plumbing fixtures. Remove protection at Substantial Completion and dispose.

3.3 TESTING AND ADJUSTING

- A. Set field-adjustable temperature set points of temperature-actuated water mixing valves. Adjust set point within allowable temperature range.
- B. Test and adjust installation.
- C. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- D. Operate and adjust controls. Replace damaged and malfunctioning units and controls.
- E. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- F. Replace washers and seals of leaking and dripping faucets and stops.

END OF SECTION

SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service basins.
 - 2. Utility sinks.
 - 3. Handwash sinks.
 - 4. Laminar-flow, faucet-spout outlets.
 - 5. Supports.
- B. Related Requirements:
 - 1. Section 224100 "Residential Plumbing Fixtures" for residential sinks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For water consumption.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

- A. Service Basins **P-6**: Terrazzo, floor mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Fiat Products
 - b. Acorn Engineering Company; a Division of Morris Group International.
 - c. <u>Florestone Products Co., Inc</u>.
 - d. <u>Stern-Williams Co., Inc</u>.
 - 2. Fixture:
 - a. Standard: IAPMO PS 99.
 - b. Shape: Square Five sided.
 - c. Nominal Size: 36 by 36 inches.
 - d. Height: 12 inches with dropped front.
 - e. Tiling Flange: On two sides.
 - f. Rim Guard: On front top surfaces.
 - g. Color: Not applicable.
 - h. Drain: Grid with NPS 3 outlet.
 - 3. Mounting: On floor and flush to wall.
 - 4. Faucet: Speakman commander SC-5811, cast brass, polished chrome, with hose and pail hook and wall brace.
 - a. Integral stops.
 - b. $\frac{3}{4}$ " treaded end connection
 - c. Brass top brace assembly
 - d. Adjustable treaded brass wall flanges.
 - 5. Optional components:
 - a. Mop service basin fitting
 - b. 5' Hose and hose wall bracket
 - c. Wall guards
 - d. Pail hook and wall brace
 - e. Check valve in swivel assembly
 - f. 5 year warrenty

2.2 UTILITY SINKS

- A. Utility Sinks **P3-A:** Stainless steel, double counter mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Elkay Manufacturing Co</u>.
 - b. <u>Griffin Products, Inc</u>.
 - c. <u>Just Manufacturing</u>.
 - 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4.
 - b. Type: double bowl
 - c. Number of Compartments: two
 - d. Overall Dimensions: 37 ¹/₄^{""}x17"x7 5/8" deep
 - e. Metal: -304 stainless
 - f. Thickness: 18 gauge
 - g. Mounting: counter top drop in
 - h.
 - i. Compartment 1:
 - 1) 16"x11.5"x7.5"
 - 2) Drain: Grid $3\frac{1}{2}$ with NPS 1 1/2 tailpiece and twist drain
 - 3) Drain Location: Centered in compartment
 - j. Compartment 2:
 - 1) 9.25"x12"x3.5"
 - 2) Drain: Grid 2" with NPS 1 1/2 tailpiece and twist drain
 - 3) Drain Location: Centered in compartment
 - 3. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2 ASME A112.18.6, braided or corrugated stainless-steel flexible hose.
 - 4. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.
 - b. Trap(s):two
 - 1) Size: NPS $1 \frac{1}{2}$ each
 - 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated brass or wall flange.
 - 5. Faucet:

- a. Elkay model LKD2439C, Arc spout 2-5/8" lever handles ADA compliant, 1.5 max flow rate with ceramic disk valves.
- b. 3 hole
- c. 11" height
- d. Quarter turn ceramic disc valves
- e. Facet holes $1 \frac{1}{4}$ "
- f. 360 swivel
- 6. Accessories:
 - a. LKD2439 C faucet
 - b. LK1141A bubbler
 - c. LK35 strainer
 - d. LK8 drain fitting
- B. Utility Sinks **P3-B:** Stainless steel, counter mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Elkay Manufacturing Co</u>.
 - b. <u>Griffin Products, Inc</u>.
 - c. <u>Just Manufacturing</u>.
 - 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4.
 - b. Type: Ledge back.
 - c. Number of Compartments: One.
 - d. Overall Dimensions: 25"x22"x5 1/2" deep
 - e. Metal /Thickness: 304 stainless / 18 gauge
 - f. Compartment:
 - 1) Drain: Grid $3\frac{1}{2}$ " with NPS 1 1/2 tailpiece and twist drain
 - 2) Drain Location: rear Centered in compartment
 - g. Mounting: counter top drop in
 - 3. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2 ASME A112.18.6, braided or corrugated stainless-steel flexible hose.
 - 4. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.
 - b. Trap(s):
 - 1) Size: NPS 1 ¹/₂"

- 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated brass or wall flange.
- 5. Faucet:
 - a. Elkay model LKD2439C, Arc spout 2-5/8" lever handles ADA compliant, 1.5 max flow rate with ceramic disk valves.
 - b. 3 hole
 - c. 11" height
 - d. Quarter turn ceramic disc valves
 - e. Facet holes $1 \frac{1}{4}$ "
 - f. 360 swivel
- 6. Accessories:
 - a. LKD2439 C faucet
 - b. LK35 strainer
 - c. LK8 drain fitting
- 7.
- C. Utility Sinks **P3-C:** Stainless steel, counter mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Elkay Manufacturing Co</u>.
 - b. <u>Griffin Products, Inc</u>.
 - c. <u>Just Manufacturing</u>.
 - 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4.
 - b. Type: Ledge back.
 - c. Number of Compartments: One.
 - d. Overall Dimensions: 22"x19.5"x51/2" deep
 - e. Metal /Thickness: 304 stainless / 18 gauge
 - f. Compartment:
 - 1) Drain: Grid 3 ¹/₂" with NPS 1 1/2 tailpiece and twist drain
 - 2) Drain Location: rear Centered in compartment
 - g. Mounting: counter top drop in
 - 3. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2 ASME A112.18.6, braided or corrugated stainless-steel flexible hose.
 - 4. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.

- b. Trap(s):
 - 1) Size: NPS 1 ½"
 - 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated brass or wall flange.
- 5. Faucet:
 - a. Elkay model LKD2439C, Arc spout 2-5/8" lever handles ADA compliant, 1.5 max flow rate with ceramic disk valves.
 - b. 3 hole
 - c. 11" height
 - d. Quarter turn ceramic disc valves
 - e. Facet holes $1 \frac{1}{4}$ "
 - f. 360 swivel
- 6. Accessories:
 - a. LKD2439 C faucet
 - b. LK35 strainer
 - c. LK8 drain fitting
- D. Utility Sinks : Stainless steel, freestanding. (Not Used)
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Advance Tabco</u>.
 - b. <u>AERO Manufacturing Company</u>.
 - c. <u>Elkay Manufacturing Co</u>.
 - d. Just Manufacturing.
 - e. Medina
 - 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4.
 - b. Type: With backsplash.
 - c. Number of Compartments: One.
 - d. Overall Dimensions: 27"x23"
 - e. Metal Thickness: 0.063 inch.
 - f. Compartment:
 - 1) Drain: Grid with NPS 2 tailpiece and twist drain.
 - 2) Drain Location: Centered in compartment.
 - g. 10 yearr warranty
 - h. 4" back splash
 - i. 16 gage stainless steel construction
 - j. Pull down sprayer
 - 3. Supports: Adjustable-length stainless steel legs.
 - 4. Faucet: Matched, Deck mount with pull down sprayer by Medina
 - a. Number Required: One.
 - b. Mounting: On backsplash.

5. Supply Fittings:

- a. Standard: ASME A112.18.1/CSA B125.1.
- b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2, ASME A112.18.6, braided or corrugated stainless-steel flexible hose.
- 6. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.
 - b. Trap:
 - 1) Size: NPS 2.
 - 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

2.3 HANDWASH SINKS

- A. Handwash Sinks **P-4**: Stainless steel, wall mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AERO Manufacturing Company</u>.
 - b. <u>Elkay Manufacturing Co</u>.
 - c. <u>Sloan Valve Company</u>.
 - 2. Fixture: EWMA A6020
 - a. Standards: ASME A112.19.3/CSA B45.4 and NSF/ANSI 2.
 - b. Type: Basin with squar corners, high back for faucet, and support brackets.
 - c. Nominal Size: 60" x 20" x 25 3/4"
 - d. Bowl size: 57" x 16 ½" x 8"
 - e. Drain: 3 ¹/₂"
 - f. Material; 14 gauge stainless steel.
 - 3. Faucet: (3) sensor faucets LKB722c with no touch electronic sensor
 - 4. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2, ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

- 3) Mechanical mixing valve
- 5. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.
 - b. Trap:
 - 1) Size: NPS 2.
 - 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
- 6. Support: Type II sink carrier.
- 7. Mounting Height: as per plan.

2.4 LAMINAR-FLOW, FAUCET-SPOUT OUTLETS

- A. NSF Standard: Comply with NSF 372 for faucet-spout-outlet materials that will be in contact with potable water.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>AM Conservation Group, Inc</u>.
 - 2. <u>Chronomite Laboratories, Inc; a division of Morris Group International.</u>
 - 3. <u>NEOPERL, Inc</u>.
 - 4. <u>T&S Brass and Bronze Works, Inc</u>.
- C. Description: Chrome-plated brass, faucet-spout outlet that produces non-aerating, laminar stream. Include external or internal thread that mates with faucet outlet for attachment to faucets where indicated and flow-rate range that includes flow of faucet.

2.5 SUPPORTS

- A. Type II Sink Carrier:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. <u>Wade Drains</u>.
 - d. <u>WATTS</u>.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.6.1M.

2.6 GROUT

- A. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.7 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Co.
 - b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 - c. McGuire Manufacturing Co., Inc.
 - d. Plumberex Specialty Products Inc.
 - e. TCI Products.
 - f. TRUEBRO, Inc.
 - g. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. TRUEBRO, Inc.
- 2.8 Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
- B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sinks level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-hung sinks.
- C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.
- D. Set floor-mounted sinks in leveling bed of cement grout.
- E. Install water-supply piping with stop on each supply to each sink faucet.
 - 1. Exception: Use ball valves if supply stops are not specified with sink.
 - 2. Install stops in locations where they can be easily reached for operation.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."
- I. Provide protective shield guard for art room sinks and all Lavatories
- J. Install clay / solids interceptors at all art room utility sinks.

3.3 CONNECTIONS

- A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of sinks, inspect and repair damaged finishes.
- B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed sinks and fittings.
- D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16

SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Individual shower receptors.
 - 2. Shower faucets.
 - 3. Shower basins.
 - 4. Grout.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers and basins.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For water consumption.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 INDIVIDUAL SHOWERS

- A. Individual FRP Showers **P-7**:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aquarius Bathware; a Praxis Company</u>.
 - b. <u>Clarion Bathware</u>.
 - c. <u>Florestone Products Co., Inc</u>.
 - d. <u>Sterling</u>.
 - e. Best bath
 - 2. ADA complaint roll in shower model LSS26333A75FTB
 - 3. General: molded one-piece fiberglass shower enclosure with faucet, receptor, appurtenances and full plywood backing
 - 4. Standard: ANSI Z124.1.2.
 - 5. Style: Handicapped/wheelchair.
 - 6. Nominal Size and Shape: 63"x 38 ½"x77"
 - 7. Color: custom color. Submit color for review and approval by architect.
 - 8. Bathing Surface: Slip resistant according to ASTM F462.
 - 9. Outlet: Drain with NPS 2 outlet. magnetic trench drain grate with brass no calk drain.
 - 10. Shower Rod and Curtain: Required.
 - 11. Grab Bar: ASTM F446, mounted on support area back wall.
 - a. (1) 18"x1 ¼"
 - b. (1) 24"x1 ¼"
 - c. (1) $39^{\circ}x1^{1}/4^{\circ}$
 - 12. 28" x 15" fold down seat with swing down legs,
 - 13. Surface mount large soap dish
 - 14. AQA mounting brackets and Curtin rod
 - 15. 20-gauge stainless steel Curtin rod
 - 16. 66"x74" shower Curtin.
 - 17. Valve Package;
 - a. Valve system kit with symmons valve and 28" 1¼" grab glide bar. ACXsym1001
 - b. Pressure balanced mixing valve with stop screws and limit handle
 - c. Two mode ecofriendly hand-held shower, with supply elbow, vacuum breaker and 60" flex hose.
 - d. SUPPLY CONNECTIONS ¹/₂"
 - e. 1.5 GPM max flow
- 2.2 GROUT
 - A. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

© 2020 OLA Consulting Engineers, P.C.

- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.
- B. Examine walls and floors for suitable conditions where showers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble shower components according to manufacturers' written instructions.
- B. Install showers level and plumb according to roughing-in drawings.
- C. Install water-supply piping with stop on each supply to each shower faucet.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523.12 "General duty valves for Plumbing Piping".
- D. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- E. Set shower receptors and shower basins in leveling bed of cement grout.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of showers and basins, inspect and repair damaged finishes.
- B. Clean showers and basins, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective plastic covering for installed fixtures and fittings. Cover the entire shower stall opening with plastic.
- **D.** Do not allow use of showers and basins for temporary facilities during construction under any circumstances.

END OF SECTION 224223

SECTION 224716 - WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pressure water coolers with bottle filler and related components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of pressure water cooler.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For water consumption.
- C. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filter Cartridges: Equal to 10 percent of quantity installed for each type and size indicated, but no fewer than 5 of each.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS (P-5)

- A. Pressure Water Coolers: Wall mounted, wheelchair accessible, with bottle filler, vandal resistant.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Elkay Manufacturing Co</u>.
 - b. <u>Halsey Taylor</u>.
 - c. <u>Haws Corporation</u>.
 - d. Larco Inc.
 - e. <u>Oasis International</u>.
 - 2. Standards:
 - a. Comply with NSF 61 and NSF 372.
 - b. Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant unless otherwise indicated.
 - c. Comply with ICC A117.1.
 - 3. Cabinet: single-level with attached cabinets and skirt kit, all stainless steel.
 - 4. Bubbler: One, with adjustable stream regulator.
 - 5. Control: Push buttom
 - 6. Bottle Filler: Push-button activation with 20-second automatic shutoff timer. Fill rate 0.5 to 1.5 gpm.
 - 7. Drain: Grid with NPS 1-1/4 tailpiece.
 - 8. Supply: NPS 3/8 with shutoff valve.
 - 9. Ventilation Grille: Stainless steel.
 - 10. Waste Fitting: ASME A112.18.2/CSA B125.2, NPS 1-1/4 brass P-trap.
 - 11. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
 - 12. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 - a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 13. Capacities and Characteristics:
 - a. Cooled Water: 5 gph.
 - b. Ambient-Air Temperature: 90 deg F.
 - c. Inlet-Water Temperature: 80 deg F.
 - d. Cooled-Water Temperature: 50 deg F.
 - e. Cooled-Water Storage: .

- f. Electrical Characteristics: refer to drawing schedule
- 14. Support: Type I Water or Cooler Carrier Type II Water Cooler Carrier as recommended by the manufacture.
- 15. Water Cooler Mounting Height: Handicapped/elderly according to ICC A117.1.
- 16. Cabinet: All stainless steel integral with drinking fountain water cooler.
- 17. Bottle filler: electronic hands free activation with 20-second automatic shut-off timer. Fill rate 0.5 to 1.5 gpm.
- 18. Support: Mounting frame for attaching to substrate.

2.2 SUPPORTS

- A. Type I Water Cooler Carrier:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. <u>Wade Drains</u>.
 - d. <u>WATTS</u>.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.6.1M.
- B. Type II Water Cooler Carrier:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. <u>Wade Drains</u>.
 - d. <u>WATTS</u>.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
- B. Examine walls and floors for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Set freestanding pressure water coolers on floor.
- C. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
- D. Install mounting frames, affixed to building construction, and attach recessed, pressure water coolers, and in-wall bottle filling stations to mounting frames.
- E. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Valves for Plumbing Piping" and Section 220523.15
- F. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- G. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- H. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Install ball shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 220523.12 "Valves for Plumbing Piping"
- D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

- A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.
- C. Provide protective covering for installed fixtures.
- D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224716

SECTION 230529 - COMMON WORK RESULTS FOR HVAC

PART 1 -

1.1 RELATED DOCUMENTS

- A. These basic Mechanical Requirements apply to all Division 23 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>HVAC and related work</u> for this project, as required by the contract documents.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.3 PRODUCTS FURNISHED BUT NOT INSTALLED UNDER RESPECTIVE SECTIONS OF THIS DIVISION
 - A. Motor starters shall be furnished under this Division. Refer to Specification Section 230513 Common motor requirements for HVAC equipment" for technical information.

1.4 **REFERENCES**

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. SMACNA Sheet Metal and Air Conditioning Contractors National Association.
- C. ASME American Society of Mechanical Engineers.
- D. UL Underwriters Laboratory.
- E. NFPA National Fire Protection Association.

1.5 REGULATORY REQUIREMENTS

- A. Conform to 2020 New York State Building Codes and Energy Code as well as all local codes.
- B. Plumbing: Conform to New York State U.F.P.B.C.
- C. Obtain permits, and request inspections from authority having jurisdiction.

1.6 QUALITY ASSURANCE

- A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field, which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the Contract, or otherwise performing work required by the Contract.
- B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.7 PROJECT/SITE CONDITIONS

- A. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.8 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all mechanical work and related work including but not limited to the following:
 - 1. Boilers.
 - 2. Hot water pumps.
 - 3. Air Handlers
 - 4. Energy Recovery Ventilators
 - 5. Fans
 - 6. DX split systems
 - 7. Expansion tanks.
 - 8. Hot water coils.
 - 9. Hydronic piping, valves, fittings, and specialties.
 - 10. Ductwork and specialties.
 - 11. Pipe and duct insulation.
 - 12. VAV boxes
 - 13. Hot Water Unit Heaters
 - 14. Equipment Supports
 - 15. Automatic temperature controls.
 - 16. Grilles, registers, louvers, and diffusers.
 - 17. Vibration isolation.
 - 18. Motor starters and disconnects.

- 19. Protection.
- 20. Identification.
- 21. Coordination.
- 22. Rigging.
- 23. Testing and Balancing Reports Air and Water.
- 24. Shop Drawings.
- 25. As-Built Drawings and Maintenance Manuals.
- 26. Warrantees.
- 27. Commissioning

PART 2 - PRODUCTS – NOT USED

PART 3 - EXECUTION

3.1 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Where corrosion can occur, appropriate corrosion resistant materials and assembly methods must be used including isolation of dissimilar metals against galvanic interaction. Resistance to corrosion must be achieved by the use of the appropriate base materials. Coatings shall be restored to only when specifically permitted by the Specification.
- C. Construct all equipment in accordance with requirements of all applicable codes. All pressure vessels and safety devices that fall within the scope of the ASME Code shall conform to the Code and bear the ASME label or stamp.
- D. Match and balance all system components to achieve compatibility of equipment or satisfactory operation and performance throughout the entire operating temperature and control ranges. All installations shall be in accordance with manufacturer's recommendations.
- E. Provide all controls, wiring, piping, valves, accessories and other components necessary to make all systems complete and operable.
- F. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of a year from the date of acceptance by the owner, in writing. Certain equipment, such as underground fuel tanks, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.2 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of the all items listed in the following paragraphs.

- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all Mechanical equipment noted and scheduled on plans including but not limited to the following:
 - 1. Automatic Temperature Controls, Operation Sequences & Wiring Diagrams, and Control Diagrams hardware and software
 - 2. Motor Starters and Controllers
 - 3. Hot water, and piping, valves and specialties
 - 4. Expansion, and Water Treatment Equipment Tanks
 - 5. Air handling units
 - 6. Energy Recovery Ventilators
 - 7. Exhaust, return and spill fans
 - 8. Boilers
 - 9. Pumps and bases
 - 10. Unit heaters
 - 11. Vibration isolation
 - 12. Hangers and Inserts
 - 13. Equipment Supports and Vibration Eliminators
 - 14. Sheet Metal Construction Standards
 - 15. Piping Layout (1/4 scale)
 - 16. Ductwork Layout (1/4 scale)
 - 17. Insulation (piping and ductwork)
 - 18. Piping, Valves, fittings, and Specialties
 - 19. Filters
 - 20. Fan Curves and Sound Rating
 - 21. Coils
 - 22. Fire dampers, Motorized Dampers, Smoke dampers
 - 23. Diffusers Registers and Grilles
 - 24. Balancing Reports, Air and Water
 - 25. Coordinated Composite Drawings on Mylar with Piping, Ductwork, Conduits, Lights, registers Grilles and Smoke Detectors, etc.
- D. The contractor shall, upon award, submit a schedule for the engineer's review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manner as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.
- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- F. Sheet metal shop drawings shall indicate all existing and/or new lights, walls, piping, structural elements, existing work, etc. and dimension locations of ductwork including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have been reviewed, said review does not mean that drawings have been checked in detail; said review does not

substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications. It does not relieve the contractor of the responsibility to perform all work to accepted industry standards and in a code compliant manor. Approval of shop drawings containing errors does not relieve the contractor from making corrections at his expense.

- H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.
- I. Approval of shop drawings
 - 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
 - 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
 - 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
 - 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.

3.3 CHARTS AND TAGS

- A. The Contractor shall provide three sets of charts and diagrams of all piping systems indicating the number and location of valves, controls, etc.
- B. All valves, dampers, and controls shall be designated with brass tags. Refer to section 23 05 23 Identification for HVAC Piping and equipment
- 3.4 GENERAL AND SUPPLEMENTARY CONDITIONS and Division 01 Specification Sections, apply to this Section

3.5 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required related to this scope of work

3.6 PAINTING

- A. All motors, fans and all other factory manufactured and assembled apparatus shall be factory coated with one coat of primer and one coat of machinery enamel standard color at the factory and after installation, all finishes shall be cleaned and touched up to repair any damage incurred during construction.
- B. All piping shall be painted in colors conforming with OSHA Standards. All new and existing exposed iron and supplementary dunnage steel shall be finished according to specifications.
- C. All supports, nuts, bolts and hanger fasteners located outside shall be galvanized or nickel plated.

3.7 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- B. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- C. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- D. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.8 CUTTING AND PATCHING

- A. All cutting and patching required for piping, ductwork, control conduits, etc., passing through walls, floors, and roof shall be provided by the this Contractor under this contract unless otherwise noted. This Contractor shall be responsible for any damage done to the structure due to his negligence.
- B. Patching materials and application shall match existing construction.
- C. Where applicable, new holes for piping installation shall be core drilled.
- D. Pipe Sleeves & Fire-stopping:
 - 1. Provide for all pipes, conduits ducts, and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe. When pipe, conduit ducts or other such element penetrates other than fire rated assembly and is insulated, insulation shall pass continuously through sleeves with 1/2 inch clearance between insulation and sleeve.

- 2. Where pipes, conduits and other such elements penetrate fire rated assemblies, or where holes or voids are created to extend mechanical systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- E. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.
- F. Submit location drawings and sizes for review prior to installation.

3.9 PROTECTION-COORDINATE WITH DIVISION 1

- A. Special protection is required for installation of a Derrick or other device for rigging purposes. This Contractor shall coordinate with the rigger to facilitate rigging work.
- B. B.Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with in-so-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.
- F. All openings cut in walls, floors, roof or ceilings of the building, for conduit, pipe, ductwork, etc., shall be closed off with box-type temporary protective enclosures of ¹/₄" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and water tight.
- G. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of ¹/₄" hardboard, "Masonite", laid with joints taped together

3.10 EQUIPMENT SUPPORTS

A. A.Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.

3.11 WELDING

A. A.Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.

- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- C. Provide all temporary ventilation, and ventilation air systems required during welding operations as required by OSHA.

3.12 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing actual installation and locations of all new and existing equipment, piping, and ductwork in the entire building. Schedules shall be revised to indicate actual equipment installed.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1 and shall be submitted in paper format for review. Accepted as builts shall then be submitted in AutoCAD format on hard disc.

3.13 CONDITIONS

- A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.
- B. Discrepancies: In the event of discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.14 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.15 CLOSING-IN OF UNINSPECTED WORK

A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.

B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.16 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction and/or knock-down of equipment to suit conditions. Special attention should be given to equipment installation. Provide all labor and material to facilitate installation.

3.17 COOPERATION WITH OTHER TRADES PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- B. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.
- C. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipment, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, ductwork, equipment, diffusers and grilles.
- D. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the HVAC contractor shall submit a schedule in writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner. The contractor shall include in his bid all costs associated with providing temporarily piping controls, ductwork and fans and air conditioning units to maintain operations in the phase II area while work is being performed on the Phase I area. It shall also be noted that ductwork, piping and controls will have to be extended through the phase II work areas in order to reach the area(s) under construction in phase I as part of this work. The contractor shall include in his bid all provisions to perform such phasing work

3.18 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.19 COMPLETENESS

- A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer and in accordance with generally accepted industry good practice.
- B. Upon completion of all phases of work or before there is any danger from freezing the contractor fill the heating and cooling systems with a 35% glycol solution. Furnish 15 extra gallons in a steel drum for storage on site and future use by the owner.

3.20 FIRE PREVENTION DURING HOT WORK

- A. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. Contractor shall furnish suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- B. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- C. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings and roofs from the operations.

3.21 SAFETY MEASURES

- A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to assure that each area is safe. The Contractor is responsible for arranging and paying for each test.
- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.
- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable

supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.

- G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.
- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. Suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor form performing his work within the Contract period for the Contract price.

3.22 USE OF OWNERS EQUIPMENT

A. The contractor shall not use any the owner's HVAC system or equipment, new or existing, for any purpose. The contractor shall provide temporary HVAC equipment, ductwork, power, and controls for use during construction for the purpose of ventilation, or heating during the construction process. All such equipment, ductwork, power, and controls shall be removed and the completion of work.

END OF SECTION

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Division 24 Equipment Wiring Systems: Electrical characteristics and wiring connections.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

1.4 **REFERENCES**

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AFBMA 11 Load Ratings and Fatigue Life for Roller Bearings.
- C. NEMA MG 1 Motors and Generators.
- D. NFPA 70 National Electrical Code.

1.5 REGULATORY REQUIREMENTS

- A. Conform to UL Component Recognition for appropriate sizes.
- B. Conform to NFPA 70 applicable electrical code, Underwriters Laboratories, Inc., and NEMA
- C. Conform to New York State energy code.

1.6 DELIVERY, STORAGE, AND PROTECTION

A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weatherproof covering. For extended outdoor storage, remove motors from equipment and store separately.

1.7 WARRANTY

A. Provide five year manufacturer warranty for all motors larger than ¹/₂ horsepower.

PART 2 - PRODUCTS

MANUFACTURERS

- A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Gould.
 - 2. Century.
 - 3. General Electric.
 - 4. Square D

2.2 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.
- C. All electric motors of sizes and types as specified for driving mechanical equipment shall be provided under this section.
- D. Electrical Service: All motors shall be 60 Hertz unless otherwise noted. Refer to Electrical Specifications for required electrical characteristics.
- E. Motors: Design for continuous operation in 40° C environment, and for temperature rise in accordance with ANSI/NEMA MG limits for insulation class, Service Factor, and motor enclosure type. Motors shall be of sufficient size for duty to be performed.
- F. Visible Nameplate: Indicating manufacturer's name and model number, motor horsepower, RPM, frame size, voltage, phase, cycles, full load amps, insulation system class, service factor, maximum ambient temperature, temperature rise at rated horsepower, minimum efficiency, power factor.
- G. Electrical Connection: Conduit connection boxes, threaded for conduit. For fractional horsepower motors where connection is made directly, provide screwed conduit connection in

end frame. Size motor boxes to receive motor feeders and ground cable indicated on electrical drawing schedules.

- H. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- I. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 MOTOR EFFICIENCY

- A. Electric motors shall meet the minimum efficiency requirement of the following tables in accordance with International Energy conservation code when tested in accordance with DOE CFR 431. Performance data shall be certified by approved testing agency.
- B. Subtype I motors NEMA premium efficiency as per table NEMA MG 1 table 12-12 and International Energy Conservation code table 405.8(1). This shall apply to general purpose, Tframe, single speed, squirrel cage, induction type; 230/460-V, NEMA Designs A or B, continuous rated, 60 Hz, from 1 to 200 hp, 2-, 4- and 6-pole (3600-, 1800- and 1200-rpm), open and enclosed. Subtype I motors 250 hp to 500 hp motor efficiency shall be able NEMA MG 1 table 12-11 and International Energy Conservation Code table 405.8(1).
- C. Subtype II motors NEMA efficiency as per table NEMA MG 1 table 12-11 and International Energy Conservation code table 405.8(2). This shall apply to general purpose motors but can configured as U-frame motors; NEMA Design C motors; close-coupled pump motors; footless motors; vertical solid shaft normal thrust motors (as tested in a horizontal position); eight-pole (900 rpm) motors, and polyphase motors with a voltage of not more than 600 V (other than 230 or 460 V).
- D. Minimum average full load efficiency of polyphase small electric motors up to 3 hp shall be in accordance with Table C405.8(3) of the International Energy Conservation Code
- E. Minimum average full load efficiency for capacitor-start, capacitor-run and capacitor-start induction-run small electric motors up to 3 hp shall be in accordance with Table C405.8(4) of the International Energy Conservation Code.

2.4 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Service Factor: 1.15.
- C. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- D. Multispeed Motors: Separate winding for each speed.

- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum AFBMA 9, L-10 life of 200,000 hours. Calculate bearing load with NEMA minimum V-belt pulley with belt centre line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
- G. Thermistor System (Motor Frame Sizes 254T and Larger): Three PTC thermistors embedded in motor windings and epoxy encapsulated solid state control relay with wiring to terminal box.
- H. Sound Power Levels: To NEMA MG 1.
- I. Temperature Rise: Match insulation rating.
- J. Insulation: Class B or better.
- K. Code Letter Designation:
 - 1. Motors [15] HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- L. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.5 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Use part winding Start above 254T Frame Size: Use part of winding to reduce locked rotor starting current to approximately 60 percent of full winding locked rotor current while providing approximately 50 percent of full winding locked rotor torque.
- C. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- D. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.6 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.
- F. Drip-proof Enclosure: Class A (50 degrees C temperature rise) insulation, NEMA Service Factor, pre-lubricated sleeve ball bearings.

2.7 POWER FACTOR CORRECTION

A. Provide a capacitor for each three phase, single speed motor rated 3 HP or larger shall be provided to correct the full load power factor to 95%. The capacitor shall be mounted at the motor for connection across the motor terminals by Electrical Contractor

B. Capacitors;

- 1. Capacitors shall be totally enclosed, fused and with discharge resistors.
- 2. Capacitors based on nominal motor RPM shall be provided in accordance with the following table to correct power factor to 95% and verify sizes with motor manufacturer.

Motor HP	Capacitor KVAR	Capacitor KVAR
	3600 RPM Motor	1800 RPM Motor
3	1.5	1.5
5	2	2
7.5	2.5	2.5
10	3	3
15	4	4
20	5	5
25	6	6
30	7	7
40	9	9
50	12	12
60	14	14

2.8 STARTERS

A. GENERAL

- 1. See specification Section 16485 and Division 1 for additional information.
- 2. Starters for motors operating at 120 volts shall be manual starters unless otherwise indicated. Starters for motors operating at other than 120 volts shall be magnetic starters.
- 3. All starters shall be enclosed. Enclosures shall be surface mounted NEMA 1 unless otherwise indicated.
- 4. Where weatherproof starters are required, the enclosure shall be NEMA 4.
- 5. It shall be verified that the correct overload heaters have been installed in the starter before energizing any motor. Sizing shall be based on motor nameplate current and taking into account any reduction in current due to power factor correction.
- 6. Alternate Manufacturers
 - a. Allen-Bradley
 - b. Crouse-Hinds Co.
 - c. Cutler-Hammer, Inc.
 - d. General Electric Co.
 - e. Square D Co.
 - f. Westinghouse Electric Corp.

B. MANUAL STARTERS

- 1. Two-pole, toggle operated, thermal overload device in each phase leg, handle guard for padlocking toggle handle and with indicated control and signal devices.
- 2. Where a motor is controlled automatically by an interlock or pilot device, a "HAND-OFF-AUTO" switch shall be provided in the starter cover. Where the rating of the interlock or pilot device is inadequate to control the motor currents directly, a properly rated contactor shall be provided between the controlling device and the motor.
- 3. An "ON" pilot light shall be provided in the starter cover.

C. MAGNETIC STARTERS

1. Starters shall be sized in accordance with NEMA standards and the following table except that starters shall not be smaller than NEMA size 0. Starters shall be provided with one N.O. electrical holding interlock, under voltage protection and two additional auxiliary contacts within the same enclosure. NEMA size starters shall be provided as follows

STARTER	MAX HP
SIZE	AT 460 VOLTS
0	5
1	10
2	25

2. All starters shall be combination type with the starter and disconnect in the same enclosure. All starters shall be Type 2 coordination protected. Fuses shall be Bussman "Low Peak" type or equal sized at 125% of motor nameplate rating. Verify and coordinate requirements for fused disconnect switches with the Electrical Contractor prior to ordering starters.

3. Provide S.S.P.B. or H-O-A switches and pilot light in covers as required to facilitate control operation sequences.

D. CRITICAL FAULT

1. Where starters are not integral to equipment and are furnished and installed separately from equipment by the contractor, provide a 3 phase line voltage monitor by ICM Controls model 450 or approved equal. Unit shall be installed in the motor starter or in a separate enclosure with the same rating as the starter. It shall be arranged to monitor critical faults including phase loss or reversal, and when detected, de-energize the load. It shall monitor non-critical faults including high/low voltage, voltage unbalance and when detected, after a time delay de-energize the load.

PART 3 - EXECUTION

- A. Suitable starting and controlling equipment and devices shall be furnished and installed as specified hereinafter and as shown on the Drawings. The starting equipment shall be arranged, generally, in control groups, or in certain cases, as isolated combination starters as specified or indicated. The Heating Ventilating and Air Conditioning Sequences of Operation, drawings and specifications shall be referred to for the manner of control, operation and monitoring of motors and the electrically operated equipment.
- B. A starter and disconnect switch or combination motor starter disconnect shall be provided for every motor and each and every electrically operated piece of equipment by this contractor except where complete starters and controls are furnished by the manufacturer of the motor or piece of equipment. Starters shall be internally wired to provide the required control operation and monitoring. All control devices such as push buttons, break-glass stations, alternators, relays, pilot lights, etc., shall be provided as required for operation of mechanical equipment. All roof top and remotely located equipment shall have remote starters as located on plan and shall have local disconnect switches. All equipment located in equipment rooms can use combination starters/disconnects located within line of site of controlled equipment. All starters and disconnect switches located in machine rooms shall use NEMA 1. Starters and disconnect switches located outdoors shall use NEMA 4x. Starters and disconnect switches located in machine rooms shall use NEMA 1. Starters and disconnect switches located outdoors shall use NEMA 4x. Starters and disconnect switches located in machine rooms shall use NEMA 1. Starters and disconnect switches located outdoors shall use NEMA 4x.
- C. Starting equipment and devices specified in this section (and section 23 29 13 Variable Frequency Controllers), shall be furnished by the mechanical subcontractor and shall be installed by the Electrical subcontractor. In general, the mechanical subcontractor shall furnish all motor starters and disconnect switches except where they are an integral part of a motor control center, in this case starters and disconnects shall be provided, (furnished and installed), by the electrical contractor. The Electrical subcontractor shall also provide all wiring necessary to supply power to the electric motors specified under this section, including connections from the starters to the motors. Starters and disconnects shall also include variable frequency drives.
- D. The mechanical Contractor shall furnish and install all wiring between control devices and controlled equipment furnished under this Section, including interlock control wiring between

motor starters, and all automatic temperature control wiring. All wiring shall be installed in conformance with applicable codes and the requirements of the Electrical Division of the Specifications.

- E. The Electrical Contractor shall furnish a 120 volt power source to temperature control panels and equipment requiring a separate 120 volt control power source. Power for control circuits for all devices connecting to motor starters shall be obtained from 120-volt control transformers provided in each starter operating at other than 120 volts. Provide transformers for all low voltage control systems as required.
- F. Furnish detailed composite wiring diagrams and such other information necessary to assure the proper connection, operation and control of motorized equipment, including interlocks, automatic controls, safety controls and all auxiliary circuits.
- G. All control units shall be furnished with a nameplate indicating which device or equipment it controls, the voltage. Additional nameplates on each push button, selector switch and pilot light indicating their functions shall be provided. Nameplates shall be laminated phenolic with white letters on black background, minimum 2" high.
- H. All motors supplied either with equipment or installed separately that are to be used in conjunction with variable frequency drive shall be inverter duty motors.

END OF SECTION 230513

SECTION 230517 - SLEEVES AND ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Sleeves.
- 2. Stack-sleeve fittings.
- 3. Sleeve-seal systems.
- 4. Sleeve-seal fittings.
- 5. Grout.
- 6. Escutcheons.
- 7. Floor plates.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For sealants, indicating VOC content.
 - 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Advance Products & Systems, Inc</u>.
 - 2. <u>Airex Manufacturing</u>.
 - 3. <u>CALPICO, Inc</u>.
 - 4. <u>Metraflex Company (The)</u>.
 - 5. Link Seal
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel or Stainless steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, or Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Advance Products & Systems, Inc</u>.
 - 2. <u>GPT; an EnPro Industries company</u>.
 - 3. <u>Metraflex Company (The)</u>.
 - 4. <u>Proco Products, Inc</u>.
 - 5. Fernco
- B. Description: Manufactured heavy rubber or EPDM, sleeve-to-pipe water stop assembly. Unit has rubber water stop collar with center opening to match piping OD. Connected with stainless

steel hose clamps. Made for copper or plastic carrier pipes. Size up to 4" sleeve and 3" carrier pipe.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.6 ESCUTCHEONS

- A. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- B. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- D. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.7 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

- 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
- 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration,

assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

C. Coordinate the minimum size of sleeves with the pipe. Sleeves for plumbing piping shall be 2x the diameter of the service pipe.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water stop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.

- 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves or Stack-sleeve fittings with Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves or Stack-sleeve fittings.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves

3.6 ESCUTCHEON INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or splitplate, stamped-steel type with concealed hinge.
 - g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

3.7 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230517.5

SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bimetallic-actuated thermometers.
 - 2. Filled-system thermometers.
 - 3. Liquid-in-glass thermometers.
 - 4. Light-activated thermometers.
 - 5. Thermowells.
 - 6. Dial-type pressure gages.
 - 7. Gage attachments.
 - 8. Test plugs.
 - 9. Test-plug kits.
 - 10. Sight flow indicators.
 - 11. Orifice flow Meters
- B. Related Sections:
 - 1. Section 221123 "Facility Natural-Gas Piping" for gas meters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

- 2.1 Thermometer <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Trerice, H. O. Co</u>.
 - 2. <u>Watts; a Watts Water Technologies company</u>.
 - 3. <u>Weiss Instruments, Inc</u>.
 - 4. <u>Weksler Glass Thermometer Corp</u>.

2.2 BIMETALLIC-ACTUATED THERMOMETERS

- A. Standard: ASME B40.200.
- B. Case: Liquid-filled and sealed type(s); stainless steel with 5-inch nominal diameter.
- C. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F and deg C.
- D. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.
- E. Connector Size: 1/2 inch, with ASME B1.1 screw thread.
- F. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- G. Window: Plain glass.
- H. Ring: Stainless steel.
- I. Element: Bimetal coil.
- J. Pointer: Dark-colored metal.
- K. Accuracy: Plus or minus 1 percent of scale range.

2.3 FILLED-SYSTEM THERMOMETERS

- A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, cast aluminum or drawn steel; 5-inch nominal diameter.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.
 - 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Pointer: Dark-colored metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.

- 9. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device; with ASME B1.1 screw threads.
- 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
- 11. Accuracy: Plus or minus 1 percent of scale range.
- B. Remote-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, cast aluminum or drawn steel; 4-1/2-inch nominal diameter with back or front flange and holes for panel mounting.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Pointer: Dark-colored metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.
 - 9. Connector Type(s): Union joint, back or bottom; with ASME B1.1 screw threads.
 - 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 11. Accuracy: Plus or minus 1 percent of scale range.

2.4 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum; 6-inch nominal size.
 - 3. Case Form: Back angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass or plastic.
 - 7. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 3/4 inch, with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

- 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 - 3. Case Form: Adjustable angle Back angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass.
 - 7. Stem: Aluminum and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.5 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.6 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.7 PRESSURE GAGES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Trerice, H. O. Co</u>.
 - b. <u>Watts; a Watts Water Technologies company</u>.
 - c. <u>Weiss Instruments, Inc</u>.

d. <u>Weksler Glass Thermometer Corp</u>.

- B. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Liquid-filled Sealed Solid-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Metal.
 - 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
- C. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Liquid-filled Sealed type; cast aluminum or drawn steel; 4-1/2-inch nominal diameter with back flange and holes for panel mounting.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Metal.
 - 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.8 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
- B. Siphons: Loop-shaped section of brass or stainless-steel pipe with NPS 1/4 or NPS 1/2 pipe threads.
- C. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.9 TEST PLUGS

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

© 2020 OLA Consulting Engineers, P.C.

- 1. <u>Trerice, H. O. Co</u>.
- 2. Watts; a Watts Water Technologies company.
- 3. <u>Weiss Instruments, Inc</u>.
- 4. <u>Weksler Glass Thermometer Corp</u>.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: EPDM self-sealing rubber.

2.10 TEST-PLUG KITS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Sisco Manufacturing Company, Inc</u>.
 - 2. <u>Trerice, H. O. Co</u>.
 - 3. <u>Watts; a Watts Water Technologies company</u>.
 - 4. <u>Weiss Instruments, Inc</u>.
- B. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
- E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- F. Carrying Case: Metal or plastic, with formed instrument padding.

2.11 FLOWMETERS

- A. Turbine Flowmeters:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Advantage Controls</u>.
 - b. <u>EMCO Flow Systems</u>.

© 2020 OLA Consulting Engineers, P.C.

- c. <u>ERDCO Engineering Corp</u>.
- d. <u>Hoffer Flow Controls, Inc</u>.
- e. <u>ONICON Incorporated</u>.
- 2. Description: Flowmeter with sensor and indicator. Construction shall meet all sections of AWWA standard C-708.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Impeller turbine; for inserting into pipefitting or for installing in piping and measuring flow directly in gallons per minute.
 - a. Design: Device or pipe fitting with inline turbine and integral direct-reading scale for water.
 - b. Construction: Bronze or stainless-steel body, with plastic turbine or impeller.
 - c. Minimum Pressure Rating: 150 psig.
 - d. Minimum Temperature Rating: 40 deg F.
- 5. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
- 6. Accuracy: Plus or minus 1-1/2 percent.
- 7. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 8. Operating Instructions: Include complete instructions with each flowmeter.

2.12 THERMAL-ENERGY METERS

- A. Impeller-Turbine, Thermal-Energy Meters:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hoffer Flow Controls, Inc</u>.
 - b. <u>ISTEC Corporation</u>.
 - c. <u>ONICON Incorporated</u>.
 - 2. Description: System with strainer, flow sensor, temperature sensors, transmitter, indicator, and connecting wiring.
 - 3. Flow Sensor: Impeller turbine with corrosion-resistant-metal body and transmitter; for installing in piping.
 - a. Design: Total thermal-energy measurement.
 - b. Minimum Pressure Rating: [150 psig].
 - c. Minimum Temperature Range: [40 to 250 deg F].
 - 4. Temperature Sensors: Insertion-type transducer.
 - 5. Indicator: Solid-state, integrating-type meter; for wall mounting.
 - a. Data Output: Six-digit electromechanical counter with readout in kilowatts per hour or British thermal units.
 - b. Battery Pack: Five-year lithium battery.

- Accuracy: Plus or minus 1 percent.
 Display: Visually indicates total fluid volume in gallons and thermal-energy flow in kilowatts per hour or British thermal units.
- 8. Strainer: Full size of main line piping.
- 9. Operating Instructions: Include complete instructions with each thermal-energy meter system.
- B. Ultrasonic, Thermal-Energy Meters:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>EMCO Flow Systems</u>.
 - b. <u>ONICON Incorporated</u>.
 - c. <u>SIEMENS Industry, Inc.; Energy Management Division</u>.
 - d. <u>Veris Industries</u>.
 - 2. Description: Meter with flow sensor, temperature sensors, transmitter, indicator, and connecting wiring.
 - 3. Flow Sensor: Transit-time ultrasonic type with transmitter.
 - 4. Temperature Sensors: Insertion-type or strap-on transducer.
 - 5. Indicator: Solid-state, integrating-type meter.
 - a. Data Output: Six-digit electromechanical counter with readout in kilowatts per hour or British thermal units.
 - b. Battery Pack: Five-year lithium battery.
 - 6. Accuracy: Plus or minus 1 percent.
 - 7. Display: Visually indicates total fluid volume in gallons and thermal-energy flow in kilowatts per hour or British thermal units.
 - 8. Operating Instructions: Include complete instructions with each thermal-energy meter system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- I. Install remote-mounted pressure gages on panel.
- J. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- K. Install valve and syphon fitting in piping for each pressure gage for steam.
- L. Install test plugs in piping tees.
- M. Install flow indicators in piping systems in accessible positions for easy viewing.
- N. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- O. Install flowmeter elements in accessible positions in piping systems.
- P. Install wafer-orifice flowmeter elements between pipe flanges.
- Q. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- R. Install permanent indicators on walls or brackets in accessible and readable positions.
- S. Install connection fittings in accessible locations for attachment to portable indicators.
- T. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.

U. Install thermometers in the following locations:

- 1. Inlet and outlet of each hydronic zone.
- 2. Inlet and outlet of each hydronic boiler.
- 3. Inlet and outlet of each hydronic coil in air-handling units.
- 4. Two inlets and two outlets of each hydronic heat exchanger.
- 5. Air side Outside-, return-, supply-, and mixed-air ducts.
- V. Install pressure gages in the following locations:
 - 1. Inlet and discharge of each pressure-reducing valve station
 - 2. Inlet and outlet of strainers.
 - 3. Inlet and outlet of coils
 - 4. Suction and discharge side of each pump.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Connect flowmeter transmitters to meters.
- D. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each **hydronic zone** shall be one of the following:
 - 1. Sealed, bimetallic-actuated type.
 - 2. Direct or Remote-mounted, metal-case, vapor-actuated type.
 - 3. Compact or Industrial-style, liquid-in-glass type.
 - 4. Test plug with EPDM self-sealing rubber inserts.
 - 5. Industrial-style, liquid-in-glass type.
- B. Industrial type, liquid in glass type thermometers shall be installed at all the inlets and outlets of each of the following equipment;
 - 1. Hydronic pump
 - 2. Hydronic boiler
 - 3. Heat exchanger
 - 4. Air handling units
 - 5. Provide test with EPDM self-sealing rubber inserts
- C. Thermometers at inlet and outlet of each **hydronic coil in air-handling units or duct mounted** and built-up central systems shall be one of the following:
 - 1. Liquid-filled or Sealed, bimetallic-actuated type.
 - 2. Direct or Remote-mounted, metal-case, vapor-actuated type.
 - 3. Compact or Industrial-style, liquid-in-glass type.
 - 4. Test plug with EPDM self-sealing rubber inserts.
- D. Thermometers at inlet and outlet of each hydronic **heat-recovery unit** shall be one of the following:
 - 1. Liquid-filled or Sealed, bimetallic-actuated type.
 - 2. Direct orRemote-mounted, metal-case, vapor-actuated type.
 - 3. Compact or Industrial-style, liquid-in-glass type.
 - 4. Test plug with EPDM self-sealing rubber inserts.

© 2020 OLA Consulting Engineers, P.C.

- E. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be one of the following:
 - 1. Liquid-filled or Sealed, bimetallic-actuated type.
 - 2. Direct or Remote-mounted, metal-case, vapor-actuated type.
 - 3. Compact or Industrial-style, liquid-in-glass type.
- F. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.
- B. Scale Range for Air Ducts: 0 to 150 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at all the inlet and discharge connections of each of the following equipment shall be liquid filled and sealed direct mounting, metal case.
 - 1. Pressure-reducing valve
 - 2. Hydronic pump
 - 3. Hydronic boiler
 - 4. Air handling and duct mounted units coils
 - 5. Provide test with EPDM self-sealing rubber inserts

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Heating, Hot-Water Piping: 0 to 160 psi.

3.8 FLOWMETER SCHEDULE

A. How water to kitchen appliances RE plumbing plans.

END OF SECTION 230519

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Equipment supports.
- B. Related Sections:
 - 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Sustainable Design Submittals:
 - 1. <u>Environmental Product Declaration</u>: For each product.
 - 2. Health Product Declaration: For each product.
 - 3. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.
- C. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
- D. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>B-line, an Eaton business</u>.
 - b. <u>Flex-Strut Inc</u>.
 - c. <u>Thomas & Betts Corporation; A Member of the ABB Group</u>.
 - d. <u>Unistrut; Part of Atkore International</u>.
 - e. <u>Wesanco, Inc</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
 - 7. Metallic Coating: Electroplated zinc, Hot-dipped galvanized, Mill galvanized, In-line, hot galvanized, or Mechanically-deposited zinc.
 - 8. Paint Coating: Epoxy or Alkyd.
 - 9. Plastic Coating: PVC or Polyurethane.
 - 10. Combination Coating: .

- B. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Anvil International</u>.
 - b. <u>ERICO International Corporation</u>.
 - c. <u>PHD Manufacturing, Inc</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
 - 7. Coating: Zinc, Paint or PVC.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Clement Support Services</u>.
 - 2. ERICO International Corporation.
 - 3. <u>National Pipe Hanger Corporation</u>.
 - 4. <u>Pipe Shields Inc</u>.
 - 5. <u>Piping Technology & Products, Inc</u>.
 - 6. <u>Rilco Manufacturing Co., Inc</u>.
- B. Insulation-Insert Material for Hot and cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless- steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structuralsteel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

C. Flashing;

Metal Flashing: 26gage galvanized steel.

- 1. Metal Counter-flashing: 22 gage thick galvanized steel.
- 2. Flexible Flashing: 47 mil thick sheet butyl or other material compatible with roofing. Verify with roofing manufacturer.
- 3. Caps: Steel, 22-gage minimum; 16 gage at fire resistant elements.
- D. Sleeves:
 - 1. Ductwork Sleeve 18 gauge Installation and Closure for Fire Rated Walls and Floors: Fire damper assembly with continuous angles on all sides as per NFPA-90A requirements.
 - 2. Provide and install sleeves for all penetrations in accordance with Division 1.

E. Escutcheons;

- 1. Chrome plated cast brass escutcheons with set screws on all exposed piping at wall penetrations in finished spaces.
- F. Hanger Rods:
 - 1. Hanger Rods: Hot rolled steel threaded both ends, threaded one end, or continuous threaded. In accordance with the following schedule.

HANGER ROD SIZE SCHEDULE				
Pipe Size (in)	Min Rod Dia (in)			
³ / ₄ " to 2"	3/8"			
$\frac{1}{2}$ " to 3-1/2"	1/2"			
4" to 5"	5/8"			
6"	3/4"			
8" to 12"	7/8"			
14"	1"			
16" to 18"	1-1/8"			
20"	1-1/4"			
24"	1-1/2"			
30"	1-7/8"			

2. Hanger spacing shall be in accordance with the following schedule for maximum allowable distance. Provide hanger all changes in direction.

PIPE SUPPORT SPACING SCHEDULE				
Pipe Material/ Size (in)	Maximum Horizontal	Maximum Vertical Spacing (ft)		
	Spacing (ft)	spacing (it)		

Steel		
Up to 1 ¹ / ₄ "	8	15
$1 \frac{1}{2}$ to $2 \frac{1}{2}$	10	15
3" and over	12	15
Copper Pipe	8	10
Copper Tubing		
Up to 1 ¹ / ₄ "	6	10
$1 \frac{1}{2}$ and over	8	10
PVC / HDPE		
Up to 1"	3	10
1 1/4" and over	4	10

3. Fiberglass piping supports spacing shall be in accordance with the manufactures guidelines.

2.9 VIBRATION ISOLATION HANGERS

A. Vibration isolation pipe hangers; pre-compressed and locked at the rated deflection by means of a resilient up-stop to keep the piping or equipment at a fixed elevation during installation. The hangers shall be designed with a release mechanism to free the spring after the installation is complete and the hanger is subjected to its full load. Deflection shall be clearly indicated by means of a scale. Submittals shall include a drawing of the hanger showing the 30° capability. Hangers shall be type PC30N as manufactured by Mason Industries, Inc

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

Fastener System Installation:

- - -

E.

- 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.
- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

- 2. Install MSS SP-58, Type 39, protection saddles on all piping with roller hangers installed outside of insulation. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier not on roller hangers. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.

4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply cold galvanizing-repair paint to comply with ASTM A 780. ZRC cold galvanizing compound

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports or metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.

- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 5. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 6. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 7. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 8. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 9. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 10. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 11. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 - 12. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
 - 13. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
 - 14. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
 - 15. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
- 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 9. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 10. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 11. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 12. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 13. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

- 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
- 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
- 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- 9. Install vibration isolation hangers or supports on all piping connected to motor driven equipment for a distance of 20' or the first two hangers.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.7 MISCELLANEOUS:

- A. Equipment bases and supports.
 - 1. Provide housekeeping pads of concrete, minimum 4 inches thick and extending 6 inches beyond supported equipment. Champers edges all four side. Provide dowels into concrete floor for equipment that is seismically braced.
 - 2. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment. Provide for all equipment, pumps, air handling units, etc.
 - 3. Construct supports of steel members. Brace and fasten with flanges bolted to structure. Provide rigid anchors for pipes after vibration isolation components are installed.
- B. Flashing;
 - 1. Provide flexible flashing and metal counter-flashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.

2. Flash piping projecting above finished roof surface with prefabricated steel reinforced boot and counter flashing sleeve.

C. Sleeves;

- 1. Sleeves are required for all piping passing through walls and/or slabs. Sleeve diameter to be large enough to accommodate insulated piping.
- 2. Sleeves through interior non-fire rated walls are to have annular space between pipe and sleeve filled with materials specified in Division 1.
- 3. Sleeves thru fire rated walls to have annular space filled with fire stopping wrapping strips and expanding caulking applied with a caulking gun for a minimum depth of 3" or in another manner suitable for the application as recommended by the manufacturer. See Division 1.
- D. Escutcheons:
 - 1. Provide escutcheons on all wall pipe penetrations that are visible outside MER spaces. All escutcheons shall be chrome plated.

END OF SECTION 230529

SECTION 23 05 53 IDENTIFICATION FOR HVAC PIPING EQUIPMENT

PART 1 GENERAL

1.1 WORK INCLUDED

A. Identification of mechanical products installed under Division 23.

1.2 REFERENCES

A. ASME A13.1 – Scheme for the Identification of Piping Systems

1.3 SUBMITTALS

- A. Submittals as per contract requirements.
- B. See Division 1 list of wording, symbols, letter size, and color coding for mechanical identification.
- C. Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.
- D. Manufacturer's Instructions: Indicate installation instructions, special procedures, and installation.
- E. Project Record Documents: Record actual locations of tagged valves; include valve tag numbers.
- F. Valve Tag chart.

PART 2 PRODUCTS

- 2.1 NAMEPLATES, TAGS, MARKERS, ETC
 - A. Manufacturer: W.H. Brady Co., Signmark Div
 - B. Acceptable manufacturers offering equivalent products
 - 1. Atlantic Engraving Company.
 - 2. Seton Name Plate Co.
 - 3. MSI Services
 - 4. Substitutions as per Contract Requirements.
 - C. Description: Nameplates should be as specified in Division 1.
- PART 3 EXECUTION
- 3.1 PREPARATION

- A. Degrease and clean surfaces to receive adhesive for identification materials
- B. Prepare surfaces in accordance with contract requirements.

3.2 INSTALLATION

- A. Install tags, markers, etc. in conformance with Division 1.
- B. Unless otherwise specified, color shall conform with ANSI/ASME A13.1
- C. Install identifying devices after completion of coverings and painting.
- D. Install plastic nameplates with corrosive-resistant mechanical fasteners, or adhesive.
- E. Install labels with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer. For unfinished cloth covering, apply paint primer before applying labels.
- F. Install tags using corrosion resistant chain. Number tags consecutively by location.
- G. Apply stencil painting in accordance with contract requirements.
- H. Identify all equipment, including pumps, air handlers, air cooled condensers, boilers, chillers, pumps, packaged AC units, and hot water heater with nameplates. Small devices, such as in-line pumps, may be identified with metal tags. Identify service of all air handling units, packaged roof top units, ac units, and split systems. I.E. Ground floor offices. A plastic lamacoid placard shall be fastened to each unit with a full list of all of the rooms served by that unit.
- I. Identify control panels and major control components outside panels with nameplates.
- J. Identify valves in main and branch piping with brass tags. Main shutoff valves for boiler shall be furnished with special wording as required by ASME IV HG 710.5 "Supply or Return Valve No. X - Do Not Close Without Also Closing Supply or Return Valve No. Y". <u>Tags shall be provided for all new HVAC and related systems valves</u>. Including: <u>heating water, CW make-up</u>. This shall apply to new valves and on re-piped existing equipment such as the fuel oil system.
- K. Tag automatic controls, instruments, and relays. Key to control schematic.
- L. Identify piping, concealed or exposed, with markers. Use tags on piping 3/4 inch diameter and smaller. Identify <u>service</u>, <u>flow direction</u>, and <u>pressure</u>. Install in clear view and align with axis of piping. Locate identification not to exceed 20 feet on straight runs including risers and drops, adjacent to each valve and tee, at each side of penetration of structure or enclosure, and at each obstruction. Labeling shall be in conformance with OSHA and ANSI A13.1.
- M. Identify all ductwork every 20' with flow arrows and unit or air handler served as well as service, such as SUPPLY AIR, RETURN AIR, EXHAUST AIR. Etc

- N. Identify all Smoke Dampers and Fire Dampers. All dampers shall be sequentially numbered by floor. For example fire damper - FD-1-1 (Fire damper #1, floor 1) Tag shall be 1" high red letters located on damper. Provide red dot stencil on ceiling below damper.
- O. Provide permanent labels for all controls and limits which state function of each control and control set-points.

3.3 SCHEDULE

A. Provide valve chart and schedule minimum of 8.5" x 11" in aluminum frame with clear laminate face. Install in the boiler room or at location as directed by the facilities. Indicate Valve #, size, Service and N.O. or N.C.

VALVE TAG SCHEDULE					
No.	size	Service	N.O./N.C.		

The chart shall contain all new HVAC and related systems valves, new. Including; heating water, and CW make up, and drain.

END OF SECTION

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Variable-flow hydronic systems.
 - b. Primary-secondary hydronic systems.
 - 3. Testing, Adjusting, and Balancing Equipment:
 - a. Motors.
 - b. Condensing units.
 - c. Boilers.
 - d. Air handling units
 - e. Energy Recovery Ventilator
 - 4. Testing, adjusting, and balancing existing systems and equipment.
 - 5. Duct leakage tests.
 - 6. Control system verification.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. BAS: Building automation systems.
- C. NEBB: National Environmental Balancing Bureau.
- D. TAB: Testing, adjusting, and balancing.
- E. TABB: Testing, Adjusting, and Balancing Bureau.
- F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.

G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

- A. TAB Conference: If requested by the engineer, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.5 ACTION SUBMITTALS

- A. Sustainable Design Submittals:
 - 1. <u>Air-Balance Report</u>: Documentation indicating that Work complies with ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
 - 2. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 "System Balancing."

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Certified TAB reports.
- D. Sample report forms.
- E. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.7 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC NEBB or TABB.

- 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or NEBB or TABB.
- 2. TAB Technician: Employee of the TAB specialist and certified by AABC or NEBB as a TAB technician.
- B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

1.8 FIELD CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- PART 2 PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment

performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.
- L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - b. Duct systems are complete with terminals installed.
 - c. Volume, smoke, and fire dampers are open and functional.
 - d. Clean filters are installed.
 - e. Fans are operating, free of vibration, and rotating in correct direction.

- f. Variable-frequency controllers' startup is complete and safeties are verified.
- g. Automatic temperature-control systems are operational.
- h. Ceilings are installed.
- i. Windows and doors are installed.
- j. Suitable access to balancing devices and equipment is provided.
- 2. Hydronics:
 - a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 - b. Piping is complete with terminals installed.
 - c. Water treatment is complete.
 - d. Systems are flushed, filled, and air purged.
 - e. Strainers are pulled and cleaned.
 - f. Control valves are functioning per the sequence of operation.
 - g. Shutoff and balance valves have been verified to be 100 percent open.
 - h. Pumps are started and proper rotation is verified.
 - i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 - j. Variable-frequency controllers' startup is complete and safeties are verified.
 - k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR ALL SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."
- M. Code requirements;

Each supply air outlet and zone terminal device shall be equipped with means for air balancing in accordance with the requirements of Chapter 6 of the International Mechanical Code. Discharge dampers used for air-system balancing are prohibited on constant-volume fans and variable volume fans with motors 10 hp and larger. Air systems shall be balanced in a manner to <u>first</u> minimize throttling losses then, for fans with system power greater than 1 hp, fan speed shall be adjusted to meet design flow conditions.

Therefore, all fans greater than 10 hp shall be provided with variable frequency drives for speed control.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

- 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
- 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 4. Obtain approval from engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

- 1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
- 2. Verify that the system is under static pressure control.
- 3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
- 4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 - a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 - b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 - c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 - d. Adjust controls so that terminal is calling for minimum airflow.
 - e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 - f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 - g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
- 5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 - c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
- 6. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report any artificial loading of filters at the time static pressures are measured.

- 7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - b. Verify that terminal units are meeting design airflow under system maximum flow.
- 8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 - b. Re-measure and confirm that total airflow is within design.
 - c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 - d. Mark final settings.
 - e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 - f. Verify tracking between supply and return fans.

3.7 GENERAL PROCEDURES FOR ALL HYDRONIC SYSTEMS

- A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 - 1. Check liquid level in expansion tank.
 - 2. Check highest vent for adequate pressure.
 - 3. Check flow-control valves for proper position.
 - 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 - 5. Verify that motor starters are equipped with properly sized thermal protection.
 - 6. Check that air has been purged from the system.
- D. Code requirements;
 - 1. Individual hydronic heating and cooling coils shall be equipped with means for balancing and measuring flow. Hydronic systems shall be proportionately balanced in a manner to <u>first</u> minimize throttling losses, then the pump impeller shall be trimmed or pump speed shall be adjusted to meet design flow conditions. Each hydronic system shall have either the capability to measure pressure across the pump, or test ports at each side of each pump.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Adjust pumps to deliver total design gpm.
 - 1. Measure total water flow.
 - a. Position valves for full flow through coils.
 - b. Measure flow by main flow meter, if installed.
 - c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 - 2. Measure pump TDH as follows:
 - a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - c. Convert pressure to head and correct for differences in gage heights.
 - d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow, and verify that the pump has the intended impeller size.
 - e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 - 3. Monitor motor performance during procedures and do not operate motor in an overloaded condition.
- B. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - 1. Measure flow in main and branch pipes.
 - 2. Adjust main and branch balance valves for design flow.
 - 3. Re-measure each main and branch after all have been adjusted.
- C. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - 1. Measure flow at terminals.
 - 2. Adjust each terminal to design flow.
 - 3. Re-measure each terminal after it is adjusted.
 - 4. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 - 5. Perform temperature tests after flows have been balanced.
- D. For systems with pressure-independent valves at terminals:
 - 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 - 2. Perform temperature tests after flows have been verified.
- E. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - 1. Measure and balance coils by either coil pressure drop or temperature method.

- 2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- F. Verify final system conditions as follows:
 - 1. Re-measure and confirm that total water flow is within design.
 - 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - 3. Mark final settings.
- G. Verify that memory stops have been set.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

- A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.
- B. Adjust the variable-flow hydronic system as follows:
 - 1. Verify that the differential-pressure sensor is located as indicated.
 - 2. Determine whether there is diversity in the system.
- C. For systems with no diversity:
 - 1. Adjust pumps to deliver total design gpm.
 - a. Measure total water flow.
 - 1) Position valves for full flow through coils.
 - 2) Measure flow by main flow meter, if installed.
 - 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 - b. Measure pump TDH as follows:
 - 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - 3) Convert pressure to head and correct for differences in gage heights.
 - 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 - c. Monitor motor performance during procedures and do not operate motor in an overloaded condition.
 - 2. Adjust flow-measuring devices installed in mains and branches to design water flows.

- a. Measure flow in main and branch pipes.
- b. Adjust main and branch balance valves for design flow.
- c. Re-measure each main and branch after all have been adjusted.
- 3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - a. Measure flow at terminals.
 - b. Adjust each terminal to design flow.
 - c. Re-measure each terminal after it is adjusted.
 - d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 - e. Perform temperature tests after flows have been balanced.
- 4. For systems with pressure-independent valves at terminals:
 - a. Measure differential pressure and verify that it is within manufacturer's specified range.
 - b. Perform temperature tests after flows have been verified.
- 5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - a. Measure and balance coils by either coil pressure drop or temperature method.
 - b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- 6. Prior to verifying final system conditions, determine the system differential-pressure set point.
- 7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
- 8. Mark final settings and verify that all memory stops have been set.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that total water flow is within design.
 - b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - c. Mark final settings.
- 10. Verify that memory stops have been set.
- D. For systems with diversity:
 - 1. Determine diversity factor.
 - 2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
 - 3. Adjust pumps to deliver total design gpm.
 - a. Measure total water flow.
 - 1) Position valves for full flow through coils.

- 2) Measure flow by main flow meter, if installed.
- 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
- b. Measure pump TDH as follows:
 - 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - 3) Convert pressure to head and correct for differences in gage heights.
 - 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
- c. Monitor motor performance during procedures and do not operate motor in an overloaded condition.
- 4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - a. Measure flow in main and branch pipes.
 - b. Adjust main and branch balance valves for design flow.
 - c. Re-measure each main and branch after all have been adjusted.
- 5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - a. Measure flow at terminals.
 - b. Adjust each terminal to design flow.
 - c. Re-measure each terminal after it is adjusted.
 - d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 - e. Perform temperature tests after flows have been balanced.
- 6. For systems with pressure-independent valves at terminals:
 - a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 - b. Perform temperature tests after flows have been verified.
- 7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - a. Measure and balance coils by either coil pressure drop or temperature method.
 - b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- 8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

- 9. Prior to verifying final system conditions, determine system differential-pressure set point.
- 10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
- 11. Mark final settings and verify that memory stops have been set.
- 12. Verify final system conditions as follows:
 - a. Re-measure and confirm that total water flow is within design.
 - b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - c. Mark final settings.
- 13. Verify that memory stops have been set.

3.10 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

- A. Balance the primary circuit flow first.
- B. Balance the secondary circuits after the primary circuits are complete.
- C. Adjust pumps to deliver total design gpm.
 - 1. Measure total water flow.
 - a. Position valves for full flow through coils.
 - b. Measure flow by main flow meter, if installed.
 - c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 - 2. Measure pump TDH as follows:
 - a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - c. Convert pressure to head and correct for differences in gage heights.
 - d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 - 3. Monitor motor performance during procedures and do not operate motor in an overloaded condition.
- D. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - 1. Measure flow in main and branch pipes.
 - 2. Adjust main and branch balance valves for design flow.

- 3. Re-measure each main and branch after all have been adjusted.
- E. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - 1. Measure flow at terminals.
 - 2. Adjust each terminal to design flow.
 - 3. Re-measure each terminal after it is adjusted.
 - 4. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 - 5. Perform temperature tests after flows have been balanced.
- F. For systems with pressure-independent valves at terminals:
 - 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 - 2. Perform temperature tests after flows have been verified.
- G. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - 1. Measure and balance coils by either coil pressure drop or temperature method.
 - 2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- H. Verify final system conditions as follows:
 - 1. Re-measure and confirm that total water flow is within design.
 - 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - 3. Mark final settings.
- I. Verify that memory stops have been set.

3.11 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.12 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

- B. Measure entering- and leaving-air temperatures.
- C. Record fan and motor operating data.

3.13 PROCEDURES FOR BOILERS

- A. Hydronic Boilers:
 - 1. Measure and record entering- and leaving-water temperatures.
 - 2. Measure and record water flow.
 - 3. Record relief valve pressure setting.

3.14 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
- B. Measure, adjust, and record the following data for each electric heating coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Voltage and amperage input of each phase at full load.
 - 5. Calculated kilowatt at full load.
 - 6. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Airflow.
 - 3. Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.

3.15 DUCT LEAKAGE TESTS

A. Ducts designed to operate at static pressures of 3 inches w.g. or greater shall be sealed in accordance with specifications Section 23 31 13 Metal Ducts. In addition, ducts and plenums

shall be leak tested in accordance with the procedures given SMACNA *HVAC Air Duct Leakage Test Manual.* Air leakage rates must *(CL)* less than or equal to 4.0 as determined in accordance with Equations below

- 1. $CL = F/P^{0.65}$ where:
- 2. *F*-The measured leakage rate in cfm per 100 square feet of duct surface.
- 3. *P* -The static pressure of the test.
- B. Documentation shall be furnished by the test and balancing contractor demonstrating that representative sections totaling at least 25 percent of the duct area have been tested and that all tested sections meet the requirements of this section.
- C. Perform duct pressure testing in coordination with Installer.
- D. Verify that proper test methods are used and that leakage rates are within specified tolerances.
- E. Report; submit a report indicating which ductwork sections were tested. Provide single line or double line duct submittal drawing. The drawing shall indicate all systems in their entirety to 3/8' = 1'-0'' scale. Sections that air leakage tested shall be clearly indicated.
- F. The report shall include full test procedure including how the ductwork was isolated for pressure testing, the pressure of the test and the duration of the test.
- G. Submit duct pressure test procedures used for this project.
- H. Submit summary of test results on a section by section basis, to include all CL, F,P and time.
- I. Witness the duct pressure testing performed by Installer.
- J. Verify that proper test methods are used and that leakage rates are within specified tolerances.
- K. Report deficiencies observed.

3.16 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.17 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.18 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.19 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.

- © 2020 OLA Consulting Engineers, P.C.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
 - D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
 - E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.

- g. Discharge arrangement.
- h. Sheave make, size in inches, and bore.
- i. Center-to-center dimensions of sheave and amount of adjustments in inches.
- j. Number, make, and size of belts.
- k. Number, type, and size of filters.
- 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.
 - i. Outdoor airflow in cfm.
 - j. Return airflow in cfm.
 - k. Outdoor-air damper position.
 - 1. Return-air damper position.
 - m. Vortex damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft..
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.

- d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
- e. Return-air, wet- and dry-bulb temperatures in deg F.
- f. Entering-air, wet- and dry-bulb temperatures in deg F.
- g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- h. Water flow rate in gpm.
- i. Water pressure differential in feet of head or psig.
- j. Entering-water temperature in deg F.
- k. Leaving-water temperature in deg F.
- 1. Refrigerant expansion valve and refrigerant types.
- m. Refrigerant suction pressure in psig.
- n. Refrigerant suction temperature in deg F.
- o. Inlet steam pressure in psig.
- G. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.

- c. Traverse air temperature in deg F.
- d. Duct static pressure in inches wg.
- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated airflow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- I. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.

- f. Leaving-air temperature in deg F.
- K. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- L. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.20 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.
- B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
- F. Prepare test and inspection reports.

3.21 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 23 07 13 HVAC DUCTWORK INSULATION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Ductwork insulation.
- B. Duct Liner.
- C. Insulation jackets.

1.02 RELATED SECTIONS

- A. Section 23 05 53 Identification for HVAC Piping and Equipment.
- B. Section 23 31 13 Ductwork.

1.03 REFERENCES

- A. ASTM C553 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.
- B. ASTM C612 Standard Specification for Mineral Fiber Block and Board Thermal Insulation.
- C. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials.
- D. NAIMA National Insulation Standards.
- E. NFPA 255 Standard Method of Test of Surface Burning Characteristics of Building Materials.
- F. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- G. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials.
- H. ASHRAE 90-75 Insulation Standards

1.04 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

- 3. <u>Product Data</u>: For coatings, indicating VOC content.
- 4. Laboratory Test Reports: For coatings, indicating compliance with requirements for lowemitting materials.
- 5. <u>Product Data</u>: For sealants, indicating VOC content.
- 6. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.
- D. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sheet Form Insulation Materials: 12 inches square.
 - 2. Sheet Jacket Materials: 12 inches square.
 - 3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.05 QUALITY ASSURANCE

A. Applicator Qualifications: Company specializing in performing the work of this section with minimum three years experience approved by manufacturer.

1.06 REGULATORY REQUIREMENTS

- A. Materials: Flame spread/fuel contributed/smoke developed rating of 25/50/50 in accordance with NFPA 255.
- B. Insulation thickness shall comply with all applicable energy conservation codes.

1.07 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.
- B. Maintain temperature during and after installation for minimum period of 24 hours.

PART 2 PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS - INSULATION

- A. Owen Corning Fiberglass Corp.
- B. Manville Industrial Products
- C. Certain Teed Corporation

- D. 3M Corporation "Firemaster" for Kitchen Exhaust
- E. Substitutions: Under provisions of Division 1.

2.02 GLASS FIBER, RIGID

- A. Type A: Flexible glass fiber duct insulation; ANSI/ASTM C612; commercial grade; "K" value of 0.25 at 75° F; minimum density of 1-1/2 pounds per cu. ft.; factory applied vapor barrier jacket of 0.7 mil minimum aluminum foil laminated to glass fiber reinforced Kraft paper. Similar to Owens-Corning type FRK-25-ED Type 150 commercial grade.
- B. Type B: Rigid glass fiber board insulation with resin binder; ANSI/ASTM C612, Class 1; "K" value of 0.23 at 75° F minimum density of 6 pounds per cu. ft; factory applied white Kraft faced flame retardant vapor barrier jacket of aluminum laminated to heavy Kraft paper with a flame retardant snuffer type adhesive and reinforced with glass fibers; permeability of 0.2. Similar to Owens-Corning type 705 with AST jacket.
- C. Type C: Molded block or board insulation made of asbestos free hydrous calcium silicate; "K" value of 0.42 at 200° F; minimum density of 14 pounds per cubic foot; temperature range up to 1200° F.

D. Type D1: Flexible Glass Duct Liner: (For standard applications)

ANSI/ASTM C553; "K" value of 0.23 at 75° F; minimum density of 1.5 pounds per cu. ft.; surface finish of black pigmented fire resistant resilient mastic coated on air side for maximum velocity of 4000 feet per minute.

- a. Maximum Thermal Conductivity
- 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- 2) Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- b. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- c. Solvent Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

E Type D2: Flexible Elastomeric Duct Liner: (Wet Or Damp Applications Including Natatorium And Saunas).

Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

- 1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- 2. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- F. Type "E" Fire resistant duct wrap consisting of light weight, non-asbestos high temperature non-organic ceramic fiber blanket encapsulated in foil/scrim having a service

temperature rating of 2300° F. Wrap shall be applied in two temperature layers to provide a two-hour rated enclosure assembly. Bonding material shall be 304 stainless steel, $\frac{3}{4}$ " wide and .015" thick.

- G Adhesives: Waterproof fire-retardant type. Smoke and flame spread rating less then 50.
- H. Indoor Jacket: Pre-sized glass cloth, minimum 7.8 oz/sq. yd unless otherwise specified above.
- H. Outdoor Jackets (not used): Insulate as per the specification and jacket with Polyguard Insul-wrap 50W Membrane. For watertight insulation jacket install as per manufacturers recommendations. Furnish all mastics and adhesives as per manufacture system.

1.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>K-Flex USA</u>.
 - 2. <u>Adhesives shall have a VOC</u> content of 50 g/L or less.
 - 3. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Adhesive shall have a VOC</u> content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1.3 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>VOC Content</u>: 300 g/L or less.
 - 2. Low-Emitting Materials: Mastic coatings shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

1.4 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

- 1. Materials shall be compatible with insulation materials, jackets, and substrates.
- 2. Fire- and water-resistant, flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 40 to plus 250 deg F
- 4. Color: Aluminum.
- 5. <u>Sealant shall have a VOC</u> content of 420 g/L or less.
- 6. <u>Sealant shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F
 - 4. Color: White.
 - 5. <u>Sealant shall have a VOC</u> content of 420 g/L or less.
 - 6. <u>Sealant shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

1.5

PART 3 EXECUTION

3.01 EXAMINATION

- A. Install insulation materials only after ductwork has been sealed, tested and approved.
- B. All insulated surfaces are to be cleaned and dried of any foreign material. This includes but is not limited to oil, water, dirt, rust and scale. Completely cover the entire surface to present a tight, smooth appearance.

3.02 INSTALLATION

- A. Division 1 Quality Control: Install materials in accordance with manufacturer's instructions, specification requirements and in compliance with local code
- B. Install in accordance with NAIMA National Insulation Standards.
- C. Apply insulation in such a way as to permit expansion and/or contraction of metal without causing damage to insulation, joints, seams or finish.
- D. Do not apply additional coats of mastic, adhesive, or sealers until previous coats have thoroughly dried.

- E. Fill in all surface imperfections such as chipped edges, small joints, cracks, holes and small voids with materials o match insulation. Make smooth with a skim coat of insulation cement. Extend surface finish to protect all surfaces and leave no exposed edges.
- F. Provide flashing for insulation installed outdoors to enclose all exposed edges or ends.
- G. Repair existing insulation where damaged by new work. Use materials to match existing.
- H. Cut, score or miter insulation to fit the slope and contour of surface to be covered. Insulation up to 3 inches thick to be applied in single layer. Over 3 inches apply in multiple layers, with joints staggered.

3.03	DUCT INSULATION SCHEDULE Service ¹ Interior AC systems; SA, RA & EA, ductwork that is exposed in <u>equip rooms</u> .	<u>Type</u> B	Insulation Thickness 1-1/2"
	¹ Interior AC systems; SA, RA & EA including flexible run outs, that is concealed.	А	2"
	Outside air intake ductwork All	В	1 1/2"
	Acoustically line all SA & RA ductwork For a distance of 20' from fan inlet and outlet and 10' downstream of all VAV boxes. ⁵ Interior exposed AC systems; SA, RA located in conditioned spaces rectangular, spiral round or oval ductwork;	D1/D2	1/2"
	Located in conditioned space Located in unconditioned space, plenum or equipment room.	D1/D2 D1/D2	1" 1 1/2"
	⁴ Smoke purge exhaust and supply	E	2" (not used)
	All Stair pressure ductwork	E	2" (not used)
	Generator exhaust pipe and muffler	С	2"

- 1. Insulation Thickness shall be no less than the size indicated or the height of standing seams or angle bracing.
- 2. Reduce external insulation to 1" for internally lined ductwork except for outdoor installations. On outdoor installations insulation thickness shall be as scheduled but not less then the height of standing seams or angle bracing.
- 3. Outside air intake ducts shall not be internally lined.
- 4. All square, round, oval or rectangular ductwork that is exposed to view in finished spaces shall be internally insulated.

END OF SECTION

SECTION 23 07 16 HVAC EQUIPMENT INSULATION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Equipment insulation
- B. Covering
- C. Breeching insulation

1.02 RELATED SECTIONS

- A. Section 23 05 53 Identification for HVAC Piping and Equipment.
- B. Section 23 21 13 Hydronic Piping.
- C. Section 23 23 00 Refrigerant Piping and Specialties.

1.03 REFERENCES

- A. ASHRAE 90-75 Insulation Standards
- B. ASTM C195 Standard Specification for Mineral Fiber Thermal Insulation Cement.
- C. ASTM C533 Standard Specification for Calcium Silicate Block and Pipe Thermal
- D. ASTM C552 Standard Specification for Cellular Glass Thermal Insulation.
- E. ASTM C553 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.
- F. ASTM C612 Standard Specification for Mineral Fiber Block and Board Thermal Insulation.
- G. ASTM C921 Standard Practice for Determining the Properties of Jacketing Materials for Thermal Insulation.
- H. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials.
- I. ASTM E96 Standard Test Methods for Water Vapor Transmission of Materials.
- J. NAIMA National Insulation Standards.
- K. NFPA 255 Standard Method of Test of Surface Burning Characteristics of Building Materials.
- L. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials.

1.04 SUBMITTALS FOR REVIEW

- A. Division 1 Submittal Requirements.
- B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for equipment scheduled.
- C. Manufacturer's Instructions: Indicate installation procedures which ensure acceptable workmanship and installation standards will be achieved.

1.1 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, mastics, and sealants, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, mastics, and sealants, indicating compliance with requirements for low-emitting materials.
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail removable insulation at equipment connections.
 - 2. Detail application of field-applied jackets.
 - 3. Detail application at linkages of control devices.
 - 4. Detail field application for each equipment type.

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum three years documented experience.

1.06 REGULATORY REQUIREMENTS

- A. Materials: Flame spread/fuel contributed/smoke developed rating of 25/50/50 in accordance with NFPA 255.
- B. Insulation thickness shall comply with applicable energy conservation codes.

1.07 DELIVERY, STORAGE, AND PROTECTION

- A. Division 1 Material and Equipment: Transport, handle, store, and protect products.
- B. Accept materials on site in original factory packaging, labeled with manufacturer's identification, including product density and thickness.
- C. Protect insulation from weather and construction traffic, dirt, water, chemical, and mechanical damage, by storing in original wrapping.

1.08 ENVIRONMENTAL REQUIREMENTS

A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.

PART 2 PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Owens Corning Fiberglass Corp.
- B. Certain Teed Corporation
- C. Manville Industrial Products.
- D. Substitutions: Under provisions of Section 01630.

2.02 INSULATION

- A. Type A: Flexible glass fiber blanket; ANSI/ASTM C553; 'k' value of 0.23 at 75° F, 3.5 lb/cu feet density. Temperature range 35° F to 250° F.
- B. Type B: Rigid glass fiber board; ANSI/ASTM C612; 'k' value of 0.24 at 75° F, 6.0 lb/cu feet. Temperature range 35° F to 250° F.
- A. Type C: Elastomeric insulation; ASTM C518, C177; 'K' Value of 0.27 at 75°F; noncombustible. Similar to Armstrong "AP Armaflex"; temperature range -40° F to 220° F.

2.03 ACCESSORIES

- A. Bedding Compounds: Non-shrinking, permanently flexible, compatible with insulation
- B. Vapor Barrier Coating: Non-flammable, fire resistant, polymeric resin, compatible with insulation.
- C. Insulating Cement: ANSI/ASTM C195, hydraulic setting mineral wool
- D. Wire Mesh: Corrosive-resistant metal; hexagonal pattern.

2.04 ADHESIVES

- D. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- E. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F
 - 1. <u>Adhesive</u>: As recommended by cellular glass manufacturer and with a VOC content of 80 g/L or less.
 - 2. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of

Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Adhesive</u>: As recommended by Adhesive PVC Jacket manufacturer and with a VOC content of 50 g/L or less.
 - 2. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- 2.05 MASTICS AND COATINGS
 - G. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Mastics</u>: As recommended by insulation manufacturer and with a VOC content of 50 g/L or less.
 - 2. <u>Mastics shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- 2.06 LAGGING ADHESIVES
 - H. Adhesives shall comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Adhesive shall be as recommended</u> by insulation manufacturer and shall have a VOC content of Insert value g/L or less.
 - 2. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment insulation.
 - 4. Service Temperature Range: 20 to plus 180 deg F Color: White.
- 2.07 SEALANTS
 - I. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
 - J. Joint Sealants:
 - 1. Permanently flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 58 to plus 176 deg F.
 - 3. Color: White or gray.
 - 4. <u>Sealant shall have a VOC</u> content of 420 g/L or less.
 - 5. <u>Sealant shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that equipment has been tested before applying insulation materials.
- B. Clean and dry all surfaces to be insulated of all foreign material. This includes but is not limited to water, oil, dirt, rust, and scale.

3.02 INSTALLATION

- A. Install materials in accordance with manufacturer's instruction, specification requirements and in compliance with local code.
- B. Only insulation and finish materials including adhesives, cements, and mastics which conform to the requirements of all governing codes & ordinances shall be used.
- C. Factory Insulated Equipment: Do not insulate.
- D. Exposed Equipment: Locate insulation and cover seams in least visible locations. Insulate expansion tanks, pumps, pot feeders etc.
- E. Apply insulation as close as possible to equipment by grooving, scoring, and beveling insulation. Fasten insulation to equipment with studs, pins, clips, adhesive, wires, or bands. Insulation shall be applied in single layers up to 3 inches thick; over 3 inches thick it shall be applied in multiple layers.
- F. Fill joints, cracks, seams, and depressions with bedding compound to form smooth surface. On cold equipment, use vapor barrier cement. The surface finish shall be extended to protect all insulation surfaces. No raw edges or ends shall be left exposed.
- G. Insulated equipment containing fluids below ambient temperature: Insulate entire system.
- H. Cover insulation with metal mesh and finish with heavy coat of insulating cement.
- I. Insulation shall be applied in such a way as to permit expansion or contraction of metal without causing damage to insulation or surface finish. Seal or cement shall not be applied until all previous application of cements and adhesives have thoroughly dried.
- J. Vapor barrier finishes shall not be stapled through.
- K. Clean and dry all surfaces to be insulated of rust, scale, dirt, oil, water and other foreign matter. Apply insulation to completely cover metal surface. Surface finish shall be applied to present a tight, smooth appearance.
- L. Nameplates and ASME Stamps: Bevel and seal insulation around; do not insulate over.
- M. Equipment Requiring Access for Maintenance, Repair, Cleaning: Install insulation so it can be easily removed and replaced without damage.
- N. Insulate all pumps with type C insulation. Fabricate custom aluminum sheet metal enclosure around pump body and fittings. Cut and fit insulation to tightly fit the size and shape of the pump body parts including the volute and inlet and outlet piping and fittings.

The enclosure shall be removable with out cutting or breaking the insulation. The enclosure shall be vapor tight to prevent condensation.

3.03 SCHEDULES

EQUIPMENT	INSULATION TYPE	THICKNESS
Air Handler Components and Fans, Not Factory insulated including coil & filter sections	B or C	1.5"
Return fans	B or C	1.5"
Expansion Tanks/Chemical Feed Tanks and heat exchangers All Specialties valves, air separators	С	1.5"
Boilers Factory Installed Jackets Factory Installed Jackets	В	2"
Pumps Body and Parts.	С	2"

END OF SECTION

SECTION 23 07 19 HVAC PIPING INSULATION

- PART 1 GENERAL
- 1.01 SECTION INCLUDES
 - A. Piping insulation
 - B. Jackets and accessories

1.02 RELATED SECTIONS

- A. Section 23 05 53 Identification for HVAC Piping and Equipment.
- B. Section 23 21 13 Hydronic Piping.

1.03 REFERENCES

- A. ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus
- B. ASTM C195 Standard Specification for Mineral Fiber Thermal Insulating Cement.
- C. ASTM C449/C449M Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
- D. ASTM C518 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
- E. ASTM C533 Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation.
- F. ASTM C547 Standard Specification for Mineral Fiber Preformed Pipe Insulation
- G. ASTM C552 Standard Specification for Cellular Glass Thermal Insulation.
- H. ASTM C578 Standard Specification for Preformed, Cellular Polystyrene Thermal Insulation
- I. ASTM C610 Standard Specification for Expanded Perlite Block and Pipe Thermal Insulation
- J. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials
- K. NAIMA National Insulation Standards
- L. NFPA 255 Standard Method of Test of Surface Burning Characteristics of Building Materials

- M. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials.
- N. ASHRAE 90-75 Insulation Standards

1.04 SUBMITTALS FOR REVIEW

- A. Division 1 Submittal Requirements.
- B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.
- C. Manufacturer's Instructions: Indicate installation procedures that ensure acceptable workmanship and installation standards will be achieved.
- D. Sustainable Design Submittals:
 - 1. Product Data: For adhesives, mastics, and sealants, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, mastics, and sealants, indicating compliance with requirements for low-emitting materials.
- E. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum three years experience.

1.06 REGULATORY REQUIREMENTS

- A. Conform to maximum flame spread/smoke developed rating of 25/50 in accordance with NFPA 255
- B. Insulation thickness shall comply with applicable Energy Conservation Codes.

PART 2 PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Manufacturer: Pittsburgh Corning Corporation
- B. Certainteed Corporation.

- C. Armstrong Corporation.
- D. Manville Industrial Products.
- E. Owens-Corning Fiberglass Corporation
- F. Polyguard

2.02 INSULATION

- A. Type A: Molded glass fiber insulation; ANSI/ASTM C547; 'k' value of 0.23 at 75° F; noncombustible. Minimum density of 3.5 lbs./cu. Ft.; temperature range 35° F to 450° F.
- B. Type B: Cellular glass insulation; ASTM C552; 'K' Value of 0.53 at 75°F; noncombustible. Minimum density of 8.0 lbs./cu. ft. similar to Pittsburgh Corning Foamglas.
- C. Type C: Elastomeric insulation; ASTM C518, C177; 'K' Value of 0.27 at 75°F; noncombustible. Similar to Armstrong "AP Armaflex"; temperature range -40° F to 220° F

2.03 JACKETS

- A. Interior Applications:
 - 1. Insulation Type A Factory applied, white, flame retardant, all service (ASJ) vapor barrier jacket of .001" aluminum foil laminated to Kraft paper with a flame retardant snuffer type adhesive reinforced with glass fibers and having a self sealing lap. Provide 2" longitudinal lap and 4" circumferential sealing strips. Permeability .02 perm.
- B. Exterior Applications: (not used)
 - 1. Insulation Type A thickness as scheduled with ASJ vapor barrior jacket Cover factory interior jacket with Alumaguard Cool Wrap by Polyguard rubberized bitumen membrane designed specifically to be installed over insulation on exterior piping, tanks, vessels, and equipment. The membrane shall be 'peel and stick', self-healing if punctured, UV stable, and will expand and contract with the mechanical system. All seams shall be sealed water tight. Permeability .0053 perm
- C. Piping exposed in Mechanical Rooms or any space:
 - 1. <u>All</u> exposed piping and fittings shall be completely covered with white Zeston 2000 PVC insulated piping and fitting covers. Apply as per manufacturer with perma weld adhesive.
- D. Underground applications: (not used)

All straight sections of the insulated piping system shall be filament wound, polyester resin/fiberglass reinforcement composite directly applied on the insulating foam. The jacket shall be either filament wind fiberglass directly onto the polyurethane foam or injected foam into a fiberglass outer casing.

Fiberglass outer casing shall be A.O. Smith Red Thread or Ameron Bondstrand 3000. Thermoplastic casing material that are not rated for temperatures above 140 degrees F will not be allowed, e.g., PVC or HDPE. The minimum thickness for FRP jacket shall be as 0.55"

2.04 ACCESSORIES

- A. Insulation Bands: ³/₄" wide; 0.007 inch thick aluminum.
- B. Metal Jacket Bands: 3/8" wide; 0.015 inch thick aluminum.
- C. Insulating Cement: ANSI/ASTM C195; hydraulic setting mineral wool.
- D. Finishing Cement: ASTM C449
- E. Fibrous Glass Cloth: Untreated; 9 oz/sq. yd weight.
- F. Adhesives: Compatible with insulation and fire retardant.

2.05 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. <u>Adhesive</u>: As recommended by cellular glass manufacturer and with a VOC content of 80 g/L or less.
- C. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.
 - 1. <u>Adhesive shall comply with the</u> testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers." Formaldehyde emissions shall not exceed 9 mcg/cu. m or 7 ppb, whichever is less.
 - 2. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
 - 3. Wet Flash Point: Below 0 deg F.
 - 4. Service Temperature Range: 40 to 200 deg F
 - 5. Color: Black.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Adhesive</u>: As recommended by mineral fiber manufacturer and with a VOC content of 80 g/L or less.

2.06 MASTICS AND COATINGS

- A. Mastic and coating terminology is used interchangeably in this article. Manufacturers refer to vapor-barrier formulations and vapor-retarder formulations as "mastics" or "coatings." Low-permeance mastics and coatings are termed "vapor retarders." Products with a perm rating of greater than 1.0 are called "breathable." Consider ambient conditions and operating temperatures when selecting mastics and coatings. Consider using water-based mastics and coatings for environmental reasons.
- B. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Mastics</u>: As recommended by insulation manufacturer and with a VOC content of 50 g/L or less.

2.07 LAGGING ADHESIVES

- A. Adhesives shall comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Adhesive shall be as recommended</u> by insulation manufacturer and shall have a VOC content of 50 g/L or less.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over pipe insulation.
 - 3. In "Service Temperature Range" Subparagraph below, more manufacturers can comply if first option is retained; consult manufacturers.
 - 4. Service Temperature Range: 20 to plus 180 deg F.
 - 5. Color: White.

2.08 SEALANTS

- A. Sealants are categorized into "joint sealants" and "flashing sealants." Joint sealants are primarily used for vapor-sealing longitudinal seams and butt joints of insulation materials. Flashing sealants are primarily used for sealing jacket and mastic materials.
- B. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
- C. Joint Sealants:
 - 1. Permanently flexible, elastomeric sealant.
 - a. Service Temperature Range: Minus 150 to plus 250 deg F
 - b. Color: White or gray.
 - 2. <u>Sealant shall have a VOC</u> content of 420 g/L or less.
- D. FSK and Metal Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F
 - 3. Color: Aluminum.
 - 4. <u>Sealant shall have a VOC</u> content of 420 g/L or less.

- E. ASJ Flashing Sealants and PVDC and PVC Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Service Temperature Range: Minus 40 to plus 250 deg F
 - 3. Color: White.
 - 4. <u>Sealant shall have a VOC</u> content of 420 g/L or less.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that piping has been tested before applying insulation materials.
- B. Verify that surfaces are clean and dry, with all foreign material removed. This includes but is not limited to water, oil, dirt, scale and rust.
- D. Only insulation and finish materials including adhesive cements and mastic which conform to the requirements of all-governing codes and ordinances shall be used.

3.02 INSTALLATION

- A. Division 1 Quality Control: Install materials in accordance with manufacturer's instructions and the best practice of the trade.
- B. Install in accordance with NAIMA National Insulation Standards.
- C. Insulation on all piping shall be vapor sealed. On insulated piping with vapor barrier, insulate all fittings, valves, unions, flanges, strainers, flexible connections, and expansion joints. Vapor seal all exposed edges with jacket material and vapor barrier type adhesive.
- D. Repair or replace any existing insulation and surface finish disturbed or damaged by installation of new work using materials to match existing.
- E. Apply insulation to completely cover metal surface. Surface shall be applied to present a tight, smooth appearance.
- F. Exposed Piping: Locate insulation and cover seams in least visible locations.
- G. For hot piping conveying fluids 140 degrees F or less, and on insulated piping without vapor barrier, do not insulate flanges and unions at equipment, but bevel and seal ends of insulation.
- H. For hot piping conveying fluids over 140 degrees F, insulate flanges and unions at equipment.
- I. Neatly finish insulation at supports, protrusions, and interruptions.
- J. Do not use staples on vapor barrier insulation.
- K. Jackets:

- 1. Indoor, Concealed Applications: Insulated pipes conveying fluids above ambient temperature shall have standard jackets, with vapor barrier, factory-applied or field-applied. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe, and finish with glass cloth and adhesive. PVC jackets may be used
- 2. Indoor, Concealed Applications: Insulated dual-temperature pipes or pipes conveying fluids below ambient temperature shall have vapor barrier jackets, factory-applied. Insulate fittings, joints, and valves with molded insulation of like material and thickness as adjacent pipe, and finish with glass cloth and vapor barrier adhesive.
- 3. Indoor, Exposed Applications: For pipe exposed in mechanical equipment rooms or in finished spaces, insulate and jacket as for concealed applications, and finish with PVC jackets.
- 4. Outdoor Applications (not used): Cover with .016" aluminum jacket with 2" overlap at seams and joints. Lay joints downward to shed water. Secure with 3/8" seals and straps at joints and aluminum bands on 8" centers between joints. Or cover ASJ vapor barrier jacket Cover factory interior jacket with Alumaguard 60 .06" foil faced rubberized bitumen membrane
- L. Inserts and Shields:
 - 1. Application: All insulated Piping 2 inches diameter or larger shall be installed with inserts and shields as follows.
 - 2. Shields: Galvanized steel between pipe hangers or pipe hanger rolls and inserts.
 - 3. Insert location: Between support shield and piping and under the finish jacket.
 - 4. Insert configuration: Minimum 6 inches long, of same thickness and contour as adjoining insulation; may be factory fabricated.
 - 5. Insert material: Hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.
- M. Continue insulation through walls, sleeves, pipe hangers, and other pipe penetrations. Finish at supports, protrusions, and interruptions.
- N Underground applications (not used):
 - The internal pipe shall be hydrostatically tested to 150 psig or 1½ times the operating pressure, whichever is greater. Insulation shall then be poured in place into the field weld area. All field applied insulation shall be placed only in straight sections. Field insulation of fittings shall not be acceptable. The mold for the polyurethane shall be made of clear adhesive backed polyester film. The installer shall seal the field joint area with a heat shrinkable adhesive backed wrap or with wrappings of glass reinforcement fully saturated with a catalyzed resin identical in properties to the factory-applied resin. Backfilling shall not begin until the heat shrink wrap has cooled or until the FRP lay-up has cured. All insulation and coating materials for making the field joint shall be furnished by the piping system manufacture

3.03 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

- 1. Seal penetrations with flashing sealant.
- 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
- 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Above ground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems."

3.04 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

- 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
- 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
- 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

- 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
- 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.05 INSULATION SCHEDULE

Refer to the insulation schedule below for pipe insulation thickness by system. Not all systems are necessarily included in this project

North White Plains Community Center - Renovations

© 2020 OLA Consulting Engineers, P.C.

SA Project #20202 November 2, 2020

INSULATION SCHEDULE									
SERVICE	INSULATION	TEMPERATURE	NOM INAL PIPE SIZE						
	TYPE	RANGE (F°)	<1"	1" to< 1 1/2"	1 1/2" to< 4"	4" to< 8"	≥ 8"		
			INSULATION THICKNESS						
	A	> 350°	4 1/2	5	5	5	5		
Hot Water (HW)		251°-350°	3	4	4	4 1/2	4 1/2		
		201°-250°	2 1/2	2 1/2	2 1/2	3	3		
		141°-200°	1 1/2	1 1/2	2	2	2		
		105°-140°	1	1	1 1/2	1 1/2	1 1/2		
	С	> 350°	4 1/2	5	5	5	5		
		251°-350°	3	4	4	4 1/2	4 1/2		
Buried (HW)		201°-250°	2 1/2	2 1/2	2 1/2	3	3		
		141°-200°	2	2	2 1/2	2 1/2	2 1/2		
		105°-140°	1 1/2	1 1/2	2	2	2		
Chilled Water (CHW)	А	40°- 60°	1/2	1/2	1	1	1		
		< 40°	1/2	1	1	1	1		
	С	40°- 60°	1	1 1/2	1 1/2	1 1/2	1 1/2		
Buried (CHW)		< 40°	1	1 1/2	1 1/2	1 1/2	1 1/2		
Steam & Condensate	A	Low Pressure	2 1/2	2 1/2	2 1/2	3	3		
Steam Condensate	А	Low Pressure	2 1/2	2 1/2	2 1/2	3	3		
Condensate Drains	A	All	1/2	1/2	1	1	1		
Cold Water Make up	A	All	1/2	1/2	1	1	1		
Refrigerant Hot Gas	С	All	1 1/2	1 1/2	2	2	2		
Humidifier Steam	A	All	2 1/2	2 1/2	2 1/2	3	3		
Refrigerant Suction	С	All	1/2	1/2	1	1	1		

END OF SECTION

SECTION 23 09 01 – DIRECT DIGITAL CONTROL EQUIPMENT

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. These basic Mechanical Requirements apply to all Division 23Sections.
- B. 1.2 The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all mechanical for this project, as required by the contract documents.

1.2 Qualifications of Bidder

- A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 5 years.
- B. All bidders must have a service and installation office in the Westchester area.
- C. All bidders must be authorized distributors or branch offices of the manufacturers specified.
- D. All bidders must have a trained staff of application engineers, who have been certified by the manufacturer in the configuration, programming and service of the automation system.
- E. Manufacturers: Subject to compliance with requirements, provide products by the following school district standard manufacture:
 - 1. Andover Controls Corporation Schneider Electric

1.3 Scope of Work

- A. Except as otherwise noted, the control system shall consist of all Ethernet Network Controllers, Standalone Digital Control Units, software, sensors, transducers, relays, valves, dampers, valve and damper operators, control panels, and other accessory equipment, along with a complete system of electrical interlocking wiring to fill the intent of the specification and provide for a complete and operable system. Unless otherwise specified, provide operators for equipment such as dampers and valves if the equipment manufacturer does not provide these. Coordinate requirements with the mechanical contractors.
- B. The Building Automation System (BAS) contractor shall review and study all HVAC drawings and the entire specification to familiarize himself with the equipment and system operation, and to verify the quantities and types of dampers, operators, alarms, controllers etc. to be provided. ALL NEW TEMPERATURE CONTROLS EQUIPMENT SHALL BE ANDOVER CONTINUUM SERIES VERSION 1.9. OR LATER.
- C. All interlocking, wiring and installation of control devices associated with the equipment listed below shall be provided under this Contract. When the BAS system is fully installed and operational, the BAS Contractor and representatives of the Owner will review and check out the system. At that time, the BAS contractor shall demonstrate the operation of the system and prove that it complies with the intent of the drawings and specifications.

- D. The Contractor shall furnish and install a complete building automation system including all necessary hardware, network wiring, all operating applications software, and all programming necessary to perform the control sequences of operation as called for in the specifications. The scope of work shall include control over and graphic representation all new mechanical and plumbing equipment installed as part of this project. At a minimum, provide controls for the following:
 - 1. Split system air handling units
 - 2. Energy Recovery Ventilators
 - 3. All coils and control valves
 - 4. All VAV boxes
 - 5. Toilet, general, return, fan controls
 - 6. Hot water pumps primary and secondary pumps
 - 7. Condensate pumps
 - 8. Boilers, Burners
 - 9. Frequency controllers, HOA's and starters
 - 10. Fin tube radiation and unit heaters control valves.
 - 11. Supplemental AC systems
 - 12. Domestic hot water recirc pumps
 - 13. Domestic hot water mixing valves and safeties.
 - 14. Power wiring to DDC devices and BAS panels.
 - 15. Auxiliary high temp sensor and alarm for all data closets.
 - 16. High water alarm for all condensate drain pans with unit shut down
 - 17. Flow meter output for domestic hot water meters. Set up a spread sheet report to record domestic HW use in gallons.
- E. Provide services and manpower necessary for commissioning of system in coordination with the HVAC Contractor, Balancing Contractor and Owner's representative.
- F. All work performed under this section of the specifications will comply with all codes, laws and governing bodies. If this specification and associated drawings exceed governing code requirements, the specification will govern. The Contractor shall obtain and pay for all necessary construction permits and licenses.
- G. Provide all labor and materials to perform all programming necessary at the owners new operator work station to be located in the in Secure Storage 036 to graphically represent and control EACH AND EVERY PIECE OF EQUIPMENT IN THE LISTS ABOVE. This shall include, all input and output status points, and functional points.

1.4 System Description

A. The Building Automation System (BAS) shall consist of PC-based workstation and microcomputer controllers of modular design providing distributed processing capability, and allowing future expansion of 10%, both input/output points and processing/control functions without having to add hardware, software or controllers. For this project the system shall consist of the following components:

B. Operator Workstations.

The BAS Contractor shall furnish (1) Operator Workstation Computer and (1) printer as described in Part 2 of the specification. This workstation must be running the standard workstation software developed and tested by the manufacturer of the network controllers and the standalone controllers. No third party front-end workstation software will be acceptable.

Provide all necessary software and licensing as required. Locate the BMS interface in Secure Storage 036.

- C. Ethernet-based Network Controllers.
 - 1. The BAS Contractor shall furnish Ethernet-based network controllers as described in Part 2 of the specification. These controllers will connect directly to the Operator Workstation over Ethernet, provide communication to the Standalone Digital Control Units and/or other Input/Output Modules and serve as a gateway to equipment furnished by others (if applicable).
- D. Standalone Digital Control Units (SDCUs).
 - 1. Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment.

1.5 Work by Others

- A. The BAS Contractor shall coordinate with other trade contractors performing work on this project necessary to achieve a complete installation. To that end, the contractor shall consult the drawings and specifications for all other trades to determine the nature and extent of work by others.
- B. The BAS Contractor shall furnish all control valves, sensor wells, flow meters and other similar equipment for installation by the Mechanical Contractor.
- C. The BAS Contractor shall provide field supervision to the designated contractor for the installation of the following as required:
 - 1. Automatic control dampers
 - 2. Fire/smoke dampers
 - 3. Sheet metal baffle plates to eliminate stratification.
- D. The Electrical Contractor shall provide:
 - 1. All power wiring to motors, heat trace, junction boxes for power to BAS panels.
 - 2. Furnish smoke detectors and wire to the building fire alarm system. HVAC Contractor to mount devices. BAS Contractor to hardwire to fan shut down. BAS contractor to coordinate this with the electrical contractor.
- E. The BAS Contractor shall provide:
 - 1. All power wiring to all smoke damper actuators for smoke control sequence.

1.6 Code Compliance

A. Provide BAS components and ancillary equipment, which are UL-916 listed and labeled.

- B. All equipment or piping used in conditioned air streams, spaces or return air plenums shall comply with NFPA 90A Flame/Smoke/Fuel contribution rating of 25/50/0 and all applicable building codes or requirements.
- C. All wiring shall conform to the National Electrical Code.
- D. All smoke dampers shall be rated in accordance with UL 555S.
- E. Comply with FCC rules, Part 15 regarding Class A radiation for computing devices and low power communication equipment operating in commercial environments.
- F. Comply with FCC, Part 68 rules for telephone modems and data sets.

1.7 Submittals

- A. All shop drawings shall be prepared in AutoCAD software. In addition to the drawings, the Contractor shall furnish a diskette containing the identical information. Drawings shall be B size or larger.
- B. Shop drawings shall include a riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typical will be allowed where appropriate.
- C. Submittal data shall contain manufacturer's data on all hardware and software products required by the specification. Valve, damper and air flow station schedules shall indicate size, configuration, capacity and location of all equipment.
- D. Software submittals shall contain narrative descriptions of sequences of operation, program listings, point lists, and a complete description of the graphics, reports, alarms and configuration to be furnished with the workstation software. Information shall be bound or in a three-ring binder with an index and tabs. All literature, descriptions, equipment spec sheets, sequences etc shall be on 8 1/2 x 11 or larger sized sheets. All details diagrams and schematics shall be on 11X17 sized sheets or larger.
- E. Submit five (5) copies of submittal data and shop drawings to the Engineer for review prior to ordering or fabrication of the equipment. The Contractor prior to submitting shall check all documents for accuracy.
- F. The Engineer will make corrections, if required, and return to the Contractor. The Contractor will then resubmit with the corrected or additional data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully approved.
- G. Submit a training class syllabus and training manual for review with the temperature controls submittal. The training manual shall be custom made for this project. Manufactures brochures, and installation manuals will not be acceptable for this purpose. Submit a type written overview and a written summary of each topic to be covered. The document shall be suitable for a system operator to use as a quick reference guide to basic system operation as applicable for this project. Refer to section 1.9 paragraph B, for the minimum requirement of training to be included.

1.8 System Startup & Commissioning

- A. Each point in the system shall be tested for both hardware and software functionality. In addition, each mechanical and electrical system under control of the BAS will be tested against the appropriate sequence of operation specified herein. Successful completion of the system test shall constitute the beginning of the warranty period. A written report will be submitted to the owner indicating that the installed system functions in accordance with the plans and specifications.
- B. The BAS contractor shall commission and set in operating condition all major equipment and systems, such as the chilled water, hot water and all air handling systems, in the presence of the equipment manufacturer's representatives, as applicable, and the Owner and Architect's representatives.
- C. The BAS Contractor shall provide all manpower and engineering services required to assist the HVAC Contractor and Balancing Contractor in testing, adjusting, and balancing all systems in the building. The BAS Contractor shall have a trained technician available on request during the balancing of the systems. The BAS Contractor shall coordinate all requirements to provide a complete air balance with the Balancing Contractor and shall include all labor and materials in his contract.

1.9 Training

- A. The BAS Contractor shall provide both on-site training to the Owner's representative and maintenance personnel per the following description:
- B. On-site training shall consist of a minimum of (3) separate 4 hour sessions of hands-on instruction geared at the operation and maintenance of the systems. The sessions shall be scheduled at the beginning of substantial completion and spaced out over the first year of owner use. The first session curriculum shall include
 - 1. System Overview
 - 2. System Software and Operation
 - a. System access
 - b. Software features overview
 - c. Changing set-points and other attributes
 - d. Scheduling
 - e. Editing programmed variables
 - f. Displaying color graphics
 - g. Setting up reports
 - h. Running reports
 - i. Workstation maintenance
 - j. Application programming
 - 3. Operational sequences including start-up, shutdown, adjusting and changing system variables. These items shall be reviewed for all equipment installed under this project and or connected to the BMS under this project.
 - 4. Equipment and hardware overview and maintenance. This shall include:
 - a. Review of all hardware installed under this project
 - b. Review of a system schematic.

c. Review of where each controller is located in the building and what its function is. This shall include a walking, hands-on tour and demonstration of each and every controller.

1.10 Operating and Maintenance Manuals

- A. The operation and maintenance manuals shall contain all information necessary for the operation, maintenance, replacement, installation, and parts procurement for the entire BAS. This documentation shall include specific part numbers and software versions and dates. A complete list of recommended spare parts shall be included with the lead-time and expected frequency of use of each part clearly identified.
- B. Following project completion and testing, the BAS contractor will submit as-built drawings reflecting the exact installation of the system. The as-built documentation shall also include a copy of all application software both in written form and on diskette.

1.11 Warranty

- A. The BAS contractor shall warrant the system for 12 months after system acceptance and beneficial use by the owner. During the warranty period, the BAS contractor shall be responsible for all necessary revisions to the software as required to provide a complete and workable system consistent with the letter and intent of the Sequence of Operation section of the specification.
- B. Updates to the manufacturer's software shall be provided at no charge during the warranty period.

1.12 Programming

A. Sequence of operations: The controls contractor shall review the sequences of operation given in section 23 09 93 of this specification. "Canned", preprogrammed, or typical sequences by the manufacture may not be acceptable and shall only be used if accepted by the engineer. Otherwise the controls contractor shall be capable of and responsible for providing custom programming, hardware, software, and labor as required to achieve the sequences of operation as specified.

1.13 System Architecture

- A. General
- B. The Building Automation System (BAS) shall consist of all new Network Control Units (NCUs), a family of Standalone Digital Control Units (SDCUs), Input/Output Unit Modules (IOU Modules), Operator Workstations (OWs), and one File Server to support system configurations where more than one operator workstation is required. The BAS shall provide control, alarm detection, scheduling, reporting and information management for the entire class room building and all new and existing equipment in the building, and Wide Area Network (WAN) if applicable, from a single ODBC-compliant database
- C. Level 1 Network Description
- D. Level 1, the main backbone of the system, shall be an Ethernet LAN/WAN. Network Control Units, Operator Workstations, and the Central File Server shall connect directly to this network without the need for Gateway devices. The contractor shall visit the site and review the existing

Andover temperature controls equipment installed in the building and in the physical plant. Certain of these controllers may be suitable for reuse. The network shall be an extension of the existing in the building as required to achieve a complete system,

- E. Level 2 Network Description
- F. Level 2 of the system shall consist of one or more field buses managed by the Network Control Units. The Level 2 field buses may consist of one or both of the following types:
- G. An RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC equipment and lighting, or
- H. An RS485 field bus that supports up to 32 devices from a family of plug-in, IOU modules.
- I. These IOU modules may be mounted within the NCU enclosure or remotely mounted via a single, twisted, shielded pair of wires.
- J. The BAS shall be capable of being segmented, through software, into multiple local area networks (LANs) distributed over a wide area network (WAN), sharing a single file server. This enables workstations to manage a single LAN (or building), and/or the entire system with all devices being assured of being updated by and sharing the most current database. In the case of a single workstation system, the workstation shall contain the entire database with no need for a separate file server.
- K. Standard Network Support
- L. All NCUs, Workstation(s) and File Server shall be capable of residing directly on the owner's Ethernet TCP/IP LAN/WAN with no required gateways. Furthermore, the NCU's, Workstation(s) and File Server shall be capable of using standard, commercially available, off-the-shelf Ethernet infrastructure components such as routers, switches and hubs. With this design the owner may utilize the investment of an existing or new enterprise network or structured cabling system. This also allows the option of the maintenance of the LAN/WAN to be performed by the owner's Information Systems Department as all devices utilize standard TCP/IP components.
- M. Remote Communications
- N. In addition to the above LAN/WAN architecture support, the same workstation software (front end) must be capable of managing remote systems via standard dial-up phone lines as a standard component of the software. Front-end "add-on" software modules to perform remote site communication shall not be acceptable.
- O. The remote system architecture shall consist of two levels providing control, alarm detection, reporting and information management for the remote facility. Level 1 shall contain the Remote Site Control Unit, communicating to the remotely located, Operator Workstation(s) through the use of a modem and a standard dial-up phone line. Level 2 shall consist of one or more field buses controlled by the RSCU. The field buses may consist of one or both of two types:
- P. 1) An RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC equipment and lighting, or

- Q. 2) An RS485 field bus that supports up to 32 devices from a family of plug-in, IOU modules that may be mounted within the RSCU enclosure or remotely mounted on a single, twisted, shielded pair of wires.
- R. System Expansion
- S. The BAS system shall be scalable and expandable at all levels of the system using the same software interface, and the same Level 1 and Level 2 controllers. Systems that require replacement of either the workstation software or field controllers in order to expand the system shall not be acceptable.
- T. The BAS shall be expandable to include Security and Access Control functions at any time in the future with no additional workstations, front-end software or Level 1 controllers required. Standalone Digital Control Units or IOU modules shall be able to be added to the existing Level 1 controller's field bus(es), to perform security and card access applications. In this way, an owner's existing investment in wiring infrastructure may be leveraged and the cost and inconvenience of adding new field bus wiring will be minimized.
- U. Additionally, an integrated video badging option must be able to be included with no additional workstations required. This photo ID option must share the same database as the BAS in order to eliminate the need for updating multiple databases.
- V. The system shall use the same application programming language for all levels: Operator Workstation, Network Control Unit, Remote Site Control Unit and Standalone Digital Control Unit. Furthermore, this single programming language shall be used for all applications: environmental control, card access control, intrusion detection and security, lighting control, leak detection / underground storage tank monitoring, and digital data communication interfaces to third party microprocessor-based devices.
- W. Support For Open Systems Protocols

The BAS design must include solutions for the integration of the following "open systems" protocols: BACnet, LonTalk[™], and digital data communication to third party microprocessors such as chiller controllers, fire panels and variable frequency drives (VFDs).

X. The system shall also provide the ability to program custom ASCII communication drivers, that will reside in the NCU, for communication to third party systems and devices. These drivers will provide real time monitoring and control of the third party systems.

1.14 Network Control Units (NCUs)

- A. Network Control Units shall be microprocessor based, multi-tasking, multi-user, and employ a real time operating system. Each NCU control panel shall consist of modular hardware including power supply, CPU board, and input/output modules. A sufficient number of NCUs shall be supplied to fully meet the requirements of this specification and the attached point list.NCUs for telephone dialup sites shall be of the same design as the Ethernet control units but without the plug-in Ethernet network interface card (NIC), i.e., NCUs, which include a NIC, shall be interchangeable whether used on a LAN/WAN or a dialup site.
- B. Webserver Functionality

All NCUs on the Ethernet TCP/IP LAN/WAN shall be capable, out-of-the box, to be set up as a Web Server. The NCU shall have the ability to store HTML code and "serve" pages to a web

browser. This provides the ability for any computing device utilizing a TCP/IP Ethernet connection and capable of running a standard Internet browser (Microsoft Internet ExplorerTM, Netscape NavigatorTM, etc.) to access real-time data from the entire BAS via any NCUs.

Graphics and text-based web pages shall be constructed using standard HTML code. The interface shall allow the user to choose any of the standard text or graphics-based HTML editors for page creation. It shall also allow the operator to generate custom graphical pages and forms.

The WEB server interface shall be capable of password security, including validation of the requesting PC's IP address. The WEB server interface shall allow the sharing of data or information between any controller, or process or network interface (BACnet, LonTalk and TCP/IP) that the BMS has knowledge of, regardless of where the point is connected on the BAS network or where it is acquired from.

The BAS network controller must act directly as the WEB server. It must directly generate the HTML code to the requesting user (i.e. WEB browser), eliminating the need for and reliance on any PC-based WEB server hardware or software. To simplify graphic image space allocation, HTML graphic images, if desired, shall be stored on any shared network device. The BAS WEB server shall have the ability to acquire any necessary graphics using standard pathing syntax within the HTML code mounted within the BAS WEB server. External WEB server hardware and software are not acceptable.

- C. Hardware Specifications
 - 1. Memory:

A minimum of 64MB of RAM shall be provided for NCUs with expansion up to 128 MB. The 64 MB versions shall include a floating-point math co-processor.

2. Communication Ports:

Each NCU shall provide communication to both the Workstation(s) and the field buses. In addition, each NCU must have at least 3 other communications ports that support a telephone modem, portable service tool, serial printer and connection to third party controllers such as a chiller control panel. On a LAN/WAN system the NCU shall be provided with a 10Mbps plug-in Ethernet TCP/IP network interface card (NIC).

3. Input/Output (I/O):

Each NCU shall support the addition of the following types of inputs and outputs:

- Digital Inputs for status/alarm contacts
- Counter Inputs for summing pulses from meters.
- Thermistor inputs for measuring temperatures in space, ducts and thermowells.
- Analog inputs for pressure, humidity, flow and position measurements.
- Digital Outputs for on/off equipment control.
- Analog Outputs for valve and damper position control, and capacity control of primary equipment including all air handler and fan coil control valves
- 4. Modular Expandability:

The system shall employ a modular I/O design to allow easy expansion. Input and output capacity is to be provided through plug-in modules of various types or DIN-mountable IOU modules. It shall be possible to combine I/O modules as desired to meet the I/O requirements for individual control applications.

5. Hardware Override Switches:

All digital output units shall include three position manual override switches to allow selection of the ON, OFF, or AUTO output state. These switches shall be built into the unit and shall provide feedback to the controller so that the position of the override switch can be obtained through software. In addition each analog output shall be equipped with an override potentiometer to allow manual adjustment of the analog output signal over its full range, when the 3 position manual override switch is placed in the ON position.

6. Local Status Indicator Lamps:

Provide as a minimum LED indication of CPU status, Ethernet LAN status, and field bus status. For each output, provide LED indication of the value of the output (On/Off). For each output module provide an LED which gives a visual indication of whether any outputs on the module are manually overridden.

7. Real Time Clock (RTC):

Each NCU shall include a battery-backed, real time clock, accurate to 10 seconds per day. The RTC shall provide the following: time of day, day, month, year, and day of week. In normal operation the system clock will be based on the frequency of the AC power. The system shall automatically correct for daylight savings time and leap years and be Year 2000 compliant.

8. Power Supply:

The power supply for the NCUs shall be auto sensing, 120-220VAC, 60/50 Hz power, with a tolerance of \pm 20%. Line voltage below the operating range of the system shall be considered outages. The controller shall contain over voltage surge protection, and require no additional AC power signal conditioning. Optionally, if indicated on the drawings, the power supply shall accept an input voltage of (-48 VDC).

9. Automatic Restart After Power Failure:

Upon restoration of power after an outage, the ECU shall automatically and without human intervention: update all monitored functions; resume operation based on current, synchronized time and status, and implement special start-up strategies as required.

10. Battery backup:

Each NCU with the standard 120-220VAC power supply shall include a programmable DC power backup system rated for a minimum of 72 hours of battery backup to maintain all volatile memory or, a minimum of 2 hours of full UPS including modem power. This power backup system shall be configurable such that at the end of a settable timeframe (such as 1 hour) of running on full UPS, the unit will shut off full UPS and switch to memory retention-only mode for the remainder of the battery power. The system shall allow the simple addition of more batteries to extend the above minimum battery backup times.

- D. Software Specifications
 - 1. General.

The NCU shall contain flash ROM as the resident operating system. Application software will be RAM resident. Application software will only be limited by the amount of RAM memory. There will be no restrictions placed on the type of application programs in the system. Each NCU shall be capable of parallel processing, executing all control programs simultaneously. Any program may affect the operation of any other program. Each program shall have the full access of all I/O facilities of the processor. This execution of control function shall not be interrupted due to normal user

© 2020 OLA Consulting Engineers, P.C.

communications including interrogation, program entry, printout of the program for storage, etc.

2. User Programming Language:

The application software shall be user programmable. This includes all strategies, sequences of operation, control algorithms, parameters, and setpoints. The source program shall be English language-based and programmable by the user. The language shall be structured to allow for the easy configuration of control programs, schedules, alarms, reports, telecommunications, local displays, mathematical calculations, passwords, and histories. The language shall be self-documenting. Users shall be able to place comments anywhere in the body of a program. Program listings shall be configurable by the user in logical groupings.

- E. Control Software:
 - 1. The NCU shall have the ability to perform the following pre-tested control algorithms:
 - a. Proportional, Integral plus Derivative Control (PID)
 - b. Self Tuning PID
 - c. Two Position Control
 - d. Digital Filter
 - e. Ratio Calculator
 - f. Equipment Cycling Protection
 - 2. Mathematical Functions:
 - a. Each controller shall be capable of performing basic mathematical functions (+, -, *, /), squares, square roots, exponential, logarithms, Boolean logic statements, or combinations of both. The controllers shall be capable of performing complex logical statements including operators such as >, <, =, and, or, exclusive or, etc. These must be able to be used in the same equations with the mathematical operators and nested up to five parentheses deep.
 - 3. Energy Management Applications:
 - a. NCUs shall have the ability to perform any or all of the following energy management routines:
 - b. Time of Day Scheduling
 - c. Calendar Based Scheduling
 - d. Holiday Scheduling
 - e. Temporary Schedule Overrides
 - f. Optimal Start
 - g. Optimal Stop
 - h. Night Setback Control
 - i. Enthalpy Switchover (Economizer)
 - j. Peak Demand Limiting
 - k. Temperature Compensated Duty Cycling
 - 1. CFM Tracking
 - m. Heating/Cooling Interlock
 - n. Free Cooling
 - o. Hot Water Reset
 - p. HW water Reset

- q. Boiler Sequencing
- r. Domestic hot water use
- 4. History Logging:
 - a. Each controller shall be capable of logging any system variable over user defined time intervals ranging from 1 second to 1440 minutes. Any system variables (inputs, outputs, math calculations, flags, etc.) can be logged in history. A maximum of 32767 values can be stored in each log. Each log can record either the instantaneous, average, minimum or maximum value of the point. Logs can be automatic or manual. Logged data shall be downloadable to the Operator Workstation for long term archiving based upon user-defined time intervals, or manual command.
- 5. Alarm Management:
 - a. For each system point, alarms can be created based on high/low limits or conditional expressions. All alarms will be tested each scan of the NCU and can result in the display of one or more alarm messages or reports. Up to 8 alarms can be configured for each point in the controller. Messages and reports can be sent to a local terminal, to the front-end workstation(s), or via modem to a remote-computing device. Alarms will be generated based on their priority. A minimum of 255 priority levels shall be provided. If communication with the Operator Workstation is temporarily interrupted, the alarm will be buffered in the NCU. When communications return, the alarm will be transmitted to the Operator Workstation if the point is still in the alarm condition.
- 6. Reporting.
 - a. The NCU shall be able to generate user-definable reports to a locally connected printer or terminal. The reports shall contain any combination of text and system variables. Report templates shall be able to be created by users in a word processing environment. Reports can be displayed based on any logical condition or through a user command.

1.15 Standalone Digital Control Units (SDCUs)

- A. General:
 - 1. Standalone Digital Control Units shall provide control of HVAC and lighting. Each controller shall have its own control programs and will continue to operate in the event of a failure or communication loss to its associated NCU.
- B. Memory:
 - 1. Control programs shall be stored in battery backed-up RAM and EPROM. Each controller shall have a minimum of 32K bytes of user RAM memory and 128K bytes of EPROM.
- C. Communication Ports:
 - 1. SDCUs shall provide a communication port to the field bus. In addition, a port shall be provided for connection of a portable service tool to support local commissioning and parameter changes with or without the NCU online. It shall be possible from a service

port on any SDCU to view, enable/disable, and modify values of any point or program on any controller on the local field bus, any NCU or any SDCU on a different field bus.

- D. Input/Output:
 - 1. Each SDCU shall support the addition of the following types of inputs and outputs:
 - a. Digital Inputs for status/alarm contacts
 - b. Counter Inputs for summing pulses from meters.
 - c. Thermistor Inputs for measuring temperatures in space, ducts and thermowells.
 - d. Analog inputs for pressure, humidity, flow and position measurements.
 - e. Digital Outputs for on/off equipment control.
 - f. Analog Outputs for valve and damper position control, and capacity control of primary equipment.
- E. Expandability:
 - 1. Input and output capacity shall be expandable through the use of plug-in modules. A minimum of two modules shall be added to the base SDCU before additional power is required.
- F. Networking:
 - 1. Each SDCU will be able to exchange information on a peer to peer basis with other Standalone Digital Control Units during each field bus scan. Each SDCU shall be capable of storing and referencing global variables (on the LAN) with or without any workstations online. Each SDCU shall be able to have its program viewed and/or enabled/disabled either locally through a portable service tool or through a workstation connected to an NCU.
- G. Indicator Lamps:
 - 1. SDCUs will have as a minimum, LED indication of CPU status, and field bus status.
- H. Real Time Clock (RTC):
 - 1. An SDCU shall have a real time clock in either hardware or software. The accuracy shall be within 10 seconds per day. The RTC shall provide the following information: time of day, day, month, year, and day of week. Each SDCU shall receive a signal, every hour, over the network from the NCU which synchronizes all SDCU real time clocks.
- I. Automatic Restart After Power Failure:
 - 1. Upon restoration of power, the SDCU shall automatically and without human intervention, update all monitored functions, resume operation based on current, synchronized time and status, and implement special start-up strategies as required.
- J. Battery Back Up:
 - 1. Each SDCU shall have at least 3 years of battery back up to maintain all volatile memory.
- K. Alarm Management:

- 1. For each system point, alarms can be created based on high/low limits or conditional expressions. All alarms will be tested each scan of the SDCU and can result in the display of one or more alarm messages or reports. Up to 8 alarms can be configured for each point in the controller enabling the escalation of the alarm priority (urgency) based upon which alarm(s) is/are triggered. Alarm messages can be sent to a local terminal or modem connected to an NCU or to the Operator's Workstation(s). Alarms will be generated based on their priority. A minimum of 255 priority levels shall be provided. If communication with the NCU is temporarily interrupted, the alarm will be buffered in the SDCU. When communications return, the alarm will be transmitted to the NCU if the point is still in the alarm condition.
- L. Air Handler Controllers
 - 1. AHU Controllers shall be capable of meeting the requirements of the sequence of operation found in the Execution portion of this specification and for future expansion.
 - 2. AHU Controllers shall support all the necessary point inputs and outputs as required by the sequence and operate in a standalone fashion.
 - 3. AHU Controllers shall be fully user programmable to allow for modification of the application software.
 - 4. An LCD display shall be optionally available for readout of point values and to allow operators to change setpoints and system parameters.
 - 5. A manual override switch shall be provided for all digital and analog outputs on the AHU Controller. The position of the switch shall be monitored in software and available for operator displays and alarm notification.
- M. VAV Terminal Unit Controllers
 - 1. VAV Terminal Unit Controllers shall support, but not be limited to the control of the following configurations of VAV boxes to address current requirements as described in the Execution portion of this specification, and for future expansion:
 - a. Single Duct Cooling Only
 - b. Single Duct Cooling with Reheat (Hot Water)
 - 2. VAV Controllers for single duct applications will come equipped with a built-in actuator for modulation of the air damper. The actuator shall have a minimum torque rating of 35 in.-lb., and contain an override mechanism for manual positioning of the damper during startup and service. VAV Controllers shall contain an integral velocity sensor accurate to +/- 5% of the full range of the box's CFM rating. Each controller shall perform the sequence of operation described in Part 3 of this specification, and have the capability for time of day scheduling, occupancy mode control, after hours operation, lighting control, alarming, and trending. VAV Controllers shall be able to communicate with any other Standalone Digital Control Unit on the same field bus with or without communication to the NCU managing the field bus. Systems that fail to provide this (true peer-to-peer) capability will be limited to a maximum of 32 VAV controllers per field bus.
 - 3. Unitary Controllers

- a. Unitary Controllers shall support, but not be limited to, the control of the following systems as described in the Execution portion of this specification, and for future expansion:
 - 1) Finned tube radiation
 - 2) Unit and cabinet heaters
- b. The I/O of each Unitary Controller shall contain the sufficient quantity and types as required to meet the sequence of operation found in the Execution portion of this specification. In addition, each controller shall have the capability for time of day scheduling, occupancy mode control, after hour operation, lighting control, alarming, and trending.
- N. Lighting Controllers (Not Used)
 - 1. Lighting controllers shall provide direct control of 20 Amp, 277 VAC lighting circuits using mechanically held, latching relays. Controllers will contain from 8 to 48 circuits per enclosure. Each controller shall also contain inputs for direct connection to light switches and motion detectors. Each controller shall have the capability for time of day scheduling, occupancy mode control, after hour operation, alarming, and trending.
- O. Display Controllers
 - 1. Display controllers are standalone, touch screen based operator interfaces. The controller shall be designed for flush mounting in a finished space, with a minimum display size of 9 x 9 inches. Software shall be user programmable allowing for custom graphical images that simulate floor plans, menus, equipment schematics along with associated real time point values coming from any NCU on the network. The touch screen display shall contain a minimum of 64 possible touch cells that permit user interaction for changing screens, modifying set-points or operating equipment. Systems that do not offer a display controller as specified must provide a panel mounted computer with touch screen capability as an alternative. All air handling units shall use display controllers.

1.16 Operator Workstation Requirements

A. General.

The BAS workstation software shall be configurable as a multi-workstation system where the database is located on a central file server in the physical plant. The client software on multi-workstation system shall access the file server database program via an Ethernet TCP/IP network running at either 10MBPS or 100MBPS. All Workstations shall be Pentium II based personal computers operating under the Microsoft NT operating system. The application software shall be capable of communication to all Network Control Units and Standalone Digital Control Units, feature high-resolution color graphics, alarming, reporting, and be user configurable for all data collection and data presentation functions.

For multi-workstation systems, a minimum of 256 workstations shall be allowed on the Ethernet network along with the central file server. In this client/server configuration, any changes or additions made from one workstation will automatically appear on all other workstations without the requirement for manual copying of files. Multi-workstation systems with no central database will not be acceptable. Multi-workstation systems with distributed/tiered file servers and a central (master) database will not be acceptable.

B. Workstation Requirements

The workstation shall consist of the following:

© 2020 OLA Consulting Engineers, P.C.

3.6 GHz Intel Core i7 processor with 64GB of RAM
Microsoft Windows operating system (latest version compatible with BMS software)
Serial port, parallel port
10/100MBPS Ethernet NIC
500 GB hard disk
CD-ROM drive
High resolution (minimum 1080 x 1920), 17" flat panel display
Mouse
Full function keyboard
Audio sound card and speakers
License agreement for all applicable software.

C. File Server Hardware Requirements.

The file server computer shall contain of the following: 3.6 GHz Intel Core 2 Duo processor with 64GB of RAM Microsoft Windows operating system (latest version compatible with BMS software) 10/100MBPS Ethernet NIC 500 GB hard disk CD-ROM drive Mouse Full function keyboard License agreement for all applicable software. Provide one Windows 2000-compatible 56 Kbaud modem.

D. Printer

Provide an a printer shall be a HP LaserJet.

- E. Monitor;
 - 1. The monitor shall be flat screen minimum of 17", LED type, 1920x1080 resolution, 16:9 aspect ratio, VGA.

F. Workstation Software

1. General Description

The software architecture must be object-oriented in design, a true 32-bit application suite utilizing Microsoft's OLE, COM, DCOM and ODBC technologies. These technologies make it easy to fully utilize the power of the operating system to share, among applications (and therefore to the users of those applications), the wealth of data available from the BAS.

The workstation functions shall include monitoring and programming of all DDC controllers. Monitoring consists of alarming, reporting, graphic displays, long term data storage, automatic data collection, and operator-initiated control actions such as schedule and setpoint adjustments.

Programming of controllers shall be capable of being done either off-line or on-line from any operator workstation. All information will be available in graphic or text displays.

Graphic displays will feature animation effects to enhance the presentation of the data, to alert operators of problems, and to facilitate location of information throughout the DDC system. All operator functions shall be selectable through a mouse.

2. System Database

The files server database engine must be Microsoft SQL Server, or another ODBCcompliant, relational database program. This ODBC (Open Database Connectivity)compliant database engine allows for an owner to utilize "their" choice of database and due to it's "open" architecture, allows an owner to write custom applications and/or reports which communicate directly with the database avoiding data transfer routines to update other applications. The system database shall contain all point configurations and programs in each of the controllers that have been assigned to the network. In addition, the database will contain all workstation files including color graphic, alarm reports, text reports, historical data logs, schedules, and polling records.

3. User Interface

The BAS workstation software shall allow the creation of a custom, browser-style interface linked to the user that has logged into the workstation software. This interface shall support the creation of "hot-spots" that the user may link to view/edit any object in the system or run any object editor or configuration tool contained in the software. Furthermore, this interface must be able to be configured to become a user's "PC Desktop" – with all the links that a user needs to run other applications. This, along with the Windows 10 user security capabilities, will enable a system administrator to setup workstation accounts that not only limit the capabilities of the user within the BAS software but may also limit what a user can do on the PC and/or LAN/WAN. This might be used to ensure, for example, that the user of an alarm monitoring workstation is unable to shutdown the active alarm viewer and/or unable to load software onto the PC.

4. User Security

The software shall be designed so that each user of the software can have a unique username and password. This username/password combination shall be linked to a set of capabilities within the software, set by and editable only by, a system administrator. The sets of capabilities shall range from View only, Acknowledge alarms, Enable/disable and change values, Program, and Administer. The system shall allow the above capabilities to be applied independently to each and every class of object in the system. The system must allow a minimum of 256 users to be configured per workstation. There shall be an inactivity timer adjustable in software that automatically logs off the current operator after the timer has expired.

5. Configuration Interface

The workstation software shall use a familiar Windows Explorer[™]-style interface for an operator or programmer to view and/or edit any object (controller, point, alarm, report, schedule, etc.) in the entire system. In addition, this interface shall present a "network map" of all controllers and their associated points, programs, graphics, alarms, and reports in an easy to understand structure. All object names shall be alphanumeric and use Windows long filename conventions. Object names shall not be required to be unique throughout the system. This allows consistency in point naming. For example, each VAV controller can have an input called Space Temperature and a setpoint called CFM Setpoint. The VAV controller name shall be unique such as VAV for Processing Area 021. Systems requiring unique object names throughout the system will not be acceptable.

The configuration interface shall also include support for template objects. These template objects shall be used as building blocks for the creation of the BAS database. The types of template objects supported shall include all data point types (input, output, string variables, setpoints, etc.), alarm algorithms, alarm notification objects, reports, graphics displays, schedules, and programs. Groups of template object types shall be able to be set up as template subsystems and systems. The template system shall prompt for data entry if necessary. The template system shall maintain a link to all "child" objects created by each template. If a user wishes to make a change to a template object, the software shall ask the user if he/she wants to update all of child objects with the change. This template system shall facilitate configuration and programming consistency and afford the user a fast and simple method to make global changes to the BAS.

6. Color Graphic Displays

The system shall allow for the creation of user defined, color graphic displays for the viewing of mechanical and electrical systems, or building schematics. These graphics shall contain point information from the database including any attributes associated with the point (engineering units, etc.). In addition operators shall be able to command equipment or change setpoints from a graphic through the use of the mouse. Requirements of the color graphic subsystem include:

- a. SVGA, bit-mapped displays. The user shall have the ability to import AutoCAD generated picture files as background displays.
- b. A built-in library of animated objects such as dampers, fans, pumps, buttons, knobs, gauges, ad graphs which can be "dropped" on a graphic through the use of a software configuration "wizard". These objects shall enable operators to interact with the graphic displays in a manner that mimics their mechanical equivalents found on field installed control panels. Using the mouse, operators shall be able to adjust setpoints, start or stop equipment, modify PID loop parameters, or change schedules.
- c. Status changes or alarm conditions must be able to be highlighted by objects changing screen location, size, color, text, blinking or changing from one display to another.
- d. Graphic panel objects shall be able to be configured with multiple "tabbed" pages allowing an operator to quickly view individual graphics of equipment, which make up a subsystem or system.
- e. Ability to link graphic displays through user defined objects, alarm testing, or the result of a mathematical expression. Operators must be able to change from one graphic to another by selecting an object with a mouse no menus will be required.
- f. Automatic monitoring The software shall allow for the automatic collection of data and reports from any controller through either a hardwire or modem communication link. The frequency of data collection shall be completely user-configurable.
- g. Alarm Management

The software shall be capable of accepting alarms directly from controllers, or generating alarms based on evaluation of data in controllers and comparing to limits or conditional equations configured through the software. Any alarm (regardless of its origination) will be integrated into the overall alarm management system and will appear in all standard alarm reports, be available for operator acknowledgment, and have the option for displaying graphics, or reports.

Alarm management features shall include:

- 1) A minimum of 255 alarm notification levels. Each notification level will establish a unique set of parameters for controlling alarm display, acknowledgment, keyboard annunciation, alarm printout and record keeping.
- 2) Automatic logging in the database of the alarm message, point name, point value, connected controller, timestamp, username and time of acknowledgement, username and time of alarm silence (soft acknowledgement)
- 3) Automatic printing of the alarm information or alarm report to an alarm printer or report printer.
- 4) Playing an audible beep or audio (wav) file on alarm initiation or return to normal.
- 5) Sending an email or alphanumeric page to anyone listed in a workstation's email account address list on either the initial occurrence of an alarm and/or if the alarm is repeated because an operator has not acknowledged the alarm within a user-configurable timeframe. The ability to utilize email and alphanumeric paging of alarms shall be a standard feature of the software integrated with the operating system's mail application interface (MAPI). No special software interfaces shall be required.
- 6) Individual alarms shall be able to be re-routed to a workstation or workstations at user-specified times and dates. For example, a critical high temp alarm can be configured to be routed to a Facilities Dept. workstation during normal working hours (7am-6pm, Mon-Fri) and to a Central Alarming workstation at all other times.
- 7) An active alarm viewer shall be included which can be customized for each user or user type to hide or display any alarm attributes.
- 8) The font type and color, and background color for each alarm notification level as seen in the active alarm viewer shall be customizable to allow easy identification of certain alarm types or alarm states.
- 9) The active alarm viewer can be configured such that an operator must type in text in an alarm entry and/or pick from a drop-down list of user actions for certain alarms. This ensures accountability (audit trail) for the response to critical alarms.

h. Custom Report Generation

The software will contain a built-in custom report generator, featuring word processing tools for the creation of custom reports. These custom reports shall be able to be set up to automatically run or be generated on demand. Each workstation shall be able to associate reports with any word processing or spreadsheet program loaded on the machine. When the report is displayed, it will automatically spawn the associated report editor such as MS WordTM.

- 1) Reports can be of any length and contain any point attributes from any controller on the network.
- 2) The report generator will have access to the user programming language in order to perform mathematical calculations inside the body of the report, control the display output of the report, or prompt the user for additional information needed by the report.
- 3) It shall be possible to run other executable programs whenever a report is initiated.

- 4) Report Generator activity can be tied to the alarm management system, so that any of the configured reports can be displayed in response to an alarm condition.
- 5) Standard reports shall include:
 - a) Points in each controller.
 - b) Points in alarm
 - c) Disabled points
 - d) Overridden points
 - e) Operator activity report
 - f) Alarm history log.
 - g) Program listing by controller with status.
 - h) Network status of each controller

i. Spreadsheet-style reports

The software shall allow the simple configuration of row/column (spreadsheet-style) reports on any class of object in the system. These reports shall be user-configurable and shall be able to extract live (controller) data and/or data from the database. The user shall be able to set up each report to display in any text font, color and background color. In addition the report shall be able to be configured to filter data, sort data and highlight data which meets user-defined criteria.

j. HTML Reporting

The above spreadsheet-style reports shall be able to be run to an HTML template file. This feature will create an HTML "results" file in the directory of the HTML template. This directory can be shared with other computer users, which will allow those users with access to the directory to "point" their web browser at the file and view the report.

- k. Scheduling- It shall be possible to configure and download from the workstation schedules for any of the controllers on the network.
 - 1) Time of day schedules shall be in a calendar style and shall be programmable for a minimum of one year in advance. Each standard day of the week and user-defined day types shall be able to be associated with a color so that when the schedule is viewed it is very easy, at-a-glance, to determine the schedule for a particular day even from the yearly view. To change the schedule for a particular day, a user shall simply click on the day and then click on the day type.
 - 2) Each schedule will appear on the screen viewable as the entire year, monthly, week and day. A simple mouse click shall allow switching between views. It shall also be possible to scroll from one month to the next and view or alter any of the schedule times.
 - 3) Schedules will be assigned to specific controllers and stored in their local RAM memory. Any changes made at the workstation will be automatically updated to the corresponding schedule in the controller.

1. Programmer's Environment

The programmer's environment will include access to a superset of the same programming language supported in the controllers. Here the programmer will be able to configure application software off-line (if desired) for custom program development, write global control programs, system reports, wide area networking data collection routines, and custom alarm management software. On the same screen as the program editor, the programming environment shall include dockable debug and watch bars for program debugging and viewing updated values and point attributes during programming. In addition a wizard tool shall be available for loading programs from a library file in the program editor.

m. Saving/Reloading

The workstation software shall have an application to save and restore field controller memory files. This application shall not be limited to saving and reloading an entire controller – it must also be able to save/reload individual objects in the controller. This allows off-line debugging of control programs, for example, and then reloading of just the modified information.

n. Data Logging

The workstation software shall have the capability to easily configure groups of data points with trend logs and display the trend log data. A group of data points shall be created by drag-and-drop method of the points into a folder. The trend log data shall be displayed through a simply menu selection. This data shall be able to be saved to file and/or printed.

o. Audit Trail

The workstation software shall automatically log and timestamp every operation that a user performs at a workstation, from logging on and off a workstation to changing a point value, modifying a program, enabling/disabling an object, viewing a graphic display, running a report, modifying a schedule, etc.

p. Fault Tolerant File Server Operation

The system shall provide the option to provide fault tolerant operation in the event of the loss of the CPU, disk drives, or other hardware required to maintain the operational integrity of the system. Operational integrity includes all user interfaces, monitoring of alarm points and access points, and executing access control functions.

The switchover mechanism provided shall be automatic. Should the failure be caused by hardware, then the system shall immediately switch to the Backup computer. Should the system failure be caused by software (instruction or data), the system shall not pass the faulted code to the Backup computer, otherwise the Backup shall fail in the same manner of the Primary computer.

Switchover to the Backup computer shall be initiated and effective (complete) in a manner and time frame that precludes the loss of event data, and shall be transparent to the system users, except for an advisory alarm message indicating that the switchover has occurred.

When the system fails-over from the Primary to the Backup computer, no alarm or other event shall be lost, and the Backup computer shall take control of all system functions.

A single component failure in the system shall not cause the entire system to fail. All system users shall be informed of any detectable component failure via an alarm event. System users shall not be logged off as a result of a system failure or switchover.

The Primary computer shall provide continual indication that the Backup computer is unavailable until such time that the fault has been purged.

1.17 Portable Operator's Terminal

A. Provide one 15" full screen, laptop portable operator terminal shall communicate directly to all controllers. The laptop software shall enable users to monitor both instantaneous and historical

point data, modify control parameters, and enable/disable any point or program in any controller on the network.

- 1. The laptop computer will be a Intel Core 2 Duo-based portable computer with a minimum of 4GB of RAM memory, and a 160GB hard disk drive, running Windows ver 7 or Windows XP.
- 2. The laptop service tool will connect to any Ethernet controller or standalone controller via a dedicated service port. From this single connection, the user shall be able to communicate with any other controller on the LAN.
- 3. The laptop service tool will limit operator access by passwords. The service tool must support, at a minimum, the following password-protected user types: Administrator, Modify Parameters, View Only.
- 4. The laptop software shall include built-in menus for viewing points by controller, enabling, disabling and viewing programs, configuring controllers, and communicating to other controllers on the network.

1.18 DDC Sensors and Point Hardware

- A. Temperature Sensors
 - 1. All temperature devices shall use precision thermistors accurate to +/- 1 degree F over a range of -30 to 230 degrees F. Space temperature sensors shall be accurate to +/- .5 degrees F over a range of 40 to 100 degrees F.
 - 2. Space sensors shall be have off white enclosure and shall be mounted on a standard electrical box. Space sensors shall use surface mounted finished cast electrical box for surface mounting with metal "wire-mold" to conceal wiring for all solid masonry partitions. For space sensors located on gypsum board partitions, wiring shall be concealed inside the walls with recessed flush mounted electrical boxes. In general, control wiring shall run from the ceiling plenum to the box which shall be wall mounted next to the door or as shown on plan. (This shall be the standard for this project)
 - 3. The space temperature/CO sensor housing shall utilize buttons for adjusting the space temperature set-point, as well as a push button for selecting after hours operation, fan speed and all and other operator selectable parameters. Operators shall be able to adjust set points directly from the sensor. All space sensors, (located in public location, office, class rooms), shall incorporate either an LED or LCD display for viewing the space temperature, set-point and other operator selectable parameters. Space sensors located in store rooms, MER, and unoccupied space are not required have LED or LCD display.
 - 4. Duct temperature sensors shall incorporate a thermistor bead embedded at the tip of a stainless steel tube. Probe style duct sensors are useable in air handling applications where the coil or duct area is less than 14 square feet.
 - 5. Averaging sensors shall be employed in ducts which are larger than 14 square feet. The averaging sensor tube must contain at least one thermistor for every 3 feet, with a minimum tube length of 12 feet.
 - 6. Immersion sensors shall be employed for measurement of temperature in all chilled and hot water applications as well as refrigerant applications. Thermal wells shall be brass or

stainless steel for non-corrosive fluids below 250 degrees F and 300 series stainless steel for all other applications.

- 7. A pneumatic signal shall not be allowed for sensing temperature.
- B. Humidity Sensors
 - 1. Humidity devices shall be accurate to +/- 5% at full scale for space and +/- 3% for duct and outside air applications. Suppliers shall be able to demonstrate that accuracy is NIST traceable.
 - 2. Provide a hand held field calibration tool that both reads the output of the sensor and contains a reference sensor for ongoing calibration.
- C. Pressure Sensors
 - 1. Air pressure measurements in the range of 0 to 10" water column will be accurate to +/-1% using a solid-state sensing element. Acceptable manufacturers include Modus Instruments and Mamac.
 - 2. Differential pressure measurements of liquids or gases shall be accurate to =/-0.5% of range. The housing shall be Nema 4 rated.
- D. Current and KW Sensors
 - 1. Current status switches shall be used to monitor fans, pumps, motors and electrical loads. Current switches shall be available in solid and split core models, and offer either a digital or an analog signal to the automation system. Acceptable manufacturer is Veris or approved equal.
 - 2. Measurement of three phase power shall be accomplished with a kW/kWH transducer. This device shall utilize direct current transformer inputs to calculate the instantaneous value (kW) and a pulsed output proportional to the energy usage (kWH). Provide Veris Model 6000 Power Transducer or approved equal.
- E. Flow Sensors
 - 1. Provide an insertion vortex flowmeter for measurement of liquid, gas or steam flows in pipe sizes above 3 inches.
 - 2. Install the flow meter on an isolation valve to permit removal without process shutdown.
 - 3. Sensors shall be manufactured by EMCO or approved equal.
- F. Electric/Pneumatic Transducers
 - 1. Electric to pneumatic transducers shall operate from either a PWM or analog signal. E/P transducers shall be rated for 0 20 psi operation and accurate to 2% of full scale. E/P transducers shall have a maximum air consumption of 100 SCIM.
 - 2. E/P transducers may be installed at the end device (damper or valve), or mounted separately in a field interface panel, or as part of the controller. All transducers will be calibrated. Panel mounted transducers shall be Sensycon or approved equal.
- G. Electric/Pneumatic Solenoid Valves

Electric solenoid operated pneumatic valves (EP's) shall have a three port operation: common, normally open and normally closed. They shall be rated for 50 psig when used for 25 psig or less applications, or rated for 150 psig when used for 100 psig or less applications. The coils

shall be equipped with transient suppression devices to limit transients to 150 percent of the rated coil voltage.

1.19 Control Valves

- A. Provide automatic control valves suitable for the specified controlled media (water). Provide valves which mate and match the material of the connected piping. Equip control valves with the actuators of required input power type and control signal type to accurately position the flow control element and provide sufficient force to achieve required leakage specification.
- B. Control valves shall meet the heating and cooling loads specified, and close off against the differential pressure conditions within the application. Valves should be sized to operate accurately and with stability from 10 to 100% of the maximum design flow.
- C. Trim material shall be stainless steel for steam and high differential pressure applications.
- D. Electric actuation should be provided on all terminal unit reheat applications.

1.20 Dampers

- A. Automatic dampers, furnished by the Building Automation Contractor shall be single or multiple blade as required. Dampers are to be installed by the HVAC Contractor under the supervision of the BAS Contractor. All blank-off plates and conversions necessary to install smaller than duct size dampers are the responsibility of the Sheet Metal Contractor.
- B. Damper frames are to be constructed of 13 gauge galvanized sheet steel mechanically joined with linkage concealed in the side channel to eliminate noise as friction. Compressible spring stainless steel side seals, and acetal or bronze bearings shall also be provided.
- C. Damper blade width shall not exceed eight inches. Seals and 3/8 inch square steel zinc plated pins are required. Blade rotation is to be parallel or opposed as shown on the schedules.
- D. For high performance applications, control dampers will meet or exceed the UL Class I leakage rating.
- E. Control and smoke dampers shall be Ruskin, or approved equal.
- F. Provide opposed blade dampers for modulating applications and parallel blade for two position control.

1.21 Damper Actuators

A. Electronic Actuators – the actuator shall be direct coupled over the shaft, enabling it to be mounted directly to the damper shaft without the need for connecting linkage. The actuator shall have electronic overload circuitry to prevent damage. For power-failure/safety applications, an internal mechanical, spring return mechanism shall be built into the actuator housing. Non-spring return actuators shall have an external manual gear release to allow positioning of the damper when the actuator is not powered.

1.22 Smoke Detectors

- A. Air duct smoke detectors shall be by Air Products & Controls or approved equal. The detectors shall operate at air velocities from 300 feet per minute to 4000 feet per minute.
- B. The smoke detector shall utilize a photoelectric detector head.
- C. The housing shall permit mechanical installation without removal of the detector cover.
- D. The detectors shall be listed by Underwrites Laboratories and meet the requirements of UL 268A.

1.23 Airflow Measuring Stations

- A. Provide a thermal anemometer using instrument grade self heated thermistor sensors with thermistor temperature sensors.
- B. The flow station shall operate over a range of 0 to 5,000 feet/min with an accuracy of +/- 2% over 500 feet/min and +/- 10 ft/min for reading less than 500 feet/min.
- C. The output signal shall be linear with field selectable ranges including 0-5 VDC, 0-10VDC and 4-20 mA.
- D. Furnish Ebtron Series 3000 airflow stations or approved equal.

PART 2 - EXECUTION

2.1 Contractor Responsibilities

A. General

Installation of the building automation system shall be performed by the Contractor or a subcontractor. However, all installation shall be under the personal supervision of the Contractor. The Contractor shall certify all work as proper and complete. Under no circumstances shall the design, scheduling, coordination, programming, training, and warranty requirements for the project be delegated to a subcontractor.

- B. Access to Site
 - 1. Unless notified otherwise, entrance to building is restricted. No one will be permitted to enter the building unless their names have been cleared with the Owner or the Owner's Representative.

C. Code Compliance

- 1. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer's recommendations.
- D. Cleanup
 - 1. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract.

2.2 Wiring, Conduit, and Cable

A. All wire will be copper and meet the minimum wire size and insulation class listed below:

Wire Class	Wire Size	Isolation Class
Power	12 Gauge	600 Volt
Class One	14 Gauge Std.	600 Volt
Class Two	18 Gauge Std.	300 Volt
Class Three	18 Gauge Std.	300 volt
Communications	Per Mfr.	Per Mfr.

- B. Power and Class One wiring may be run in the same conduit. Class Two and Three wiring and communications wiring may be run in the same conduit.
- C. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.
- D. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit sealoff fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.
- E. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.
- F. Junction boxes shall be provided at all cable splices, equipment termination, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.
- G. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.
- H. Coaxial cable shall conform to RG62 or RG59 rating. Provide plenum rated coaxial cable when running in return air plenums.
- I. Fiber optic cable shall include the following sizes; 50/125, 62.5/125 or 100/140.
- J. Only glass fiber is acceptable, no plastic.
- K. Fiber optic cable shall only be installed and terminated by an experienced contractor. The BAS contractor shall submit to the Engineer the name of the intended contractor of the fiber optic cable with his submittal documents.
- L. Hardware Installation

© 2020 OLA Consulting Engineers, P.C.

2.3 Installation Practices for Wiring

- A. All controllers are to be mounted vertically and per the manufacturer's installation documentation.
- B. The 120VAC power wiring to each Ethernet or Remote Site controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.
- C. A true earth ground must be available in the building. Do not use a corroded or galvanized pipe, or structural steel.
- D. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
- E. Conduit in finished areas, will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception; metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.
- F. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.
- G. Wires are to be kept a minimum of three (3) inches from hot water, steam, or condensate piping.
- H. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.
- I. Wire will not be allowed to run across telephone equipment areas.

2.4 Installation Practices for Field Devices

- A. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.
- B. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.
- C. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150% of the rated coil voltage.
- D. Water line mounted sensors shall be removable without shutting down the system in which they are installed.
- E. For duct static pressure sensors, the high pressure port shall be connected to a metal static pressure probe inserted into the duct pointing upstream. The low pressure port shall be left open to the plenum area at the point that the high pressure port is tapped into the ductwork.
- F. For building static pressure sensors, the high pressure port shall be inserted into the space via a metal tube. Pipe the low pressure port to the outside of the building.

2.5 Enclosures

- A. For all I/O requiring field interface devices, these devices where practical will be mounted in a field interface panel (FIP). The Contractor shall provide an enclosure which protects the device(s) from dust, moisture, conceals integral wiring and moving parts.
- B. FIPs shall contain power supplies for sensors, interface relays and contactors, safety circuits, and I/P transducers.
- C. The FIP enclosure shall be of steel construction with baked enamel finish, NEMA 1 rated with a hinged door and keyed lock. The enclosure will be sized for twenty percent spare mounting space. All locks will be keyed identically.
- D. All wiring to and from the FIP will be to screw type terminals. Analog or communications wiring may use the FIP as a raceway without terminating. The use of wire nuts within the FIP is prohibited.
- E. All outside mounted enclosures shall meet the NEMA-4 rating.
- F. The wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.

2.6 Identification

- A. Identify all control wires with labeling tape or sleeves using either words, letters, or numbers that can be exactly cross-referenced with as-built drawings.
- B. All field enclosures, other than controllers, shall be identified with a bakelite nameplate. The lettering shall be in white against a black or blue background.
- C. Junction box covers will be marked to indicate that they are a part of the BAS system.
- D. All I/O field devices (except space sensors) that are not mounted within FIP's shall be identified with name plates.
- E. All I/O field devices inside FIP's shall be labeled.

2.7 Location

- A. The location of sensors is per mechanical and architectural drawings.
- B. Space humidity, CO or temperature sensors will be mounted away from machinery generating heat, direct light and diffuser air streams.
- C. Outdoor air sensors will be mounted on the north building face directly in the outside air. Install these sensors such that the effects of heat radiated from the building or sunlight is minimized.
- D. Field enclosures shall be located immediately adjacent to the controller panel(s) to which it is being interfaced.

2.8 Software Installation

A. General.

The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.

B. Database Configuration.

The Contractor will provide all labor to configure those portions of the database that are required by the points list and sequence of operation.

C. Color Graphic Slides.

Unless otherwise directed by the owner, the Contractor will provide color graphic displays as depicted in the mechanical drawings for each system and floor plan. For each system or floor plan, the display shall contain the associated points identified in the point list and allow for setpoint changes as required by the owner. Graphically represent each and every piece of equipment in the class room building, new and existing, all input and put status point, and functional points. This shall include the new fans, chillers, and convectors, existing boilers, water, fuel, and ejection pumps, fan coil units, convectors, air handlers and fans.

D. Reports.

The Contractor will configure reports for all of the equipment listed in section 1.3D. report shall be configured for all input and output points monitored and controlled. As well as the following

Space Temperature / CO / Humidity Report

Domestic water use.

E. Documentation

As built software documentation will include the following:

- 1. Descriptive point lists
- 2. Application program listing
- 3. Application programs with comments.
- 4. Printouts of all reports.
- 5. Alarm list.
- 6. Printouts of all graphics
- F. Commissioning and System Startup
- G. Point to Point Checkout.

Each I/O device (both field mounted as well as those located in FIPs) shall be inspected and verified for proper installation and functionality. A checkout sheet itemizing each device shall be filled out, dated and approved by the Project Manager for submission to the owner or owner's representative.

H. Controller and Workstation Checkout.

A field checkout of all controllers and front end equipment (computers, printers, modems, etc.) shall be conducted to verify proper operation of both hardware and software. A checkout sheet

itemizing each device and a description of the associated tests shall be prepared and submitted to the owner or owner's representative by the completion of the project.

I. System Acceptance Testing

All application software will be verified and compared against the sequences of operation. Control loops will be exercised by inducing a setpoint shift of at least 10% and observing whether the system successfully returns the process variable to setpoint. Record all test results and attach to the Test Results Sheet.

- J. Test each alarm in the system and validate that the system generates the appropriate alarm message, that the message appears at all prescribed destinations (workstations or printers), and that any other related actions occur as defined (i.e. graphic panels are invoked, reports are generated, etc.). Submit a Test Results Sheet to the owner.
- K. Perform an operational test of each unique graphic display and report to verify that the item exists, that the appearance and content are correct, and that any special features work as intended. Submit a Test Results Sheet to the owner.
- L. Perform an operational test of each third party interface that has been included as part of the automation system. Verify that all points are properly polled, that alarms have been configured, and that any associated graphics and reports have been completed. If the interface involves a file transfer over Ethernet, test any logic that controls the transmission of the file, and verify the content of the specified information.

END OF SECTION 23 09 01.11

SECTION 230923.11 CONTROL VALVES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes control valves and actuators for DDC systems.

1.3 DEFINITIONS

- A. Cv: Design valve coefficient.
- B. DDC: Direct-digital control.
- C. NBR: Nitrile butadiene rubber.
- D. PTFE: Polytetrafluoroethylene
- E. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation, operation, and maintenance instructions, including factors affecting performance.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.

- 2. Include details of product assemblies. Indicate dimensions, weights, loads, and required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include diagrams for power, signal, and control wiring.
- 4. Include diagrams for pneumatic signal and main air tubing.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for control valves and actuators, including the following:
 - a. Flow at project design and minimum flow conditions.
 - b. Pressure differential drop across valve at project design flow condition.
 - c. Maximum system pressure differential drop (pump close-off pressure) across valve at project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.
 - f. Leakage flow at maximum system pressure differential.
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Control valve installation location shown in relationship to room, duct, pipe, and equipment.
 - 2. Size and location of wall access panels for control valves installed behind walls.
 - 3. Size and location of ceiling access panels for control valves installed above inaccessible ceilings.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For control valves to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.

- © 2020 OLA Consulting Engineers, P.C.
 - C. Delegated Design: Engage a qualified professional, to size products where indicated as delegated design.
 - D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.
 - E. Backup Power Source: Systems and equipment served by a backup power source shall have associated control valve actuators served from a backup power source.
 - F. Environmental Conditions:
 - 1. Provide electric control valve actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control valve actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.
 - a. Hazardous Locations: Explosion-proof rating for condition.
 - G. Body & Trim. Body and trim style and materials shall be in accordance with the manufacturer's recommendations for design conditions and service shown in compliance with the following at a minimum:
 - 1. Valve pattern, three-way or straight through, shall be as indicated on Drawings.
 - 2. Modulating two-way pattern control valves shall have equal percentage flow-throttling characteristics unless otherwise indicated.
 - 3. Modulating three-way pattern water valves shall have linear flow-throttling characteristics. The total flow through the valve shall remain constant regardless of the valve's position
 - 4. Valve bodies shall meet or exceed pressure and temperature class rating based upon design operating temperature and 150% design operating pressure. Unless otherwise specified or scheduled, minimum body rating for any valve is 125 psi and a maximum fluid temperature of 350°F.
 - 5. Valves shall have stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation.
 - 6. Globe valves shall have replaceable seats.
 - H. Determine control valve sizes and flow coefficients by ISA 75.01.01.
 - 1. Water Valves. Unless otherwise specified or scheduled, water valves shall follow the following criteria:
 - a. Two-position service: Line size.
 - b. Two-way modulating service: Pressure drop shall be equal to twice the pressure drop through the heat exchanger (coil, load, etc.), 50% of the pressure difference between the supply and return mains, or 5 psi (Maximum).
 - c. Three-way modulating service: Pressure drop shall be equal to twice the pressure drop through the heat exchanger (coil, load, etc.), (5 psi) maximum.
 - d. Valves 1/2" through 2" shall be bronze or cast brass body ANSI Class 250, springloaded, PTFE packing quick opening for two-position service.
 - e. Valves larger than 2 ¹/₂" and shall be cast iron ANSI Class 125 with guided plug and PTFE packing.
 - f. Valves 1/2" through 2" shall be ANSI/ASME B1.20.1 (NPT) threaded connections.
 - g. Valves 2 ¹/₂"to 3" shall use flanged connections.

- 2. Steam Valves. Body and trim style and materials shall be in accordance with the manufacturer's recommendations for design conditions and service shown in compliance with the following at a minimum:
 - a. Linear percentage ports for modulating service.
 - b. Two-position service: Pressure drop 10% to 20% of inlet pressure.
 - c. Modulating service: 15 psig or less; pressure drop 80% of inlet pressure.
 - d. Modulating service: 16-50 psig or less; pressure drop 50% of inlet pressure.
 - e. Modulating service: Greater than 50 psig; pressure drop as scheduled
- I. Control valve characteristics and rangeability of 50;1 and shall comply with ISA 75.11.01.
- J. Control valve shutoff classifications shall be FCI 70-2, Class IV. Close-Off/Differential Pressure Rating. All valves shall be guaranteed to have not more than 1% leakage of design flow rate at the pump shut-off pressure. All valve actuators and trim shall be furnished to provide the following minimum close-off pressure ratings unless otherwise specified or scheduled:
 - 1. Two-way water valves: 150% of total system (pump) head.
 - 2. Three-way water valves: 300% of pressure differential between ports A and B at design flow or 100% of total system (pump) head (whichever is greater).
 - 3. Steam valves: 150% of operating (inlet) pressure.
- K. Fail positions unless otherwise indicated:
 - 1. Chilled Water: close
 - 2. Condenser Water: close
 - 3. Heating Hot Water: Open.
 - 4. Steam: Open.
- L. General Characteristics:
 - 1. In water systems, use ball- or globe-style control valves for two-position control for valves NPS 2 and smaller and butterfly style for valves larger than NPS 2. Butterfly valves shall be for open close service only.
 - 2. In steam systems, use ball- or globe-style control valves regardless of size.
 - 3. Pneumatic, two-position control valves shall provide a smooth opening and closing characteristic slow enough to avoid water hammer. Valves with pneumatic actuators shall have an adjustable opening time (valve full closed to full open) and an adjustable closing time (valve full open to full closed) ranging from zero to 10 seconds. Opening and closing times shall be independently adjustable. (Not Used This Project)
 - 4. Control valve, pneumatic-control signal shall not exceed 200 feet. For longer distances, provide an electric/electronic control signal to the valve and an electric solenoid valve or electro-pneumatic transducer at the valve to convert the control signal to pneumatic. (Not Used This Project).
 - 5. Valves for chilled water shall use all internal trim,(including seats, rings, modulating plugs and springs), of 316 stainless steel, regardless of body style.
 - 6. Valves for hot water service between 210F and 250F shall have all internal trim (including seats, rings, modulating plugs and springs) of Type 316 Stainless Steel
 - 7. Valves for hot water service below 210F shall have all internal trim (including seats, rings, modulating plugs and springs) of Brass, Bronze or Type 316 Stainless Steel

2.2 BALL-STYLE CONTROL VALVES

A. General:

- 1. All control ball valves shall feature characterized flow guides when used for modulating applications.
- B. Ball Valves with Single Port and Characterized Disk:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Belimo Aircontrols (USA), Inc</u>
 - 2. Pressure Rating for NPS 1 and Smaller: Nominal 600 WOG.
 - 3. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 WOG.
 - 4. Close-off Pressure: 200 psig.
 - 5. Process Temperature Range: Zero to 212 deg F.
 - 6. Body and Tail Piece: Cast bronze ASTM B 61, ASTM B 62, ASTM B 584, or forged brass with nickel plating.
 - 7. End Connections: Threaded (NPT) ends.
 - 8. Ball: Chrome-plated brass or bronze or 300 series stainless steel.
 - 9. Stem and Stem Extension:
 - a. Material to match ball.
 - b. Blowout-proof design.
 - c. Sleeve or other approved means to allow valve to be opened and closed without damaging the insulation or the vapor barrier seal.
 - 10. Ball Seats: Reinforced PTFE.
 - 11. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.
 - 12. Flow Characteristic: Equal percentage.
- C. Ball Valves with Two Ports and Characterized Disk:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Belimo Aircontrols (USA), Inc</u>.
 - 2. Pressure Rating for NPS 1 and Smaller: Nominal 600 WOG.
 - 3. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 WOG.
 - 4. Close-off Pressure: 200 psig.
 - 5. Process Temperature Range: Zero to 212 deg F.
 - 6. Body and Tail Piece: Cast bronze ASTM B 61, ASTM B 62, ASTM B 584, or forged brass with nickel plating.
 - 7. End Connections: Threaded (NPT) ends.
 - 8. Ball: Chrome-plated brass or bronze or 300 series stainless steel].
 - 9. Stem and Stem Extension:

- a. Material to match ball.
- b. Blowout-proof design.
- c. Sleeve or other approved means to allow valve to be opened and closed without damaging the insulation or the vapor barrier seal.
- 10. Ball Seats: Reinforced PTFE.
- 11. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.
- 12. Flow Characteristics for A-Port: Equal percentage.
- 13. Flow Characteristics for B-Port: Modified for constant common port flow.
- D. Ball Valves with Single Port and Segmented Ball:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Valve Solutions, Inc</u>.
 - 2. ASME B16.10 face-to-face dimensions.
 - 3. Valves NPS 2 and Smaller: Threaded (NPT) ends.
 - 4. Valves NPS 2-1/2 through NPS 6: Flanged ends suitable for mating to ASME B16.5 flanges.
 - 5. Body: Carbon or stainless steel.
 - 6. Ball and Shaft: Stainless steel.
 - 7. Shaft and Segmented Ball: Pinned and welded.
 - 8. Ball Seat: Graphite.
 - 9. Packing: PTFE V-rings and graphite packing follower.
 - 10. Replaceable seat, ball, and shaft packing.
 - 11. Label each valve with following:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Flow directional arrow.
- E. Ball Valves with Segmented Ball, Three-Way Pattern:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Valve Solutions, Inc</u>.
 - 2. Arrangement: Two single-port valves mated to a fabricated tee with interconnecting mechanical linkage.
 - 3. Performance:
 - a. Process Temperature Rating: Minus 20 to plus 450 deg F.
 - b. ASME B16.34, Class 300.
 - c. Leakage: FCI 70-2, Class IV.
 - d. Rangeability: 300 to 1.

- e. Rotation: Zero to 90 degrees.
- f. Equal percentage flow characteristic.
- 4. Face-to-Face Dimensions: ASME B16.10.
- 5. Valves NPS 3through NPS 6: Flanged ends suitable for mating to ASME B16.5 flanges.
- 6. Body: Carbon or stainless steel.
- 7. Ball and Shaft: Stainless steel.
- 8. Shaft and Segmented Ball: Pinned and welded.
- 9. Ball Seat: Graphite.
- 10. Packing: PTFE V-rings and graphite packing follower.
- 11. Replaceable seat, ball, and shaft packing.
- 12. Label each valve with following:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Flow directional arrow.
- F. Ball Valves with Full Ball and Characterized V-Notch:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Flow-Tek, Inc</u>.
 - 2. Performance:
 - a. Process Temperature Rating: Minus 20 to plus 500 deg F.
 - b. ASME B16.34, Class 600 for NPS 2 and smaller; Class 150 or Class 300 for larger than NPS 2.
 - c. Leakage: FCI 70-2, Class VI, bi-directional.
 - d. Rangeability: Varies from 200 to 1 up to 800 to 1 based on notch pattern of ball.
 - e. Rotation: Zero to 90 degrees.
 - f. Equal percentage flow characteristic.
 - g. Full port.
 - 3. Face-to-Face Dimension: ASME B16.10 long pattern.
 - 4. Valves NPS 2 and Smaller: ASME B1.20.1 threaded (NPT) ends and three-piece body.
 - 5. Valves NPS 2-1/2 through NPS 12: Flanged ends suitable for mating to ASME B16.5 flanges and two-piece body.
 - 6. Hole in the stem slot of each ball equalizes pressure between the body cavity and the line media flow.
 - 7. Replaceable seat, ball, and shaft packing.
 - 8. Body: Carbon or stainless steel.
 - 9. Ball and Shaft: Stainless steel.
 - 10. Ball Seat: RPTFE.
 - 11. Stem Seals for Valves NPS 2 and Smaller: Live-loaded, self-adjusting, primary and secondary sealing using belleville washers.
 - a. Primary Seal: Combination of thrust washer and thrust washer protector.
 - b. Secondary Seal: Adjustable stem packing composed of RPTFE V-rings.

- 12. Stem Seals for Valves Larger than NPS 2: Independent packing gland, adjusted without removing mounting hardware or operator, and contoured to uniformly distribute load across packing.
 - a. Primary Seal: Combination of thrust washer and thrust washer protector.
 - b. Secondary Seal: Adjustable stem packing composed of RPTFE V-rings.
- 13. Label each valve with following:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Flow directional arrow.
- G. Pressure-Independent Ball Valves NPS 2 and Smaller:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Belimo Aircontrols (USA), Inc</u>.
 - b. <u>HCI; Hydronics Components Inc</u>.
 - 2. Integral Pressure Regulator: Located upstream of ball to regulate pressure, to maintain a constant pressure differential while operating within a pressure differential range of 5 to 50 psig.
 - 3. Body: Forged brass, nickel plated, and with threaded ends.
 - 4. Ball: Chrome-plated brass.
 - 5. Stem and Stem Extension: Chrome-plated brass, blowout-proof design.
 - 6. Stem sleeve or other approved means to allow valve to be opened and closed without damaging field-applied insulation and insulation vapor barrier seal.
 - 7. Ball Seats: Reinforced PTFE.
 - 8. Stem Seal: Reinforced PTFE packing ring stem seal with threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if equivalent cycle endurance can be achieved.
 - 9. Flow Characteristic: Equal percentage.

2.3 BUTTERFLY-STYLE CONTROL VALVES

- A. General:
 - 1. Unless otherwise indicated, butterfly valves shall have a minimum range ability of 10:1. All valves shall be guaranteed to have not more than 1% leakage of design flow rate at the pump shut-off pressure
 - 2. Flanges shall meet all ANSI 125 and ANSI 150 standards.
 - 3. Valve shall have a long stem design to accommodate 2 inches insulation.
 - 4.
- B. Two-Way Butterfly Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:

- a. <u>Keystone; Tyco Flow Control</u>.
- 2. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
- 3. Disc: 316 stainless steel.
- 4. Shaft: 316 or 17-4 PH stainless steel.
- 5. Seat: Reinforced EPDM or reinforced PTFE with retaining ring.
- 6. Shaft Bushings: Reinforced PTFE or stainless steel.
- 7. Replaceable seat, disc, and shaft bushings.
- 8. Corrosion-resistant nameplate indicating:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Body and trim materials.
 - d. Flow arrow.
- C. Three-Way Butterfly Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Keystone; Tyco Flow Control</u>.
 - 2. Arrangement: Two valves mated to a fabricated tee with interconnecting mechanical linkage.
 - 3. Performance:
 - a. Bi-directional bubble tight shutoff at 250 psig.
 - b. Comply with MSS SP-67 or MSS SP-68.
 - c. Rotation: Zero to 90 degrees.
 - d. Linear or modified equal percentage flow characteristic.
 - 4. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
 - 5. Disc: 316 stainless steel.
 - 6. Shaft: 316 or 17-4 PH stainless steel.
 - 7. Seat: Reinforced EPDM or reinforced PTFE seat with retaining ring.
 - 8. Shaft Bushings: Reinforced PTFE or stainless steel.
 - 9. Replaceable seat, disc, and shaft bushings.
 - 10. Corrosion-resistant nameplate indicating:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Body and trim materials.
 - d. Flow arrow.

2.4 GLOBE-STYLE CONTROL VALVES

A. General Globe-Style Valve Requirements:

- 1. Globe-style control valve body dimensions shall comply with ISA 75.08.01.
- 2. Construct the valves to be serviceable from the top.
- 3. For cage guided valves, trim shall be field interchangeable for different valve flow characteristics, such as equal percentage, linear, and quick opening.
- 4. Reduced trim for one nominal size smaller shall be available for industrial valves NPS 1 and larger.
- 5. Replaceable seats and plugs.
- 6. Furnish each control valve with a corrosion-resistant nameplate indicating the following:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body and trim size.
 - c. Arrow indicating direction of flow.
- B. Two-Way Globe Valves NPS 2 and Smaller:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Johnson Controls, Inc</u>.
 - 2. Globe Style: Single port.
 - 3. Body: Cast bronze or forged brass with ASME B16.5, Class 250 rating.
 - 4. End Connections: Threaded.
 - 5. Bonnet: Screwed.
 - 6. Packing: PTFE V-ring.
 - 7. Plug: Top guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Range: 35 to 248 deg F.
 - 10. Ambient Operating Temperature: 35 to 150 deg F.
 - 11. Leakage: FCI 70-2, Class IV.
 - 12. Rangeability: 25 to 1.
 - 13. Equal percentage flow characteristic.
- C. Three-Way Globe Valves NPS 2 and Smaller:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Johnson Controls, Inc</u>.
 - 2. Globe Style: Mix flow pattern.
 - 3. Body: Cast bronze or forged brass with ASME B16.5, Class 250 rating.
 - 4. End Connections: Threaded.
 - 5. Bonnet: Screwed.
 - 6. Packing: PTFE V-ring.
 - 7. Plug: Top guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Range: 35 to 248 deg F.
 - 10. Ambient Operating Temperature: 35 to 150 deg F.
 - 11. Leakage: FCI 70-2, Class IV.
 - 12. Rangeability: 25 to 1.

- 13. Linear flow characteristic.
- D. Two-Way Globe Valves NPS 2-1/2 to NPS 6:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Johnson Controls, Inc</u>.
 - 2. Globe Style: Single port.
 - 3. Body: Cast iron complying with ASME B61.1, Class 125.
 - 4. End Connections: Flanged, suitable for mating to ASME B16.5, Class 150 flanges.
 - 5. Bonnet: Bolted.
 - 6. Packing: PTFE cone-ring.
 - 7. Plug: Top or bottom guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Rating: 35 to 281 deg F.
 - 10. Leakage: 0.1 percent of maximum flow.
 - 11. Rangeability: Varies with valve size between 6 and 10 to 1.
 - 12. Modified linear flow characteristic.
- E. Three-Way Globe Valves NPS 2-1/2 to NPS 6:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Johnson Controls, Inc</u>.
 - 2. Globe Style: Mix flow pattern.
 - 3. Body: Cast iron complying with ASME B61.1, Class 125.
 - 4. End Connections: Flanged suitable for mating to ASME B16.5, Class 150 flanges.
 - 5. Bonnet: Bolted.
 - 6. Packing: PTFE cone-ring.
 - 7. Plug: Top or bottom guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Rating: 35 to 281 deg F.
 - 10. Leakage: 0.1 percent of maximum flow.
 - 11. Rangeability: Varies with valve size between 6 and 10 to 1.
 - 12. Modified linear flow characteristic.

2.5 SOLENOID VALVES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>ASCO Valve, Inc</u>.
- B. Description:
 - 1. Action: Either normally open or normally closed in the event of electrical power failure as required by the application.

- 2. Size to close against the system pressure.
- 3. Manual override capable.
- 4. Heavy-duty assembly.
- 5. Body: Brass or stainless steel.
- 6. Seats and Discs: NBR or PTFE.
- 7. Solenoid Enclosure: NEMA 250, Type 4.

2.6 SELF-CONTAINED TEMPERATURE REGULATING VALVE

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. Jordan Valve; Richards Industries Company.

B. Description:

- 1. Self-contained and self-operated temperature regulating valve. Direct acting or reverse acting as required by application.
- 2. Direct Acting: A rise in temperature at the sensing bulb vaporizes some of the liquid in the bulb, forcing the remaining liquid through a capillary to apply pressure at the diaphragm, in turn closing the valve. The valve shall fail open.
- 3. Reverse Acting: A rise in temperature at the sensing bulb vaporizes some of the liquid in the bulb, forcing the remaining liquid through a capillary to apply pressure at the diaphragm, in turn opening the valve. The valve shall fail close.
- 4. Body: Carbon steel.
- 5. Trim and Seats: 300 series stainless steel.
- 6. Yoke: Cast iron.
- 7. Actuator: 300 series stainless steel.
- 8. End Connections: Threaded.
- 9. Capillary, Bulb, and Armor: 300 series stainless steel.
- 10. Thermal Fill Material: Match to the temperature range.
- 11. Thermowell: Type 316 stainless-steel thermowell sized to fit the bulb and pipe.
- C. Operational Characteristics: Control flow from between 5 to 100 percent of rated capacity.
- D. Interchangeable trim for one size smaller.
- E. Valve Leakage: Comply with FCI 70-2, Class IV.
- F. Temperature Range: Match application.
 - 1. Drains from Hot Equipment to Sanitary Sewer System: 105 to 165 deg F.
- G. Valve Size: Size to pass the design flow required with not more than 95 percent of the stem lift while operating at design pressure.

2.7 ELECTRIC AND ELECTRONIC CONTROL VALVE ACTUATORS

- A. Actuators for Hydronic Control Valves: Capable of closing valve against system pump shutoff head.
- B. Actuators for Steam Control Valves: Shutoff against 1.5 times steam design pressure.
- C. Position indicator and graduated scale on each actuator.
- D. Type: Motor operated, with or without gears, electric and electronic.
- E. Voltage: 24-V ac.
- F. Deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
- G. Function properly within a range of 85 to 120 percent of nameplate voltage.
- H. Construction:
 - 1. For Actuators Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 - 2. For Actuators from 100 to 400 W: Gears ground steel, oil immersed, shaft hardened steel running in bronze, copper alloy or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel or cast-aluminum housing.
 - 3. For Actuators Larger Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
 - 4. All control valves shall have a visual position indicator.
 - 5. All non-spring return actuators shall have an external clutch/manual gear release to allow manual positioning of the valve when the actuator is not powered. Spring return actuators with more than 60-in-LB torque capacity shall have a manual crank for this purpose. In lieu of a manual positioning device, it will be acceptable for the contractor to provide a full line size bypass around the control valve. Three bypass shut off valves shall be provided to allow the control valve to be isolated while the open stop valve in the bypass allows flow around the control valve.
- I. Field Adjustment:
 - 1. Spring Return Actuators: Easily switchable from fail open to fail closed in the field without replacement.
 - 2. Gear Type Actuators: External manual adjustment mechanism to allow manual positioning when the actuator is not powered.
- J. Two-Position Actuators: Single direction, spring return or reversing type.
- K. Modulating Actuators:
 - 1. Operation: Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:

- a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position and other input drives actuator to close position. No signal of either input remains in last position.
- b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc 4- to 20- mA signals.
- c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to pulse duration (length) of signal from a dry contact closure, triac sink, or source controller.
- d. Programmable Multi-Function:
 - 1) Control Input, Position Feedback, and Running Time: Factory or field programmable.
 - 2) Diagnostic: Feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 - 3) Service Data: Include, at a minimum, number of hours powered and number of hours in motion.
- 3. All modulating actuators shall have an external, built-in switch to allow the reversing of direction of rotation
- L. Position Feedback:
 - 1. Equip where indicated two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
 - 2. Equip where indicated, equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- M. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
 - 4. Any mechanical equipment with direct introduction of outside air shall require fail-safe spring return valve actuators. Terminal equipment (VAV ATU, &c.) without direct introduction of outside air are permitted to have actuators that maintain their last commanded position when power is lost to the actuator. Equipment isolation and differential or temperature pressure bypass valves shall not be required to be provided with a spring return actuator provided that a failure of the valve to return to its "fail-safe" position will not incur damage to property or the system it serves.
- N. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- O. Valve Attachment:

- 1. Unless otherwise required for valve interface, provide an actuator designed to be directly coupled to valve shaft without the need for connecting linkages.
- 2. Attach actuator to valve drive shaft in a way that ensures maximum transfer of power and torque without slippage.
- 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- P. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.
- Q. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 - 4. Provide actuator enclosure with heater and control where required by application.
 - 5. Actuators used in wet conditions and/or in or near outdoor air streams shall have NEMA 2 housings.
- R. Stroke Time:
 - 1. Operate valve from fully closed to fully open within 60 75 90 150 Insert number seconds.
 - 2. Operate valve from fully open to fully closed within 60 seconds.
 - 3. Move valve to failed position within 15 seconds.
 - 4. Select operating speed to be compatible with equipment and system operation.
- S. Sound:
 - 1. Spring Return: 62 dBA.
 - 2. Non-Spring Return: 45 dBA.

2.8 POWER SUPPLIES AND LINE FILTERING

- A. Power Supplies & Control Transformers. Control transformers and power supplies shall be UL-Listed. Provide Class 2 current-limiting type or over-current protection in both primary and secondary circuits for Class 2 service not to exceed 100 VA in accordance with the applicable following requirements or as directed by the AHJ.
 - 1. NEC 2011 (NFPA 70) Chapter 7 Article 725 Class 1, Class 2 and Class 3 Remote-Control, Signaling and Power-Limited Circuits.
 - 2. NEC 2011 (NFPA 70) Chapter 9 Table 11(A) and Table 11(B).
 - 3. Canadian Electrical Code, Part 1 (CSA C22.1-12) Rule 16-200.
- B. DC Power Supplies. DC power supply output shall match output current and voltage requirements. Power supply shall be half-wave rectified type with the following minimum specifications:
 - 1. Output ripple: 5.0 mV maximum peak-to-peak.

- - 2. Regulation: 1.0% line and load combined.
 - 3. Response: 100 ms for 50% load changes.
 - 4. Built-in overvoltage and overcurrent protection and able to withstand a 150% current overload for a minimum of three (3) seconds without tripping or failure.
- C. Power Line Filtering. Provide transient voltage and surge suppression for all workstations and controllers either internally or as an external component.
- D. Valve Actuators shall be modulating, floating (tri-state) with feedback signal, two-position and spring return fail safe as called out in the control sequence of operation or indicated on the drawings. All modulating valves shall be positive positioning, and respond to a [0-10VDC] [2-10 VDC] [4-20 mA with a load resistor] with the exception that terminal unit zone valves may use an actuator that responds to a floating or tri-state with feedback signal.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for valves installed in piping to verify actual locations of piping connections before installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL VALVE APPLICATIONS

- A. Unless otherwise noted, controls valves shall be globe pattern.
- B. Do not use butterfly valves for steam service or modulating applications.
- 3.3 INSTALLATION, GENERAL
 - A. Furnish and install products required to satisfy most stringent requirements indicated.
 - B. Install products level, plumb, parallel, and perpendicular with building construction.
 - C. Properly support instruments, tubing, piping, wiring, and conduits to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
 - D. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

- E. Firestop penetrations made in fire-rated assemblies and seal penetrations made in acoustically rated assemblies.
- F. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- G. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- H. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they will be subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including. but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. Use Type 316 stainless-steel tubing and fittings when in contact with a corrosive environment.
 - 4. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 5. Where control devices are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.4 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring, as per electrical specifications
- D. Furnish and install raceways as per electrical specifications.
- E. Electrical subcontractor shall provide all required line voltage. The mechanical subcontractor shall provide all low voltage wiring and power supply transformers in coordination with the controls subcontractor and control actuator requirements.

3.5 CONTROL VALVES

- A. Install pipe reducers for valves smaller than line size. Position reducers as close to valve as possible but at distance to avoid interference and impact to performance. Install with manufacturer-recommended clearance.
- B. Install flanges or unions to allow drop-in and -out valve installation.
- C. Where indicated, install control valve with three-valve bypass manifold to allow for control valve isolation and removal without interrupting system flow by providing manual throttling valve in bypass pipe.
- D. Install drain valves in piping upstream and downstream of each control valve installed in a three-valve manifold and for each control valve larger than NPS 4.
- E. Install pressure temperature taps in piping upstream and downstream of each control valve larger than NPS 2.
- F. Valve Orientation:
 - 1. Where possible, install globe and ball valves installed in horizontal piping with stems upright and not more than 15 degrees off of vertical, not inverted.
 - 2. Install valves in a position to allow full stem movement.
 - 3. Where possible, install butterfly valves that are installed in horizontal piping with stems in horizontal position and with low point of disc opening with direction of flow.
- G. Clearance:
 - 1. Locate valves for easy access and provide separate support of valves that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install valves with at least 12 inches of clear space around valve and between valves and adjacent surfaces.
- H. Threaded Valves:
 - 1. Note internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.
 - 2. Align threads at point of assembly.
 - 3. Apply thread compound to external pipe threads, except where dry seal threading is specified.
 - 4. Assemble joint, wrench tight. Apply wrench on valve end as pipe is being threaded.
- I. Flanged Valves:
 - 1. Align flange surfaces parallel.
 - 2. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

3.6 CONNECTIONS

A. Connect electrical devices and components to electrical grounding system. Comply with electrical specifications

3.7 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 230553.
- B. Install engraved phenolic nameplate with valve identification on valve.

3.8 CLEANING

- A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed interior and exterior surfaces.
- B. Wash and shine glazing.
- C. Polish glossy surfaces to a clean shine.

3.9 CHECKOUT PROCEDURES

- A. Control Valve Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check valves for proper location and accessibility.
 - 3. Check valves for proper installation for direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
 - 4. For pneumatic products, verify air supply for each product is properly installed.
 - 5. For pneumatic valves, verify that pressure gauges are provided in each air line to valve actuator and positioner.
 - 6. Verify that control valves are installed correctly for flow direction.
 - 7. Verify that valve body attachment is properly secured and sealed.
 - 8. Verify that valve actuator and linkage attachment are secure.
 - 9. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 10. Verify that valve ball, disc, and plug travel are unobstructed.
 - 11. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.

3.10 ADJUSTMENT, CALIBRATION, AND TESTING

A. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.

- B. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressures.
- C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- D. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 230923.11

SECTION 230923.12 - CONTROL DAMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following types of control dampers and actuators for DDC systems:
 - 1. Rectangular control dampers.
 - 2. General control-damper actuator requirements.
 - 3. Electric and electronic actuators.

1.3 DEFINITIONS

- A. DDC: Direct-digital control.
- B. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation instructions, including factors affecting performance.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

- 4. Include diagrams for air and process signal tubing.
- 5. Include diagrams for pneumatic signal and main air tubing.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for control dampers and actuators, including the following.
 - a. Flow at project design and minimum flow conditions.
 - b. Face velocity at project design and minimum airflow conditions.
 - c. Pressure drop across damper at project design and minimum airflow conditions.
 - d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Product installation location shown in relationship to room, duct, and equipment.
 - 2. Size and location of wall access panels for control dampers and actuators installed behind walls.
 - 3. Size and location of ceiling access panels for control dampers and actuators installed above inaccessible ceilings.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For control dampers to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND GENERAL REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
- C. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

- D. Backup Power Source: Systems and equipment served by a backup power source shall have associated control damper actuators served from a backup power source.
- E. All Automatic Control Dampers provided as a part of this Specification shall bear the AMCA Seal as an indication that they comply with all requirements of the AMCA Certified Ratings Programs.
- F. Maximum leakage rate through any 48 inches by 48 inches closed damper in any application shall not exceed 10.0 cfm per sq. ft. of damper face area at 4 inches of water pressure differential and a maximum closing torque of 4 inch-lbs./sq. ft. of damper face area. Damper leakage ratings shall be certified in accordance with AMCA Standard 500-D.
- G. Environmental Conditions:
 - 1. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.
 - a. Hazardous Locations: Explosion-proof rating for condition.
 - b. All outdoor air damper components shall be suitable for applications operating in the temperature range of -40F to 167F.
- H. Selection Criteria:
 - 1. Fail positions unless otherwise indicated:
 - a. Supply Air: Open.
 - b. Return Air: Open.
 - c. Outdoor Air: Close.
 - d. Mixed Air: Open.
 - e. Exhaust Air: Close.
 - 2. Dampers shall have stable operation throughout full range of operation, from design to minimum airflow over varying pressures and temperatures encountered.
 - 3. Select modulating dampers for a pressure drop of 5 percent of fan total static pressure unless otherwise indicated.
 - 4. Two-position dampers shall be full size of duct or equipment connection unless otherwise indicated.
 - 5. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service. Use opposed blade configuration for modulating, mixing and any application of upstream critical components.
 - 6. Pneumatic, two-position control dampers shall provide a smooth opening and closing characteristic slow enough to avoid excessive pressure. Dampers with pneumatic actuators shall have an adjustable opening time (valve full closed to full open) and an adjustable closing time (valve full open to full closed) ranging from zero to 10 seconds. Opening and closing times shall be independently adjustable. (Not Used For This Project)
 - 7. Control-damper, pneumatic-control signal shall not exceed 200 feet. For longer distances, provide an electric/electronic control signal to the damper and an electric solenoid valve or electro-pneumatic transducer at the damper to convert the control signal to pneumatic. (Not Used For This Project)

2.2 RECTANGULAR CONTROL DAMPERS

- A. General Requirements:
 - 1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
 - 2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
- B. Rectangular Dampers with Aluminum Airfoil Blades:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Ruskin Company</u>.
 - b. Arrow louver and Damper co.
 - c. Nailer Hart
 - d. Greenheck
 - 2. Performance:
 - a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1in. wg differential static pressure.
 - b. Pressure Drop: 0.05-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 6000 fpm.
 - d. Temperature: Minus 40 to plus 185 deg F.
 - e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 - f. Damper shall have AMCA seal for both air leakage and air performance.
 - 3. Construction:
 - a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch thick.
 - 2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Hollow, airfoil, extruded aluminum.
 - 2) Parallel or opposed blade configuration as required by application.
 - 3) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.07 inch thick.
 - 4) Width not to exceed 6 inches.
 - 5) Length as required by close-off pressure, not to exceed 48 inches.

- c. Seals:
 - 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
 - 2) Jambs: Stainless steel, compression type.
- d. Axles: 0.5-inch- diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Molded synthetic or stainless-steel sleeve mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and galvanized plated or stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.
- h. Additional Corrosion Protection for Corrosive Environments: (Not Used)
 - 1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch thick.
 - 2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.
- 4. Airflow Measurement:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Ruskin Company</u>.
 - b. Where indicated, provide damper assembly with integral airflow monitoring.
 - c. Zero- to 10-V dc or 4- to 20-mA scaled output signal for remote monitoring of actual airflow.
 - d. Accuracy shall be within 5 percent of the actual flow rate between the range of minimum and design airflow. For applications with a large variation in range between the minimum and design airflow, configure the damper sections and flow measurement assembly as required to comply with the stated accuracy over the entire modulating range.

- e. Provide a straightening device as part of the flow measurement assembly to achieve the specified accuracy with configuration indicated.
- f. Suitable for operation in untreated and unfiltered air.
- g. Provide temperature and altitude compensation and correction to maintain accuracy over temperature range encountered at site altitude.
- h. Provide automatic zeroing feature.
- 5. Airflow Control:
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Ruskin Company</u>.
 - b. Where indicated, provide damper assembly with integral airflow measurement and control.
 - c. A factory-furnished and -calibrated controller shall be programmed, in nonvolatile EPROM, with application-specific airflow set point and range.
 - d. The controller and actuator shall communicate to control the desired airflow.
 - e. The controller shall receive a zero- to 10-V dc input signal and report a zero- to 20mA output signal that is proportional to the airflow.
 - f. Airflow measurement and control range shall be suitable for operation between 150 to 2000 fpm.
 - g. Ambient Operating Temperature Range: Minus 40 to plus 140 deg F.
 - h. Ambient Operating Humidity Range: 5 to 95 percent relative humidity, noncondensing.
 - i. Provide unit with control transformer rated for not less than 85 VA. Provide transformer with primary and secondary protection and primary disconnecting means. Coordinate requirements with field power connection.
 - j. Provide screw terminals for interface to field wiring.
 - k. Factory mount electronics within a NEMA 250, Type 1 painted steel enclosure.
- C. Industrial-Duty Rectangular Dampers with Steel Airfoil Blades:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Ruskin Company</u>.
 - b. Arrow Louver and Damper Co.
 - c. Nailer Hart
 - d. Greenheck
 - 2. Performance:
 - a. Leakage: Leakage shall not exceed 3 cfm/sq. ft. against 1-in. wg differential static pressure.
 - b. Pressure Drop: 0.06-in. wg at 2000 fpm across a 48-by-48-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 4000 fpm.
 - d. Temperature: Minus 40 to plus 250 deg F.

- e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length, minimum 10-in. wg.
- 3. Construction:
 - a. Frame:
 - 1) Material: Galvanized or stainless steel, 0.11 inch thick.
 - 2) C-shaped channel. Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 3 inches.

b. Blades:

- 1) Hollow, airfoil, galvanized or stainless steel.
- 2) Parallel or opposed blade configuration as required by application.
- 3) Material: Galvanized or stainless steel, 0.06 inch thick.
- 4) Width not to exceed 6 inches.
- 5) Length not to exceed 48 inches.
- c. Seals:
 - 1) Blades: Replaceable, mechanically attached EPDM or extruded silicone.
 - 2) Jambs: Stainless steel, double compression type.
- d. Axles: 0.5- or 0.75-inch- diameter stainless steel, mechanically attached to blades and continuous from end to end.
- e. Bearings:
 - 1) Stainless-steel sleeve type mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Face linkage exposed to airstream.
 - 2) Constructed of plated or stainless steel.
 - 3) Hardware: Stainless steel.
- D. Insulated Rectangular Dampers:
 - 1. Performance:
 - a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1in. wg differential static pressure and shall not exceed 4.9 cfm/sq. ft. against 4-in. wg differential static pressure at minus 40 deg F.
 - b. Pressure Drop: 0.1-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 4000 fpm.
 - d. Temperature: Minus 100 to plus 185 deg F.
 - e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 - f. Damper shall have AMCA seal for both air leakage and air performance.

2. Construction:

- a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.08 inch thick.
 - 2) C-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 4 inches.
 - 4) Entire frame shall be thermally broken by means of polyurethane resin pockets, complete with thermal cuts.
 - 5) Damper frame shall be insulated with polystyrofoam on four sides.
- b. Blades:
 - 1) Hollow shaped, extruded aluminum.
 - 2) Blades shall be internally insulated with expanded polyurethane foam and shall be thermally broken. Complete blade shall have an insulating factor of R-2.29 and a temperature index of 55.
 - 3) Parallel or opposed blade configuration as required by application.
 - 4) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.08 inch thick.
 - 5) Width not to exceed 6 inches.
 - 6) Length as required by close-off pressure, not to exceed 48 inches.
- c. Seals: Blade and frame seals shall be of flexible silicone and secured in an integral slot within the aluminum extrusions.
- d. Axles: 0.44-inch- diameter plated or stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Bearings shall be composed of a Celcon inner bearing fixed to axle, rotating within a polycarbonate outer bearing inserted in the frame, resulting in no metal-to-metal or metal-to-plastic contact.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and plated or stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.

- h. Additional Corrosion Protection for Corrosive Environments:
 - 1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch thick.
 - 2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.

2.3 GENERAL, OPERATING LINKAGES AND DAMPER ACCESSORIES

- A. All operating linkages and/or damper accessories required for installation and application in accordance with specification design intent and manufacturer's installation procedures shall be provided
- B. Operating linkages provided external to dampers (crank arms, connecting rods, shaft extensions, &c.) for transmitting motion from the actuator/operator to dampers shall be designed as to functionally operate a load equal to or in excess of 300% of the maximum required operating force for the damper.
- C. Crank arms and connecting rods shall be adjustable. Linkages shall be brass, bronze, zinccoated steel, or stainless steel.
- D. Adjustments of Crank Arms shall control the position of the damper
- E. Use of Operating Linkages external to damper drive shaft shall neither delay nor impede operation of the damper in a manner of performance less than a direct-coupled damper actuator. Operating linkages shall not under any circumstances be permitted to flex, warp, shift &c. under normal operation of connected damper sections.

2.4 GENERAL, CONTROL-DAMPER ACTUATORS REQUIREMENTS

- A. A.Control damper actuators shall be electronic direct-coupled OR pneumatic pilot/positionedtype. Actuators shall have a means for reversing drive direction and a manual override accessible at the front cover
- B. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.
- C. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.
- D. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.
- E. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.

- F. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.
- G. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.
- H. Provide mounting hardware and linkages for connecting actuator to damper. Single bolt or setscrew type fasteners are not acceptable.
- I. Select actuators to fail in desired position in the event of a power failure. For spring return failsafe applications, an internal mechanical spring return mechanism shall be built into the actuator housing. Non-mechanical forms of fail-safe operation are not acceptable.
- J. Actuator Fail Positions: As indicated below refer to sequence of operations for additional information regarding specific equipment:
 - 1. Exhaust Air: Close.
 - 2. Outdoor Air: Close.
 - 3. Supply Air: Open.
 - 4. Return Air: Open.
- K. All non-spring return actuators shall have an external manual clutch/gear release to allow manual positioning of the damper when the actuator is not powered. Spring return actuators with more than 60 in-LB torque capacity shall have a manual crank for this purpose.

2.5 ELECTRIC AND ELECTRONIC ACTUATORS

- A. Type: Motor operated, with or without gears, electric and electronic.
- B. Voltage:
 - 1. 24 V.
 - 2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 - 3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.
- C. Construction:
 - 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 - 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.
 - 3. Greater Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- D. Field Adjustment:

- 1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
- 2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
- E. Two-Position Actuators: Single direction, spring return or reversing type.
- F. Modulating Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc and 4- to 20-mA signals.
 - c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink or source controller.
 - d. Programmable Multi-Function: (Not Used)
 - 1) Control input, position feedback, and running time shall be factory or field programmable.
 - 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 - 3) Service data, including at a minimum, number of hours powered and number of hours in motion.
- G. Position Feedback:
 - 1. Equip where indicated, equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
 - 2. Equip where indicated, equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- H. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- I. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.

- 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- J. Damper Attachment:
 - 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 - 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 - 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- K. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.
- L. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 - 4. Provide actuator enclosure with a heater and controller where required by application.
- M. Stroke Time:
 - 1. Operate damper from fully closed to fully open within 60 75 90 150
 - 2. Operate damper from fully open to fully closed within 60 75 90 150
 - 3. Move damper to failed position within 15 30 seconds.
 - 4. Select operating speed to be compatible with equipment and system operation.
 - 5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.
- N. Sound:
 - 1. Spring Return: 62 dBA.
 - 2. Non-Spring Return: 45 dBA.

2.6 POWER SUPPLIES AND LINE FILTERING

- A. Power Supplies & Control Transformers. Control transformers and power supplies shall be UL-Listed. Provide Class 2 current-limiting type or over-current protection in both primary and secondary circuits for Class 2 service not to exceed 100 VA in accordance with the applicable following requirements or as directed by the AHJ.
 - 1. NEC 2011 (NFPA 70) Chapter 7 Article 725 Class 1, Class 2 and Class 3 Remote-Control, Signaling and Power-Limited Circuits.
 - 2. NEC 2011 (NFPA 70) Chapter 9 Table 11(A) and Table 11(B).
 - 3. Canadian Electrical Code, Part 1 (CSA C22.1-12) Rule 16-200.

- © 2020 OLA Consulting Engineers, P.C.
 - B. DC Power Supplies. DC power supply output shall match output current and voltage requirements. Power supply shall be half-wave rectified type with the following minimum specifications:
 - 1. Output ripple: 5.0 mV maximum peak-to-peak.
 - 2. Regulation: 1.0% line and load combined.
 - 3. Response: 100 ms for 50% load changes.
 - 4. Built-in overvoltage and overcurrent protection and able to withstand a 150% current overload for a minimum of three (3) seconds without tripping or failure.
 - C. Power Line Filtering. Provide transient voltage and surge suppression for all workstations and controllers either internally or as an external component.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL-DAMPER APPLICATIONS

A. Control Dampers:

- a. Use opposed blade type dampers for all modulating damper applications
- b. Use parallel blade type damper for all open closed applications.
- c. Damper actuation stroke time shall be adjustable
- d. Damper position feedback is required for all dampers that are part of a smoke purge or smoke control system.

3.3 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy most stringent requirements indicated.
- B. Properly support dampers and actuators, tubing, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
- C. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

- D. Seal penetrations made in fire-rated and acoustically rated assemblies.
- E. Fastening Hardware:
 - 1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- F. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- G. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they will be subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including, but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. Use Type 316 stainless-steel tubing and fittings when in contact with a corrosive environment.
 - 4. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 5. Where actuators are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.4 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements of the electrical specifications.
- C. Furnish and install power wiring. Comply with requirements of the electrical specifications.
- D. Furnish and install raceways. Comply with requirements of the electrical specifications.
- E. Electrical subcontractor shall provide all required line voltage. The mechanical subcontractor shall provide all low voltage wiring and power supply transformers in coordination with the controls subcontractor and control actuator requirements.

© 2020 OLA Consulting Engineers, P.C.

3.5 CONTROL DAMPERS

- A. Install smooth transitions, not exceeding 30 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.
- B. Clearance:
 - 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.
- C. Service Access:
 - 1. Dampers and actuators shall be accessible for visual inspection and service.
 - 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 233300 "Air Duct Accessories."
- D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.
- E. Attach actuator(s) to damper drive shaft.
- F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.

3.6 CONNECTIONS

A. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 230553.
- B. Install engraved phenolic nameplate with damper identification on damper.

3.8 CHECKOUT PROCEDURES

- A. Control-Damper Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check dampers for proper location and accessibility.

- 3. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
- 4. For pneumatic products, verify air supply for each product is properly installed.
- 5. For pneumatic dampers, verify that pressure gages are provided in each airline to damper actuator and positioner.
- 6. Verify that control dampers are installed correctly for flow direction.
- 7. Verify that proper blade alignment, either parallel or opposed, has been provided.
- 8. Verify that damper frame attachment is properly secured and sealed.
- 9. Verify that damper actuator and linkage attachment are secure.
- 10. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
- 11. Verify that damper blade travel is unobstructed.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING:

- A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
- B. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.
- C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- D. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 230923.12

SECTION 230993 SEQUENCE OF OPERATION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Sequence of operation:
 - 1. Summer winter change over
 - 2. Boiler Plant
 - 3. Hot Water Variable Speed Pumping System Control.
 - 4. Split System Air Handling Units
 - 5. RTU
 - 6. Return Fans
 - 7. Unit Heater
 - 8. Air Conditioning Condensate Pumps
 - 9. Miscellaneous Plumbing Equipment
 - 10. Miscellaneous.

1.02 RELATED SECTIONS

- A. Section 23 0901 Digital Control Equipment.
- B. Section 230900 Instruments and Control for HVAC.

1.03 SYSTEM DESCRIPTION

- A. This Section defines the manner and method by which controls function. Requirements for each type of control system operation are specified. Equipment, devices, and system components required for control systems are specified in other Sections.
- B. Provide DDC based electronic controls, panels, wiring and all accessories required to achieve the specified control sequences and establish a complete independent system for all new equipment and existing equipment. In general the equipment shall be controlled through Standalone Digital Control Units (SDCUs).

Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, central plant control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment.

Certain controls are specified to be furnished with the equipment. This contractor shall provide all components to communicate with factory furnished controls and connect them to the building automation control system. This contractor shall be responsible to review equipment submittals and review and review the controls provided with all packaged equipment to insure that the equipment is ordered with eh appropriate gateways and MPTP controllers for integration to the BMS system. The contractor shall also provide all controls, wiring and auxiliaries required to operate equipment not furnished with factory controls. Work required includes, but is not limited to the following:

- 1. Control wiring between factory mounted unit panels and factory supplied remote panels.
- 2. Installation and wiring for factory supplied devices requiring field installation.
- 3. Panel mounted transformers and control power wiring for all controllers and control devices.
- 4. Control wiring to each remote device (room thermostats, outdoor air sensors, static pressure controllers, control actuators, control panels, etc.).
- 6. All control valves, motorized dampers thermostats, relays, sensors, etc. unless furnished as an integral part of the equipment.
- 7. All interlock control wiring (24 volt and 120 volt) between units, fans, etc.
- C. All control and interlock wiring shall be run in EMT for indoor locations and in galvanized conduit for outdoor locations.
- D. All new controllers, hardware and accessories shall be ANDOVER CONTINUUM SERIES VERSION 1.9. OR LATER all new hardware, software and programming shall be compatible with the existing campus system.
- E. General System Description: The building equipment shall be controlled via a central Andover BMS system. Heating of the building will be accomplished through the central hot water boiler and associated terminal equipment including, cabinet unit heaters, and hot water coils associated with air handling units. Hot water pump shall be variable speed and modulated via differential pressure sensors in the building. Cooling shall be accomplished primarily through seven packaged rooftop units with DX coils, and two indoor air handling units with DX coils and remote condensing units. Rooftop units serving library shall be shall have demand controlled ventilation. Refer to specific equipment sequences for detailed operation.

1.04 SUBMITTALS FOR REVIEW

- A. Division 1 Submittals: Procedures for submittals.
- B. Shop Drawings: Indicate mechanical system controlled and control system components.
 - 1. Label with settings, adjustable range of control and limits. Include written description of control sequence.
 - 2. Include flow diagrams for each control system, graphically depicting control logic.
 - 3. Include draft copies of graphic displays indicating mechanical system components, control system components, and controlled function status and value.
 - 4. Submit a complete written sequence of operation for each and every controlled piece of equipment.

1.05 SUBMITTALS AT PROJECT CLOSEOUT

- A. Operation and Maintenance Data.
- B. Project Record Documents: Record actual locations of components and set-points of controls, including changes to sequences made after submission of shop drawings.

1.06 QUALITY ASSURANCE

- A. Design system under direct supervision of a Professional Engineer experienced in design of this Work and licensed in the State of New York.
- PART 2 PRODUCTS Not Used
- PART 3 EXECUTION

3.01 Summer/Winter Change Over

The Building Management System (BMS) shall index the hot system and cooling equipment into either summer or winter control based upon outdoor air temperature. Below 65 F, (adjustable), outside air temperature, the air conditioning shall be disabled. Above 55F, (adjustable), outside air temperature the hot water system shall disabled. Between those temperature economizers shall be used when outdoor air enthalpy permits. The system operator shall have capacity of over riding the system for manual change over. A minimum time delay, (24 hrs adjustable), between summer/winter changes over shall prevent cycling between the 2 modes. During heating mode, the DX cooling shall be locked out except for supplemental cooling systems.

3.02 Boiler Plant:

Boiler shall be operated through an application specific unitary controller that will sequence boilers, pumps dampers, valves and fans. Refer to section 235216 for all safeties and combustion control sequences. The controller shall be microprocessor-based system engineered and programmed exclusively for the operation of multiple hot water boilers.

The communications protocol for the boiler controls shall be based on ASHRA/ANSI BACNET Standard 135-1995. Provide required modules to allow open communication, integration and interoperability with other DDC system. The BMS contractor and boiler manufacturer shall coordinate their work to insure compatibility prior to installation.

The BMS system shall enable the hot water system, and change the system from cooling to heating operation based on outdoor air temperature. Set point shall be 55 degrees, adjustable for heating. The hot water primary, (HWP-1), circulation pump shall be interlocked to run continuously when respective boiler is started. Furnish a flow switch in each of the primary supply water headers arranged to prevent boiler operation if flow is not proved.

The BMS shall sequence the hot water boilers to maintain the secondary hot water loop temperature set-point. The set-point shall be reset by the outdoor air temperature sensor. Reset schedule to be 180 F to 120 F hot water supply temperature as outside air varies from 10 F to 55 F. adjustable). Lead boiler selection shall be selected by the BMS according to a rotating seven-day schedule for equal running time.

The secondary pumps shall be arranged to operate when the heat plant is enabled. Refer to the Hot Water Variable Speed Pumping System Control paragraph for HWP-2 and P-3 sequence.

The glycol makeup pumps shall be arranged to automatically maintain hot water system pressure in the boiler system. The make up water pumps shall be arranged to alternate through

the alternating pump controller. BMS status and alarms; Common failure alarm for each boiler. High temperature Low temperature Fuel oil pump failure Primary pump failure Secondary pump failure Make up pump failure Low water level High water level Temperature out of bounds

3.03 Hot Water Pumping System Control

When the heating is enabled the lead, variable speed pump will be enabled to operate at its lowest speed setting, (35% of maximum flow). If the lead variable speed drive pump fails to operate the lag variable speed pump will start and an alarm will be generated at the pump control panel and the BMS. Furnish a flow switch in the header of each secondary pump with adjustable time delay. The BMS system shall rotate the lead and lag pumps for equal running time on a weekly or daily basis, (adjustable).

Differential pressure, shall be measured across the supply and return of the two-pipe secondary system using a five-point manifold differential pressure sensor. The differential pressure will be measured at the end of the piping loop generally located in the ceiling of the second floor. The pump will be controlled to maintain the differential pressure at (28 psi adjustable). If the differential pressure drops below set point, the pump speed shall increase proportionately, if differential pressure rises above set point, the pump speed shall be decreased proportionately. The minimum speed set point shall be determined such that the speed corresponds to 30% of the maximum flow at 28 psi differential. The actual set point shall be determined in the field when all water balancing has been completed. DP set point shall be determined when design flow is achieved at the lowest available pump speed. Furnish and install a 2 1/2" differential by pass valve on HW system in the boiler room arranged to open and allow minimum flow through the secondary pumps, if the pumps slow to minimum speed and DP is still above 28psi setpoint.

3.04 Split System Air Handling Unit: AHU-1 and AHU-2

The units shall be supplied with, and operated through a unit mounted DDC unitary control panel, capable of providing set-point adjustments and all programming control sequences. The protocol shall be BacNet MSTP. Controls shall include all motorized dampers and valves, damper motors, motor starters, wiring, fans and sensors and all hardware accessories for a complete system. Furnish wall mounted room thermostats with automatic summer/winter change over, and temperature adjustments.

Units Off: The outside air intake and relief air dampers shall be closed, and the return air damper shall be full open. The automatic 3-way valve on the heating coil shall be open. Supply and return Fans shall be stopped

Summer Operation: Upon start up, the control circuits energized. The supply fan shall run continuously; the return fan RF-1 shall run continuously; the energy recovery ventilator ERV-1 shall run continuously. The outside air intake, and relief air dampers shall open to minimum

position the return damper shall open to the maximum position.

AHU-1 and AHI-2 - A temperature sensor in the unit discharge duct shall be reset by a return air temperature sensor, (master-sub-master), arranged to modulate the DX coil capacity to maintain a constant discharge air temperature. Set the discharge temperature at 55°F to 60°F range (adjustable). The discharge air temperature set-point shall be determined through a comparison of the return air temperature and SA set-point, and shall be reset according or cooling demand. Hot water heating coil control valve shall be closed. VAV boxes shall operate in the summer mode.

Winter Operation: Upon start up, the control circuits shall be energized. The supply fan shall run continuously; the return fan RF-1 shall run continuously. The outside air intake, and relief air dampers shall open to minimum position the return damper shall open to the maximum position.

AHU-1 and AHU-2 - The heating coil valve shall be arranged to maintain a discharge temperature at 65°F to 75°F range (adjustable).

Economizer Operation: On a call for cooling when outdoor air conditions permit, (56 deg adjustable), and below the an enthalpy controller shall modulate the outside air intake, exhaust and return air dampers, to maintain SA temp set point. Override DCV as required. Heating coil control valve shall be closed. Control action shall be that an increase in SA temperature will cause the outside air and exhaust air dampers to modulate towards the open position and the return air damper to modulate towards the closed position. A drop in below set point temperature will cause the reverse to take place. When the outdoor air damper reaches the fully open position a further call for cooling shall cause DX system to operate. When ambient conditions are no longer suitable for economizer operation the unit controls shall revert to normal summer operation. The spill fan shall run continuously.

Morning Warm-up Operation: Units shall start and operate for a predetermined period as programmed into the unit controllers. During this cycle outside intake and exhaust air dampers shall remain closed, and return air damper shall be full open. The heating valve shall modulate to maintain set point. When the zone temperature(s) comes to with in 2 degrees of set point the unit shall operate in occupied mode. Return fan RF-1 shall run, 100% RA.

Morning Cool-Down Operation: Unit shall start and operate for a predetermined period as programmed into the unit controllers. During this cycle outside intake and spill air dampers shall remain closed, and return air damper shall remain open. The cooling coil shall modulate to maintain discharge air temperature set point. When the zone temperature comes to with in 2 degrees of set point the unit shall operate in occupied mode. Return fan RF-1 shall run, 100% RA.

Unoccupied Operation: Unit supply/return fans and heating coils and DX cooling shall cycle on a call for cooling or heating. During this cycle the unit shall operate with 100% re-circulated air. Unit controls shall allow complete shutdown if desired. Set point shall be 68° in the heating season and 85 in the cooling season. Return fan RF-1 shall run, 100% RA.

Limit Controls: Provide a High/low limit control(s) in the supply fan discharge arranged to override temperature controls and prevent discharge temperature from dropping below 50°F and

rising above 110°F(adjustable). Provide limit control on fan speed for CV units to limit speed reduction to 75% of air flow.

Freezestat: Provide the AHU with a manual reset type freezestat, (set at 35° adjustable), arranged to shut down the unit and sound an audio and visual alarm at the BMS operator station should the set point be reached. The freezestat element shall be the capillary type with lowest point temperature sensing. It shall be resettable from the BMS.

Static Pressure Controls Unit: AHU-1 and AHU-2

Provide static pressure sensors in the supply ductwork for the unit located approximately twothirds downstream of the unit in the SA duct. Sensors shall be arranged to vary the speed of the supply fan in response to supply duct static pressure. An increase in static pressure shall cause the fans to slow down a decrease shall cause the fans to speed up. The outside air dampers shall be arranged to modulate open from the minimum position proportionally as fan speed decreases. This shall be done through an air flow measuring station located in the outside air intake plenum to insure constant ventilation air rate (CFM) through the range of fan speeds. For those units that operate DCV mode during normal occupied hours this function shall be overridden by DCV control. Corresponding return or spill air fans in each RTU shall be arranged to maintain a positive pressure of .1" sp in their respective zones. On a drop-in zone pressure the fan shall be arranged to slow down, on a rise in SP above set point the fan shall be arranged to speed up. (open OAI damper)

Demand Controlled Ventilation: (AHU-1 and AHU-2) Furnish combination space temperature/CO2 sensors for where shown on plans. Furnish one CO2 sensor located outdoors on the roof. The outdoor air CO2 sensor shall be used to establish a base line for outdoor CO2 levels, approximately 400 PPM. The CO2 sensors in each space shall have a set point no greater then 400 PPM above the base line, approximately 800 PPM. The air-handling unit's unitary control panel shall calculate outside air intake damper positioning in response to space CO2 levels. Control action shall be that when the space CO2 level rises to within 100 PPM of set point, the outside air intake and spill dampers shall modulate toward open and the RA damper shall modulate toward closed. Upon a drop in space CO2 levels below set point, the opposite shall take place.

The outside air intake dampers normal minimum positions shall be 20% of the design outside air rate, or shall be established based on the schedules contained on the plans, whichever is higher. When operating in demand-controlled ventilation mode (normal occupied mode) the outside air damper position may be reset according demand with the above lower limit.

Pre-occupancy purge: Shall be automatically initiated by the building automation controls. For a period of 30 minutes prior to scheduled occupied hours, the unit shall operate under occupied mode at the full occupied outdoor air rate. After the 30 minute purge cycle the unit shall run under Demand Controlled ventilation mode.

Post-occupancy flush: Prior to entering unoccupied mode after scheduled occupied hours have elapsed, the unit shall run with the outside air damper open at minimum position until space CO2 concentrations are equal to outdoor air CO2 concentrations. When the CO2 concentrations match, the unit shall run in unoccupied mode.

3.07 Cabinet Convectors: Conv-A

Provide a control valve for all units and room thermostats where indicated on plan set at 72°F for each convector Upon a drop-in space temperature below set-point the CV valve shall cycle open. On a rise in space temperature above set point the reverse shall take place. For those zones served by VAV boxes with reheat coils and convectors the controls shall be arranged to operate the VAV box CV and convector CV in sequence. All control valves positions shall be monitored and indicated on the BMS

3.08 Toilet Fans and Return Fans:

Toilet exhaust fans TX-1 shall run as scheduled through the BMS system during occupied periods or as programmed.

Return fans RF-1 and RF -2 shall be interlocked to run with their corresponding SA fan. AHU-1 and AHU-2 respectively.

3.11 Air condition condensate pumps:

Provide connection to the overflow switch in each condensate pump tank arranged to annunciate an alarm at the BMS and shut down the respective AHU/AC unit. Provide a secondary high level float switch in each packaged roof top unit condensate pan and each split system air handling unit condensate pan arranged to annunciate an alarm at the BMS and shut down the respective AHU/AC unit.

3.12 Miscellaneous Plumbing Equipment:

Domestic hot water pump: The BMS system shall be arranged to operate the domestic hot water recirculation pump. The pump shall be operated based on return water temperature. When return water temperature drops below setpoint (110 deg F) the pump shall be started.

Domestic hot water mixing valves: Domestic hot water mixing valves shall be 3-way mixing valves arranged to maintain the maintain domestic water to the building at 120°F maximum. (adjustable), The actual setpoint shall be 110°F. The second 3-way mixing valve shall be at the kitchen. This shall be arranged to maintain the domestic water to the pot sinks at 140°F maximum. In both cases there shall be secondary aquastats on the respective hot water pipes arranged to close a solenoid valve in each of the respective hot water lines if water temperature rises above set point. Provide monitoring and set point adjustment at the BMS work station. Alarm high temperature at the BMS.

Domestic Water Meters: domestic water make up to the boiler plant and to the domestic hot water heaters shall be metered and recorded. The BMS shall have contain a record of water usage for each meter on monthly and total annul basis. The BMS shall aggregate water usage

3.13 Miscellaneous

All safety devices shall be interlocked with "hand" and "Automatic" positions in series with motor controller holding coil circuit. Interlocking with other fans and equipment of system shall be through "Automatic" position "Hand" position shall be for maintenance only. Remote starting shall be from through "automatic" position only.

All air handling units 2,000 cfm or greater shall have a duct mounted smoke detector arranged to stop the unit and position all dampers and valves in the "unit off" sequence as described in this section, upon detecting smoke.

All air handling units, unit ventilators, cabinet unit heaters, unit heaters, fans, and fan coil units, shall be interlocked to the building fire alarm system. Upon building fire alarm all units shall shut down and damper and valves shall go to "unit off" positions.

END OF SECTION

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes pipe and fitting materials and joining methods for the following:
 - 1. Hot-water heating piping.
 - 2. Makeup-water piping.
 - 3. Condensate-drain piping.
 - 4. Air-vent piping.
 - 5. Safety-valve-inlet and -outlet piping.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Plastic pipe and fittings with solvent cement.
 - 2. Pressure-seal fittings.
 - 3. Chemical treatment.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 - 3. <u>Environmental Product Declaration</u>: For each product.
 - 4. Health Product Declaration: For each product.
 - 5. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.
- C. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 - 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

5. For underground piping provide size and quantity of pipe expansion loops and thrust blocks.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Other building services.
 - 3. Structural members.
- B. Qualification Data: For Installer.
- C. Welding certificates.
- D. Field quality-control reports.
- E. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installers of Pressure-Sealed Joints: Installers shall be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.
- B. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: 150 psig at 200 deg F.

- 2. Glycol -Water Piping: 150 psig at 150 deg F.
- 3. Makeup-Water Piping: 80 psig at 150 deg F.
- 4. Condensate-Drain Piping: 150 deg F.
- 5. Air-Vent Piping: 200 deg F.
- 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Grooved, Mechanical-Joint, Wrought-Copper Fittings: ASME B16.22.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Anvil International</u>.
 - b. <u>Star Pipe Products</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.
- E. Copper or Bronze Pressure-Seal Fittings:
 - 1. Pro-press should be reviewed
 - 2. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Elkhart Products Corporation</u>.
 - b. <u>Mueller Industries, Inc</u>.
 - c. <u>NIBCO INC</u>.
 - d. <u>Viega LLC</u>.
 - 3. Housing: Copper.
 - 4. O-Rings and Pipe Stops: EPDM.
 - 5. Tools: Manufacturer's special tools.
 - 6. Minimum 200-psig working-pressure rating at 250 deg F.
- F. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Anvil International</u>.
 - b. <u>Grinnell G-Fire by Johnson Controls Company</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - 3. Couplings: Ductile- or malleable-iron housing and EPDM gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- I. Steel Pressure-Seal Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Victaulic Company</u>.
 - b. <u>Viega LLC</u>.
 - c. Zern

- d. Propress
- 2. Housing: Steel.
- 3. O-Rings and Pipe Stop: EPDM.
- 4. Tools: Manufacturer's special tool.
- 5. Minimum 300-psig working-pressure rating at 230 deg F.
- J. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.4 PLASTIC PIPE AND FITTINGS

- 1. CPVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM F 438 for Schedule 40 pipe; ASTM F 439 for Schedule 80 pipe.
- B. PVC Plastic Pipe: ASTM D 1785, with wall thickness as indicated in "Piping Applications" Article.
 - 1. PVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM D 2466 for Schedule 40 pipe; ASTM D 2467 for Schedule 80 pipe.

2.5 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- F. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

- a. PVC solvent cement shall have a VOC content of 510 g/L or less.
- b. Adhesive primer shall have a VOC content of 550 g/L or less.
- H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.6 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Charlotte Pipe and Foundry Company</u>.
 - b. <u>IPEX USA LLC</u>.
 - c. <u>KBI (King Bros. Industries)</u>.
 - d. <u>Viega LLC</u>.
 - 2. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>WATTS</u>.
 - b. <u>Wilkins</u>.
 - c. <u>Zurn Industries, LLC</u>.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 150 psig 250 psig.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>WATTS</u>.
 - b. <u>Wilkins</u>.
 - c. <u>Zurn Industries, LLC</u>.

- 2. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.
 - c. Pressure Rating: 150 psig minimum at 250 deg F.
 - d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric Nipples:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Grinnell G-Fire by Johnson Controls Company</u>.
 - b. <u>Matco-Norca</u>.
 - c. <u>Victaulic Company</u>.
 - 2. Description:
 - a. Standard: IAPMO PS 66.
 - b. Electroplated steel nipple, complying with ASTM F 1545.
 - c. Pressure Rating: 300 psig at 225 deg F.
 - d. End Connections: Male threaded or grooved.
 - e. Lining: Inert and noncorrosive, propylene.

2.8 BYPASS CHEMICAL FEEDER

- A. Description: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. **Hot-water heating, Piping aboveground**; NPS 2 1/2 and smaller, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed, pressure-seal joints.
 - 2. Schedule 40, Grade B, Type 96 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Hot-water heating, Piping aboveground; NPS 3 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed joints.

- 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- 3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- C. **Hot-water heating, Piping below ground and within slabs (not used);** shall be either of the following:
 - 1. Type K, annealed-temper copper tubing, wrought-copper fittings, and brazed joints. Use the fewest possible joints.
- D. Makeup-water piping installed aboveground shall be either of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- E. **Makeup-Water Piping Installed Belowground and within Slabs (not used):** Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- F. **Condensate-Drain Piping For AC Units:** Type M coper, Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints or Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.
- G. **Boiler Condensate-Drain Piping**: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.
- H. **Blowdown-Drain Piping:** Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- I. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- J. **Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping:** Same materials and joining methods as for piping specified for the service in which safety valve is installed.

3.2 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

© 2020 OLA Consulting Engineers, P.C.

- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains usingtee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Section 230523.101 " Valves for HVAC Piping," Section 230523.12
- Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- S. Install shutoff valve immediately upstream of each dielectric fitting.
- T. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

X. For piping passing through equipment room walls to occupied spaces provide split seals for sound and vibration attenuation between rooms. Refer to section 232116.

3.3 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples, or unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges, or nipples.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

- A. Install vibration isolation hangers or supports on all piping connected to motor driven equipment for a distance of 20' or the first two hangers. Refer to section 232112.13 Hydronic Piping specialties.
- B.]Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- C. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- D. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- E. Fiberglass Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

F. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- H. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 - 3. PVC Nonpressure Piping: Join according to ASTM D 2855.
- I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
- J. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.
- K. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.

3.6 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gages for HVAC Piping."

3.7 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
 - 1. pH: 9.0 to 10.5.
 - 2. "P" Alkalinity: 100 to 500 ppm.
 - 3. Boron: 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maximum of 100 ppm. Revise this value if closed system contains glycol.
 - 5. Corrosion Inhibitor:
 - a. Sodium Nitrate: 1000 to 1500 ppm.
 - b. Molybdate: 200 to 300 ppm.
 - c. Chromate: 200 to 300 ppm.
 - d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 - e. Chromate Plus Molybdate: 50 to 100 ppm each.
 - 6. Soluble Copper: Maximum of 0.20 ppm.
 - 7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum of 10 ppm.
 - 8. Total Suspended Solids: Maximum of 10 ppm.
 - 9. Ammonia: Maximum of 20 ppm.
 - 10. Free Caustic Alkalinity: Maximum of 20 ppm.
 - 11. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maximum of 1000 organisms/mL.
 - b. Total Anaerobic Plate Count: Maximum of 100 organisms/mL.
 - c. Nitrate Reducers: 100 organisms/mL.
 - d. Sulfate Reducers: Maximum of zero organisms/mL.
 - e. Iron Bacteria: Maximum of zero organisms/mL.
- B. Install bypass chemical feeders in each hydronic system where indicated.
 - 1. Install in upright position with top of funnel not more than 48 inches above the floor.
 - 2. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections.

- 3. Install NPS 3/4 pipe from chemical feeder drain to nearest equipment drain and include a full-size, full-port, ball valve.
- C. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.

7. Verify lubrication of motors and bearings.

END OF SECTION 232113

SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes special-duty valves and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Makeup-water piping.
 - 3. Condensate-drain piping.
 - 4. Blowdown-drain piping.
 - 5. Air-vent piping.
 - 6. Safety-valve-inlet and -outlet piping.
 - 7. Vibration Isolation
 - 8. Expansion fittings for hydronic piping
 - 9. Pipe guides and anchors

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE

- A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: **150** psig at **200 deg F**
 - 2. Makeup-Water Piping: 80 psig at 150 deg F
 - 3. Condensate-Drain Piping: **150 deg F**.
 - 4. Blowdown-Drain Piping: **200 deg F**
 - 5. Air-Vent Piping: 200 deg F.
 - 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523.10 "Valves for HVAC Piping,"
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230923.11 "Control Valves." Section 15901 "Control Valves."
- 2.3 Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Armstrong Pumps, Inc</u>.
 - b. <u>Bell & Gossett; a Xylem brand</u>.
 - c. <u>Nexus Valve, Inc</u>.
 - d. <u>TACO Comfort Solutions, Inc</u>.
 - e. <u>Tour & Andersson; available through Victaulic Company</u>.
 - f. Victaulic Company.
 - 2. Body: Bronze, ball or globe type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Seat: PTFE.

© 2020 OLA Consulting Engineers, P.C.

- 5. End Connections: Threaded or socket.
- 6. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 7. Handle Style: Lever, with memory stop to retain set position.
- 8. CWP Rating: Minimum **125 psig**
- 9. Maximum Operating Temperature: 250 deg F
- B. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Armstrong Pumps, Inc</u>.
 - b. <u>Bell & Gossett; a Xylem brand</u>.
 - c. <u>Nexus Valve, Inc</u>.
 - d. <u>Tour & Andersson; available through Victaulic Company</u>.
 - 2. Body: Cast-iron or steel body, globe pattern with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Stem Seals: EPDM O-rings.
 - 5. Disc: Glass and carbon-filled PTFE.
 - 6. Seat: PTFE.
 - 7. End Connections: Flanged or grooved.
 - 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 9. Handle Style: Lever, with memory stop to retain set position.
 - 10. CWP Rating: Minimum **125 psig**
 - 11. Maximum Operating Temperature: 250 deg F
- C. Diaphragm-Operated, Pressure-Reducing Valves: ASME labeled.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AMTROL, Inc</u>.
 - b. <u>Armstrong Pumps, Inc</u>.
 - c. <u>Bell & Gossett; a Xylem brand</u>.
 - d. <u>Spence Engineering Company, Inc</u>.
 - e. <u>Watts; a Watts Water Technologies company</u>.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Inlet Strainer: stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

- D. Diaphragm-Operated Safety Valves: ASME labeled.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AMTROL, Inc</u>.
 - b. <u>Armstrong Pumps, Inc</u>.
 - c. <u>Bell & Gossett; a Xylem brand</u>.
 - d. <u>Spence Engineering Company, Inc</u>.
 - e. <u>Watts; a Watts Water Technologies company</u>.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Wetted, Internal Work Parts: Brass and rubber.
 - 8. Inlet Strainer: stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- E. Automatic Flow-Control Valves: (NOT USED)
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flow Design, Inc</u>.
 - b. <u>Griswold Controls</u>.
 - c. <u>Nexus Valve, Inc</u>.
 - d. <u>NuTech Hydronic Specialty Products</u>.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.
 - 4. Combination Assemblies: Include bronze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: **175 psig**
 - 9. Maximum Operating Temperature: 200 deg F

2.4 AIR-CONTROL DEVICES

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. <u>AMTROL, Inc</u>.
- b. <u>Armstrong Pumps, Inc</u>.
- c. <u>Bell & Gossett; a Xylem brand</u>.
- d. TACO Comfort Solutions, Inc.
- e. John Wood
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2
 - 5. Discharge Connection: NPS 1/8.
 - 6. CWP Rating: 150 psig
 - 7. Maximum Operating Temperature: 225 deg F
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2
 - 5. Discharge Connection: NPS 1/4
 - 6. CWP Rating: 150 psig
 - 7. Maximum Operating Temperature: 240 deg F
- D. Expansion Tanks:
 - 1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested after taps are fabricated and shall be labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. unit only; sized for compression-tank diameter. Provide tank fittings for **125-psig** working pressure and **250 deg F** maximum operating temperature.
 - 3. Tank Drain Fitting: Brass body, nonferrous internal parts; **125-psig** working pressure and **240 deg F** maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.
 - 4. Gage Glass: Full height with dual manual shutoff valves, 3/4-inch- diameter gage glass, and slotted-metal glass guard.
- E. Diaphragm or Bladder-Type Expansion Tanks as scheduled or noted on plans:
 - 1. Tank: Welded steel, rated for **125-psig** working pressure and **375 deg F** maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Diaphragm or Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
 - 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.
- F. Tangential-Type Air Separators:

- 1. Tank: Welded steel; ASME constructed and labeled for **125-psig** minimum working pressure and **375 deg F** maximum operating temperature.
- 2. Air Collector Tube: Perforated stainless steel, constructed to direct released air into expansion tank.
- 3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
- 4. Blowdown Connection: Threaded.
- 5. Size: Match system flow capacity.
- G. In-Line Air Separators:
 - 1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
 - 2. Maximum Working Pressure: Up to **175 psig**
 - 3. Maximum Operating Temperature: Up to **300 deg F**
- H. Air Purgers:
 - 1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
 - 2. Maximum Working Pressure: **150 psig**
 - 3. Maximum Operating Temperature: 250 deg F

2.5 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: Stainless-steel, 20-mesh strainer, or perforated stainless-steel basket.
 - 4. CWP Rating: **125 psig**
- B. Basket Strainers:
 - 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: **125 psig**
- C. T-Pattern Strainers:
 - 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 - 2. End Connections: Grooved ends.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 - 4. CWP Rating: **750 psig**

- D. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch misalignment.
 - 4. CWP Rating: **150 psig**
 - 5. Maximum Operating Temperature: 250 deg F
- E. Spherical, Rubber, Flexible Connectors:
 - 1. Rubber flexible connections shall be peroxide cured EPDM throughout with Kevlar tire cord reinforcement. The raised face rubber flanges must encase solid steel rings to prevent pull out. Flexible cable wire is not acceptable. Sizes 1-1/2" through 14" shall have a ductile iron external ring between the two spheres. Sizes 3/4" through 2" may have one sphere, bolted threaded flange assemblies and cable retention.
 - 2. Minimum ratings shall be 250 psi at 170°F and 215 psi at 250°F. Higher published rated connectors may be used where required.
 - 3. Safety factors shall be a minimum of 3/1. All flexible connections must be factory tested to 150% of maximum pressure for 12 minutes before shipment. The piping gap shall be equal to the length of the expansion joint under pressure. Control rods passing through 1/2" thick Neoprene washer bushings large enough to take the thrust at 1000psi of surface area may be used on unanchored piping where the manufacturer determines the condition exceeds the expansion joint rating without them.
 - 4. All flexible joints shall be installed on the equipment side of the shut off valves. Expansion joints shall be SAFEFLEX SFDEJ, SFEJ, SFDCR or SFU and Control Rods CR as manufactured by Mason Industries, Inc
 - a. Body: Fiber-reinforced rubber body.
 - b. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 - c. Performance: Capable of misalignment.
 - d. CWP Rating: **150 psig**
 - e. Maximum Operating Temperature: 250 deg F
- F. Braided Pipe Flexible Connection;
 - 1. Flexible stainless steel hose shall have stainless steel braid and carbon steel fittings. Sizes 3"and larger shall be flanged. Smaller sizes may have male nipples. Minimum sizes listed below.

Flanged (Pipe Dia x Flexible Pipe Length)			
3" x 12"	6" x 18"	12" x 24"	
4" x 12"	8" x 18"	14" x 30"	
5" x 18"	10" x 18"	16" x 32"	

Male Nipples (Pipe Dia x Flexible Pipe Length)			
1/2" x 12"	1-1/4" x 12"	2" x 12"	
3/4" x 12"	1-1/2"x 12"	2-1/2" x 18"	
1" x 12"			

- 2. At equipment connections, hoses shall be installed on the equipment side of the shut-off valves horizontal and parallel to the equipment shafts wherever possible. Hoses shall be type FFL or type MN as manufactured by Mason Industries, Inc
- G. Vibration isolation pipe hangers; pre-compressed and locked at the rated deflection by means of a resilient up-stop to keep the piping or equipment at a fixed elevation during installation. The hangers shall be designed with a release mechanism to free the spring after the installation is complete and the hanger is subjected to its full load. Deflection shall be clearly indicated by means of a scale. Submittals shall include a drawing of the hanger showing the 30° capability. Hangers shall be type PC30N as manufactured by Mason Industries, Inc
- H. Acoustic Split Seals; consist of pipe halves with minimum 3/4" thick neoprene sponge cemented to the inner faces. The seal shall be tightened around the pipe to eliminate clearance between the inner sponge face and the piping. Grout seals to make it integral with the floor, wall or ceiling in masonry construction. Seals shall project a minimum of 1" past either face of the wall. Where temperatures exceed 240F, 10 lb. density fiberglass may be used in lieu of the sponge. Seals shall be Type SWS as manufactured by Mason Industries, Inc.

2.6 PACKLESS EXPANSION JOINTS

- A. Metal, Compensator Packless Expansion Joints: Metraflex Model HPFF for copper, Model HP for steel pipe
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flexicraft Industries</u>.
 - b. <u>Mason Industries, Inc</u>.
 - c. <u>Metraflex Company (The)</u>.
 - 2. Minimum Pressure Rating: 175 psig unless otherwise indicated.
 - 3. Description: Totally enclosed, externally pressurized, multi-ply bellows isolated from fluid flow by an internal pipe sleeve and external housing.
 - 4. Joint Axial Movement: 2 inches of compression and 1/2 inch of extension.
 - 5. Configuration for Copper Tubing: Multi-ply, phosphor-bronze bellows with copper pipe ends.
 - a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
 - b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.
 - 6. Configuration for Steel Piping: Multi-ply, stainless-steel bellows; steel-pipe end connections; and carbon-steel shroud.
 - a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 - b. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Threaded Welded.

2.7 GROOVED-JOINT EXPANSION JOINTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Anvil International</u>.
 - 2. <u>Grinnell G-Fire by Johnson Controls Company</u>.
 - 3. <u>Victaulic Company</u>.
- B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.
- C. Standard: AWWA C606, for grooved joints.
- D. Nipples: ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.
- E. Couplings: flexible type for steel-pipe dimensions. Include ferrous housing sections, Buna-N gasket suitable for diluted acid, alkaline fluids, and cold and hot water, and bolts and nuts.

2.8 ALIGNMENT GUIDES AND ANCHORS

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Advanced Thermal Systems, Inc</u>.
 - b. <u>Flexicraft Industries</u>.
 - c. <u>Mason Industries, Inc</u>.
 - d. <u>Metraflex Company (The)</u>.
- 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.
- 3. Steel Shapes and Plates: ASTM A 36/A 36M.
- 4. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
- 5. Washers: ASTM F 844, steel, plain, flat washers.
- 6. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened concrete, with tension and shear capacities appropriate for application. Threaded stud, expansion plug, nuts and washers shall be zink-coated carbon steel.
- 7. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened concrete, with tension and shear capacities appropriate for application.
 - a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - b. Stud: threaded stud washers and nuts shall be ASTM A 307, zinc-coated carbon steel.
 - c. Alignment Guides
 - 1) Horizontal split spider type guide Metraflex Style IV

- 2) Slide guide - Metraflex model PTFE
- 3) Pre-insulated guide Metraflex model PG PRE
- 4) Vertical glide riser - Metraflex model PGQ

d. Anchors

- 1) Anchor clamp Metraflex model PA
- 2) Structural I Beam Anchors Metraflex
- 3) Pre-insulated Anchor Metraflex model PAPI
- 4) Modular riser guide Metraflex modular riser with EPDM insert

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.
- G. All valves and specialties installed in the system shall have a pressure rating that exceeds the system working pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

- A. All valves and specialties installed in the system shall have a pressure rating that exceeds the system working pressure.
- B. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- C. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.
- D. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- E. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.

- F. Install tangential air separator in pump suction. Install blowdo
 - Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.
 - G. Install steel braided flexible pipe connections at all coil connections and at all piping connections to motor driven equipment.
 - H. Isolate piping from base mounted pumps with spherical rubber flexible connections
 - I. Install vibration isolation hangers or supports on all piping connected to motor driven equipment for a distance of 20' or the first two hangers.
 - J. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
 - K. Install expansion tanks on the floor. Vent and purge air from hydronic system, and **ensure that** tank is properly charged with air to suit system Project requirements. System pressure shall be 5 psi minimum residual at the top of the system.
 - L. Install Acoustic split seals on all hydronic piping 2" and over, penetrating mechanical equipment room walls.
 - M. Install Packless expansion fittings in all hydronic pipe sections, regardless of service, that is over 75' long straight run. Alternative pipe "expansion loop" may be used if space permits. Piping layout submittal shall indicate guide and ridged mount locations.

3.3 EXPANSION JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install grooved-joint expansion joints to grooved-end steel piping.
- C. Grooved end pipe applications can use multiple grooved coupling installed in an arrangement as approved by the manufacture for the specific application. The manufacture shall recommend the number, placement and arrangement in the piping systems. Submit to the engineer for review and approval.

3.4 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.
- C. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.5 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
- B. Install one guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint or loop not more than three pipe diameters from expansion joint.
- C. Attach guides to pipe, and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 232116

SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Refrigerant pipes and fittings.
 - 2. Refrigerant piping valves and specialties.
 - 3. Refrigerants.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of valve, refrigerant piping, and piping specialty.
 - 1. Include pressure drop, based on manufacturer's test data, for the following:
 - a. Thermostatic expansion valves.
 - b. Solenoid valves.
 - c. Hot-gas bypass valves.
 - d. Filter dryers.
 - e. Strainers.
 - f. Pressure-regulating valves.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data for EA Prerequisite "Fundamental Refrigerant Management"</u>: For refrigerants, indicating compliance with refrigerant management practices.
- C. Shop Drawings:
 - 1. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 - 2. Show interface and spatial relationships between piping and equipment.
 - 3. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-134a:
 - 1. Suction Lines for Air-Conditioning Applications: 115 psig.
 - 2. Suction Lines for Heat-Pump Applications: 225 psig.
 - 3. Hot-Gas and Liquid Lines: 225 psig.
- B. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig.
 - 2. Suction Lines for Heat-Pump Applications: 380 psig.
 - 3. Hot-Gas and Liquid Lines: 380 psig.
- C. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

2.2 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type L – Refer to section 3 for applications

- B. ASTM B 280, Type ACR. Refer to section 3 for applications
- C. Wrought-Copper Fittings: ASME B16.22.
- D. Wrought-Copper Unions: ASME B16.22.
- E. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- F. Brazing Filler Metals: AWS A5.8/A5.8M.
- G. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inchlong assembly.
 - 4. Working Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.
- H. Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, stainless-steel-wire-reinforced protective jacket.
 - 2. End Connections:
 - a. NPS 2 and Smaller: With threaded-end connections.
 - b. NPS 2-1/2 and Larger: With flanged-end connections.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inchlong assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

2.3 VALVES AND SPECIALTIES

- A. Manufactures:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Danfoss Inc</u>.
 - b. <u>Heldon Products; Henry Technologies</u>.
 - c. <u>Paul Mueller Company</u>.
 - d. <u>Danfoss Inc</u>.
 - e. <u>Parker Hannifin Corp</u>.
 - f. Keep-Rite Co.
- B. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 275 deg F.
- C. Packed-Angle Valves:
 - 1. Body and Bonnet: Forged brass or cast bronze
 - 2. Packing: Molded stem, back seating, and replaceable under pressure.
 - 3. Operator: Rising stem.
 - 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
 - 5. Seal Cap: Forged-brass or valox hex cap.
 - 6. End Connections: Socket, union, threaded, or flanged.
 - 7. Working Pressure Rating: 500 psig.
 - 8. Maximum Operating Temperature: 275 deg F.
- D. Check Valves:
 - 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 - 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 - 3. Piston: Removable polytetrafluoroethylene seat.
 - 4. Closing Spring: Stainless steel.
 - 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
 - 6. End Connections: Socket, union, threaded, or flanged.
 - 7. Maximum Opening Pressure: 0.50 psig.
 - 8. Working Pressure Rating: 500 psig.
 - 9. Maximum Operating Temperature: 275 deg F.
- E. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.
 - 2. Core: Removable ball-type check valve with stainless-steel spring.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Copper spring.
 - 5. Working Pressure Rating: 500 psig.
- F. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by a National Recognized Testing Laboratory (NRTL).
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 - 6. Working Pressure Rating: 400 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- G. Safety Relief Valves: Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.

- 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
- 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Threaded.
- 5. Working Pressure Rating: 400 psig.
- 6. Maximum Operating Temperature: 240 deg F.
- H. Thermostatic Expansion Valves: Comply with AHRI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F.
 - 6. Superheat: Adjustable or Nonadjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig.
- I. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 5. Seat: Polytetrafluoroethylene.
 - 6. Equalizer: Internal or External.
 - 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter and 24-V ac coil.
 - 8. End Connections: Socket.
 - 9. Throttling Range: Maximum 5 psig.
 - 10. Working Pressure Rating: 500 psig.
 - 11. Maximum Operating Temperature: 240 deg F.
- J. Straight-Type Strainers:
 - 1. Body: Brass or welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig.
 - 5. Maximum Operating Temperature: 275 deg F.
- K. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig.
 - 6. Maximum Operating Temperature: 275 deg F.
- L. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.

- 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
- 3. Indicator: Color coded to show moisture content in parts per million (ppm).
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 240 deg F.
- M. Replaceable-Core Filter Dryers: Comply with AHRI 730.
 - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina or charcoal.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig.
 - 8. Rated Flow: .
 - 9. Working Pressure Rating: 500 psig.
 - 10. Maximum Operating Temperature: 240 deg F.
- N. Permanent Filter Dryers: Comply with AHRI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina or charcoal.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig.
 - 8. Rated Flow: .
 - 9. Working Pressure Rating: 500 psig.
 - 10. Maximum Operating Temperature: 240 deg F.
- O. Mufflers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or flare.
 - 3. Working Pressure Rating: 500 psig.
 - 4. Maximum Operating Temperature: 275 deg F.
- P. Receivers: Comply with AHRI 495.
 - 1. Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 2. Comply with UL 207; listed and labeled by an NRTL.
 - 3. Body: Welded steel with corrosion-resistant coating.
 - 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 - 5. End Connections: Socket or threaded.
 - 6. Working Pressure Rating: 500 psig.
 - 7. Maximum Operating Temperature: 275 deg F.

© 2020 OLA Consulting Engineers, P.C.

- Q. Liquid Accumulators: Comply with AHRI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig.
 - 4. Maximum Operating Temperature: 275 deg F.
- R. FLEXIBLE CONNECTORS
 - 1. Corrugated stainless steel bronze hose with single layer of stainless steel exterior braiding, minimum 6 inches long with copper tube ends; for maximum working pressure 500 psi.

2.4 REFRIGERANTS

- A. ASHRAE 34, R-134a: Tetrafluoroethane.
- B. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.
- C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT;

- A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Safety-Relief-Valve Discharge Piping: Schedule 40, black-steel and wrought-steel fittings with welded joints or Type K or Type L, drawn-temper tubing and wrought-copper fittings with soldered joints
 - 1. NPS 1-1/2 and Smaller: Copper, Type L, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install diaphragm packless valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

- E. Install a full-size, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- H. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.
- L. Install receivers sized to accommodate pump-down charge.
- M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15 and in accordance the unit manufactures guidelines. Maintain refrigerant velocities within manufactures recommendations in order to keep oil entrained.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- R. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."
- V. Install refrigerant pipping to allow expansion and contraction of piping without deformation or bending or sagging. Provide expansion fittings, bends or elbows to allow expansion in accordance with manufactures temperature operating range.

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.
- F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and to restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.
- H. Welded Joints: Construct joints according to AWS D10.12M/D10.12.
- I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

- A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod, 1/4 inch.
 - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 6. NPS 2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod, 3/8 inch.
 - 8. NPS 3: Maximum span, 10 feet; minimum rod, 3/8 inch.
 - 9. NPS 4: Maximum span, 12 feet; minimum rod, 1/2 inch.
- D. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2: Maximum span, 10 feet; minimum rod, 3/8 inch.
 - 2. NPS 2-1/2: Maximum span, 11 feet; minimum rod, 3/8 inch.
 - 3. NPS 3: Maximum span, 12 feet; minimum rod, 3/8 inch.
 - 4. NPS 4: Maximum span, 14 feet; minimum rod, 1/2 inch.
- E. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.

- b. System shall maintain test pressure at the manifold gage throughout duration of test.
- c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
- d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
- B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300

SECTION 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following water treatment for closed-loop hydronic systems:
 - 1. Manual chemical-feed equipment.
 - 2. Chemicals.
 - 3. Glycol Automatic feed Unit
- B. Related Requirements:
 - 1. Section 232533 "HVAC Makeup-Water Filtration Equipment" for water softeners, RO equipment, and filtration equipment.

1.3 DEFINITIONS

- A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- B. RO: Reverse osmosis.
- C. TSS: Total suspended solids are solid materials, including organic and inorganic, that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.4 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 - 1. Bypass feeders.
 - 2. Water meters.
 - 3. Inhibitor injection timers.
 - 4. pH controllers.
 - 5. TSS controllers.
 - 6. Chemical solution tanks.
 - 7. Injection pumps.
 - 8. Chemical test equipment.
 - 9. Chemical material safety data sheets.

© 2020 OLA Consulting Engineers, P.C.

- B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to hydronic systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.
- C. Field quality-control reports.
- D. Other Informational Submittals:
 - 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.
 - 2. Water Analysis: Illustrate water quality available at Project site.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC watertreatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.8 MAINTENANCE SERVICE

- A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 - 1. Initial water analysis and HVAC water-treatment recommendations.

- 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
- 3. Periodic field service and consultation.
- 4. Customer report charts and log sheets.
- 5. Laboratory technical analysis.
- 6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Aqua-Chem, Inc</u>.
 - 2. <u>Cascade Water Services, Inc</u>.
 - 3. <u>Metro Group, Inc. (The)</u>.
 - 4. <u>Watcon, Inc</u>.
 - 5. Water Services Inc.

2.2 PERFORMANCE REQUIREMENTS

- A. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.
- B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- C. Closed hydronic systems, including hot-water heating, shall have the following water qualities:
 - 1. pH: Maintain a value within 9.0 to 10.5.
 - 2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
 - 3. Boron: Maintain a value within 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
 - 5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
 - 6. TSS: Maintain a maximum value of 10 ppm.
 - 7. Ammonia: Maintain a maximum value of 20 ppm.
 - 8. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
 - 9. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 - c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 - d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 - e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.3 MANUAL CHEMICAL-FEED EQUIPMENT

- A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 - 1. Capacity: 5 gal..
 - 2. Minimum Working Pressure: 125 psig.

2.4 AUTOMATIC CHEMICAL-FEED EQUIPMENT (NOT USED)

- A. Water Meter:
 - 1. AWWA C700, oscillating-piston, magnetic-drive, totalization meter.
 - 2. Body: Bronze.
 - 3. Minimum Working-Pressure Rating: 150 psig.
 - 4. Maximum Pressure Loss at Design Flow: 3 psig.
 - 5. Registration: Gallons or cubic feet.
 - 6. End Connections: Threaded.
 - 7. Controls: Flow-control switch with normally open contacts; rated for maximum 10 A, 250-V ac; and that will close at adjustable increments of total flow.
 - 8. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Water Meter:
 - 1. AWWA C701, turbine-type, totalization meter.
 - 2. Body: Bronze.
 - 3. Minimum Working-Pressure Rating: 100 psig.
 - 4. Maximum Pressure Loss at Design Flow: 3 psig.
 - 5. Registration: Gallons or cubic feet.
 - 6. End Connections: Threaded.
 - 7. Control: Low-voltage signal capable of transmitting 1000 feet.
 - 8. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Water Meter:
 - 1. AWWA C701, turbine-type, totalization meter.
 - 2. Body: Bronze or Epoxy-coated cast iron.
 - 3. Minimum Working-Pressure Rating: 150 psig.
 - 4. Maximum Pressure Loss at Design Flow: 3 psig.
 - 5. Registration: Gallons or cubic feet.
 - 6. End Connections: Flanged.
 - 7. Controls: Flow-control switch with normally open contacts; rated for maximum 10 A, 250-V ac; and that will close at adjustable increments of total flow.

- 8. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Chemical Solution Tanks:
 - 1. Chemical-resistant reservoirs fabricated from high-density opaque polyethylene with minimum 110 percent containment vessel.
 - 2. Molded cover with recess for mounting pump.
 - 3. Capacity: 50 gal..
- E. Chemical Solution Injection Pumps:
 - 1. Self-priming, positive displacement; rated for intended chemical with minimum 25 percent safety factor for design pressure and temperature.
 - 2. Adjustable flow rate.
 - 3. Metal and thermoplastic construction.
 - 4. Built-in relief valve.
 - 5. Fully enclosed, continuous-duty, single-phase motor. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Chemical Solution Tubing: Polyethylene tubing with compression fittings and joints except ASTM A 269, Type 304, stainless steel for steam boiler injection assemblies.
- G. Injection Assembly:
 - 1. Quill: Minimum NPS 1/2 with insertion length sufficient to discharge into at least 25 percent of pipe diameter.
 - 2. Ball Valve: Two-piece, stainless steel; selected to fit quill.
 - 3. Packing Gland: Mechanical seal on quill of sufficient length to allow quill removal during system operation.
 - 4. Assembly Pressure/Temperature Rating: Minimum 600 psig at 200 deg F.

2.5 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.

2.6 GLYCOL MAKE UP UNIT

A. Factory packaged and assembled simplex or duplex pump, mixing tank, and expansion tank, with level and pump controls, starters and control wiring.

B. Reservoir

1. Industrial grade polyethylene tank

- 2. Suited for glycol solution or potable water
- 3. 55 gallon capacity
- 4. 2" opening on top for ventilation/fill
- 5. Observable fluid level with scale
- 6. Removable Lid
- 7. Y-strainer

C. Pump

- 1. 10 GPM capacity at 30 psi, 1/2 HP,
- 2. low pressure
- 3. 5 GPM capacity at 60 psi, 3/4 HP, high pressure
- 4. Operates as needed to restore system pressure with the solution contained in the unit's reservoir
- 5. Pump isolation valves, check and balance valve
- 6. Discharge pressure gage
- 7. Motor contactor with pressure control
- 8. System HOA switch with green running light
- 9. Single power connectio
- D. Pressure Control
 - 1. Cut off provides protection from excess pressure
 - 2. Cut in 3-10 psi,cut out 9-30 psi for GMU30
 - 3. Cut in 10-45 psi,cut out 20-60 psi for GMU60

E. Level Control

- 1. Safely shuts down pump when solution level is low
- 2. Remote alarm contact
- 3. Red indicator light

F. Valves

- 1. Shut-off
- 2. Non-slam check
- 3. Calibrated balance valve

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

- B. Install seismic restraints for equipment and floor-mounting accessories and anchor to building structure. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.
- C. Install water testing equipment on wall near water chemical application equipment.
- D. Install interconnecting control wiring for chemical treatment controls and sensors.
- E. Mount sensors and injectors in piping circuits.
- F. Bypass Feeders: Install in closed hydronic systems, including hot-water heating chilled water dual-temperature water and glycol cooling, and equipped with the following:
 - 1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 - 2. Install water meter in makeup-water supply.
 - 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 - 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below the feeder inlet.
 - 5. Install a swing check on the inlet after the isolation valve.

3.3 CONNECTIONS

- A. Where installing piping adjacent to equipment, allow space for service and maintenance.
- B. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Comply with requirements in Section 232116 "Hydronic Piping Specialties."
- C. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 230523.10 " Valves for HVAC Piping," Section 230523.12
- D. Comply with requirements in Section 221119 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.
- E. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.
- F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of hydronic systems' startup procedures.
 - 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 - 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 - 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
 - 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- C. Equipment will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. At four-week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to "Performance Requirements" Article.
- F. Comply with ASTM D 3370 and with the following standards:
 - 1. Silica: ASTM D 859.
 - 2. Acidity and Alkalinity: ASTM D 1067.
 - 3. Iron: ASTM D 1068.
 - 4. Water Hardness: ASTM D 1126.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.
- B. Training: Provide a "how-to-use" self-contained breathing apparatus video that details exact operating procedures of equipment.

END OF SECTION 232513

SECTION 23 29 13 - VARIABLE FREQUENCY DRIVES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Variable frequency drives.

1.02 RELATED SECTIONS

- A. Section 23 21 23 Hydronic Pumps.
- B. Section 16195 Electrical Identification: Engraved nameplates.

1.03 REFERENCES

- A. Division 1 Reference Standards: Requirements for references and standards.
- B. NEMA ICS 3.1 Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems.
- C. NEMA ICS 7 Industrial Control and Systems: Adjustable Speed Drives.
- D. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
- E. NETA ATS Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems (International Electrical Testing Association).
- F. NFPA 70 National Electrical Code.

1.04 SUBMITTALS FOR REVIEW

- A. Division 1 Submittals: Procedures for submittals.
- B. Product Data: Provide catalog sheets showing voltage, controller size, ratings and size of switching and over current protective devices, short circuit ratings, dimensions, and enclosure details.
- C. Shop Drawings: Indicate front and side views of enclosures with overall dimensions and weights shown; conduit entrance locations and requirements; and nameplate legends.

1.05 SUBMITTALS FOR INFORMATION

- A. Division 1 Submittals: Submittals for information.
- B. Test Reports: Indicate field test and inspection procedures and test results.

- C. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by testing agency specified under Regulatory Requirements. Include instructions for storage, handling, protection, examination, preparation, and installation of Product.
- D. Manufacturer's Field Reports: Indicate start-up inspection findings.

1.06 SUBMITTALS FOR CLOSEOUT

- A. Division 1 Contract Closeout.
- B. Operation Data: NEMA ICS 3.1. Include instructions for starting and operating controllers, and describe operating limits that may result in hazardous or unsafe conditions.
- C. Maintenance Data: NEMA ICS 3.1. Include routine preventive maintenance schedule.
- D. Furnish two of each air filters.

1.07 REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70.
- B. Products: Listed and classified by Underwriters Laboratories, Inc. as suitable for the purpose specified and indicated.

1.08 DELIVERY, STORAGE, AND HANDLING

- A. Division 1 Material and Equipment: Transport, handle, store, and protect products.
- B. Accept controllers on site in original packing. Inspect for damage.
- C. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
- D. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to components, enclosure, and finish. MAINTENANCE SERVICE
- A. Division 1 Contract Closeout.
- B. Provide service and maintenance of controller for two years from Date of Substantial Completion.
- PART 2 PRODUCTS

1.09

2.01 MANUFACTURERS

A. Equipment and devices can be provided by Danfoss Graham VLT 6000 Series 414-355-8800. B. Manufacturer Qualifications: Company specializing in manufacturing variable frequency controllers with minimum five years documented experience, and with service facilities within 50 miles of Project.

2.02 DESCRIPTION

- A. Enclosed variable frequency controllers suitable for operating the indicated loads, in conformance with requirements of NEMA ICS 7.
- B. Select unspecified features and options in accordance with NEMA ICS 3.1.
- C. Furnish complete variable frequency VFDs as specified herein for the pumps designated on the drawing schedules to be variable speed. All standard and optional features shall be included within the VFD enclosure, unless otherwise specified. VFD shall be housed in a metal NEMA 1 enclosure, or other NEMA type according to the installation and operating conditions at the job site. The VFD's UL listing shall allow mounting in plenum or other air handling compartments. If a NEMA 12 enclosure is required for the plenum rating, the manufacturer must supply a NEMA 12 rated VFD. VFD's used out doors must be in a NEMA 4x rated enclosure.
- D. The VFD shall convert incoming fixed frequency three-phase AC power into a variable frequency and voltage for controlling the speed of three-phase AC motors. The motor current shall closely approximate a sine wave. Motor voltage shall be varied with frequency to maintain desired motor magnetization current suitable for centrifugal pump and fan control and to eliminate the need for motor derating.
- E. With the motor's rated voltage applied to the VFD input, the VFD shall allow the motor to produce full rated power at rated amps, RMS fundamental volts, and speed without using the motor's service factor. VFDs utilizing sine weighted/coded modulation (with or without 3rd harmonic injection) must provide data verifying that the motors will not draw more than full load current during full load and full speed operation.
- F. The VFD shall include an input full-wave bridge rectifier and maintain a fundamental power factor near unity regardless of speed or load.
- G. The VFD and options shall be tested to ANSI/UL Standard 508. The complete VFD, including all specified options, shall be assembled by the manufacturer, which shall be UL-508 certified for the building and assembly of option panels. Assembly of the option panels by a third-party panel shop is not acceptable. The appropriate UL stickers shall be applied to both the VFD and option panel, in the case where these are not contained in one panel. When these VFDs are to be located in Canada, CSA or C-UL certifications shall apply. Both VFD and option panel shall be manufactured in ISO 9001 certified facilities.
- H. The VFD shall have DC link reactors on both the positive and negative rails of the DC bus to minimize power line harmonics. VFDs without DC link reactors shall provide a minimum 3% impedance line reactor.
- I. The VFD's full load amp rating shall meet or exceed NEC Table 430-150. The VFD shall be able to provide full rated output current continuously, 110% of rated current for 60 seconds and 160% of rated current for up to 0.5 second while starting.

- J. The VFD shall be able to provide full torque at any selected frequency from 28 Hz to base speed to allow driving direct drive fans without derating.
- K. An automatic energy optimization selection feature shall be provided standard in the VFD. This feature shall automatically and continually monitor the motor's speed and load and adjust the applied voltage to maximize energy savings and provide up to an additional 3% to 10% energy savings.
- L. Input and output power circuit switching shall be able to be accomplished without interlocks or damage to the VFD. Switching rate may be up to 1 time per minute on the input and unlimited on the output.
- M. An automatic motor adaptation test algorithm shall measure motor stator resistance and reactance to optimize performance and efficiency. It shall not be necessary to run the motor or de-couple the motor from the load to run the test.
- N. Galvanic and/or optical isolation shall be provided between the VFD's power circuitry and control circuitry to ensure operator safety and to protect connected electronic control equipment from damage caused by voltage spikes, current surges, and ground loop currents. VFDs not including either galvanic or optical isolation on both analog I/O and discrete I/O shall include additional isolation modules.
- O. VFD shall minimize the audible motor noise through the used of an adjustable carrier frequency. The carrier frequency shall be automatically adjusted to optimize motor and VFD efficiencies while reducing motor noise.

2.03 PROTECTIVE

FEATURES

- A. A minimum of Class 20 I²t electronic motor overload protection for single motor applications and thermal-mechanical overloads for multiple motor applications shall be provided.
- B. Protection against input transients, loss of AC line phase, output short circuit, output ground fault, over voltage, under voltage, VFD over temperature and motor over temperature. The VFD shall display all faults in plain English. Codes are not acceptable.
- C. Protect VFD from sustained power or phase loss. The VFD shall provide full rated output with an input voltage as low as 90% of the nominal. The VFD will continue to operate with reduced output with an input voltage as low as 164 V AC for 208/230 volt units, and 313 V AC for 460 volt units.
- D. The VFD shall incorporate a motor preheat circuit to keep the motor warm and prevent condensation build up in the stator.
- E. VFD package shall include semi-conductor rated input fuses to protect power components.
- F. To prevent breakdown of the motor winding insulation, the VFD shall be designed to comply with IEC Part 34-17. Otherwise the VFD manufacturer must ensure that inverter rated motors are supplied.

- G. VFD shall include a "signal loss detection" circuit to sense the loss of an analog input signal such as 4 to 20 mA or 2 to 10 V DC, and shall be programmable to react as desired in such an instance.
- H. VFD shall function normally when the keypad is removed while the VFD is running and continue to follow remote commands. No warnings or alarms shall be issued as a result of removing the keypad.
- I. VFD shall catch a rotating motor operating forward or reverse up to full speed.
- J. VFD shall be rated for 100,000 amp interrupting capacity (AIC).
- K. VFD shall include current sensors on all three output phases to detect and report phase loss to the motor. The VFD will identify which of the output phases is low or lost.
- L. VFD shall continue to operate without faulting until input voltage reaches 300 V AC on 208/230 volt VFDs, and 539 V AC on 460 volt VFDs.
- M. All three pole variable frequency controllers (VFD) either integral to equipment or field supplied shall contain voltage fault protection specifically designed to protect all motors and all other 3 phase loads, and associated control circuits from failure or damage due to voltage unbalance, over/under voltage, phase loss, reversal, incorrect sequencing and rapid short cycling." The VFD shall be arranged to monitor critical faults including phase loss or reversal, and when detected, de-energize the load. It shall monitor non-critical faults including high/low voltage, voltage unbalance and when detected, after a time delay deenergize the load."

2.04 INTERFACE

FEATURES

- A. Hand/Start, Off/Stop and Auto/Start selector switches shall be provided to start and stop the VFD and determine the speed reference.
- B. The VFD shall be able to be programmed to provide a 24 V DC output signal to indicate that the VFD is in Auto/Remote mode.
- C. The VFD shall provide digital manual speed control. Potentiometers are not acceptable.
- D. Lockable, alphanumeric backlit display keypad can be remotely mounted up to 10 feet away using standard 9-pin cable.
- E. The keypads for all sizes of VFDs shall be identical and interchangeable.
- F. To set up multiple VFDs, it shall be possible to upload all setup parameters to the VFD's keypad, place that keypad on all other VFDs in turn and download the setup parameters to each VFD. To facilitate setting up VFDs of various sizes, it shall be possible to download from the keypad only size independent parameters.
- G. Display shall be programmable to display in 9 languages including English, Spanish and French.

- H. The display shall have four lines, with 20 characters on three lines and eight large characters on one line.
- I. A red FAULT light, a yellow WARNING light and a green POWER-ON light shall be provided. These indications shall be visible both on the keypad and on the VFD when the keypad is removed.
- J. A quick setup menu with factory preset typical HVAC parameters shall be provided on the VFD eliminating the need for macros.
- K. The VFD shall include a standard RS-485 communications port and capabilities to be connected at a future date to a Johnson Controls N2 Metasys or Siemens FLN system at no additional cost to the owner. The connection shall be software selectable by the user.
- L. As a minimum, the following points shall be controlled and/or accessible:
 - 1. VFD Start/Stop
 - 2. Speed reference
 - 3. Fault diagnostics
 - 4. Meter points
 - a. Motor power in HP
 - b. Motor power in kW
 - c. Motor kW-hr
 - d. Motor current
 - e .Motor voltage
 - f. Hours run
 - g. Feedback signal #1
 - h. Feedback signal #2
 - i. DC link voltage
 - j. Thermal load on motor
 - k. Thermal load on VFD
 - 1. Heat sink temperature
 - 5. Four additional Form C 230 volt programmable relays shall be available for factory or field installation within the FD.
- M. The communication protocol shall be native BACNET, LonWorks communication shall be available for factory or field installation within the VFD.
- N. Two set-point control interface (PID control) shall be standard in the unit. VFD shall be able to look at two feedback signals, compare with two set-points and make various process control decisions.
- O. An output signal as a start command to actuate external equipment before allowing the VFD to start.
- P. The following displays shall be accessible from the control panel in actual units: Reference Signal Value in actual units, Output Frequency in Hz or percent, Output Amps, Motor HP, Motor kW, kWhr, Output Voltage, DC Bus Voltage, VFD Temperature in degrees, and Motor Speed in engineering units per application (in GPM, CFM, etc.). VFD will read out

the selected engineering unit either in a linear, square or cubed relationship to output frequency as appropriate to the unit chosen.

- Q. The display shall be programmed to read in inches of water column (in-wg) for an air handler application, pressure per square inch (psi) for a pump application, and temperature (°F) for a cooling tower application.
- R. VFD shall be able to be programmed to sense the loss of load and signal a no load/broken belt warning or fault.
- S. If the temperature of the VFD's heat sink rises to 80°C, the VFD shall automatically reduce its carrier frequency to reduce the heat sink temperature. If the temperature of the heat sink continues to rise the VFD shall automatically reduce its output frequency to the motor. As the VFD's heat sink temperature returns to normal, the VFD shall automatically increase the output frequency to the motor and return the carrier frequency to it's normal switching speed.
- T. The VFD shall have temperature controlled cooling fans for quiet operation and minimized losses.
- U. The VFD shall store in memory the last 10 faults and related operational data.
- V. Eight programmable digital inputs shall be provided for interfacing with the systems control and safety interlock circuitry.
- W. Two programmable relay outputs, one Form C 240 V AC, one Form A 30 V AC, shall be provided for remote indication of VFD status.
- X. Three programmable analog inputs shall be provided and shall accept a direct-or-reverse acting signal. Analog reference inputs accepted shall include two voltage (0 to 10 V DC, 2 to 10 V DC) and one current (0 to 20 mA, 4 to 20 mA) input.
- Y. Two programmable 0 to 20 mA analog outputs shall be provided for indication of VFD status. These outputs shall be programmable for output speed, frequency, current and power. They shall also be programmable to provide a selected 24 V DC status indication.
- Z. Under fire mode conditions, the VFD shall be able to be programmed to automatically default to a preset speed.

2.05 ADJUSTMENTS

- A. VFD shall have an adjustable carrier frequency in steps of not less than 0.1 kHz to allow tuning the VFD to the motor.
- B. Sixteen preset speeds shall be provided.
- C. Four acceleration and four deceleration ramps shall be provided. Accel and decel time shall be adjustable over the range from 0 to 3,600 seconds to base speed. The shape of these curves shall be automatically contoured to ensure no-trip acceleration and deceleration.

© 2020 OLA Consulting Engineers, P.C.

- D. Four current limit settings shall be provided.
- E. If the VFD trips on one of the following conditions, the VFD shall be programmable for automatic or manual reset: under voltage, over voltage, current limit and inverter overload.
- F. The number of restart attempts shall be selectable from 0 through 20 or infinitely and the time between attempts shall be adjustable from 0 through 600 seconds.
- G. An automatic "on delay" may be selected from 0 to 120 seconds.

2.06 BYPASS

- A. Provide a manual 3-contactor bypass consisting of a door interlocked main fused disconnect padlockable in the off position, a built-in motor starter and a four position DRIVE/OFF/BYPASS/TEST switch controlling three contactors. In the DRIVE position, the motor is operated at an adjustable speed from the VFD. In the OFF position, the motor and VFD are disconnected. In the BYPASS position, the motor is operated at full speed from the AC power line and power is disconnected from the VFD so that service can be performed. In the TEST position, the motor is operated at full speed from the AC line power while power is applied to the input of the VFD. This allows the VFD to be given an operational test while continuing to run the motor at full speed in bypass. In case of an external safety fault, a customer supplied normally closed dry contact shall be able to stop the motor whether in DRIVE or BYPASS mode.
- B. Service personnel shall be able to defeat the main power disconnect and open the bypass enclosure without disconnecting power. This shall be accomplished through the use of a specially designed tool and mechanism while meeting all local and national code requirements for safety.
- C. Bypass shall only be required for applications where equipment is stand alone. Such as an air handling unit or roof top AC unit. For application where redundant pumps, fans or other equipment and the standby equipment utilizes a VFD bypass is not required.
- D. Bypass is not required on redundant equipment ie. Pumps.

2.07 SERVICE CONDITIONS

- A. Ambient temperature, -10 to 40° C (14 to 104° F).
- B. 0 to 95% relative humidity, non-condensing.
- C. Elevation to 3,300 feet without derating.
- D. AC line voltage variation, -10 to +10% of nominal with full output.
- E. No side clearance shall be required for cooling of any units. All power and control wiring shall be done from the bottom.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that surface is suitable for controller installation.

- B. Do not install controller until building environment can be maintained within the service conditions required by the manufacturer.
- C. Verify that field measurements are as indicated on shop drawings and as instructed by manufacturer.

3.02 INSTALLATION

- A. Section 01400 Quality Control: Manufacturer's instructions.
- B. Install in accordance with NEMA ICS 3.1.
- C. Tighten accessible connections and mechanical fasteners after placing controller.
- D. Provide fuses in fusible switches; refer to Section 16477 for product requirements.
- E. Select and install overload heater elements in motor controllers to match installed motor characteristics.
- F. Provide engraved plastic nameplates; refer to Section 16195 for product requirements and location.
- G. Neatly type label inside each motor controller door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating. Place in clear plastic holder.

3.03 FIELD QUALITY CONTROL

- A. Inspect and test in accordance with NETA ATS, except Section 4.
- B. Perform inspections and tests listed in NETA ATS, Section 7.16.2.

3.04 MANUFACTURER'S FIELD SERVICES

A. The manufacturer shall provide start-up commissioning of the VFD and its optional circuits by a factory certified service technician who is experienced in start-up and repair services. Sales personnel and other agents who are not factory certified shall not be acceptable as commissioning agents. Start-up services shall include checking for verification of proper operation and installation for the VFD, its options and its interface wiring to the building automation system.

3.05 ADJUSTING

- A. Division 1 Contract Closeout.
- B. Make final adjustments to installed controller to assure proper operation of load system. Obtain performance requirements from installer of driven loads.

3.06 DEMONSTRATION AND INSTRUCTIONS

- A. Division 1 Contract Closeout:
- B. Demonstrate operation of controllers in automatic and manual modes. Furnish 2 (1) one hour training sessions on the project site with the owner, by factory authorized personal.

END OF SECTION

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings.
 - 3. Double-wall round and flat-oval ducts and fittings.
 - 4. Sheet metal materials.
 - 5. Duct liner.
 - 6. Sealants and gaskets.
 - 7. Hangers and supports.
 - 8. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

- B. Sustainable Design Submittals:
 - 1. Product Data: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 - 3. Product Data: For sealants, indicating VOC content.
 - 4. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.
 - 5. Laboratory Test Reports: For antimicrobial coatings, indicating compliance with requirements for low-emitting materials.
- C. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment.
 - 13. Seismic restraints, where applicable
 - 14. Vibration isolation.
- D. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints. For seismic bracing only

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.

- 5. Penetrations of smoke barriers and fire-rated construction.
- 6. Items penetrating finished ceiling including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- C. Construct ductwork to NFPA 90A and NFPA 90B standards. All work, materials and equipment shall comply with the latest requirements of NFPA 90A, standards and the local authorities having jurisdiction.
- D. All ductwork and fan and apparatus plenums constructed and having supported in accordance with the latest standards of the ASHRAE Guide and the Sheet Metal and Air Conditioning Contractors National Association (SMACNA).
- E. Bracing, gauges, and supports indicated in SMACNA manuals are the minimum acceptable. Additional bracing or supports shall be installed to eliminate any distortion or vibration when the systems are operating or under tests.

PART 2 - PRODUCTS

2.1 General

- A. General: Non-combustible or conforming to requirements for Class 1 air duct materials, or UL 181.
- B. Galvanized Steel Ducts: ASTM A525 and ASTM A527 galvanized steel sheet, lock-forming quality, having zinc coating of 1.25 oz per sq ft for each side in conformance with ASTM A90.
- C. Dissimilar Metals: Separate connections between dissimilar metals with Dielectric Insulation. Joints between dissimilar metal duct sections to be made with Companion flanges separated by a Neoprene gasket.

- D. Fasteners: Rivets, bolts, screens, and other hardware used in the sheet metal construction to be constructed of materials identical or similar to the duct material to prevent galvanic corrosion.
- E. Sealant: Non-hardening, water resistant, fire resistive, compatible with mating materials; liquid used alone or with tape, or heavy mastic as manufactured by 3M Company EC-800.
- F. Hanger Rod: Steel, galvanized; threaded both ends, threaded one end, or continuously threaded.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- B. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard." For standard applications
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- G. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B. For Humid and damp area applications including Natatoriums and Saunas.
- H. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- I. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- J. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- C. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
- F. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.5 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials

involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
- b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard." For standard applications.
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- **A.** Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B. For application in damp or humid environments including natatoriums and Saunas.

2.6 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.

- 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.
- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black OR White.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.7 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - a. Maximum Thermal Conductivity:
 - 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2) Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating.

Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

- 3. Solvent Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
- B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- C. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B. For application in damp or humid environments including natatoriums and Saunas.
- D. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel, aluminum, or stainless steel to match ductwork; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- E. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
 - 9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other

buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.8 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.
 - 8. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 - 9. Service: Indoor or outdoor.
 - 10. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.9 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.10 SEISMIC-RESTRAINT DEVICES

A. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.

- 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- B. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- C. Restraint Cables: ASTM A 603, galvanized or ASTM A 492, stainless-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths and with fewest possible joints
- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections. Increase duct sizes gradually, not exceeding 15 degrees divergence wherever possible; maximum 0 degrees divergence upstream of equipment and 45 degrees convergence downstream.
- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 2 inch, plus allowance for insulation thickness and with sufficient space around equipment to allow normal operating and maintenance activities. Provide easements where ductwork conflicts with piping and structure. Where easements exceed 10 percent duct area, split into two ducts maintaining original duct area.

- H. Provide standard 45 degree lateral wye takeoffs unless otherwise indicated where 90 degree conical tee connections may be used.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for all installations as well as fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Provide openings in ductwork where required to accommodate thermometers and controllers. Provide pilot tube openings where required for testing of systems, complete with metal can with spring device or screw to ensure against air leakage. Where openings are provided in insulated ductwork, install insulation material inside a metal ring.
- N. Where hanger rods must pierce ducts, provide closure plates around rods and fasten to duct using screws, rivets or welding. Seal with sealing compound.
- O. Construct T's, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible and where rectangular elbows are used, provide airfoil turning vanes. Where acoustical lining is indicated, provide turning vanes of perforated metal with glass fiber insulation.
- P. Where ductwork penetrates roofs or outside walls, seal the space around ductwork air tight with fire rated expanding spray foam sealer similar to 3-M Fire Block Foam. This also applies to duct roof penetrations into roof curbs.
- *Q.* All ductwork shall be inspected and pressure tested prior to enclosing in general construction or concealment above hung ceilings

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system. Use clear duct sealant.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. Where indicated on plans, and specifically gymnasium, stage and cafeteria, Prime ductwork and paint with one coat enamel base paint. Color as per architectural plans. All ductwork surface finish shall be treated prior to priming by "pickling" in accordance with industry standards and paint manufactures requirements.
- G. Duct sealants used on exposed ductwork of any type shall be clear.

3.3 DUCT SEALING

A. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible": typical for all services;

Leakage and Seal Classification Table				
System operating pressure in wc		<2" low	2"≥med<3"	High≥3"
Seal Class		c	В	A
Sealing		Transvers e joints	Transverse joints and seams	Transverse joints and seams and all wall penetrations
Leakage class CL factor		24	12	4
	above, any variable ai ss that is upstream of th			

В.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.

- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- G. Where hanger rods must pierce ducts, provide closure plates around rods and fasten to duct using screws, rivets or welding. Seal with sealing compound

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
- C. INSULATED FLEXIBLE DUCTS
 - 1. UL 181, Class 0, interlocking spiral of aluminum foil; fiberglass insulation; polyethylene vapor barrier film.
 - 2. Pressure Rating: 8 inches WG positive or negative.
 - 3. Maximum Velocity: 5000 fpm
 - 4. Temperature Range: -20 degrees F to 250 degrees F.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. All Ducts with a Pressure Class equal to or Higher Than 2-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each system of the designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

- 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 SMOKE AND HEAT DETECTOR INSTALLATION

A. Duct mounted smoke and heat detectors will be supplied under the Electrical Division. This Contractor to coordinate duct sizes and provide labor to install sensing probes into ductwork.

3.11 DUCTWORK PROTECTION

- A. Duct work under construction or alteration shall not be left open ended during dust producing construction. All new and existing ductwork systems in the area of alteration or under construction shall be protected during construction. Open ends ducts shall be sealed with sheet metal or as approved.
- B. For unenclosed buildings ductwork shall be kept dry and water tight. Seal open ends water tight during construction to prevent water infiltration. Keep all acoustical lining dry during construction. Lining that has become we shall be replaced. all incomplete ductwork being used to condition spaces in phase I or phase II that will be completed under a later phase must be protect from being internally contaminated by construction dust. All returns opening must have filters placed over then to prevent dust from being returned to the unit.

3.12 DUCT SCHEDULE

- A. Fabricate ducts using the following material;
 - 1. Underground Ducts: Concrete-encased, PVC-coated, stainless steel, fiberglass
 - 2. Natatorium ductwork PVC coated.
 - 3. Kitchen exhaust welded stainless steel or black steel 18 gage
 - 4. Smoke purge ductwork welded stainless steel or black steel. 18 gage
 - 5. Shower room exhaust aluminum

- 6. Dryer exhaust aluminum
- 7. Outside air intake plenum and ductwork Aluminum
- 8. All exposed ductwork in any occupied area, (does not include MER), shall be constructed of double wall round or oval spiral ductwork.
- B. Duct Pressure class;
 - 1. All duct systems shall be constructed to have a pressure classification based on the maximum static pressure (positive or negative) developed by the air handling apparatus connected to the ductwork system. Unless otherwise noted below, refer to the equipment schedules and equipment notes for the design operating pressure of each system. Systems with operating pressures between pressure classes shall be constructed to the next higher-pressure class.

Pressure Classification Table										
System operating pressure (OP) in wc			OP≤1"	1"≥OP<2"	2"≥OP<3"	3"≥OP<4"	4"≥OP<6"	6"≥OP<10"		
SMACNA Construction classification			1"	2"	3"	4"	6"	10"		

- 2. All ductwork shall be constructed in accordance with the leakage and seal classification. Note that the leakage and seal classification required by current code is more stringent than SMACNA requirements.
- 3. The following Leakage and Seal Classification Table applies to all ductwork, supply, exhaust, or return air, rectangular, round, or oval single or double wall. Every system

Leakage and Seal Classification Table								
System operating pressure in wc			<2" low	2"≥med<3"	High≥3"			
Seal Class			С	В	А			
Sealing			Transvers e joints	Transverse joints and seams	Transverse joints and seams and all wall penetrations			
Leakage class CL factor			24	12	4			
		ve, any variable air at is upstream of the	-		-			

- C. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. PVC-Coated Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.

- 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
- 4. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.
- D. Liner for sound attenuation:
 - 1. Supply, Return and exhaust air ducts: $\frac{1}{2}$ inches thick.
 - 2. Supply and return fan Plenums: 1" inches thick.
 - 3. Transfer Ducts: 1 inch thick.
 - 4. Ductwork down stream from VAV boxes for 15', 1" thick.
 - 5. At the inlet and discharge of all fans for a distance of 20'
 - 6.
- E. Double-Wall Duct Interstitial Insulation:
 - 1. Supply, Return, Exhaust Air Ducts: 1" inches thick. (when ducts are exposed in the conditions space)
 - 2. Supply, Return, Exhaust Air Ducts: 1 1/2" inches thick. (when ducts are concealed in plenums or are located in unconditioned spaces)
- F. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter:
 - c. Round Elbows, 14 Inches and Larger in Diameter:
- G. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

3.13 DUCTWORK PRESSURE TESTING

- A. All high-pressure ductwork design or operated at 3wc or greater shall pressure tested in accordance with specification section 23 05 93 Testing Adjusting and Balancing.
- B. The contractor review test report results and repair or replace any sections of ductwork with and air leakage rate over 4.0

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Barometric relief dampers.
 - 3. Manual volume dampers.
 - 4. Control dampers.
 - 5. Fire dampers.
 - 6. Ceiling radiation dampers.
 - 7. Smoke dampers.
 - 8. Combination fire and smoke dampers.
 - 9. Corridor dampers.
 - 10. Flange connectors.
 - 11. Duct silencers.
 - 12. Turning vanes.
 - 13. Remote damper operators.
 - 14. Duct-mounted access doors.
 - 15. Flexible connectors.
 - 16. Duct accessory hardware.
- B. Related Requirements:
 - 1. Section 233113 Metal Ducts
 - 2. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Sustainable Design Submittals:
 - 1. <u>Product data showing compliance with</u> ASHRAE 62.1.

© 2020 OLA Consulting Engineers, P.C.

- C. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Duct security bars.
 - f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
 - 5. Buckley
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 1000 fpm.
- D. Maximum System Pressure: up to 6"wc.
- E. Frame: Hat-shaped, [0.094-inch-thick, galvanized sheet steel] [0.063-inch-thick extruded aluminum] [0.03-inch-thick stainless steel] [0.05-inch-thick stainless steel], with welded corners or mechanically attached[and mounting flange].
- F. Blades: Multiple single-piece blades, center pivoted, or off-center pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum or 0.050-inch-thick aluminum sheet noncombustible, tear-resistant, neoprene-coated fiberglass with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:

- 1. Material: Galvanized, steel Stainless steel, or Aluminum.
- 2. Diameter: 0.20 inch min.
- J. Tie Bars and Brackets: Aluminum or Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20 gage minimum.
 - b. Sleeve Length: 6 inches minimum.
 - 6. Screen Mounting: Rear mounted.
 - 7. Screen Material: Galvanized steel or Aluminum.
 - 8. Screen Type: Bird. ¹/₂ x ¹/₂ max opening
 - 9. 90-degree stops.

2.4 BAROMETRIC RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
 - 5. Buckley
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1000 fpm.
- D. Maximum System Pressure: upto 6-inch wg.
- E. Frame: Hat-shaped, [0.05-inch-thick, galvanized sheet steel] [0.094-inch-thick, galvanized sheet steel] [0.063-inch-thick extruded aluminum] [0.03-inch-thick stainless steel] [0.05-inch-thick stainless steel], with welded corners or mechanically attached[and mounting flange].
- F. Blades:
 - 1. Multiple, 0.025-inch-thick, roll-formed aluminum or 0.050-inch-thick aluminum sheet.
 - 2. Maximum Width: 6 inches.

- 3. Action: Parallel.
- 4. Balance: Gravity.
- 5. Eccentrically pivoted or Off-center pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel, aluminum, or Stainless steel.
- I. Tie Bars and Brackets:
 - 1. Material: Aluminum or Galvanized steel.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic, Stainless steel, Bronze.
- L. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Tek Group</u>.
 - b. <u>McGill AirFlow LLC</u>.
 - c. <u>Nailor Industries Inc</u>.
 - d. <u>Pottorff</u>.
 - e. <u>Ruskin Company</u>.
 - f. <u>Vent Products Co., Inc</u>.
 - g. Buckley
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.

- c. Stiffen damper blades for stability.
- d. Galvanized or Stainless-steel, 0.064 inch thick.
- 6. Blade Axles: Galvanized steel, Stainless or steel Nonferrous metal.
- 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.
 - c. <u>Pottorff</u>.
 - d. <u>Ruskin Company</u>.
 - e. <u>Vent Products Co., Inc</u>.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
 - 6. Blade Axles: Galvanized steel or Stainless steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, or Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Aluminum.
- C. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.

© 2020 OLA Consulting Engineers, P.C.

- c. <u>Pottorff</u>.
- d. <u>Ruskin Company</u>.
- e. <u>Vent Products Co., Inc</u>.
- 2. Comply with AMCA 500-D testing for damper rating.
- 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames:
 - a. U or Angle shaped.
 - b. 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized or Stainless, roll-formed steel, 0.064 inch thick.
- 7. Blade Axles: Galvanized steel or Stainless steel.
- 8. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel or aluminum.
- 11. Tie Bars and Brackets: Galvanized steel or Aluminum.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- D. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.
 - c. <u>Pottorff</u>.
 - d. <u>Ruskin Company</u>.
 - e. <u>Vent Products Co., Inc</u>.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

- 4. Suitable for horizontal or vertical applications.
- 5. Frames: U or Angle-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
- 7. Blade Axles: Galvanized steel, Stainless steel.
- 8. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel, aluminum.
- 11. Tie Bars and Brackets: Galvanized steel, Aluminum.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- E. Jackshaft:
 - 1. Size: 0.5-inch diameter min.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- F. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.6 CONTROL DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arrow United Industries</u>.
 - 2. <u>Greenheck Fan Corporation</u>.
 - 3. <u>McGill AirFlow LLC</u>.
 - 4. <u>Nailor Industries Inc</u>.
 - 5. <u>Pottorff</u>.

Ruskin Company.

- - -

- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:

6.

- 1. U or Angle shaped.
- 2. 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
- 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches.
 - 2. Parallel blade for non modulating application
 - 3. Opposed-blade design for all modulating applications
 - 4. Galvanized-steel, Stainless steel, Aluminum.
 - 5. 0.064 inch thick single skin or 0.0747-inch-thick dual skin.
 - 6. Blade Edging: Closed-cell neoprene.
 - 7. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch-diameter; galvanized steel, or stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
- F. Bearings:
 - 1. Oil-impregnated bronze, Molded synthetic, Oil-impregnated, stainless-steel sleeve, or Stainless-steel sleeve.
 - 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.7 FIRE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arrow United Industries</u>.
 - 2. <u>Greenheck Fan Corporation</u>.
 - 3. <u>Nailor Industries Inc</u>.
 - 4. <u>Pottorff</u>.
 - 5. <u>Ruskin Company</u>.
 - 6. <u>Ward Industries; a brand of Hart & Cooley, Inc</u>.
- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.

- E. Frame: Curtain type with blades inside airstream for application in duct over 24" in height. Curtain type with blades outside airstream for ducts 24" or less in height. Multiple-blade type; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.138 inch upto 4 SF 0.39 over 4 SF inch thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.8 CEILING RADIATION DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Aire Technologies.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Prefco</u>.
 - 5. <u>Ruskin Company</u>.
- B. General Requirements:
 - 1. Labeled according to UL 555C by an NRTL.
 - 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."
- C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.
- D. Blades: Galvanized sheet steel with refractory insulation.
- E. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.
- F. Fire Rating: 1hr for applications in assemblies up to 1 ¹/₂ hr rating. 2hr for application in assemblies of up to 3hr

2.9 SMOKE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection. Except for NYC smoke detector shall be provided by the fire alarm contractor.
- D. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with welded or mechanically attached corners and mounting flange.
- E. Blades: Roll-formed, horizontal, overlapping, 0.063-inch- thick, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.05-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- I. Damper Motors: Modulating or two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: [115 V, single phase, 60 Hz].
- K. Accessories:

- 1. Auxiliary switches for signaling, fan control and position indication.
- 2. Test and reset switches, damper or remote mounted.
- 3. Manual damper testing by physically depressing the low temperature thermal disc from the inside of the damper sleeve and resetting the sensor from the exterior side of the damper sleeve.
- 4. Dual position blade indicator switch package shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- 5. Dual Position Indicator Switch Package: Shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- 6. Duct Smoke Detector: Factory mounted in the damper sleeve with interconnecting wiring from the damper actuator to the smoke detector enabling a single power connection point for easy field wiring.

2.10 COMBINATION FIRE AND SMOKE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Pottorff</u>.
 - 3. <u>Ruskin Company</u>.
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 for assemblies upto 2 hour and 3 hr rating for assemblies over 1 1/2hours.
- E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Primary heat responsive device set at 285 deg F, resettable.
- G. Secondary heat closure device, set at 350 deg F, resettable.
- H. Smoke Detector: Integral, factory wired for single-point connection.
- I. Blades: Roll-formed, horizontal, interlocking, 0.063-inch- thick, galvanized sheet steel.
- J. Leakage: Class I.
- K. Rated pressure and velocity to exceed design airflow conditions.
- L. Mounting Sleeve: Factory-installed, 0.039-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- M. Master control panel for use in dynamic smoke-management systems.
- N. Damper Motors: Modulating or two-position action.

- O. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.
- P. Accessories:
- A. DRS-30 Two-Temperature Fire Closure Device:
 - 1. UL classified two-temperature device permits the damper to be re-opened after initial temperature closure allowing the damper to remain operable for smoke management purposes until the high temperature limit is reached.
 - 2. Manual damper testing is permitted by physically depressing the low temperature thermal disc from the inside of the damper sleeve and resetting the sensor from the exterior side of the damper sleeve.
 - 3. Dual position blade indicator switch package shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- B. PI-50 Dual Position Indicator Switch Package: Shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- C. Duct Smoke Detector: Factory mounted in the damper sleeve with interconnecting wiring from the damper actuator to the smoke detector enabling a single power connection point for easy field wiring.

2.11 FLANGE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>CL WARD & Family Inc</u>.

- 2. <u>Ductmate Industries, Inc</u>.
- 3. <u>Hardcast, Inc</u>.
- 4. <u>Ward Industries; a brand of Hart & Cooley, Inc.</u>
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.12 DUCT SILENCERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Industrial Noise Control, Inc</u>.
 - 2. <u>McGill AirFlow LLC</u>.
 - 3. <u>Ruskin Company</u>.
 - 4. <u>Vibro-Acoustics</u>.
 - 5. Industrial Acoustics
- B. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Shape:
 - 1. Rectangular straight with splitters or baffles.
 - 2. Round straight with center bodies or pods.
 - 3. Rectangular elbow with splitters or baffles.
 - 4. Round elbow with center bodies or pods.
 - 5. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, 0.040 inch thick.
- E. Round Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel.
 - 1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
 - 2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
 - 3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.05 inch thick.
 - 4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.
- F. Inner Casing and Baffles: ASTM A 653/A 653M, G60 galvanized sheet metal, 0.034 inch thick, and with 1/8-inch-diameter perforations.

- G. Special Construction:
 - 1. Suitable for outdoor use.
 - 2. High transmission loss to achieve STC 45.
- H. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- I. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative or Film-lined type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 15 percent compression and Moisture-proof nonfibrous material.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
 - 3. Lining: Fiberglas cloth.
- J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Joints: Lock formed and sealed or continuously welded or flanged connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 - 3. Reinforcement: Cross or trapeze angles for rigid suspension.
- K. Accessories:
 - 1. Integral 1-1/2 3-hour fire damper with access door. Access door to be high transmission loss to match silencer.
 - 2. Factory-installed end caps to prevent contamination during shipping.
 - 3. Removable splitters.
 - 4. Airflow measuring devices.
- L. Source Quality Control: Test according to ASTM E 477.
 - 1. Testingto be witnessed by Engineer.
 - 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm face velocity.
 - 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6inch wg static pressure, whichever is greater.
- M. Capacities and Characteristics:
 - 1. Configuration: Straight or 90-degree elbow as indicated on plan
 - 2. Shape: Rectangular or Round as indicated on plan
 - 3. Attenuation Mechanism: Acoustical glass fiber with protective film liner.
 - 4. Maximum Pressure Drop: 0.25-inch wg.
 - 5. Casing:
 - a. Attenuation: Standard.

- b. Outer Material: Galvanized steel.
- c. Inner Material: Galvanized steel.
- 6. Velocity Range: 500 fpm max.
- 7. End Connection: 1-inch slip joint or Flange.
- 8. Length: as per plan
- 9. Face Dimension:
 - a. Width: as per plan
 - b. Height: as per plan
- 10. Face Velocity: as per plan
- 11. Dynamic Insertion Loss: as per plan
- 12. Generated Noise: as per plan
- 13. Accessories:
 - a. Access door.
 - b. Birdscreen.

2.13 TURNING VANES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Aero-Dyne Sound Control Co</u>.
 - 2. <u>CL WARD & Family Inc</u>.
 - 3. <u>Ductmate Industries, Inc</u>.
 - 4. <u>Duro Dyne Inc</u>.
 - 5. <u>METALAIRE, Inc</u>.
 - 6. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.14 REMOTE DAMPER OPERATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Pottorff</u>.
 - 2. Ventfabrics, Inc.
 - 3. <u>Young Regulator Company</u>.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Copper or Aluminum.
- D. Cable: Steel.
- E. Wall-Box Mounting: Recessed.
- F. Wall-Box Cover-Plate Material: Stainless steel.

2.15 DUCT-MOUNTED ACCESS DOORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>CL WARD & Family Inc</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Greenheck Fan Corporation</u>.
 - 4. <u>McGill AirFlow LLC</u>.
 - 5. <u>Nailor Industries Inc</u>.
 - 6. <u>Pottorff</u>.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles for plenum applications.

- d. Access Doors Larger Than 24 by 48 Inches: Four hinges or Continuous and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 3.0- to 8.0-inch wg.
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.16 DUCT ACCESS PANEL ASSEMBLIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Flame Gard, Inc</u>.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
- D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.17 FLEXIBLE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>CL WARD & Family Inc</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Duro Dyne Inc</u>.
 - 4. <u>Elgen Manufacturing</u>.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.

- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches or 5-3/4 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- H. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd..
 - 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.18 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
 - 3. Install stainless steel volume dampers in stainless steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Connect ducts to duct silencers rigidly.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.

7. At each change in direction and at maximum 50-foot spacing and the bottom of all riser in Laundry exhaust ducts.

- 8. Upstream from turning vanes.
- 9. Upstream or downstream from duct silencers.
- 10. Control devices requiring inspection.
- 11. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- L. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- M. Install flexible connectors to connect ducts to equipment.
- N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- O. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- P. Connect diffusers or light troffer boots to ducts with maximum 30-inch lengths of flexible duct clamped or strapped in place.
- Q. Connect flexible ducts to metal ducts with draw bands.
- R. Install duct test holes where required for testing and balancing purposes.
- S. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.
- T. Install remote volume damper operators for all volume dampers that are concealed an not accessible after finished construction is complete.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.

- 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
- 4. Inspect turning vanes for proper and secure installation.
- 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Sequence of operation section 230993
- C. Direct digital controls section 230901

1.2 SUMMARY

- A. Section Includes:
 - 1. Shutoff, single-duct air terminal units.
 - 2. Casing liner.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of air terminal unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 - 3. <u>Product data showing compliance with</u> ASHRAE 62.1.
- C. Shop Drawings: For air terminal units.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Hangers and supports, including methods for duct and building attachment and vibration isolation.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Size and location of initial access modules for acoustic tile.
 - 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Instructions for resetting minimum and maximum air volumes.
 - b. Instructions for adjusting software set points.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 Heating, Ventilating, and Air Conditioning."

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Manufactures;

- 1. Titus
- 2. Carrier
- 3. Anomastat
- 4. Carnes
- 5. Greenheck

- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 0.040-inch- thick galvanized steel, single wall.
 - 1. Casing Liner: Comply with requirements in "Casing Liner" Article for flexible elastomeric duct liner.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections.
 - 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from zero to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.
- E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: AHRI 880 rated, 2 percent of nominal airflow at 6-inch wg inlet static pressure.
 - 2. Damper Position: Normally open.
- F. Attenuator Section: 0.034-inch steel sheet.
 - 1. Attenuator Section Liner: Comply with requirements in "Casing Liner" Article for flexible elastomeric duct liner.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- G. Hydronic Heating Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.
- H. Control devices shall be compatible with temperature controls system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 1. Electronic Damper Actuator: 24 V, powered open, spring return.
 - 2. Digital Thermostat: Wall-mounted digital type with temperature set-point display in Fahrenheit refer to DDC controls specifications. Furnished and installed by temperature controls contractor.
 - 3. Electronic Velocity Controller: Factory calibrated and field adjustable to minimum and maximum air volumes; shall maintain constant airflow dictated by thermostat within 5 percent of set point while compensating for inlet static-pressure variations up to 4-inch wg; and shall have a multipoint velocity sensor at air inlet.
 - 4. Terminal Unit Controller: Pressure-independent, variable-air-volume (VAV) controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:

- a. Occupied and unoccupied operating mode.
- b. Remote reset of airflow or temperature set points.
- c. Adjusting and monitoring with portable terminal.
- d. Communication with temperature-control system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
- e. Controller shall be by the temperature controls contractor.
- 5. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.

I. Controls:

- 1. Suitable for operation with duct pressures between 0.25- and 3.0-inch wg inlet static pressure.
- 2. System-powered, wall-mounted thermostat.

2.3 CASING LINER

- A. Casing Liner: Flexible elastomeric duct liner fabricated of preformed, cellular, closed-cell, sheet materials complying with ASTM C534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Minimum Thickness: 1/2 inch.
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to AHRI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.

- 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
- 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.2 TERMINAL UNIT INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units' level and plumb. Maintain sufficient clearance for normal service and maintenance controls and coil connections
- C. Install wall-mounted thermostats.

3.3 CONNECTIONS

- A. Where installing piping adjacent to air terminal unit, allow space for service and maintenance.
- B. Hot-Water Piping: Comply with requirements in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties," and connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.
- C. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.
- D. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600

SECTION 236200 - PACKAGED COMPRESSOR AND CONDENSER UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, refrigerant compressor and condenser units.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Compressor and condenser units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 ACTION SUBMITTALS

- A. Product Data: For each compressor and condenser unit. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.
- B. Sustainable Design Submittals:
 - 1. <u>Product Data</u>: For energy performance.
 - 2. <u>Product Data for EA Prerequisite "Fundamental Refrigerant Management"</u>: For refrigerants, indicating compliance with refrigerant management practices.
- C. Shop Drawings: For compressor and condenser units. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- D. Delegated-Design Submittal: For compressor and condenser units indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members to which compressor and condenser units will be attached.
 - 2. Liquid and vapor pipe sizes.
 - 3. Refrigerant specialties.
 - 4. Piping including connections, oil traps, and double risers.
 - 5. Compressors.
 - 6. Evaporators.
- B. Seismic Qualification Certification: For compressor and condenser units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- D. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For compressor and condenser units to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Standard for Refrigeration Systems."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6, "Heating, Ventilating, and Air-Conditioning."
- D. ASME Compliance: Fabricate and label water-cooled compressor and condenser units to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1.8 COORDINATION

- A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000 "Cast-In-Place Concrete" and Section 033053 "Miscellaneous Cast-In-Place Concrete."
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."
- C. Coordinate location of piping and electrical rough-ins.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of compressor and condenser units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Compressor failure.
 - b. Condenser coil leak.
 - 2. Warranty Period: Five years from date of Substantial Completion all parts.

PART 2 - PRODUCTS

2.1 COMPRESSOR AND CONDENSER UNITS, AIR COOLED, 1 TO 5 TONS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carrier Corporation; a unit of United Technologies Corp.</u>
 - 2. Johnsons Controls
 - 3. <u>Daikin</u>
 - 4. <u>Aaon</u>
- B. Description: Factory assembled and tested; consisting of compressor, condenser coil, fan, motors, refrigerant reservoir, and operating controls.
- C. Compressor: Scroll, hermetically sealed, with rubber vibration isolators.
 - 1. Motor: Two speed, and includes thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - 2. Two-Speed Compressor: Include manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
 - 3. Accumulator: Suction tube.
- D. Refrigerant: R-410A.

- E. Condenser Coil: Seamless copper-tube, aluminum-fin coil; circuited for integral liquid subcooler, with removable drain pan and brass service valves with service ports.
- F. Condenser Fan: Direct-drive, aluminum propeller fan; with permanently lubricated, totally enclosed fan motor with thermal-overload protection.
- G. Accessories:
 - 1. Cycle Protector: Automatic-reset timer to prevent rapid compressor cycling.
 - 2. Evaporator Freeze Thermostat: Temperature-actuated switch that stops unit when evaporator reaches freezing temperature.
 - 3. Filter-dryer.
 - 4. High-Pressure Switch: Automatic-reset switch cycles compressor off on high refrigerant pressure.
 - 5. Liquid-line solenoid.
 - 6. Low-Ambient Controller: Cycles condenser fan to permit operation down to 0 deg F. (supplemental units only)
 - 7. Low-Pressure Switch: Automatic-reset switch cycles compressor off on low refrigerant pressure.
 - 8. PE mounting base.
 - 9. Precharged and insulated suction and liquid tubing.
 - 10. Sound Hood: Wraps around sound attenuation cover for compressor. (AC-1 AND AC-2)
 - 11. Thermostatic expansion valve.
 - 12. Reversing valve.
- H. Unit Casing: Galvanized steel, finished with baked enamel; with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Mount service valves, fittings, and gage ports on exterior of casing.
- I. Capacities and Characteristics:
 - 1. Refer to schedules:

2.2 COMPRESSOR AND CONDENSER UNITS, AIR COOLED, 6 TO 120 TONS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carrier Corporation; a unit of United Technologies Corp.</u>
 - 2. Johnsons Controls
 - 3. <u>Daikin</u>
 - 4. <u>Aaon</u>
 - 5. <u>ADDISON</u>
- B. Description: Factory assembled and tested, air cooled; consisting of casing, compressors, condenser coils, condenser fans and motors, and unit controls.
- C. Compressor: Hermetic scroll compressor designed for service with crankcase sight glass, crankcase heater, and back-seating service access valves on suction and discharge ports.
 - 1. Capacity Control: Hot-gas bypass.

- D. Compressor: Hermetic or semi-hermetic rotary screw compressor designed for service with crankcase sight glass, crankcase heater, and back-seating service access valves on suction and discharge ports.
 - 1. Capacity Control: Variable-frequency controller or Hot-gas bypass.
- E. Refrigerant: R-410A.
- F. Condenser Coil: Seamless copper-tube, aluminum-fin coil, including subcooling circuit and back-seating liquid-line service access valve. Factory pressure test coils, then dehydrate by drawing a vacuum and fill with a holding charge of nitrogen or refrigerant.
- G. Condenser Fans: Propeller-type vertical discharge; either directly or belt driven. Include the following:
 - 1. Permanently lubricated, ball-bearing totally enclosed motors.
 - 2. Separate motor for each fan.
 - 3. Dynamically and statically balanced fan assemblies.
- H. Operating and safety controls include the following:
 - 1. Manual-reset, high-pressure cutout switches.
 - 2. Automatic-reset, low-pressure cutout switches.
 - 3. Low-oil-pressure cutout switch.
 - 4. Compressor-winding thermostat cutout switch.
 - 5. Three-leg, compressor-overload protection.
 - 6. Control transformer.
 - 7. Magnetic contactors for compressor and condenser fan motors.
 - 8. Timer to prevent excessive compressor cycling.
- I. Accessories:
 - 1. Gage Panel: Package with refrigerant circuit suction and discharge gages.
 - 2. Hot-gas bypass kit.
 - 3. Part-winding-start timing relay, circuit breakers, and contactors.
- J. Unit Casings: Designed for outdoor installation with weather protection for components and controls and with removable panels for required access to compressors, controls, condenser fans, motors, and drives. Additional features include the following:
 - 1. Steel, galvanized or zinc coated, for exposed casing surfaces; treated and finished with manufacturer's standard paint coating.
 - 2. Perimeter base rail with forklift slots and lifting holes to facilitate rigging.
 - 3. Gasketed control panel door.
 - 4. Nonfused disconnect switch, factory mounted and wired, for single external electrical power connection.
 - 5. Condenser coil grille.
- K. Capacities and Characteristics: Refer to Schedule

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 SOURCE QUALITY CONTROL

- A. Verification of Performance: Rate compressor and condenser units according to ARI 206/110 ARI 306/110.
- B. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," Section 6, "Heating, Ventilating, and Air-Conditioning."
- C. Test and inspect shell and tube condensers according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- D. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of compressor and condenser units.
- B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- C. Examine walls, floors, and roofs for suitable conditions where compressor and condenser units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install units level and plumb, firmly anchored in locations indicated.
- B. Install roof-mounting units on equipment supports specified in Section 077200 "Roof Accessories."
- C. Equipment Mounting:

- Condensing units installed on grade shall be installed on a concreate housekeeping pad 3 ½" thick and 6" longer and wider than unit mounts. Set pad level, slope soil away from pad. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- 2. Condensing units installed on steel dunnage or roof curbs shall be installed on neoprene pads between the unit frame and the dunnage. Fasten condensing unit to dunnage of curb galvanized steel fasteners. Set units level with shims. Vibration isolators shall be mason industries model MBSW or super WSW.
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

- A. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- B. Connect pre-charged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.
- C. Connect refrigerant piping to air-cooled compressor and condenser units; maintain required access to unit. Install furnished field-mounted accessories. Refrigerant piping and specialties are specified in Section 232300 "Refrigerant Piping."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - 2. Leak Test: After installation, charge system with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor operation and unit operation, product capability, and compliance with requirements.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify proper airflow over coils.

- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- D. Compressor and condenser units will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- 1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - a. Inspect for physical damage to unit casing.
 - b. Verify that access doors move freely and are weathertight.
 - c. Clean units and inspect for construction debris.
 - d. Verify that all bolts and screws are tight.
 - e. Adjust vibration isolation and flexible connections.
 - f. Verify that controls are connected and operational.
- B. Lubricate bearings on fan motors.
- C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
- D. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.
- E. Measure and record airflow and air temperature rise over coils.
- F. Verify proper operation of condenser capacity control device.
- G. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- H. After startup and performance test, lubricate bearings.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain compressor and condenser units.

END OF SECTION 236200

SECTION 237313.16 – INDOOR, CUSTOM AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulated, double-wall-casing, indoor, semi-custom air-handling units that are factory assembled using multiple section components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit.
 - 1. Unit dimensions and weight.
 - 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 - 3. Fans:
 - a. Certified fan-performance curves with system operating conditions indicated.
 - b. Certified fan-sound power ratings.
 - c. Fan construction and accessories.
 - d. Motor ratings, electrical characteristics, and motor accessories.
 - 4. Vibration isolation product data with performance ratings. Uniquely identify and include information for each different isolator type and indicate for each air-handling unit where each isolator type is being used.
 - 5. Include certified coil-performance ratings with system operating conditions indicated. Product data to include dimensions, dry and operating weight, volume of fluid contained, materials of construction, and performance ratings with system operating conditions indicated.
 - 6. Casing insulation product data and performance ratings.
 - 7. Access door and access panel product data and performance ratings.
 - 8. Paint product data and performance ratings.
 - 9. Electrical product data and performance ratings.
 - 10. Metal grating product data and performance ratings.
 - 11. Dampers product data, including housings, linkages, and operators with performance ratings.
 - 12. Filters product data with performance characteristics.
 - 13. Heat wheels product data with performance ratings.
 - 14. Duct silencers product data with performance ratings.
- B. Sustainable Design Submittals:

© 2020 OLA Consulting Engineers, P.C.

- 1. <u>Product data showing compliance with ASHRAE 62.1.</u>
- 2. <u>Product data showing compliance with ASHRAE 90.1.</u>
- 3. <u>Product Data</u>: For air filtration performance.
- 4. <u>Product Data</u>: For adhesives, mastics, and sealants, indicating VOC content.
- 5. Laboratory Test Reports: For adhesives, mastics, and sealants, indicating compliance with requirements for low-emitting materials.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 - 2. Support location, type, and weight.
 - 3. Field measurements.
- B. Source quality-control reports:
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each air-handling unit.
 - 2. Gaskets: One set(s) for each access door.
 - 3. Fan Belts: One set(s) for each air-handling unit fan.

1.7 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

1.8 DELIVERY, STORAGE, HANDLING

- A. Deliver air-handling units with factory-installed shipping skids and lifting lugs; pack small components in factory-fabricated protective containers. Cover units with heat-shrinkable plastic sheeting suitable for shipping from point of manufacture to Project.
- B. Handle air-handling units carefully to avoid damage to components, casing, and finish. Do not install damaged components; replace and return damaged components to air-handling unit manufacturer.
- C. Store air-handling units in a clean dry place and protect them from weather and construction activities.
- D. Keep air-handling units fully covered and protected during construction. Remove dirt and debris and clean units to a factory-cleaned condition.
- E. Comply with manufacturer's written rigging and installation instructions for unloading airhandling units and moving them to their final locations.

1.9 WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of air-handling units that fails in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 1 year(s) from date of Substantial Completion.
- B. Extended warranties include, but are not limited to, the following:
 - 1. Complete Air-Handling Unit: Two years from date of Substantial Completion for entire air-handling unit and longer where indicated for individual components.
 - 2. Air-Handling Unit Casing: 25 years from date of Substantial Completion.
 - 3. Motors: Two years from date of Substantial Completion.
 - 4. Heat Wheels: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of airhandling units and components.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

- E. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- F. Structural Performance: Casing panels shall be self-supporting and capable of withstanding positive/negative 8-inch wg of internal static pressure, without exceeding a midpoint deflection of 0.0042 inch/inch of panel span.
- G. Casing Leakage Performance: ASHRAE 111, Class 6 leakage or better at plus or minus 8 inch wg.

2.2 CAPACITIES AND CHARACTERISTICS

A. Refer to plans and schedules

2.3 INDOOR/OUTDOOR, SEMI-CUSTOM AIR-HANDLING UNIT MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Buffalo Air Handling</u>.
 - 2. <u>Carrier Corporation; a unit of United Technologies Corp.</u>
 - 3. <u>Daikin Applied</u>.
 - 4. Dunham-Bush, Inc.
 - 5. <u>YORK; a Johnson Controls company</u>.

2.4 UNIT CASINGS

- A. Frame: Modular and providing overall structural integrity without reliance on casing panels for structural support.
- B. Base Rail: The air-handling unit shall be provided with a full perimeter base rail channel.
 - 1. The base rail channel shall be formed of 16-gage minimum galvanized steel
 - 2. Height: 6 inches.
- C. Casing Joints: Hermetically sealed at each corner and around entire perimeter.
- D. Outside Casing Wall: shall be one of the following:
 - 1. Material: G90 Galvanized steel, minimum 16gauge thick.
 - 2. Material: Aluminum, minimum 14 gauge thick.
 - 3. Material: Stainless steel, minimum 16 gauge thick.
 - 4. Factory Finish: prime coat and acrylic polyurethane shall be applied.
 - 5. Outdoor units The finished unit shall exceed 500-hour salt spray solution (5%) without any sign of red rust when tested in accordance with ASTM B-117.
- E. Inside Casing Wall: shall be one of the following three:

- 1. Material: G 90 Galvanized steel, solid, minimum 16 gauge thick. solid
- 2. Material: Aluminum, solid, minimum 14 gauge thick. perforated
- 3. Material: Stainless steel, solid, minimum 16 gauge thick. Solid
- 4. Antimicrobial Coating: Applied during the manufacturing process. EPA approved and NSF approved.
- F. Floor Plate:
 - 1. Floor panels shall be double wall construction, designed to provide at most L/240 deflection based on 300 lb. concentrated load at mid-span. The interior liner of the floor panels shall be a solid lining of minimum 20 gage galvanized or 304 stainless steel.
 - 2. Material: G90 Galvanized steel, minimum 16 gauge thick.
 - 3. Material: Stainless steel, minimum 16 gauge thick.
 - 4. Antimicrobial Coating: Applied during the manufacturing process. EPA approved NSF approved.
 - 5. Where units are large enough to walk inside, provide an additional 0.125" aluminum diamond tread plate liner shall be provided as a walk-on surface in unit access areas.
- G. Static-Pressure Classifications:
 - 1. For Unit Sections Upstream of Fans: Minus 3-inch wg.
 - 2. For Unit Sections Downstream and Including Fans: 3-inch wg.
- H. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- I. Casing Insulation:
 - 1. Materials: Glass-fiber insulation layered over injected foam in perforated interior casing sections to meet specified acoustic requirements.
 - 2. Casing Panel R-Value: Minimum R-12.5(Hr-Ft2-°F/BTU).
 - 3. Insulation Thickness: 2 inches.
 - 4. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roofs of air-handling unit.
 - 5. Insulation application shall conform to NFPA 90A requirements.
 - 6. Panels with perforated panel liner shall utilize a triple-wall construction, joining a mattefaced fiberglass insulated panel with a foam insulated panel
- J. Panels, Doors, and Windows:
 - 1. Doors:
 - a. Provide access doors on both sides, in all sections, of the air-handling unit.
 - b. Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.
 - c. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever latches, operable from inside and outside. Arrange doors to be opened against airflow. Provide safety latch retainers on doors so that doors do not open uncontrollably.
 - d. Gasket: Neoprene, applied around entire perimeters of panel frames.

- e. Size: Large enough to allow for unobstructed access for inspection and maintenance of air-handling unit's internal components. At least 24 inches wide by full height of unit casing up to a maximum height of 60 inches.
- 2. Panels;
 - a. Provide removable access panels, on both side of the air handling, whenever access doors are not available ,will not fit or there is insufficient space for door swing.
 - b. Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.
 - c. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against airflow
 - d. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - e. Size: Large enough to allow unobstructed access for inspection and maintenance of air-handling unit's internal components. Full width by full height of unit casing section.
- 3. Windows: (not required)
- 4. Service Lights: 75 watt LED, when available vaporproof luminaire with individual switched junction box located outside, adjacent to each access door and panel.
 - a. Locations: all sections with motors and drives.
- 5. Convenience Outlets: One 20-A duplex GFCI receptacle per location with junction box located on outside casing wall.
 - a. Locations: exterior of unit. One per unit when located out doors.
- K. Condensate Drain Pans:
 - 1. Provide auxiliary drain pans in segments as required.
 - a. The auxiliary pans shall be double sloped, positive draining with galvanized steel liner and double wall construction with drain connection of like material, draining to one side of the unit.
 - b. Coat auxiliary drain pans with a anti- microbial coating.
 - c. Drain connection shall be welded to the drain pan. If threaded screw-type joint is used, all joints must be easily accessible for inspection and service.
 - 2. Construction:
 - a. Drain pan design and application shall comply fully with the stated intent of ASHRAE 62-2001.
 - b. Single-wall, 20 gage galvanized-steel or noncorrosive polymer OR stainless-steel sheet.
 - 3. Drain Connection:
 - a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 - b. Minimum Connection Size: NPS 1 ¹/₄".

- 4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
- 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1 but no less than 6".
- 6. Width: Entire width of water producing device.
- 7. Depth: A minimum of 2 inches deep.
- 8. Formed sections.
- 9. Pan-Top Surface Coating for Galvanized-Steel Drain Pans: Asphaltic waterproofing compound.
- 10. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.5 FAN, DRIVE, AND MOTOR SECTION

- A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
 - 1. Shafts: With field-adjustable alignment.
 - a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 - b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 - 1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 2. Horizontal-Flanged, Split Housing: Bolted construction.
 - 3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
 - 4. Flexible Connector: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4 inches wide 0.028-inch-thick, galvanized-steel sheet.
 - a. Flexible Connector Fabric: Glass fabric, double coated with neoprene. Fabrics, coatings, and adhesives shall comply with UL 181, Class 1.
 - 1) Fabric Minimum Weight: 26 oz./sq. yd..
 - 2) Fabric Minimum Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3) Fabric Minimum Service Temperature Range: Minus 40 to plus 200 deg F.
- C. Plenum Fan Housings: Steel frame and panel; fabricated without fan scroll and volute housing. Provide inlet screens for Type SWSI fans.
- D. Backward-Inclined, Centrifugal Fan Wheels: Construction with curved inlet flange, backplate, backward-inclined blades welded or riveted to flange and backplate; steel hub riveted to backplate and fastened to shaft with setscrews.

- E. Forward-Curved, Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel hub swaged to backplate and fastened to shaft with setscrews.
- F. Airfoil, Centrifugal Fan Wheels: Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; steel hub riveted to backplate and fastened to shaft with setscrews.
- G. Fan Shaft Bearings:
 - 1. Prelubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with an L-50 rated life of 200,000 hours according to ABMA 9.
 - 2. Grease-Lubricated, Tapered-Roller Bearings: Self-aligning, pillow-block type with double-locking collars and two-piece, cast-iron housing with grease lines extended to outside unit and an L-50 rated life of 200,000 hours according to ABMA 11.
 - 3. Grease-Lubricated Bearings: Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, cast-iron housing with grease lines extended to outside unit and an L-50 rated life of 200,000.
- H. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 - 1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 - 2. Motor Pulleys: Adjustable pitch for use with [5]-hp motors and smaller and constant volume units; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.
 - 4. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.146 inch- thick, 3/4-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.
- I. Discharge Dampers: Heavy-duty steel assembly with channel frame and sealed ball bearings, and opposed or parallel blades constructed of two plates formed around and welded to shaft, with blades linked out of airstream to single control lever.
- J. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch for units mounted on grade level and 2 inches mounted above grade on any floor or on the roof.
- K. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Enclosure Type: Totally enclosed, fan cooled.
 - 2. NEMA Premium Efficient motors as defined in NEMA MG 1.
 - 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.15.
 - 4. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - 5. All fan motors shall be premium efficiency.

- 6. Motors shall be suitable for use in variable frequency application, per NEMA MG-1 Part 30 and inverter duty rated complying with NEMA STD MG1 PART 31.4.4.2 for fans with variable speed drive
- 7. Mount unit-mounted disconnect switches on exterior of unit.
- L. All fan motors 5 hp or greater or all fan motors used in variable air volume units shall utilze variable frequency controllers
- M. Variable-Frequency Motor Controller: Comply with Section 262923 "Variable-Frequency Motor Controllers."

2.6 MOTOR STARTERS AND DISCONNECTS

- A. The air-handling unit shall be power wired for a single point connection. All power loads to be wired to one point of power source entrance.
- B. Provide unit mounted disconnect switches for all motors including supply fan, exhaust fan, return fan, and energy recovery wheels. Disconnects shall be unit mounted and shall have NEMA enclosure ratings in accordance with the environment for which that are installed. All air handlers located outdoors shall disconnects in NEMA 3R enclosures. All Starters not mounted within a weather proof compartment of the unit shall have a NEMA 3x rating. All Starters shall be mounted on the primary access side of the fan section
- C. Variable-air-volume units shall be equipped with factory mounted and wired variable frequency drives serving supply and return/exhaust for fan unloading control. Wiring to motor shall be provided in flexible conduit
- D. Each unit mounted drive shall be mounted in a dedicated, NEMA 1 compartment located on the side of its associated fan section. Outdoor units shall encase controls in a weatherproof control enclosure.
- E. Variable-Frequency Motor Controller: Comply with Section 232913 "Variable-Frequency Motor Controllers."
- F. Constant volume units shall be equipped with factory mounted and wired motor starter panel(s) serving supply and return/exhaust] fan motor(s). Wiring to motor shall be provided in flexible conduit.
 - 1. Motor starter panels will include:
 - 2. Main power block
 - 3. Motor contactor(s)
 - 4. Individual short circuit and overload protection
 - 5. 120 volt control power transformer with primary and secondary protection
 - 6. 5 point terminal strip for field connections
 - 7. Main power disconnect
 - 8. Hand-Off-Auto switch
- G. Starters and disconnects shall comply with Section 23 05 13 "Common motor requirements for HVAC"

2.7 COIL SECTION

- A. General Requirements for Coil Section:
 - 1. Comply with AHRI 410.
 - 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s). coil shall be mounted on tracks. Coils shall be supported by galvanized coil support members, constructed of channeled members
 - 3. For multizone units, provide air deflectors and air baffles to balance airflow across coils.
 - 4. Coils shall not act as structural component of unit.
 - 5. Coil grommets shall be provided on all coils to completely seal the area between the coil connection and the unit casing.
 - 6. Coil casing shall be constructed of min 16-gauge galvanized steel [**stainless steel**]. Tube sheets on each end shall have drawn collars to support tubes. A single intermediate coil support shall be provided on coils with a finned length of more than 62 inches, two (2) intermediate supports above 100 inches in length, and three (3) intermediate supports on coils with a finned length of more than 141 inches.
 - 7. Coils with finned height greater than 48 inches shall have an intermediate drain pan extending the entire finned length of the coil.
- B. All steam coils shall be non-freeze type.
- C. General Operating Parameters;
 - 1. Steam coils and heating hydronic coils shall sized for a maximum air velocity of 650 ft/min.
 - 2. All DX and chilled water-cooling coils shall be sized for a maximum air velocity of 550 ft/min.
 - 3. All hydronic coils shall have a maximum fluid pressure drop of 10' WC.
 - 4. All coils shall have an air side pressure drop not greater than 1.0" of wc or as scheduled

2.8 HYDRONIC COILS

- A. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- B. Minimum Working-Pressure/Temperature Ratings: 250 psig, 325 deg F.
- C. Source Quality Control: Factory tested to 300 psig.
- D. Tubes: ASTM B 743 copper, minimum thickness;
 - 1. $\frac{1}{2}$ " OD tubes .025" thick
 - 2. 5/8" OD tubes .035" thick
 - 3. 7/8" OD tubes .049" thick
- E. Fins: Aluminum, minimum thickness;
 - 1. Plate fins -0.0065" thick
 - 2. Spiral fins -0.010" thick
- F. Frames: Galvanized-steel channel frame, minimum thickness; for flanged mounting.

- 1. ¹/₂" OD and smaller, up to 4 rows and not longer than 48" fined length 18 gage galvanized steel.
- 2. 5/8" OD and larger, longer than 48" and less than 72" fined length 16 gage galvanized steel.
- 3. 5/8" OD and larger, longer than 72" fined length 14 gage galvanized steel
- G. Mounting; Slip in frame for retrofits, Flange frame for new construction.
- H. Connections;
 - 1. Coordinate left hand, right hand connections or supply return on opposite sides in the field.

2.9 REFRIGERANT AIR COILS

- A. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- B. Direct expansion coils shall be designed to conform to the ANSI B9.1 when operating with a refrigerant pres- sure not exceeding 250 psig and shall be tested with 325 psig compressed air under water
- C. Minimum Working-Pressure Rating: 300 psig.
- D. Source Quality Control: Factory tested to 450 psig.
- E. Tubes: ASTM B 743 copper, minimum thickness;
 - 1. 3/8" OD tubes .020" thick
 - 2. $\frac{1}{2}$ " OD tubes .025" thick
 - 3. 5/8" OD tubes .035" thick
 - 4. 7/8" OD tubes .049" thick
- F. Fins: Aluminum, minimum thickness;
 - 1. Plate fins -0.0065" thick
 - 2. Spiral fins -0.010" thick
- G. Suction and Distributor Piping: ASTM B 88, Type L copper tube with brazed joints.
- H. Frames: Galvanized-steel channel frame, 16 gage minimum thickness; for flanged mounting.
 - 1. ¹/₂" OD and smaller, up to 4 rows and not longer than 48" fined length 18 gage galvanized steel.
 - 2. 5/8" OD and larger, longer than 48" and less than 72" fined length 16 gage galvanized steel.
 - 3. 5/8" OD and larger, longer than 72" fined length 14 gage galvanized steel
- I. Mounting; Slip in frame for retrofits, Flange frame for new construction

2.10 AIR FILTRATION SECTION

A. Particulate air filtration is specified in Section 234100 "Particulate Air Filtration."

- B. High-efficiency particulate air (HEPA) filtration is specified in Section 234133 "High-Efficiency Particulate Air Filtration."
- C. Panel Filters:
 - 1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
 - 2. Filter Unit Class: UL 900.
 - 3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive.
 - 4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.
 - 5. Prefilter media shall be throwaway or permanent cleanable or 30% MERV 8 efficient. Spare sets of media shall be provided as scheduled
- D. Bag Filters:
 - 1. Description: Factory-fabricated, dry, extended-surface, self-supporting filters with holding frames in steel, basket-type retainers.
 - 2. Filter Unit Class: UL 900.
 - 3. Media: Fibrous material, coated with antimicrobial agent, constructed so individual pockets are maintained in tapered form by flexible internal supports under rated-airflow conditions.
 - 4. Filter-Media Frame: Galvanized steel.
 - 5. Media shall be 22" bag 80-85% efficiency-MERV 14 or as scheduled
- E. Cartridge Filters:
 - 1. Description: Factory-fabricated, adhesive-coated disposable, packaged air filters with media perpendicular to airflow, and with holding frames.
 - 2. Filter Unit Class: UL 900.
 - 3. Media: Fibrous material, coated with antimicrobial agent, constructed so individual pleats are maintained in pleated form under rater-airflow conditions by corrugated aluminum separators.
 - 4. Filter Media Frame: Galvanized steel.
 - 5. Media shall be 4" mini-pleated (80-85% efficiency-MERV 13, or as scheduled.
 - 6. Media shall be 12" rigid 80-85% efficiency-MERV 13or as scheduled.
 - 7. HEPA filter segments (HF) shall be provided with MERV 17 (99.97% efficient
- F. Front, Back or Side Access Filter Mounting Frames:
 - 1. Particulate Air Filter Frames: Galvanized-steel or Aluminum framing members with access for filter servicing, cut to size and prepunched for assembly into modules. Vertically support filters to prevent deflection of horizontal members without interfering with either filter installation or operation.
 - a. Prefilters: Incorporate a separate 2-inch- thick track with spring clips, with same access as primary filter.
 - b. Sealing: Full periphery foam gaskets.
 - 2. HEPA Filter Frames: Aluminum or Stainless-steel framing members, cut to size and prepunched for assembly into modules. Vertically support filters to prevent deflection of

horizontal members without interfering with either filter installation operation. Bolted filter-sealing mechanism shall mount and continuously seal each individual filter.

- a. Prefilters: Incorporate a separate 2-inch- or 4-inch- as per schedule, thick track with spring clips with same access as primary filter.
- b. Sealing: Gasketed, hand-crank locking mechanism to provide positive-sealing for each filter to ensure seal between filter elements to prevent bypass of unfiltered air.

2.11 DAMPERS

- A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg. complying fully with the requirements of ASHRAE 90.1.
- B. Damper Operators: Comply with requirements in Section 230923.12 "Control Dampers."
- C. Electronic Damper Operators:
 - 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
 - 3. Operator Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 - 5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
 - 6. Size dampers for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 - 7. Coupling: V-bolt and V-shaped, toothed cradle.
 - 8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

- 9. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on nonspring-return actuators.
- 10. Power Requirements (Two-Position Spring Return): 24 V dc.
- 11. Power Requirements (Modulating): Maximum 10 VA at 24 V ac or 8 W at 24 V dc.
- 12. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 13. Temperature Rating: Minus 22 to plus 122 deg F.
- 14. Run Time: 12 seconds open, 5 seconds closed.
- D. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel, aluminum, extruded-aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement with zinc-plated steel operating rods rotating in stainless-steel sleeve or sintered bronze or nylon bearings mounted in a single galvanized-steel, aluminum, extruded-aluminum frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg.
- E. Mixing Section: Multiple-blade, air-mixer assembly located immediately downstream of mixing section.
- F. Combination Filter and Mixing Section:
 - 1. Cabinet support members shall hold 2-inch- thick, pleated, flat, permanent or throwaway filters.
 - 2. Multiple-blade, air-mixer assembly shall mix air to prevent stratification, located immediately downstream of mixing box.

2.12 SOUND ATTENUATORS

- A. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials with flame-spread index not exceeding 25 and smoke-developed index not exceeding 50, ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with ASHRAE 62.1.
- B. Shape: Rectangular, or straight Rectangular, elbow.
- C. Rectangular Silencer Outer Casing: Galvanized steel.
- D. Round Silencer Outer Casing: Galvanized steel.
- E. Inner Casing and Baffles: Galvanized steel.
- F. Principal Sound-Absorbing Mechanism:
 - 1. Packless Type: Controlled impedance membranes and broadly tuned resonators without adsorptive media.
 - 2. Dissipative Type: Polymer film-lined absorptive fill material.

a. Fill Material: Inert and vermin-proof fibrous material.

3. Joints: Lock formed and sealed, continuously welded or flanged.

a. Variable-frequency controller, factory mounted and wired, with exhaust-air sensor to vary rotor speed and maintain exhaust temperature above freezing.

2.13 AIR BLENDER

- A. Description: Static air mixer device to provide mixing of two airstreams to within plus/minus 6 deg F.
- B. Material: Galvanized or steel Aluminum.
- C. Coating: Corrosion-resistant coating.

2.14 DIFFUSER

- A. Description: Velocity profile equalizer device for providing equalized airflow profile downstream of Type DWDI fans.
- B. Material: Galvanized or steel Aluminum.

2.15 FILTER/MIXING BOX

- A. Section shall be designed to accommodate 2" angled filter media. The filter media shall be side-loading.
- B. A magnahelic differential pressure gauge shall be factory installed and flush mounted to measure the pressure drop across the filter bank.
- C. The return air inlet shall have standard control damper, constructed of aluminum, galvanized steel with opposed blades. Damper configuration shall be full faced..
- D. The outside air inlet have Airflow Monitoring Station have standard control damper, constructed of aluminum, or galvanized steel with opposed blades. Damper configuration shall be full faced.
- E. The airflow monitoring station must be tested for pressure drop in accordance with AMCA Stan- dard 611-95 in an AMCA registered laboratory. The airflow monitoring station must bear the AMCA Certified Ratings Seal for Airflow Measure- ment Performance.

2.16 AIR FLOW MONITORING (25-OAF, 75/100 OAF)

- A. Optional airflow monitoring stations will be provided on air inlets, as shown in performance specifications.
- B. Airflow monitoring stations will bear the AMCA Certified Ratings Seal for Airflow Measurement Performance.

- C. Airflow monitoring station dampers will comply with leakage rates per ASHRAE 90.1.
- D. Airflow monitoring stations will be accurate within 5% of actual airflow between 350 FPM and 4000 FPM free area velocity.
- E. Outdoor air intake openings with air flow monitoring stations will have rain louver.
- F. Louver will be a wind-driven rain penetration class A louver.
- G. Louver effectiveness ratio will be 100% at the following conditions:
- H. Wind velocity, 29 mph into louver.
- I. Rain fall rate, 3 in./hr.
- J. Free area air velocity, 1500 FPM.
- K. All VAV units shall be equipped with an outside air volume measurement system similar to Tek-Air. The system shall continuously measure outside air and adjust the outside air damper to maintain the minimum air volume as indicated in the unit schedule.

2.17 OPTIONAL EQUIPMENT

- A. Provide the following optional equipment and or controls
 - 1. OAT sensor
 - 2. differential pressure switch
 - 3. Duct-mount Humidity/Temperature Sensor
 - 4. Differential Pressure Switch
 - 5. Static Pressure Transducer
 - 6. Freeze stat/Low Limit Temperature Cutout Control
 - 7. High Temperature Manual Reset Control (HTC)
 - 8. IAQ Sensor for demand control ventilation
 - 9. Duct Humidity Limit (Auto Reset)
 - 10. Current Operated Switch for fan status
 - 11. Zone Temperature & Zone Humidity Sensor

2.18 MATERIALS

- A. Steel:
 - 1. ASTM A 36/A 36M for carbon structural steel.
 - 2. ASTM A 568/A 568M for steel sheet.
- B. Stainless Steel:
 - 1. Manufacturer's standard grade for casing.
 - 2. Manufacturer's standard type, ASTM A 240/A 240M for bare steel exposed to airstream or moisture.
- C. Galvanized Steel: ASTM A 653/A 653M.

- D. Aluminum: ASTM B 209.
- E. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B 117.
 - 1. Standards:
 - a. ASTM B 117 for salt spray.
 - b. ASTM D 2794 for minimum impact resistance of 100 in-lb.
 - c. ASTM B 3359 for cross hatch adhesion of 5B.
 - 2. Application: Immersion.
 - 3. Thickness: 1 mil.
 - 4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.19 SOURCE QUALITY CONTROL

- A. AHRI 430 Certification: Air-handling units and their components shall be factory tested according to AHRI 430 and shall be listed and labeled by AHRI.
- B. AHRI 1060 Certification: Air-handling units that include air-to-air energy recovery devices shall be factory tested according to AHRI 1060 and shall be listed and labeled by AHRI.
- C. AMCA 301 or AHRI 260: Air-handling unit fan sound ratings shall comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data," or AHRI 260, "Sound Rating of Ducted Air Moving and Conditioning Equipment."
- D. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.
- E. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."
- F. Water Coils: Factory tested to 300 psig according to AHRI 410 and ASHRAE 33.
- G. Steam Coils: Factory tested to 300 and 200 psig underwater according to AHRI 410 and ASHRAE 33.
- H. Refrigerant Coils: Factory tested to minimum 450-psig internal pressure and to minimum 300-psig internal pressure while underwater, according to AHRI 410 and ASHRAE 33.
- I. Witnessed Casing Leakage Tests:
 - 1. Pay for all expenses, for one representative designated by Owner, to travel to the factory to witness cabinet air-leakage testing on the specific assembled unit(s) prior to release for delivery to Project site.
 - 2. If the unit(s) does not meet specified leakage requirements, perform factory modifications and retest. Do not release unit for shipment until tested leakage is measured to be within

specified leakage and leakage testing report has been accepted by Owner's designated representative.

2.20 VIBRATION ISOLATION EXTERNAL TO THE UNIT.

- A. Floor mounted air handling units shall be mounted on free standing Spring isolators and laterally stable without any housing and complete with a molded neoprene cup or 1/4" neoprene acoustical friction pad between the baseplate and the support. All mountings shall have leveling bolts that must be rigidly bolted to the equipment and housekeeping pad. Installed and operating heights shall be equal. The ratio of the spring diameter divided by the compressed spring height shall be no less than 0.8. Springs shall have a minimum additional travel to solid equal to 50% of the rated deflection. Submittals shall include spring diameters, deflection, compressed spring height and solid spring height. Mountings shall be type SLR, as manufactured by Mason Industries, Inc
- B. All suspended air handling units shall use hanger consisting of rigid steel frames containing minimum 1-1/4" thick neoprene elements at the top and a steel spring seated in a steel washer reinforced neoprene cup on the bottom. The neoprene element and the cup shall have neoprene bushings projecting through the steel box. In order to maintain stability, the boxes shall not be articulated as clevis hangers nor the neoprene element stacked on top of the spring. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30° arc from side to side before contacting the cup bushing and short circuiting the spring. Submittals shall include a hanger drawing showing the 30° capability. Hangers shall be type PC30N as manufactured by Mason Industries, Inc.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install base-mounted air handling units on cast-in-place concrete housekeeping pads Comply with requirements for equipment bases and foundations specified in

Section 033000 "Cast-in-Place Concrete." and Section 033053 "Miscellaneous Cast-in-Place Concrete." Concrete housekeeping pads shall be 3 $\frac{1}{2}$ " high and extend 6" longer on all sides then the mountings, and shall have 45° chamfered edges.

- a. Air handling units shall be mounted on spring isolation in accordance with section 2.21
- 2. Suspended Units: Suspend and brace units from structural-steel support frame using threaded steel rods and spring hangers. Comply with requirements for vibration isolation devices specified in section 2.26
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
- D. Install filter-gauge, static-pressure taps upstream and downstream of filters. Mount filter gauges on outside of filter housing or filter plenum in accessible position. Provide filter gauges on filter banks, installed with separate static-pressure taps upstream and downstream of filters.
- E. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.3 PIPING CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to air-handling unit, allow for service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Hot water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- F. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

3.4 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 - 2. Charge refrigerant coils with refrigerant and test for leaks.
 - 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. HEPA Filters: Pressurize housing to a minimum of 3-inch wg or to designed operating pressure, whichever is higher; test housing joints, door seals, and sealing edges of filter with soapy water to check for air leaks.
- E. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.7 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

- 2. Verify that shipping, blocking, and bracing are removed.
- 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
- 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
- 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
- 6. Verify that zone dampers fully open and close for each zone.
- 7. Verify that face-and-bypass dampers provide full face flow.
- 8. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
- 9. Comb coil fins for parallel orientation.
- 10. Verify that proper thermal-overload protection is installed for electric coils.
- 11. Install new, clean filters.
- 12. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.8 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.9 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313.16

SECTION 238239.13 - CABINET UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cabinet unit heaters with centrifugal fans and hot-water coils.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. DDC: Direct digital control.
- C. PTFE: Polytetrafluoroethylene plastic.
- D. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Sustainable Design Submittals:
 - 1. <u>Product data showing compliance with</u> ASHRAE 62.1.
- C. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include location and size of each field connection.
 - 4. Include details of anchorages and attachments to structure and to supported equipment.
 - 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 - 6. Indicate location and arrangement of piping valves and specialties.
 - 7. Indicate location and arrangement of integral controls.
 - 8. Wiring Diagrams: Power, signal, and control wiring.

- D. Samples: For each exposed product and for each color and texture specified.
- E. Samples for Initial Selection: Finish colors for units with factory-applied color finishes.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which cabinet unit heaters will be attached.
 - 3. Method of attaching hangers to building structure.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - 6. Perimeter moldings for exposed or partially exposed cabinets.
- B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cabinet Unit-Heater Filters: Furnish **one** spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Provide products from one of the following
 - 1. Daikin
 - 2. Modine
 - 3. Rittling
 - 4. Vulcan

5. Sterling

2.2 DESCRIPTION

- A. Factory-assembled and -tested unit complying with AHRI 440.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Electric cabinet unit heaters shall comply with UL 2021.

2.3 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

2.4 COIL SECTION INSULATION

- A. Insulation Materials: ASTM C 1071; surfaces exposed to airstream shall have aluminum-foil facing to prevent erosion of glass fibers.
 - 1. Thickness: 1 inch.
 - 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F mean temperature.
 - 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 CABINETS

- A. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect or baked-enamel finish with manufacturer's custom paint, in color selected by Architect. Refer to schedule submit color chart for review and approval.
 - 1. **Vertical Uni**t; Exposed Front Panels: Minimum 0.0528-inch- thick galvanized sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 - 2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch- thick galvanized sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 - 3. **Recessed Unit**; Flanges: Steel, finished to match cabinet.
 - 4. Control Access Door: Key operated.
 - 5. **Vertical, wall-mounted units;** Base, minimum 0.0528-inch-thick steel, finished to match cabinet, 4 inches or 6 inches high with leveling bolts.
 - 6. Extended Piping Compartment: 8-inch- wide piping end pocket.
 - 7. Vertical Unit Accessories;
 - a. False Back: Minimum 0.0428-inch-thick steel, finished to match cabinet.

- b. Outdoor-Air Wall Box: Minimum 0.1265-inch-thick, aluminum, rain-resistant louver and box with integral eliminators and bird screen; aluminum louver with anodized finish in color selected by Architect from manufacturer's standard or custom colors.
- 8. **Outdoor-Air Damper:** where indicated on plan shall be galvanized-steel blades with edge and end seals and nylon bearings; with electronic, two-position actuators. Review plans and schedules for the outdoor air dampers.

2.6 FILTERS

- A. Minimum Arrestance: And a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated: 90 percent arrestance and MERV 7.

2.7 COILS

A. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain.

2.8 CONTROLS

- A. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- B. Factory, Hot-Water Piping Package: ASTM B 88, Type L, copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet, and outlet.
 - 1. Three-way, modulating control valve
 - 2. Hose Kits: steel braided flexible connection, minimum 200-psigworking pressure, and operating temperatures from 33 to 211 deg FTag hose kits to equipment designations.
 - a. Length: 6"
 - b. Minimum Diameter: Equal to cabinet unit-heater connection size.
 - 3. Two-Piece, Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psigminimum CWP rating and blowout-proof stem.
 - 4. Calibrated-Orifice Balancing Valves: Bronze body, ball type, 125-psigworking pressure, 250 deg F maximum operating temperature; with calibrated orifice or venture, connection

for portable differential pressure meter with integral seals, threaded ends, and equipped with a memory stop to retain set position.

- 5. Y-Pattern, Hot-Water Strainers: Cast-iron body (ASTM A 126, Class B); 125psigminimum working pressure; with threaded connections, bolted cover, perforated stainless-steel basket, and bottom drain connection. Include minimum NPS 1/2threaded pipe and full-port ball valve in strainer drain connection.
- 6. Wrought-Copper Unions: ASME B16.22.
- C. Control devices and operational sequences are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC."
- D. DDC Terminal Controller:
 - 1. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.
 - 2. Unoccupied Period Override: Two hours.
 - 3. Unit Supply-Air Fan Operations:
 - a. Occupied Periods: Fan runs continuously.
 - b. Unoccupied Periods: Fan cycles to maintain setback room temperature.
 - 4. Heating-Coil Operations:
 - a. Occupied Periods: Open control valve to provide heating if room temperature falls below thermostat set point.
 - b. Unoccupied Periods: Start fan and open control valve if room temperature falls below setback temperature.
 - 5. Optional Outdoor-Air Damper Operation: (not used)
 - a. Occupied Periods: Open dampers. Delay damper opening if room temperature is more than three degrees below set point.
 - b. Unoccupied Periods: Close damper.
 - 6. Controller shall have volatile-memory backup.
- E. Interface with DDC System for HVAC Requirements:
 - 1. Terminal unit controller shall be by building DDC system manufacture. It can be field or factory installed and shall be capable of at a minimum the following operation. Refer to the sequence of operation for full unit sequence and further requirements.
 - 2. Interface shall be BAC-net compatible for central DDC system for HVAC workstation and include the following functions:
 - a. Adjust set points.
 - b. Cabinet unit-heater start, stop, and operating status.
 - c. Data inquiry, including supply-air and room-air temperature.
 - d. Occupied and unoccupied schedules.
- F. Electrical Connection: Factory-wired motors and controls for a single field connection.

© 2020 OLA Consulting Engineers, P.C.

2.9 CAPACITIES AND CHARACTERISTICS.

A. Capacities are as scheduled on plan

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for **piping and** electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. vertical, wall-mounted cabinet unit heaters with wall boxes and outdoor-air intake louvers.
 - 1. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 079200 "Joint Sealants."
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Suspend cabinet unit heaters; suspend from structure with elastomeric hangers.
- D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- E. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 232113 "Hydronic Piping," Section 232116 "Hydronic Piping Specialties," Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping to allow service and maintenance and access to valves and specialties.
- C. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
- D. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Section 233300 "Air Duct Accessories." If applicable.
- E. Hot water and steam cabinet unit heaters shall comply with safety requirements in UL 1995.

- F. For hot water cabinet unit heaters, unless otherwise indicated, install union, strainer and ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of cabinet unit heater. Hydronic specialties are specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."
- G. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- H. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections.
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. For electric units operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters.

END OF SECTION 238239.13

SECTION 230130

HVAC AIR DUCT CLEANING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes cleaning of the following duct systems:
 - 1. Supply system.
 - 2. Return system.
 - 3. Exhaust system.

1.3 DEFINITIONS

- A. ASCS: Air system cleaning specialist.
- B. NADCA: National Air Duct Cleaners Association.
- C. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association.

1.4 SUBMITTALS

- A. Manufacturer Certificates: Signed by manufacturers certifying that products comply with requirements.
- B. Qualification Data: For ASCS.
- C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. ASCS Qualifications: A member of a nationally recognized nonprofit industry organization dedicated to the cleaning of HVAC systems.
 - 1. Certification: Employ a staff of ASCSs certified by a nationally recognized certification program.
 - 2. Supervisor Qualifications: Certified by a nationally recognized program and organization.
 - 3. Experience: Submit records of experience in the field of HVAC systems cleaning.

- 4. Equipment, Materials, and Labor: Have equipment, materials, and labor required to perform specified services.
- B. Comply with current published standards of NADCA.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.
- B. Galvanized-Steel Sheet: Lock-forming quality; complying with ASTM A 653/A 653M and having G60 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 DUCT-MOUNTING ACCESS DOORS

- A. General Description: Fabricate doors airtight and suitable for duct pressure class.
- B. Rectangular Duct Door: Double wall; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.
 - 1. Manufacturers:
 - a. American Warming and Ventilating.
 - b. Cesco Products.
 - c. Ductmate Industries, Inc.
 - d. Flexmaster U.S.A., Inc.
 - e. Greenheck.
 - f. McGill AirFlow Corporation.

- g. Nailor Industries Inc.
- h. Ventfabrics, Inc.
- i. Ward Industries, Inc.
- 2. Frame: Galvanized-steel sheet; with bendover tabs and foam gaskets.
- 3. Provide number of hinges and locks as follows:
 - a. Less Than 12 Inches Square: Secure with two sash locks.
 - b. Up to 18 Inches Square: Two hinges and two sash locks.
 - c. Up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
- C. Round Duct Door: Double wall; fabricated of galvanized sheet metal with insulation fill and 1-inch thickness. Include cam latches.
 - 1. Manufacturers:
 - a. Flexmaster U.S.A., Inc.
 - 2. Frame: Galvanized-steel sheet; with spin-in notched frame.
- D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.
- E. Insulation: 1-inch thick fibrous-glass or polystyrene-foam board.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine systems to determine appropriate methods, tools, and equipment required for performance of work.
- B. Prepare written report listing conditions detrimental to performance of work.
- C. Proceed with work only after unsatisfactory conditions have been corrected.

3.2 CLEANING

- A. Engage a qualified ASCS to clean the following systems:
 - 1. Supply system.
 - 2. Return system.
 - 3. Exhaust system.
- B. Perform cleaning before air balancing or mark position of dampers and air-directional mechanical devices before cleaning.
- C. Use duct-mounted access doors, as required, for physical and mechanical entry and for inspection.
 - 1. Install additional duct-mounting access doors to comply with duct cleaning standards. Comply with requirements in Division 23 Section "Air Duct Accessories" for additional duct-mounting access doors.

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection. Replace damaged and deteriorated flexible ducts. Comply with requirements in Division 23 Section "Air Duct Accessories" for flexible ducts.
- 3. Disconnect and reconnect flexible connectors as needed for cleaning and inspection. Replace damaged and deteriorated flexible connectors. Comply with requirements in Division 23 Section "Air Duct Accessories" for flexible connectors.
- 4. Reseal rigid-fiberglass-duct systems according to NAIMA recommended practices.
- 5. Replace damaged fusible links on fire and smoke dampers. Replacement fusible links shall be same rating as those being replaced. Comply with requirements in Division 23 Section "Air Duct Accessories" for fusible links.
- 6. Remove and reinstall ceiling components to gain access for duct cleaning. Clean ceiling components after they have been removed and replaced.
- D. Mark position of dampers and air-directional mechanical devices before cleaning, and restore to their marked position on completion.
- E. Particulate Collection and Odor Control:
 - 1. Where venting vacuuming system inside building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron size (or greater) particles.
 - 2. When venting vacuuming system outside building, use filtration to contain debris removed from the HVAC system and locate exhaust down wind and away from air intakes and other points of entry into building.
- F. Clean the following metal-duct system components by removing visible surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply and return fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling-unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, and actuators, except in ceiling plenums and mechanical room.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
- G. Mechanical Cleaning Methodology:
 - 1. Clean metal-duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of ducts so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts or duct liner.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment, and do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide operative drainage system for washdown procedures.

- 7. Biocidal Agents and Coatings: Apply biocidal agents if fungus is present; use according to manufacturer's written instructions after removal of surface deposits and debris.
- H. Cleanliness Verification:
 - 1. Verify cleanliness after mechanical cleaning and before application of treatment, including biocidal agents and protective coatings.
 - 2. Visually inspect metal-duct systems for contaminants.
 - 3. Where contaminants are discovered, reclean and reinspect duct systems.

3.3 DUCT ACCESSORIES INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install duct-mounting access doors where access doors do not currently exist to allow for the cleaning of ducts, accessories, and terminal units as follows:
 - 1. On both sides of duct coils.
 - 2. Downstream from volume dampers and equipment.
 - 3. Adjacent to fire or smoke dampers; reset or install new fusible links.
 - 4. Before and after each change in direction, at maximum 50-foot spacing.
 - 5. On sides of ducts where adequate clearance is available.
- D. Install the following sizes for duct-mounting, rectangular access doors:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body Plus Ladder Access: 25 by 17 inches.
- E. Install the following sizes for duct-mounting, round access doors:
 - 1. One-Hand or Inspection Access: 8 inches in diameter.
 - 2. Two-Hand Access: 10 inches in diameter.
 - 3. Head and Hand Access: 12 inches in diameter.
 - 4. Head and Shoulders Access: 18 inches in diameter.
 - 5. Body Access: 24 inches in diameter.
- F. Install the following sizes for duct-mounting, pressure relief access doors:
 - 1. One-Hand or Inspection Access: 5 inches in diameter.
 - 2. Two-Hand Access: 10 inches in diameter.
 - 3. Head and Hand Access: 13 inches in diameter.
 - 4. Head and Shoulders Access: 19 inches in diameter.

3.4 CONNECTIONS

- A. Reconnect ducts to fans and air-handling units with existing flexible connectors after cleaning ducts and flexible connectors. Replace existing damaged and deteriorated flexible connectors.
- B. For fans developing static pressures of 5-inch wg and higher, cover replacement flexible connectors with loaded vinyl sheet held in place with metal straps.
- C. Reconnect terminal units to supply ducts with existing flexible ducts or replace damaged and deteriorated existing flexible ducts with maximum 12-inch lengths of new flexible duct.
- D. Reconnect diffusers or light troffer boots to low-pressure ducts with existing flexible ducts or replace damaged and deteriorated existing flexible ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- E. Reconnect existing and new flexible ducts to metal ducts with adhesive plus sheet metal screws.

3.5 FIELD QUALITY CONTROL

- A. Gravimetric Analysis: Sections of metal-duct system, chosen randomly by Architect, may be tested for cleanliness according to NADCA vacuum test gravimetric analysis.
 - 1. If analysis determines that levels of debris are equal to or lower than suitable levels, system shall have passed cleanliness verification.
 - 2. If analysis determines that levels of debris exceed suitable levels, system cleanliness verification will have failed and metal-duct system shall be recleaned and reverified.
- B. Verification of Coil Cleaning: Cleaning shall restore coil pressure drop to within 10 percent of pressure drop measured when coil was first installed. If original pressure drop is not known, coil will be considered clean only if it is free of foreign matter and chemical residue, based on thorough visual inspection.
- C. Report results of tests in writing.

END OF SECTION 230130

SECTION 231113

FACILITY FUEL-OIL PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes diesel-fuel-oil distribution systems and the following:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping and tubing joining materials.
 - 3. Piping specialties.
 - 4. Valves.
 - 5. Concrete bases.

1.3 DEFINITIONS

- A. AST: Aboveground storage tank.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

1.4 PERFORMANCE REQUIREMENTS

- A. Maximum Operating-Pressure Ratings: 3-psig fuel-oil supply pressure at oil-fired appliances.
- B. Delegated Design: Design restraint and anchors for fuel-oil piping, and equipment, including comprehensive engineering analysis by a licensed professional engineer, using performance requirements and design criteria indicated.
- C. Seismic Performance: Factory-installed support attachments for AST shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, and dimensions of individual components and profiles. Also include, where applicable, rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 1. Piping specialties.
 - 2. Fuel-oil storage tank accessories.
 - 3. Fuel-oil storage tank piping specialties.
 - 4. Fuel-oil transfer pumps.
 - 5. Fuel maintenance system.
- B. Shop Drawings: For facility fuel-oil piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Shop Drawing Scale: 1/4 inch per foot.
- C. Delegated-Design Submittal: For fuel-oil piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the licensed professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of anchors and seismic restraints.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
 - 3. Detail fabrication and assembly of pipe anchors, hangers, supports for multiple pipes, and attachments of the same to building structure.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and details, drawn to scale, on which fuel-oil piping is shown and coordinated with other installations, using input from installers of the items involved.
- B. Site Survey: Plans, drawn to scale, on which fuel-oil piping and tanks are shown and coordinated with other services and utilities.
- C. Qualification Data: For licensed professional engineer.
- D. Seismic Qualification Certificates: For accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Brazing certificates.

- F. Welding certificates.
- G. Field quality-control reports.
- H. Warranty: Sample of special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-oil equipment and accessories to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
- B. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with ASME B31.9, "Building Services Piping," for fuel-oil piping materials, installation, testing, and inspecting.
- F. Comply with requirements of the EPA and of state and local authorities having jurisdiction. Include recording of fuel-oil storage tanks and monitoring of tanks and piping.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Lift and support fuel-oil storage tanks only at designated lifting or supporting points, as shown on Shop Drawings. Do not move or lift tanks unless empty.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Comply with the requirements of the construction indoor air quality management plan and the construction waste management plan.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-oil storage tanks and flexible, double-containment piping and related equipment that fail in materials or workmanship within specified warranty period.
 - 1. Flexible, Double-Containment Piping and Related Equipment:
 - a. Failures due to defective materials or workmanship for materials installed together, including piping, dispenser sumps, entry boots, and sump mounting adapters.
 - b. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 PIPES, TUBES, AND FITTINGS
 - A. See Part 3 piping schedule articles for where pipes, tubes, fittings, and joining materials are applied in various services.
 - B. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Unions: ASME B16.39, Class 150, Malleable iron with brass-to-iron seat, ground joint, and threaded ends.

2.2 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for fuel oil.

2.3 MANUAL FUEL-OIL SHUTOFF VALVES

- A. See valve schedule in Part 3 for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller for Liquid Service: Comply with UL 842.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in the valve schedule.
 - 5. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following or approved equal:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.

- c. Lyall, R. W. & Company, Inc.
- d. McDonald, A. Y. Mfg. Co.
- e. Perfection Corporation; A Subsidiary of American Meter Company.
- 2. Body: Bronze, complying with ASTM B 584.
- 3. Ball: Chrome-plated brass.
- 4. Stem: Bronze; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
- 7. Ends: Threaded, flared, or socket as indicated in the valve schedule.
- 8. CWP Rating: 600 psig.
- 9. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following or approved equal:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; A Subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in the valve schedule.
 - 8. CWP Rating: 600 psig.
 - 9. Service Mark: Initials "WOG" shall be permanently marked on valve body.

2.4 SPECIALTY VALVES

- A. Pressure Relief Valves: Comply with UL 842.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following or approved equal:
 - a. Anderson Greenwood; Division of Tyco Flow Control.
 - b. Fulflo Specialties, Inc.
 - c. Webster Fuel Pumps & Valves; a division of Capital City Tool, Inc.
 - 2. Listed and labeled for fuel-oil service by an NRTL acceptable to authorities having jurisdiction.
 - 3. Body: Brass, bronze, or cast steel.
 - 4. Springs: Stainless steel, interchangeable.

- 5. Seat and Seal: Nitrile rubber.
- 6. Orifice: Stainless steel, interchangeable.
- 7. Factory-Applied Finish: Baked enamel.
- 8. Maximum Inlet Pressure: 150 psig.
- 9. Relief Pressure Setting: 60 psig.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for fuel-oil piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off fuel oil to premises or piping section.
- B. Comply with NFPA 30 and NFPA 31 requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping free of sags and bends.
- F. Install fittings for changes in direction and branch connections.
- G. Verify final equipment locations for roughing-in.
- H. Comply with requirements for equipment specifications in plumbing and HVAC Sections for roughing-in requirements.
- I. Conceal pipe installations in walls, pipe spaces, or utility spaces; above ceilings; below grade or floors; and in floor channels unless indicated to be exposed to view.

- J. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- K. Install unions in pipes NPS 2 and smaller at final connection to each piece of equipment and elsewhere as indicated. Unions are not required on flanged devices.
- L. Do not use fuel-oil piping as grounding electrode.
- M. Install Y-pattern strainer on inlet side of fuel-oil pump.
- N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 VALVE INSTALLATION

- A. Install manual fuel-oil shutoff valves on branch connections to fuel-oil appliance.
- B. Install valves in accessible locations.
- C. Protect valves from physical damage.
- D. Install metal tag attached with metal chain indicating fuel-oil piping systems.
- E. Identify valves as specified in Section 230553 "Identification for HVAC Piping and Equipment."
- F. Install one-piece, bronze ball valve with hose end connection at low points in fuel-oil piping.
- G. Install manual air vents at high points in fuel-oil piping.

3.5 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Bevel plain ends of steel pipe.
 - 2. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Flanged Joints: Install gasket material, size, type, and thickness for service application. Install gasket concentrically positioned.
- F. Flared Joints: Comply with SAE J513. Tighten finger tight, then use wrench according to fitting manufacturer's written recommendations. Do not overtighten.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Pipe hanger and support and equipment support materials and installation requirements are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1-1/4 and Smaller: Maximum span, 84 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.7 CONNECTIONS

- A. Install piping adjacent to equipment to allow service and maintenance.
- B. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment having threaded pipe connection.
- C. Connect piping to equipment with ball valve and union. Install union between valve and equipment.
- D. Install flexible piping connectors at final connection to burners or oil-fired appliances that must be moved for maintenance access.

3.8 LABELING AND IDENTIFYING

- A. Nameplates, pipe identification, and signs are specified in Section 230553 "Identification for HVAC Piping and Equipment."
- B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplates and signs on or near each service regulator, service meter, and earthquake valve.

1. Text: In addition to identifying unit, distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

3.9 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Piping: Minimum hydrostatic or pneumatic test-pressures measured at highest point in system:
 - a. Fuel-Oil Piping: The piping shall be hyprostatically tested at 1 ¹/₂ times the maximum working pressure applicable to that part of the piping system but at a pressure less than the test pressure required for the storage tank. The minimum pressure for testing tanks shall be 1 ¹/₂ times the maximum working pressure applicable to the tank but in no case less than 25 psig.
 - 2. Inspect and test fuel-oil piping according to NFPA 31, "Tests of Piping" Paragraph; and according to requirements of authorities having jurisdiction.
 - 3. Start fuel-oil transfer pumps to verify for proper operation of pump and check for leaks.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Bleed air from fuel-oil piping using manual air vents.
- D. Fuel-oil piping and equipment will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train City of New York's maintenance personnel to adjust, operate, and maintain fuel-oil pumps.

3.11 INDOOR PIPING SCHEDULE

- A. Aboveground fuel-oil piping shall be the following:
 - 1. NPS 1/2 and Smaller: Steel pipe, steel or malleable-iron threaded fittings, and threaded joints.

- 2. NPS 5/8 to NPS 2: Steel pipe, steel or malleable-iron threaded fittings, and threaded joints.
- 3. Steel pipe with malleable-iron fittings and threaded joints.

3.12 ABOVEGROUND MANUAL FUEL-OIL SHUTOFF VALVE SCHEDULE

- A. Distribution piping valves for pipe NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
- B. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.

END

OF

SECTION

2311

© 2020 OLA Consulting Engineers, P.C.

SECTION 231213

FACILITY FUEL-OIL PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Duplex fuel-oil pumps.

1.3 DEFINITIONS

- A. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- B. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- C. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, and dimensions of individual components and profiles.
 - 2. Include, where applicable, rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For fuel-oil pumps.
 - 1. Include construction details and dimensions of individual components for fuel-oil pumps.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Scale: 1/4 inch per foot.

- C. Delegated-Design Submittal: For fuel-oil pumps.
 - 1. Detail fabrication and assembly of anchors and seismic restraints.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
 - 3. Detail fabrication and assembly of hangers, supports, and attachments of the same to building structure.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified professional engineer.
- B. Seismic Qualification Certificates: For fuel-oil pumps from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- D. Sample Warranty: For special warranty.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For fuel-oil pumps and fuel-oil maintenance systems to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Maximum Operating-Pressure Ratings: 3-psig fuel-oil supply pressure at oil-fired appliances.
- B. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design restraint and anchors for fuel-oil pumps, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Listed and labeled for fuel-oil service by an NRTL acceptable to authorities having jurisdiction.

2.2 DUPLEX FUEL-OIL TRANSFER PUMP SETS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Alyan Pump Company.
 - 2. Preferred Utilities Manufacturing Corporation.
 - 3. Webster Fuel Pumps & Valves; a division of Capital City Tool, Inc.
- B. Description: Comply with HI 3.1-3.5.
 - 1. Type: Positive-displacement, rotary type.
 - 2. Impeller: Steel gear with crescent.
 - 3. Housing: Cast-iron foot mounted.
 - 4. Bearings: Bronze, self-lubricating.
 - 5. Shaft: Polished steel.
 - 6. Seals: Mechanical.
 - 7. Base: Steel.
 - 8. Pressure Relief: Built in.
 - 9. Discharge Check Valve: Built in.
- C. Drive: Direct close coupled.
- D. Controls:
 - 1. Alternate pumps to equalize run time.
 - 2. Alarm motor failure.
 - 3. Manual reset dry-run protection.
 - 4. Stop pumps if fuel level falls below pump suction.
 - 5. De-energize and sound alarm for pump, locked-rotor condition.
 - 6. Sound alarm for open circuit and for high and low voltage.
 - 7. Lights shall indicate normal power on, run, and off conditions.
 - 8. Interface with automatic control system. Comply with requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC" to control and indicate the following:
 - a. Start/stop pump set when required by schedule, fuel-fired appliance operation, day tank level control, or weather conditions.
 - b. Operating status.
 - c. Alarm off-normal status.
- E. Piping Furnished with Pumps: Steel with ferrous fittings and threaded or welded joints.
- F. Strainers Furnished with Pumps: Duplex, basket type with corrosion-resistant-metalscreen baskets.
- G. Capacities and Characteristics: As noted on drawings.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Enclosure: Open, dripproof.
 - 2. Enclosure Materials: Cast iron.
 - 3. Efficiency: Premium efficient.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Examine roughing-in for fuel-oil pumps to verify actual locations of pump connections before equipment installation.
 - B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.3 PREPARATION

- A. Close equipment shutoff valves before turning off fuel oil to premises or piping section.
- B. Comply with NFPA 30 and NFPA 31 requirements for prevention of accidental ignition.

3.4 FUEL-OIL PUMP INSTALLATION

- A. Transfer Pumps:
 - 1. Install pumps with access space for periodic maintenance including removal of motors, impellers, and accessories.
 - 2. Set pumps on and anchor to concrete base.
 - 3. Pump Mounting:
 - a. Install base-mounted pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

- c. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- B. Install two-piece, full-port ball valves at suction and discharge of pumps. Comply with requirements in Section 230523.12 "Ball Valves for HVAC Piping."
- C. Install mechanical leak-detector valves at pump discharge.
- D. Install basket strainer on inlet side of simplex fuel-oil pumps.
- E. Install check valve on discharge of simplex fuel-oil pumps.
- F. Install suction piping with minimum fittings and change of direction.
- G. Install vacuum and pressure gage, upstream and downstream, respectively, at each pump to measure the differential pressure across the pump. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.5 FUEL MAINTENANCE SYSTEM INSTALLATION

- A. Install suction line, with foot valve, at one end of storage tank, 1 inch from the bottom of tank.
- B. Install return line at the opposite end of storage tank from suction line.
- 3.6 LABELING AND IDENTIFYING
 - A. Install nameplates and signs on each fuel-oil pump. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment."
- 3.7 FIELD QUALITY CONTROL
 - A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 - B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Start fuel-oil transfer pumps to verify for proper operation of pump, and check for leaks.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - C. Fuel-oil pumps will be considered defective if they do not pass tests and inspections.
 - D. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fuel-oil pumps.

END OF SECTION 231213

SECTION 231323

FACILITY ABOVEGROUND FUEL-OIL STORAGE TANKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Vertical, steel, fuel-oil ASTs.

1.3 DEFINITIONS

A. AST: Aboveground storage tank.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, and dimensions of individual components and profiles.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Fuel-oil storage tank accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and ballast pads and anchors, and lifting or supporting points.
 - 2. Indicate dimensions, components, and location and size of each field connection.
 - 3. Shop Drawing Scale: 1/4 inch per foot.

1.5 INFORMATIONAL SUBMITTALS

- A. Site Survey: Plans, drawn to scale, on which fuel-oil storage tanks are shown and coordinated with other services and utilities.
- B. Brazing certificates.

- C. Welding certificates.
- D. Field quality-control reports.
- E. Sample Warranty: For special warranty.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For fuel-oil equipment and accessories to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. EPA Compliance: Comply with EPA and state and local authorities having jurisdiction. Include recording of fuel-oil storage tanks and monitoring of tanks.
- B. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Westchester County Department of Health Petroleum Bulk Storage Program: Comply with Westchester County requirements.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of fuel-oil storage tanks that fail in materials or workmanship within specified warranty period.
 - 1. Storage Tanks:
 - a. Failures include, but are not limited to, the following when used for storage of fuel oil at temperatures not exceeding 150 deg F:
 - 1) Structural failures including cracking, breakup, and collapse.
 - 2) Corrosion failure including external and internal corrosion of steel tanks.
 - b. Warranty Period: 30 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design restraint and anchors for fuel-oil ASTs, and equipment, including comprehensive engineering analysis, using performance requirements and design criteria indicated.

2.2 VERTICAL, STEEL, FUEL-OIL AST

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Roth Tank.
 - 2. Highland Tank & Manufacturing Company, Inc.
 - 3. Steel Tank and Fabricating.
- B. Description: UL 142, single-wall, vertical, steel tank.
- C. Description: UL 142, double-wall, vertical, steel tank; with primary- and secondarycontainment walls and interstitial space.
- D. Construction: Fabricated with welded, carbon steel suitable for operation at atmospheric pressure and for storing fuel oil with specific gravity up to 1.1 and maintained temperature up to 150 deg F.
- E. Capacities and Characteristics: As noted on drawings.

2.3 SHOP PAINTING OF AST

- A. Apply manufacturer's standard prime coat to exterior steel surface of AST and supports.
- B. Prepare exterior steel surface of AST and tank supports.
- C. Shop Cleaning: After fabrication, blast clean according to SSPC-SP 6/NACE No. 3.
- D. After cleaning, remove dust or residue from cleaned surfaces.
- E. If surface develops rust before prime coat is applied, repeat surface preparation.
- F. Apply manufacturer's standard prime coat to shop-cleaned, dry surface same day as surface preparation.
- G. Apply manufacturer's standard two-component, epoxy finish coats.

2.4 FUEL-OIL AST ACCESSORIES

- A. Tank Manholes: 22-inch-minimum diameter; bolted, flanged, and gasketed; centered on top of tank.
- B. Tank Manholes: 22-inch-minimum diameter; bolted, flanged, and gasketed; on top and at side of tank.
- C. Threaded pipe connection fittings on top of tank, for fill, supply, return, vent, sounding, and gaging. Include cast-iron plugs for shipping.

- D. Threaded pipe connection fittings on top or sides of tank as indicated, for fill, supply, return, vent, sounding, and gaging. Include cast-iron plugs for shipping.
- E. Striker Plates: Inside tank, on bottom below fill, vent, sounding, gage, and other tube openings.
- F. Lifting Lugs: For handling and installation.
- G. Supply Tube: Extension of supply piping fitting into tank, terminating 6 inches above tank bottom and cut at a 45-degree angle.
- H. Sounding and Gage Tubes: Extension of fitting into tank, terminating 6 inches above tank bottom and cut at a 45-degree angle.

2.5 LIQUID-LEVEL GAGE SYSTEM

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Franklin Fueling Systems.
 - 2. Pneumercator Inc.
 - 3. Preferred Utilities Manufacturing Corporation.
- B. Description: Calibrated liquid-level gage system complying with UL 180 with floats or other sensors and remote annunciator panel.
- C. Annunciator Panel: With visual and audible, high-tank-level and low-tank-level alarms; fuel indicator with registration in gallons; and overfill alarm. Include gage volume range that covers fuel-oil storage capacity.
- D. Controls: Electrical, operating on 120-V ac.

2.6 LEAK-DETECTION AND MONITORING SYSTEM

- A. Cable and Sensor System: Comply with UL 1238.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on drawings or comparable product by one of the following:
 - a. Franklin Fueling Systems.
 - b. Pneumercator Inc.
 - c. Veeder-Root Company (The).
 - 2. Calibrated leak-detection and monitoring system with probes and other sensors and remote alarm panel for fuel-oil storage tanks and fuel-oil piping.
 - 3. Include fittings and devices required for testing.
 - 4. Controls: Electrical, operating on [120] < Insert voltage>-V ac.
 - 5. Calibrated liquid-level gage complying with [UL 180 with floats] [UL 1238 with probes] or other sensors and remote annunciator panel.

- 6. Remote Annunciator Panel: With visual and audible, high-tank-level and lowtank-level alarms; fuel indicator with registration in gallons and overfill alarm. Include gage volume range that covers fuel-oil storage capacity.
- 7. Controls: Electrical, operating on [120] < Insert voltage>-V ac.
- B. Hydrostatic System: Comply with UL 1238.
 - 1. <a>

 Couble click here to find, evaluate, and insert list of manufacturers and products.>
 - 2. Calibrated leak-detection and monitoring system with brine antifreeze solution, reservoir sensor, and electronic control panel to monitor leaks in inner and outer tank walls.
 - 3. Include fittings and devices required for testing.
 - 4. Controls: Electrical, operating on [120] < Insert voltage>-V ac.
 - 5. Calibrated liquid-level gage complying with [UL 180 with floats] [UL 1238 with probes] or other sensors and remote annunciator panel.
 - 6. Remote Annunciator Panel: With visual and audible, high-tank-level and lowtank-level alarms; fuel indicator with registration in gallons; and overfill alarm. Include gage volume range that covers fuel-oil storage capacity.
 - 7. Controls: Electrical, operating on [120] <Insert voltage>-V ac.
- 2.7 FUEL OIL
 - A. Diesel Fuel Oil: ASTM D 975, Grade No. 2-D, general purpose, high volatility.
- 2.8 SOURCE QUALITY CONTROL
 - A. Pressure test and inspect fuel-oil storage tanks, after fabrication and before shipment, according to ASME and the following:
 - 1. Vertical, Double-Wall Steel ASTs: UL 142, STI F921, and STI R931.
 - B. Affix standards organization's code stamp.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for aboveground fuel-oil storage tanks to verify actual locations.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 FUEL-OIL AST INSTALLATION
 - A. Install tank bases and supports.

- B. Connect piping and vent fittings.
- C. Install ground connections.
- D. Install tank leak-detection and monitoring devices.
- E. Install steel ASTs according to STI R912.
- F. Install insulated and concrete-vaulted, steel ASTs according to STI R942.
- G. Fill storage tanks with fuel oil.

3.3 LIQUID-LEVEL GAGE SYSTEM INSTALLATION

A. Install liquid-level gage system. Install panel inside building where indicated.

3.4 LEAK-DETECTION AND MONITORING SYSTEM INSTALLATION

- A. Install leak-detection and monitoring system. Install alarm panel inside building where indicated.
 - 1. Double-Wall, Fuel-Oil Storage Tanks: Install probes in interstitial space.
 - 2. Install liquid-level gage.

3.5 LABELING AND IDENTIFYING

- A. Nameplates, pipe identification, and signs are specified in Section 230553 "Identification for HVAC Piping and Equipment."
- 3.6 FIELD PAINTING OF AST
 - A. Prepare and touch up damaged exterior surface of AST and supports as specified in "Shop Painting of AST" Article.
 - B. Prepare exterior steel surface of AST and tank supports.

3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

- 1. Tanks: Minimum hydrostatic or compressed-air test pressures for fuel-oil storage tanks that have not been factory tested and do not bear the ASME code stamp or a listing mark acceptable to authorities having jurisdiction:
 - a. Double-Wall Tanks:
 - 1) Inner Tanks: Minimum 3 psig and maximum 5 psig.
 - 2) Interstitial Space: Minimum 3 psig and maximum 5 psig, or 5.3-in. Hg vacuum.
 - b. Where vertical height of fill and vent pipes is such that the static head imposed on the bottom of the tank is greater than 10 psig, hydrostatically test the tank and fill and vent pipes to a pressure equal to the static head thus imposed.
 - c. Maintain the test pressure for one hour.
- C. ASTs will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 231323

SECTION 233416 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Backward-inclined centrifugal fans.
 - 2. Forward-curved centrifugal fans.

1.3 PERFORMANCE REQUIREMENTS

A. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For centrifugal fans to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA 1.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations, with protective crating and covering.
- B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 BACKWARD-INCLINED CENTRIFUGAL FANS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Chicago Blower Corporation.
 - 2. Loren Cook Company.
 - 3. New York Blower Company (The).
- B. Description: Factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and support structure.
- C. Housings: Formed panels to make curved-scroll housings with shaped cutoff; with doors or panels to allow access to internal parts and components.

- 1. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.
- 2. Horizontally split, bolted-flange housing.
- 3. Spun inlet cone with flange.
- 4. Outlet flange.
- D. Backward-Inclined Wheels: Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades welded or riveted to flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.
- E. Shafts: Statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
 - 1. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 - 2. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- F. Grease-Lubricated Shaft Bearings: Self-aligning, pillow-block-type, tapered roller bearings with double-locking collars and two-piece, cast-iron housing.
 - 1. Roller-Bearing Rating Life: ABMA 11, LI0 at 100,000 hours.
- G. Belt Drives: Factory mounted, with final alignment and belt adjustment made after installation.
 - 1. Service Factor Based on Fan Motor Size: 1.15.
 - 2. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 - 3. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 4. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 5. Belt Guards: Fabricate to comply with OSHA and SMACNA requirements of diamond-mesh wire screen welded to steel angle frame or equivalent, prime coated. Secure to fan or fan supports without short circuiting vibration isolation. Include provisions for adjustment of belt tension, lubrication, and use of tachometer with guard in place.
 - 6. Motor Mount: Adjustable for belt tensioning.
- H. Accessories:
 - 1. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 - 2. Inlet Screens: Grid screen of same material as housing.
 - 3. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.

- © 2020 OLA Consulting Engineers, P.C.
 - I. Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - J. Capacities And Characteristics: As indicated on drawings.

2.2 FORWARD-CURVED CENTRIFUGAL FANS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Chicago Blower Corporation.
 - 2. Loren Cook Company.
 - 3. New York Blower Company (The).
- B. Description:
 - 1. Factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor, drive assembly, and support structure.
 - 2. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations.
 - 3. Factory-installed and -wired disconnect switch.
- C. Housings:
 - 1. Formed panels to make curved-scroll housings with shaped cutoff.
 - 2. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 3. Spun inlet cone with flange.
 - 4. Outlet flange.
- D. Forward-Curved Wheels:
 - 1. Black-enameled or galvanized-steel construction with inlet flange, backplate, shallow blades with inlet and tip curved forward in direction of airflow.
 - 2. Mechanically secured to flange and backplate; cast-steel hub swaged to backplate and fastened to shaft with set screws.
- E. Shafts:
 - 1. Statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with adjustable alignment and belt tensioning.
 - 2. Turned, ground, and polished hot-rolled steel with keyway. Ship with protective coating of lubricating oil.
 - 3. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- F. Grease-Lubricated Shaft Bearings:

- 1. Self-aligning, pillow-block-type, tapered roller bearings with double-locking collars and two-piece, cast-iron housing.
- 2. Roller-Bearing Rating Life: ABMA 11, LI0 at 100,000 hours.
- G. Belt Drives:
 - 1. Factory mounted, with adjustable alignment and belt tensioning.
 - 2. Service Factor Based on Fan Motor Size: 1.15.
 - 3. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 - 4. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 5. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 6. Belt Guards: Fabricate to comply with OSHA and SMACNA requirements of diamond-mesh wire screen welded to steel angle frame or equivalent, prime coated. Secure to fan or fan supports without short circuiting vibration isolation. Include provisions for adjustment of belt tension, lubrication, and use of tachometer with guard in place.
 - 7. Motor Mount: Adjustable for belt tensioning.
- H. Accessories:
 - 1. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 - 2. Discharge Dampers: Assembly with opposed blades constructed of two plates formed around and to shaft, channel frame, and sealed ball bearings; with blades linked outside of airstream to single control lever of same material as housing.
 - 3. Inlet Screens: Grid screen of same material as housing.
 - 4. Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
 - 5. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.

2.3 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install centrifugal fans level and plumb.
- B. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Install units with clearances for service and maintenance.
- D. Label fans according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
- B. Install ducts adjacent to fans to allow service and maintenance.
- C. Install line-sized piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.

- 7. Verify lubrication for bearings and other moving parts.
- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 9. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- 10. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 233416

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Alpha Wire Company.
 - 2. Belden Inc.
 - 3. Encore Wire Corporation.
 - 4. General Cable; General Cable Corporation.
 - 5. Senator Wire & Cable Company.
 - 6. Southwire Company.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.
- D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI and Type SO with ground wire.
- E. VFC Cable:
 - 1. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable.
 - 2. Type TC-ER with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. AFC Cable Systems, Inc.
 - 3. Hubbell Power Systems, Inc.
 - 4. ILSCO.
 - 5. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 6. Tyco Electronics Corp.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway or Mineral-insulated, metal-sheathed cable, Type MI.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
- I. VFC Output Circuits: Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

- a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- b. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency and testing agency's field supervisor.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. ERICO International Corporation.
 - 3. Harger Lightning & Grounding.
 - 4. ILSCO.
 - 5. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business

2.2 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 5. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 6. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 5/8 by 96 inches.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
- C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- D. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
- E. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

- B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. For grounding electrode system, install at least two rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- D. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
- F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.
- G. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Trapeze hangers.
 - d. Clamps.
 - e. Turnbuckles.
 - f. Sockets.
 - g. Eye nuts.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. Thomas & Betts Corporation, A Member of the ABB Group.
 - e. Unistrut; an Atkore International company.
 - 2. Material: Galvanized steel.
 - 3. Channel Width: 1-5/8 inches.
 - 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

- 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
- 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Hilti, Inc.
 - 3) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 4) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Allied Tube & Conduit.
 - 3. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 4. Southwire Company.
 - 5. Thomas & Betts Corporation, A Member of the ABB Group.
 - 6. Wheatland Tube Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. FMC: Comply with UL 1; zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- I. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. AFC Cable Systems, Inc.
- 2. CANTEX INC.
- 3. Kraloy.
- 4. RACO; Hubbell.
- 5. Thomas & Betts Corporation, A Member of the ABB Group.
- B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. RNC: Type EPC-40-PVC and Type EPC-80 PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Hubbell Incorporated; Wiring Device-Kellems.
- b. MonoSystems, Inc.
- c. Legrand/Wiremold
- d. Panduit

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Technologies Company.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman; a brand of Pentair Equipment Protection.
 - 5. Hubbell Incorporated.
 - 6. MonoSystems, Inc.
 - 7. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 8. RACO; Hubbell.
 - 9. Thomas & Betts Corporation, A Member of the ABB Group.
 - 10. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- K. Gangable boxes are allowed.
- L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- M. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Armorcast Products Company.
 - b. Carson Industries LLC.
 - c. NewBasis.
 - d. Oldcastle Precast, Inc.
 - e. Quazite: Hubbell Power Systems, Inc.
 - f. Synertech Moulded Products.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

- 6. Cover Legend: Molded lettering, "ELECTRIC.".
- 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
- 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.7 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC.
 - 2. Concealed Conduit, Aboveground: GRC or IMC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC or Type EPC-80-PVC under vehicle traffic.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC or IMC.

- 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings.
- F. Install surface raceways only where indicated on Drawings.
- G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

- 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
- 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
- 5. Change from RNC, Type EPC-40-PVC to GRC or IMC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- Q. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

- 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
- 2. Where an underground service raceway enters a building or structure.
- 3. Where otherwise required by NFPA 70.
- T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- U. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- V. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- W. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.
- X. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- Y. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

- Z. Locate boxes so that cover or plate will not span different building finishes.
- AA. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- BB. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- CC. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 - 5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
 - 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 - 2. Rigid nonmetallic duct.
 - 3. Flexible nonmetallic duct.
 - 4. Duct accessories.
 - 5. Polymer concrete handholes and boxes with polymer concrete cover.
 - 6. Fiberglass handholes and boxes.
 - 7. Precast manholes.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. GRC: Galvanized rigid (steel) conduit.
- E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including spacers and miscellaneous components.
 - 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Include accessories for manholes, handholes, boxes, and other utility structures.

- 4. Include underground-line warning tape.
- 5. Include warning planks.
- B. Shop Drawings:
 - 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole chimneys.
 - e. Include details.
 - f. Include grounding details.
 - g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 - h. Include joint details.
 - 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For duct and duct bank. Show duct profiles and coordination with other utilities and underground structures.
 - 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 - 2. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes as required by ASTM C858.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Furnish cable-support stanchions, arms, insulators and associated fasteners in quantities equal to five (5) percent of quantity of each item installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

1.8 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify two (2) weeks in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without owners written permission.
- B. Ground Water: Coordinate with civil engineer.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.
- C. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Products Division.
 - 2. AFC Cable Systems; Atkore International.
 - 3. <u>Allied Tube & Conduit; Atkore International.</u>
 - 4. <u>Perma-Cote; Robroy Industries</u>.
 - 5. <u>Southwire Company</u>.
 - 6. <u>Western Tube; Zekelman Industries</u>.
- D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ARNCO Corp</u>.
 - 2. <u>ElecSys, Inc</u>.
 - 3. <u>Electri-Flex Company</u>.
 - 4. <u>IPEX USA LLC</u>.
 - 5. <u>National Pipe & Plastics</u>.
 - 6. <u>Spiraduct/AFC Cable Systems, Inc.</u>
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>ABB, Electrification Products Division</u>.
 - b. <u>Allied Tube & Conduit; Atkore International</u>.
 - c. <u>Cantex Inc</u>.
 - d. <u>IPEX USA LLC</u>.
 - e. <u>PenCell Plastics</u>.
 - f. <u>Underground Devices, Inc</u>.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.4 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1. <u>Armorcast Products Company</u>.
- 2. <u>MacLean Highline</u>.
- 3. <u>NewBasis</u>.
- 4. <u>Oldcastle Infrastructure Inc.; CRH Americas</u>.
- 5. Quazite; Hubbell Incorporated, Power Systems.
- C. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- D. Color: Gray.
- E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "ELECTRIC".
- I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.5 FIBERGLASS HANDHOLES AND BOXES

- A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of cast iron or fiberglass.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Christy Concrete Products</u>.
 - 2. <u>MacLean Highline</u>.
 - 3. Nordic Fiberglass, Inc.
 - 4. <u>Oldcastle Infrastructure Inc.; CRH Americas</u>.
 - 5. Quazite; Hubbell Incorporated, Power Systems.
- C. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- D. Color: Gray.

- E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "ELECTRIC".
- I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- C. Underground Ducts Crossing Paved Paths, Walks, and Drive/Entranceways Type EPC-40 PVC RNC, encased in reinforced concrete.

D. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 or Fiberglass-reinforced polyester resin, SCTE 77, Tier 15 structural load rating.
 - 2. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 - 3. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
 - 4. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavyduty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area after construction vehicle traffic in immediate area is complete.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work.
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. Terminator Entrances to Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches o.c. for 4-inch duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to terminator spacing 10 feet from the terminator, without reducing duct line slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch.
- H. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- I. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- J. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- K. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches in nominal diameter.
 - 2. Width: Excavate trench 3 inches wider than duct on each side.
 - 3. Depth: Refer to trenching detail on electrical drawings.
 - 4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five (5) spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 6. Minimum Space between Duct: Refer to trenching detail on electrical drawings.
 - 7. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

- b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished grade/slab and minimum 3 inches from conduit side to edge of slab.
- 8. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 9. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 10. Concrete Cover: Install a minimum of 3 inches of concrete cover between edge of duct to exterior envelope wall, 2 inches between duct of like services, and 4 inches between power and communications ducts.
- 11. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 - a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.
 - b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.
- 12. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.
- L. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.
 - 2. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 1. Depth: Refer to trenching detail on electrical drawings.
 - 2. Set elevation of bottom of duct bank below frost line.
 - 3. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 4. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five (5) spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

- 5. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 6. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished grade/slab and minimum 3 inches from conduit side to edge of slab.
- 7. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches of sand as a bed for direct-buried duct. Place sand to a minimum of 6 inches above top level of duct.
 - b. Place minimum 6 inches of engineered fill above concrete encasement of duct.
- M. Warning Planks: Bury warning planks approximately 12 inches above direct-buried duct, placing them 24 inches o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.
- N. Underground-Line Warning Tape: Bury nonconducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches above all concrete-encased duct and duct banks and approximately 12 inches below grade. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Precast Concrete Handhole and Manhole Installation:
 - 1. Comply with ASTM C891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

- B. Elevations:
 - 1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
 - 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
 - 3. Install handholes with bottom below frost line.
 - 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
 - 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- D. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- E. Hardware: Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators as required for installation and support of cables and conductors and as indicated.
- F. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- G. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.
- D. Install handholes and boxes with bottom below frost line.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavyvehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep.
- H. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
 - 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.9 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

END OF SECTION 260543

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:

- a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
- b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Advance Products & Systems, Inc.
 - b. CALPICO, Inc.
 - c. Metraflex Company (The).
 - d. Pipeline Seal and Insulator, Inc.
 - e. Proco Products, Inc.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Plastic.
 - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. HOLDRITE.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-firerated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels.
 - 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.

- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- C. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. LEM Products Inc.
 - e. Marking Services, Inc.
 - f. Panduit Corp.
- B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - c. Panduit Corp.
 - d. Seton Identification Products.
- C. Self-Adhesive Labels:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. A'n D Cable Products.
 - b. Brady Corporation.
 - c. Brother International Corporation.
 - d. emedco.
 - e. Grafoplast Wire Markers.
 - f. Ideal Industries, Inc.
 - g. LEM Products Inc.
 - h. Marking Services, Inc.
 - i. Panduit Corp.
 - j. Seton Identification Products.
 - 2. Preprinted, 3-mil-thick, polyester or vinyl flexible label with acrylic pressure-sensitive adhesive.
 - a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the cable or raceway diameter, such that the clear shield overlaps the entire printed legend.
 - 3. Polyester or Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 - a. Nominal Size: 3.5-by-5-inch.
 - 4. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - 5. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.4 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solidcolored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - c. Panduit Corp.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Panduit Corp.

2.5 TAPES AND STENCILS:

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. Ideal Industries, Inc.
 - d. Marking Services, Inc.
 - e. Panduit Corp.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
- C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. LEM Products Inc.
 - b. Marking Services, Inc.
 - c. Seton Identification Products.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Seton Identification Products.
- E. Underground-Line Warning Tape
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Ideal Industries, Inc.
 - c. LEM Products Inc.
 - d. Marking Services, Inc.
 - e. Reef Industries, Inc.
 - f. Seton Identification Products.
 - 2. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 3. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 - c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
 - 4. Tag:
 - a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the

continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.

- b. Width: 3 inches.
- c. Overall Thickness: 5 mils.
- d. Foil Core Thickness: 0.35 mil.
- e. Weight: 28 lb/1000 sq. ft..
- f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 Tags

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
 - e. Seton Identification Products.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Grafoplast Wire Markers.
 - e. LEM Products Inc.
 - f. Marking Services, Inc.
 - g. Panduit Corp.
 - h. Seton Identification Products.
- C. Write-On Tags:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.

- b. LEM Products Inc.
- c. Seton Identification Products.
- 2. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
- 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 Signs

- A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 7 by 10 inches.
 - 4. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. emedco.
 - d. Marking Services, Inc.
- B. Metal-Backed Butyrate Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396inch galvanized-steel backing and with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 10 by 14 inches.
 - 4. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. Marking Services, Inc.
- C. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches, minimum 1/16-inch-
 - b. For signs larger than 20 sq. inches, 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners.

- e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
- 3. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.

2.8 CABLE TIES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ideal Industries, Inc.
 - 2. Marking Services, Inc.
 - 3. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

- J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

- A. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Snap-around labels. Install labels at 10-foot maximum intervals.
- B. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.
- C. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "STANDBY POWER."
 - 2. "POWER."
 - 3. "UPS."
- D. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.

- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- E. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- F. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive, self-laminating polyester labels with the conductor or cable designation, origin, and destination.
- H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive, self-laminating polyester labels with the conductor designation.
- I. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.
- J. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- K. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.
- L. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Metalbacked, butyrate warning signs.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:

- a. Power-transfer switches.
- b. Controls with external control power connections.
- N. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- O. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- P. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment To Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchboards.
 - e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - f. Emergency system boxes and enclosures.
 - g. Enclosed switches.
 - h. Enclosed circuit breakers.
 - i. Enclosed controllers.
 - j. Variable-speed controllers.
 - k. Push-button stations.
 - 1. Power-transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery-inverter units.

- p. Power-generating units.
- q. Monitoring and control equipment.
- r. UPS equipment.

END OF SECTION 260553

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Photoelectric switches.
 - 2. Indoor occupancy sensors.
 - 3. Switchbox-mounted occupancy sensors.
- B. Related Requirements:
 - 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control devices.
 - 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. NSi Industries LLC.
 - 5. Tyco Electronics Corporation; a TE Connectivity Ltd. company.
- B. Description: Solid state, with SPST dry contacts rated for 1000 W incandescent or 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen-second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Failure Mode: Luminaire stays ON.

2.2 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.

- - 4. Leviton Manufacturing Co., Inc.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. Lutron Electronics Co., Inc.
 - 7. NSi Industries LLC.
 - 8. Philips Lighting Controls.
 - 9. Sensor Switch, Inc.
 - 10. Square D.
 - 11. Watt Stopper.
- B. General Requirements for Sensors:
 - 1. Ceiling-mounted, solid-state indoor occupancy sensors.
 - 2. Dual technology.
 - 3. Separate power pack.
 - 4. Hardwired connection to switch.
 - 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 6. Operation:
 - a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 7. Sensor Output: Sensor is powered from the power pack.
 - 8. Power: Line voltage.
 - 9. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 10. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 12. Bypass Switch: Override the "on" function in case of sensor failure.
 - 13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

- 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
- 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180degree pattern centered on the sensor over an area of 1000 square feet when mounted 48 inches above finished floor.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. Lutron Electronics Co., Inc.
 - 7. NSi Industries LLC.
 - 8. Philips Lighting Controls.
 - 9. Sensor Switch, Inc.
 - 10. Square D.
 - 11. Watt Stopper.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual onoff switch, suitable for mounting in a single gang switchbox using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.
- C. Wall-Switch Sensor Tag WS1:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft..
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Switch Type: SP.
 - 4. Capable of controlling load in three-way application.
 - 5. Voltage: Match the circuit voltage.
 - 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
 - 9. Color: White.

10. Faceplate: Color matched to switch.

2.4 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

- A. Comply with NECA 1.
- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Lighting control devices will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.

- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.
- 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823
 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or ISO 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
 - 3. Comply with NFPA 70E.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.
- E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.

- a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
- b. Outdoor Locations: NEMA 250, Type 3R.
- c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
- 2. Height: 84 inches maximum.
- 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
- 4. Finishes:
 - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
- F. Incoming Mains:
 - 1. Location: Convertible between top and bottom.
 - 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- G. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- H. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

- I. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 20 percent.
- J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 POWER PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Industry, Inc., Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: Fused Switch.
- E. Branch Overcurrent Protective Devices: Fused switches.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Industry, Inc., Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Industry, Inc., Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 - 3. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
 - 4. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
 - 5. Subfeed Circuit Breakers: Vertically mounted.
 - 6. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - h. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 - i. Multipole units enclosed in a single housing with a single handle.
 - j. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

- k. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 - 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."
 - 2. Fused Switch Features and Accessories:
 - a. Standard ampere ratings and number of poles.
 - b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.
 - c. Auxiliary Contacts: Two normally open and normally closed contact(s) that operate with switch handle operation.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- G. Mount panelboard cabinet plumb and rigid without distortion of box.
- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Mount surface-mounted panelboards to steel slotted supports 1-1/4 inch in depth. Orient steel slotted supports vertically.
- J. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- L. Install filler plates in unused spaces.
- M. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- N. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Perform optional tests. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. USB charger devices.
 - 3. Twist-locking receptacles.
 - 4. Weather-resistant receptacles.
 - 5. Snap switches.
 - 6. Pendant cord-connector devices.
 - 7. Cord and plug sets.
 - 8. Floor service outlets and poke-through assemblies.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- C. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.
 - 2. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - 2. Hubbell Incorporated; Wiring Device-Kellems.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

2.3 USB CHARGER DEVICES

A. Tamper-Resistant, USB Charger Receptacles: 12 V dc, 2.0 A, USB Type A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- 2. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated, brass mounting strap.
- 3. USB Receptacles: Dual, Type A.
- 4. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

2.4 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration as indicated on drawings, and UL 498.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).

2.5 PENDANT CORD-CONNECTOR DEVICES

- A. Description:
 - 1. Matching, locking-type plug and receptacle body connector.
 - 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.
 - 3. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
 - 4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.6 CORD AND PLUG SETS

- A. Description:
 - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.

- 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
- 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.7 DECORATOR-STYLE DEVICES

- A. Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, and UL 498.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- B. GFCI, Feed-Through Type, Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and UL 943 Class A.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- C. GFCI, Weather-Resistant Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and UL 943 Class A.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Pass & Seymour/Legrand (Pass & Seymour).
- D. Toggle Switches, Square Face, 120/277 V, 20 A: Comply with NEMA WD 1, UL 20, and FS W-S-896.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
- b. Hubbell Incorporated; Wiring Device-Kellems.
- c. Leviton Manufacturing Co., Inc.
- d. Pass & Seymour/Legrand (Pass & Seymour).
- E. Lighted Toggle Switches, Square Face, 120 V, 20 A: Comply with NEMA WD 1 and UL 20.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
 - 2. Description: With neon-lighted handle, illuminated when switch is "off."
- F. All branch circuits rated at 15 amperes shall only have receptacles rated at 15 amperes connected to it.

2.8 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces including garage, work and storage areas: 0.035" satinfinished stainless steel.
 - 3. Material for Unfinished Spaces such as mechanical room, electrical room, janitor closets: Galvanized steel.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum box with lockable cover.

2.9 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular, solid brass with satin finish.
- D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

2.10 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. Hubbell Incorporated; Wiring Device-Kellems.
- 2. Pass & Seymour/Legrand (Pass & Seymour).
- 3. Square D; by Schneider Electric.
- 4. Thomas & Betts Corporation, A Member of the ABB Group.
- 5. Wiremold / Legrand.
- B. Description:
 - 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 - 2. Comply with UL 514 scrub water exclusion requirements.
 - 3. Service-Outlet Assembly: Pedestal type with services indicated.
 - 4. Size: Selected to fit nominal 3-inch cored holes in floor and matched to floor thickness.
 - 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 - 6. Closure Plug: Arranged to close unused 3-inch cored openings and reestablish fire rating of floor.
 - 7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables.

2.11 FINISHES

- A. Device Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: White, unless otherwise indicated by architect or required by NFPA 70 or device listing.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.

- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Wiring device will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Panelboards
 - c. Enclosed controllers.
 - d. Enclosed switches.
- B. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Coordination charts and tables and related data.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017700 "Closeout Procedures," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg For more than 100 deg F apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Bussmann; a division of Cooper Industries.
 - 2. Edison; a brand of Cooper Bussmann; a division of Cooper Industries.
 - 3. Littelfuse, Inc.
 - 4. Mersen USA.
- B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 - 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
 - 3. Type J: 600-V, zero- to 600-A rating, 200 kAIC.
 - 4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

2.3 SPARE-FUSE CABINET

- A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and keycoded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch-high letters on exterior of door.
 - 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Service Entrance: Class L, time delay.
 - 2. Feeders: Class RK1, time delay.
 - 3. Motor Branch Circuits: Class RK1, time delay.
 - 4. Power Electronics Circuits: Class J, high speed.
 - 5. Other Branch Circuits: Class J, fast acting.
 - 6. Control Transformer Circuits: Class CC, time delay, control transformer duty.
 - 7. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

- 1. Test procedures used.
- 2. Test results that comply with requirements.
- 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.9 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.10 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 5. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 6. Service-Rated Switches: Labeled for use as service equipment.
 - 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 5. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 4.
 - 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Install fuses in fusible devices.
- D. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 263213.14 - DIESEL ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes packaged engine generators used to supply non-emergency power, with the following features:
 - 1. Diesel engine.
 - 2. Diesel fuel-oil system.
 - 3. Control and monitoring.
 - 4. Generator overcurrent and fault protection.
 - 5. Generator, exciter, and voltage regulator.
 - 6. Vibration isolation devices.
 - 7. Finishes.
- B. Related Requirements:
 - 1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine generators.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Include thermal damage curve for generator.
 - 3. Include time-current characteristic curves for generator protective device.
 - 4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
 - 5. Include generator efficiency at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.

- 6. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, with air-supply temperature of 95, 80, 70, and 50 deg F. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
- 7. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.
- B. Shop Drawings:
 - 1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
 - 4. Design calculations for selecting vibration isolators and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include base weights.
 - 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for engine generators and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer manufacturer and testing agency.
- B. Source Quality-Control Reports: Including, but not limited to, the following:
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 4. Report of sound generation.
 - 5. Report of exhaust emissions showing compliance with applicable regulations.
- C. Field quality-control reports.
- D. Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
- b. Operating instructions laminated and mounted adjacent to generator location.
- c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
 - 4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Generac Basis of Design.
- B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. B11 Compliance: Comply with B11.19.
- B. NFPA Compliance:
 - 1. Comply with NFPA 37.
 - 2. Comply with NFPA 70.
- C. UL Compliance: Comply with UL 2200.
- D. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.
- E. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by engine generator including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.
 - 1. Provide with Level 1 Sound Attenuated Enclosure.
- F. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 5 to 104 deg F.
 - 2. Relative Humidity: Zero to 95 percent.
 - 3. Altitude: Sea level to 1000 feet.

2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

- A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Use: Commercial.
- D. Power Rating: 100 kW.
- E. Power Factor: 0.8, lagging.
- F. Frequency: 60 Hz.
- G. Voltage: 240-V ac.
- H. Phase: Single-phase, three wire.
- I. Induction Method: Turbocharged.
- J. Governor: Adjustable isochronous, with speed sensing.

- K. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.
- L. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated excluding power required for the continued and repeated operation of the unit and auxiliaries, with capacity as required to operate as a unit as evidenced by records of prototype testing.
 - 2. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- M. Engine Generator Performance for Sensitive Loads:
 - 1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 - a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.
 - b. Motor starting capability shall be a minimum of 2577 KVA. The generator set shall meet requirements per NEMA MG1-32.18.2.5; The generator set shall be capable of sustaining a minimum of 90% of rated no load voltage with the specified motor starting KVA (3866) overload at near zero power factor applied to the generator set and recover to 100% voltage level. The maximum voltage dip an application of low power factor load of 4 times rated KVA, based on constant alternator speed, shall not exceed 30%.
 - 2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.
 - 3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.
 - 4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.
 - 5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.
 - 7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 8. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not

less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.

- 9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 - a. Provide permanent magnet excitation for power source to voltage regulator.
- 10. Start Time: 10 seconds.

2.4 DIESEL ENGINE

- A. Fuel: ASTM D 975, diesel fuel oil, Grade 2-D S15.
- B. Rated Engine Speed: 1800 rpm.
- C. Lubrication System: Engine or skid-mounted.
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- D. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator set mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 - 4. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, UV-, and abrasion-resistant fabric.
 - a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- E. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
 - 2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 78 dBA or less.

- F. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- G. Starting System: 24-V electric, with negative ground.
 - 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: 60 seconds.
 - 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 50 deg F regardless of external ambient temperature within range specified in "Performance Requirements" Article. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.
 - 7. Battery Stand: Factory-fabricated, two-tier metal with acid-resistant finish designed to hold the quantity of battery cells required and to maintain the arrangement to minimize lengths of battery interconnections.
 - 8. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
 - 9. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 - d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
 - e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 - f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 DIESEL FUEL-OIL SYSTEM

A. Comply with NFPA 30.

- B. Piping: Fuel-oil piping shall be Schedule 40 black steel, complying with requirements in Section 231113 "Facility Fuel-Oil Piping." Cast iron, aluminum, copper, and galvanized steel shall not be used in the fuel-oil system.
- C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
- D. Fuel Filtering: Remove water and contaminants larger than 1 micron.
- E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.

2.6 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.
- B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts engine generator. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.
- C. Provide minimum run time control set for 30 minutes with override only by operation of a remote emergency-stop switch.
- D. Comply with UL 508A.
- E. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.
- F. Control and Monitoring Panel:
 - 1. Digital engine generator controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
 - 2. Instruments: Located on the control and monitoring panel and viewable during operation.
 - a. Engine lubricating-oil pressure gage.
 - b. Engine-coolant temperature gage.
 - c. DC voltmeter (alternator battery charging).
 - d. Running-time meter.
 - e. AC voltmeter, connected to a phase selector switch.
 - f. AC ammeter, connected to a phase selector switch.

- g. AC frequency meter.
- h. Generator-voltage adjusting rheostat.
- 3. Controls and Protective Devices: Controls, shutdown devices, and common alarm indication, including the following:
 - a. Cranking control equipment.
 - b. Run-Off-Auto switch.
 - c. Control switch not in automatic position alarm.
 - d. Overcrank alarm.
 - e. Overcrank shutdown device.
 - f. Low-water temperature alarm.
 - g. High engine temperature pre-alarm.
 - h. High engine temperature.
 - i. High engine temperature shutdown device.
 - j. Overspeed alarm.
 - k. Overspeed shutdown device.
 - 1. Low fuel main tank.
 - 1) Low-fuel-level alarm shall be initiated when the level falls below that required for operation for duration required in "Fuel Tank Capacity" Subparagraph in "Diesel Fuel-Oil System" Article.
 - m. Coolant low-level alarm.
 - n. Coolant low-level shutdown device.
 - o. Coolant high-temperature prealarm.
 - p. Coolant high-temperature alarm.
 - q. Coolant low-temperature alarm.
 - r. Coolant high-temperature shutdown device.
 - s. Battery high-voltage alarm.
 - t. Low cranking voltage alarm.
 - u. Battery-charger malfunction alarm.
 - v. Battery low-voltage alarm.
 - w. Lamp test.
 - x. Contacts for local and remote common alarm.
 - y. Low-starting air pressure alarm.
 - z. Low-starting hydraulic pressure alarm.
 - aa. Remote manual stop shutdown device.
 - bb. Air shutdown damper alarm when used.
 - cc. Air shutdown damper shutdown device when used.
 - dd. Generator overcurrent-protective-device not-closed alarm.
 - ee. Hours of operation.
 - ff. Engine generator metering, including voltage, current, hertz, kilowatt, kilovolt ampere, and power factor.
- G. Connection to Datalink:
 - 1. A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication.

- 2. Provide connections for datalink transmission of indications to BMS remote data terminals via ModBus.
- H. Remote Alarm Annunciator: An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
 - 1. Overcrank alarm.
 - 2. Low water-temperature alarm.
 - 3. High engine temperature pre-alarm.
 - 4. High engine temperature alarm.
 - 5. Low lube oil pressure alarm.
 - 6. Overspeed alarm.
 - 7. Low fuel main tank alarm.
 - 8. Low coolant level alarm.
 - 9. Low cranking voltage alarm.
 - 10. Contacts for local and remote common alarm.
 - 11. Audible-alarm silencing switch.
 - 12. Air shutdown damper when used.
 - 13. Run-Off-Auto switch.
 - 14. Control switch not in automatic position alarm.
 - 15. Fuel tank derangement alarm.
 - 16. Fuel tank high-level shutdown of fuel supply alarm.
 - 17. Lamp test.
 - 18. Generator overcurrent-protective-device not-closed alarm.
- I. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.
- J. Remote Emergency-Stop Switch: Flush; located outside the generator enclosure unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Overcurrent protective devices shall be coordinated to optimize selective tripping when a short circuit occurs. Refer to one line riser diagram for additional information.
- B. Overcurrent protective devices shall be coordinated to optimize selective tripping when a short circuit occurs.
- C. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristic: Designed specifically for generator protection.
 - 2. Trip Rating: Matched to generator output rating.

- 3. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
- 4. Mounting: Adjacent to, or integrated with, control and monitoring panel.
- D. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other engine generator protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector performs the following functions:
 - 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other engine generator malfunction alarms. Contacts shall be available for load shed functions.
 - 2. Under single- or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
 - 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the engine generator.
 - 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.

2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide six-lead alternator.
- E. Range: Provide broad range of output voltage by adjusting the excitation level.
- F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- G. Enclosure: Dripproof.
- H. Instrument Transformers: Mounted within generator enclosure.
- I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 - 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
 - 2. Maintain voltage within 15 percent on one step, full load.

- 3. Provide anti-hunt provision to stabilize voltage.
- 4. Maintain frequency within 5 percent and stabilize at rated frequency within 2 seconds.
- J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- K. Subtransient Reactance: 12.7 percent, maximum.
- L. Alternator temperature rise shall be 80 C for standby operation, at a voltage of 208 VAC.

2.9 VIBRATION ISOLATION DEVICES

- A. Restrained Spring Isolators: Freestanding, steel, open-spring isolators.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch-thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment-mounting and -leveling bolt that acts as blocking during installation.
 - 2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Minimum Deflection: 1 inch.
- B. Comply with requirements in Section 232116 "Hydronic Piping Specialties" for vibration isolation and flexible connector materials for steel piping.
- C. Comply with requirements in Section 233113 "Metal Ducts" for vibration isolation and flexible connector materials for exhaust shroud and ductwork.
- D. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with IEEE 115.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:

- 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
- 2. Test generator, exciter, and voltage regulator as a unit.
- 3. Full load run.
- 4. Maximum power.
- 5. Voltage regulation.
- 6. Transient and steady-state governing.
- 7. Single-step load pickup.
- 8. Safety shutdown.
- 9. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
- 10. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.
- B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 404.
- B. Comply with packaged engine generator manufacturers' written installation and alignment instructions.
- C. Equipment Mounting:
 - 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
 - 3. Install packaged engine generator with elastomeric isolator pads or restrained spring isolators having a minimum deflection of 1 inch on 4-inch-high concrete base. Secure sets to anchor bolts installed in concrete bases.
- D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

- E. Exhaust System: Install Schedule 40 black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet.
 - 1. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 2. Install flexible connectors and steel piping materials according to requirements in Section 232116 "Hydronic Piping Specialties."
 - 3. Insulate muffler/silencer and exhaust system components according to requirements in Section 230719 "HVAC Piping Insulation."
- F. Drain Piping: Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40 black steel pipe with welded joints.
 - 1. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 2. Drain piping valves, connectors, and installation requirements are specified in Section 232116 "Hydronic Piping Specialties."
- G. Fuel Piping:
 - 1. Diesel storage tanks, tank accessories, piping, valves, and specialties for fuel systems are specified in Section 231113 "Facility Fuel-Oil Piping."
 - 2. Copper and galvanized steel shall not be used in the fuel-oil piping system.
- H. Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow space for service and maintenance.
- C. Connect engine exhaust pipe to engine with flexible connector.
- D. Connect fuel piping to engines with a gate valve and union and flexible connector.
- E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.
- G. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.4 GENERATOR ALTERNATES

A. Provide similar design criteria to meet required specifications for a natural gas (NG) generator and maintain required performance.

3.5 IDENTIFICATION

- A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."
- B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

3.6 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.
 - a. Visual and Mechanical Inspection:
 - 1) Compare equipment nameplate data with Drawings and the Specifications.
 - 2) Inspect physical and mechanical condition.
 - 3) Inspect anchorage, alignment, and grounding.
 - 4) Verify that the unit is clean.
 - b. Electrical and Mechanical Tests:
 - 1) Perform insulation-resistance tests according to IEEE 43.
 - a) Machines Larger Than 200 hp Test duration shall be 10 minutes. Calculate polarization index.
 - b) Machines 200 hp or Less: Test duration shall be one minute. Calculate the dielectric-absorption ratio.
 - 2) Test protective relay devices.
 - 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
 - 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 - 5) Perform vibration test for each main bearing cap.
 - 6) Verify correct functioning of the governor and regulator.
 - 2. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.

- a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
- b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
- c. Verify acceptance of charge for each element of the battery after discharge.
- d. Verify that measurements are within manufacturer's specifications.
- 3. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.
- 4. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.
- 5. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
- 6. Exhaust Emissions Test: Comply with applicable government test criteria.
- 7. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
- 8. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 and 100 percent of rated linear load. Verify that harmonic content is within specified limits.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.
- F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
- G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- H. Remove and replace malfunctioning units and retest as specified above.
- I. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.
- J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- K. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.

- 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 2. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213.14

SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes automatic transfer switches rated 600 V and less, including the following:
 - 1. Remote annunciator system.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
 - 2. Include material lists for each switch specified.
 - 3. Single-Line Diagram: Show connections between transfer switch, power sources, and load.
 - 4. Riser Diagram: Show interconnection wiring between transfer switches and annunciators.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer-authorized service representative.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

- 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Features and operating sequences, both automatic and manual.
 - b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA ICS 1.
- C. Comply with NFPA 110.
- D. Comply with UL 1008 unless requirements of these Specifications are stricter.
- E. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- F. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Short-time withstand capability for three cycles.
- G. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
- H. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- I. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.

- J. Neutral Terminal: Solid and fully rated unless otherwise indicated.
- K. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.
- L. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed shrinkable sleeve markers at terminations. Color-coding and wire and cable markers are specified in Section 260553 "Identification for Electrical Systems."
 - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
 - 4. Accessible via front access.
- M. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 CONTACTOR-TYPE AUTOMATIC TRANSFER SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ASCO
 - 2. Cummins Power Generation.
 - 3. Kohler.
 - 4. Generac Power Systems, Inc.
- B. Comply with Level 1 equipment according to NFPA 110.
- C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are unacceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.
 - 3. Contacts: Silver composition or silver alloy for load-current switching. Contactor-style automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.
 - 4. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 5. Material: Hard-drawn copper, 98 percent conductivity.
 - 6. Main and Neutral Lugs: Mechanical type.
 - 7. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 - 8. Ground bar.
 - 9. Connectors shall be marked for conductor size and type according to UL 1008.

- D. Automatic Open-Transition Transfer Switches: Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
- E. Electric Nonautomatic Switch Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternative Source." Switch shall be capable of transferring load in either direction with either or both sources energized.
- F. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval shall be adjustable from 1 to 30 seconds.
- G. Digital Communication Interface: Matched to capability of remote annunciator.
- H. Automatic Transfer-Switch Controller Features:
 - 1. Controller operates through a period of loss of control power.
 - 2. Undervoltage Sensing for Each Phase of Normal and Alternate Source: Sense low phaseto-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - 5. Test Switch: Simulate normal-source failure.
 - 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
 - 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
 - 9. Transfer Override Switch: Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
 - 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
 - 11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
 - 12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers

and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

- a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
- b. Push-button programming control with digital display of settings.
- c. Integral battery operation of time switch when normal control power is unavailable.

2.3 TRANSFER SWITCH ACESSORIES

- A. Remote Annunciator System:
 - 1. Source Limitations: Same manufacturer as transfer switch in which installed.
 - 2. Functional Description: Remote annunciator panel shall annunciate conditions for indicated transfer switches.
 - 3. Annunciation panel display shall include the following indicators:
 - a. Sources available, as defined by actual pickup and dropout settings of transferswitch controls.
 - b. Switch position.
 - c. Switch in test mode.
 - d. Failure of communication link.
 - 4. Annunciator Panel: LED-lamp type with audible signal and silencing switch.
 - a. Indicating Lights: Grouped for each transfer switch monitored.
 - b. Label each group, indicating transfer switch it monitors, location of switch, and identity of load it serves.
 - c. Mounting: Flush, modular, steel cabinet unless otherwise indicated.
 - d. Lamp Test: Push-to-test or lamp-test switch on front panel.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect components, assembled switches, and associated equipment according to UL 1008. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.
- B. Prepare test and inspection reports.
 - 1. For each of the tests required by UL 1008, performed on representative devices, for emergency systems. Include results of test for the following conditions:
 - a. Overvoltage.
 - b. Undervoltage.
 - c. Loss of supply voltage.

- d. Reduction of supply voltage.
- e. Alternative supply voltage or frequency is at minimum acceptable values.
- f. Temperature rise.
- g. Dielectric voltage-withstand; before and after short-circuit test.
- h. Overload.
- i. Contact opening.
- j. Endurance.
- k. Short circuit.
- 1. Short-time current capability.
- m. Receptacle withstand capability.
- n. Insulating base and supports damage.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Annunciator and Control Panel Mounting: Flush in wall unless otherwise indicated.
- B. Identify components according to Section 260553 "Identification for Electrical Systems."
- C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
- D. Comply with NECA 1.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to generator sets, control, and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Wiring Method: Install cables in raceways and cable trays except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- E. Connect twisted pair cable according to Section 271513 "Communications Copper Horizontal Cabling."
- F. Route and brace conductors according to manufacturer's written instructions and Section 260529 "Hangers and Supports for Electrical Systems." Do not obscure manufacturer's markings and labels.

G. Final connections to equipment shall be made with liquidtight, flexible metallic conduit no more than 18 inches in length.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 - 1. After installing equipment, test for compliance with requirements according to NETA ATS.
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with Drawings and Specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and required clearances.
 - d. Verify that the unit is clean.
 - e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
 - f. Verify that manual transfer warnings are attached and visible.
 - g. Verify tightness of all control connections.
 - h. Inspect bolted electrical connections for high resistance using one of the following methods, or both:
 - 1) Use of low-resistance ohmmeter.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.
 - i. Perform manual transfer operation.
 - j. Verify positive mechanical interlocking between normal and alternate sources.
 - k. Perform visual and mechanical inspection of surge arresters.
 - 1. Inspect control power transformers.
 - 1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
 - 2) Verify that primary and secondary fuse or circuit-breaker ratings match Drawings.
 - 3) Verify correct functioning of drawout disconnecting contacts, grounding contacts, and interlocks.
 - 3. Electrical Tests:
 - a. Perform insulation-resistance tests on all control wiring with respect to ground.
 - b. Perform a contact/pole-resistance test. Compare measured values with manufacturer's acceptable values.
 - c. Verify settings and operation of control devices.
 - d. Calibrate and set all relays and timers.
 - e. Verify phase rotation, phasing, and synchronized operation.
 - f. Perform automatic transfer tests.
 - g. Verify correct operation and timing of the following functions:

- 1) Normal source voltage-sensing and frequency-sensing relays.
- 2) Engine start sequence.
- 3) Time delay on transfer.
- 4) Alternative source voltage-sensing and frequency-sensing relays.
- 5) Automatic transfer operation.
- 6) Interlocks and limit switch function.
- 7) Time delay and retransfer on normal power restoration.
- 8) Engine cool-down and shutdown feature.
- 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
- 5. After energizing circuits, perform each electrical test for transfer switches stated in NETA ATS and demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and retransfer from emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
- B. Coordinate tests with tests of generator and run them concurrently.
- C. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- D. Transfer switches will be considered defective if they do not pass tests and inspections.
- E. Remove and replace malfunctioning units and retest as specified above.
- F. Prepare test and inspection reports.
- G. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

- 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 2. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.
- B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.
- C. Coordinate this training with that for generator equipment.

END OF SECTION 263600

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior solid-state luminaires that use LED technology.
 - 2. Lighting fixture supports.
- B. Related Requirements:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.

- 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
- 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- B. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Product Certificates: For each type of luminaire.
- D. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
- E. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.

3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

- C. Recessed Fixtures: Comply with NEMA LE 4.
- D. Bulb shape complying with ANSI C79.1.
- E. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- F. Rated lamp life of 35,000 hours.
- G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- H. Internal driver.
- I. Nominal Operating Voltage: As indicated on Plans.
 - 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- J. Housings:
 - 1. Extruded-aluminum housing and heat sink.
 - 2. powder-coat finish.

2.3 DOWNLIGHT

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 1,000 lumens or as indicated on plans. Minimum allowable efficacy of 80 lumens per watt.
- C. Universal mounting bracket.
- D. Integral junction box with conduit fittings.

2.4 LINEAR INDUSTRIAL

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 5,000 lumens or as indicated on plans. Minimum allowable efficacy of 80 lumens per watt.
- C. Housing and heat sink rated to the following:
 - 1. NEMA 4X.
 - 2. IP 54.
 - 3. IP 66.
 - 4. Marine and wet locations.
 - 5. CSA C22.2 No 137.

2.5 RECESSED LINEAR

A. <u>See Plans for manufacturers</u>.

- B. Minimum 2,000 lumens or as indicated on plans. Minimum allowable efficacy of 85 lumens per watt.
- C. Integral junction box with conduit fittings.

2.6 STRIP LIGHT

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens or as indicated on plans. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.7 SURFACE MOUNT, LINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens or as indicated on plans. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.8 SURFACE MOUNT, NONLINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens or as indicated on plans. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.9 SUSPENDED, LINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 2,000 lumens or as indicated on plans. Minimum allowable efficacy of 85 lumens per watt.
- C. Integral junction box with conduit fittings.
- 2.10 SUSPENDED, NONLINEAR
 - A. <u>See Plans for manufacturers</u>.
 - B. Minimum 2,000 lumens or as indicated on plans. Minimum allowable efficacy of 85 lumens per watt.

C. Integral junction box with conduit fittings.

2.11 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. prismatic acrylic
 - 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- D. Housings:
 - 1. Extruded-aluminum housing and heat sink.
 - 2. Powder-coat finish.
- E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI for all luminaires.

2.12 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.13 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaire Support:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.

- 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with two 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
 - 2. Ceiling mount with pendant mount with 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
 - 3. Ceiling mount with hook mount.
- H. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- I. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

- 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119

SECTION 265219 - EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exit signs.
 - 2. Luminaire supports.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire" Paragraph.
- D. Lumen: Measured output of lamp and luminaire, or both.
- E. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of exit sign.
 - 1. Include data on features, accessories, and finishes.
 - 2. Include physical description of the unit and dimensions.
 - 3. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 - 4. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.

- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include diagrams for power, signal, and control wiring.
- C. Product Schedule:
 - 1. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of luminaire.
- A. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.
- C. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 GENERAL REQUIREMENTS FOR EXIT SIGNS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Fabricate and label exit signs to comply with UL 924.
- C. Comply with NFPA 70 and NFPA 101.
- D. Comply with NEMA LE 4 for recessed luminaires.
- E. Bulb Shape: Complying with ANSI C79.1.

2.3 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:

© 2020 OLA Consulting Engineers, P.C.

- 1. <u>See Plans for manufacturers</u>.
- 2. Operating at nominal voltage of 120 V ac.
- 3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.

2.4 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access:
 - 1. Smooth operating, free of light leakage under operating conditions.
 - 2. Designed to permit relamping without use of tools.
 - 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Prismatic acrylic.
 - 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- D. Housings:
 - 1. Extruded aluminum housing and heat sink.
 - 2. Powder coat finish.
- E. Conduit: Electrical metallic tubing or Flexible metallic conduit, minimum 3/4 inch in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Support Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where exit signs will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Provide support for luminaire without causing deflection of ceiling or wall.
 - 3. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- D. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- E. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- F. Ceiling Grid Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to generator power and retransfer to normal. Testing shall be coordinated with testing requirements specified in Section 263213 "Engine Generators" and Section 263600 "Transfer Switches".
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 - 1. Inspect all luminaires. Replace exit signs that are defective.
 - a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

END OF SECTION 265219

SECTION 280513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. 50/125-micrometer, multimode optical-fiber cabling.
 - 2. Fire alarm wire and cable.
 - 3. Identification products.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. IDC: Insulation displacement connector.
- C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- D. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- E. RCDD: Registered Communications Distribution Designer.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordinate layout and installation of electronic safety and security cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Installation data for optical-fiber cables as specified in TIA 569-C-1.

- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 - 3. Cabling administration drawings and printouts.
 - 4. Wiring diagrams to show typical wiring schematics, including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical-fiber cable to determine the continuity of the strand, end to end. Use optical-fiber flashlight or optical loss test set.
 - 2. Test optical-fiber cable on reels. Use an optical time domain reflectometer to verify the cable length, and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 061000 "Rough Carpentry."

2.3 OPTICAL-FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 2. Belden Inc.
 - 3. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 4. CommScope, Inc.
 - 5. Corning Cable Systems.
 - 6. Draka Cableteq USA; a Prysmian Group company.
 - 7. General Cable Technologies Corporation.
 - 8. Mohawk; a division of Belden Networking, Inc.
 - 9. Superior Essex Inc.
 - 10. West Penn Wire.
- B. Description: Multimode, 50/125-micrometer, 24-fiber, nonconductive, tight buffer, optical-fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA-568-C.3 for performance specifications.
 - 3. Comply with TIA-492AAAB for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or Type OFNG, or Type OFNR, Type OFNP.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.
 - 5. Conductive cable shall be aluminum armored type.
 - 6. Maximum Attenuation: 3.50 db/km at 850 nm; 1.5 db/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- C. Jacket:
 - 1. Jacket Color: Aqua for 50/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.4 OPTICAL-FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. ADC.
 - 3. American Technology Systems Industries, Inc.
 - 4. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 5. Belden Inc.
 - 6. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 7. Corning Cable Systems.
 - 8. Hubbell Incorporated.
 - 9. Leviton Manufacturing Co., Inc.
 - 10. Molex Premise Networks.
 - 11. West Penn Wire.
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.
- D. Cable Connecting Hardware: Comply with the Fiber Optic Connector Intermateability Standard (FOCIS) specifications of TIA-604-2-B, TIA-604-3-B, and TIA-604-12. Comply with TIA-568-C.3.
 - 1. Quick-connect, simplex and duplex, Type SC, Type ST, Type LC or Type MT-RJ connectors. Insertion loss not more than 0.75 db.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.5 FIRE ALARM WIRE AND CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Allied Wire & Cable Inc.
 - 2. CommScope, Inc.
 - 3. Comtran Corporation.
 - 4. Draka Cableteq USA; a Prysmian Group company.
 - 5. Genesis Cable Products; Honeywell International, Inc.
 - 6. Rockbestos-Suprenant Cable Corp.
 - 7. Superior Essex Inc.
 - 8. West Penn Wire.
- B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

- C. Signaling Line Circuits: Twisted, shielded pair, not less than 16 AWG.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.
- D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated.

2.6 IDENTIFICATION PRODUCTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. HellermannTyton.
 - 3. Kroy LLC.
 - 4. Panduit Corp.
- B. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- C. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.7 SOURCE QUALITY CONTROL

- A. Factory test optical-fiber cables on reels according to TIA-568-C.1.
- B. Factory test multimode optical fiber cables according to TIA-526.14-B and TIA-568-C.3.
- C. Cable will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for installation of supports for cables.

3.2 WIRING METHOD

- A. Install wiring in metal pathways and wireways.
 - 1. Minimum conduit size shall be 3/4 inch. Control and data-transmission wiring shall not share conduits with other building wiring systems.
- B. Install cable, concealed in accessible ceilings, walls, and floors when possible.
- C. Wiring on Racks and within Enclosures:
 - 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM's "Cabling Termination Practices" chapter. Cable ties shall not be excessively tightened such that the transmission characteristics of the cable are altered.
 - 2. Install lacing bars and distribution spools.
 - 3. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer.
 - 4. Install conductors parallel with or at right angles to sides and back of enclosure.
 - 5. Connect conductors associated with intrusion system that are terminated, spliced, or interrupted in any enclosure onto terminal blocks.
 - 6. Mark each terminal according to system's wiring diagrams.
 - 7. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1 and NFPA 70.
- B. Conductors: Size according to system manufacturer's written instructions unless otherwise indicated.
- C. Do not install conductors and cables that are wet, moisture damaged, or mold damaged.
- D. Install UTP, optical-fiber, and coaxial cables and connecting materials after spaces are complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
- E. General Requirements for Cabling:
 - 1. Comply with TIA-568-C.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels. Leave a minimum of 6 inches of slack at outlet terminations and coil loosely into box after termination on outlet fitting.
 - 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 5. Maintain minimum cable bending radius during installation and termination of cables.

- 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions. Do not exceed manufacturer's rated cable-pulling tension.
- 9. Riser Cable: Riser cable support intervals shall be in accordance with manufacturer's recommendations.
- 10. Comply with Section 280544 "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling."
- F. Optical-Fiber Cable Installation:
 - 1. Comply with TIA-568-C.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- G. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunication spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart. Cable supports shall be fastened to structural members or floor slabs in accordance with Section 260529 "Hangers and Supports for Electrical Systems."
 - 3. Cable shall not be run in contact with pipes, ducts, or other potentially damaging items. Cables shall not be run through structural members or use structural members, pipes, ducts, or equipment as a support.
- H. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA-569-C recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communication cables or cables in nonmetallic pathways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - 3. Separation between communication cables in grounded metallic pathways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
 - 4. Separation between cables in grounded metallic pathways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:

- a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
- b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or hp and Larger: A minimum of 48 inches.
- 6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

B. Wiring Method:

- 1. Install plenum cable in environmental air spaces, including plenum ceilings.
- 2. Cables and pathways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
- 3. Fire-Rated Cables: Use of two-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is permitted.
- 4. Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or pathway as signaling line circuits.
- C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- E. Color Coding: Color code fire alarm conductors differently from the normal building power wiring. Use one color code for alarm circuit wiring and another for supervisory circuits. Color code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- F. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- G. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 POWER AND CONTROL-CIRCUIT CONDUCTORS

- A. 120-V Power Wiring: Install according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables" unless otherwise indicated.
- B. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.6 CONNECTIONS

A. Comply with requirements in Section 283111 "Digital, Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.7 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-C, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.8 GROUNDING

- A. For communication wiring, comply with J-STD-607-A and with BICSI TDMM's "Grounding, Bonding, and Electrical Protection" chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Section 280526 "Grounding and Bonding for Electronic Safety and Security."

3.9 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

- 1. Visually inspect UTP and optical-fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations to confirm color coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.
- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall comply with or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- 4. Optical-Fiber Cable Tests:
 - a. Test instruments shall comply with or exceed applicable requirements in TIA-568-C.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Multimode Link Measurements: Test at 850 or 1300 nm in one direction according to TIA-526-14-B, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 db. Attenuation test results shall be less than that calculated according to equation in TIA-568-C.1.
- C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- D. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 280513

SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-alarm control unit.
 - 2. Manual fire-alarm boxes.
 - 3. System smoke detectors.
 - 4. Heat detectors.
 - 5. Notification appliances.
 - 6. Magnetic door holders.
 - 7. Remote annunciator.
 - 8. Addressable interface device.
 - 9. Digital alarm communicator transmitter.
 - 10. Fire alarm wire and cable.

1.3 DEFINITIONS

- A. EMT: Electrical Metallic Tubing.
- B. FACP: Fire Alarm Control Panel.
- C. HLI: High Level Interface.
- D. NICET: National Institute for Certification in Engineering Technologies.
- E. PC: Personal computer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including furnished options and accessories.
 - 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, and electrical characteristics.
- B. Shop Drawings: For fire-alarm system.

- 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
- 2. Include plans, elevations, sections, details, and attachments to other work.
- 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
- 4. Detail assembly and support requirements.
- 5. Include voltage drop calculations for notification-appliance circuits.
- 6. Include battery-size calculations.
- 7. Include input/output matrix.
- 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
- 9. Include performance parameters and installation details for each detector.
- 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
- 11. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 - a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 - b. Show field wiring required for HVAC unit shutdown on alarm.
 - c. Locate detectors according to manufacturer's written recommendations.
- 12. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
- 13. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- C. General Submittal Requirements:
 - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 - 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level III minimum.
 - c. Licensed or certified by authorities having jurisdiction.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
 - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 - 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Field quality-control reports.
- 1.6 Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Record copy of site-specific software.
 - g. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.
 - h. Manufacturer's required maintenance related to system warranty requirements.
 - i. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 3. Smoke Detectors, Heat Detectors, and Carbon Monoxide Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
 - 4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
 - 5. Keys and Tools: One extra set for access to locked or tamperproofed components.
 - 6. Audible and Visual Notification Appliances: One of each type installed.
 - 7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.
 - 8. Provide all necessary hardware and programming to provide the client with 20% spare capacity on all initiating and indicating circuits.
 - 9. Provide as part of the base contract all labor and materials to install ten (10) additional fire alarm devices during construction. The ten (10) fire alarm device can be but not limited to smoke detector, heat detector, door holder, duct detector, fan shutdown, tamper switches, flow switches, etc. Include all labor and materials including wire, boxes, conduit, terminations, hardware, software, programming and testing.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.
- C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.10 PROJECT CONDITIONS

- A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.
- B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.11 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.12 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission andhorn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Heat detectors.
 - 3. Smoke detectors.

- 4. Duct smoke detectors.
- 5. Automatic sprinkler system water flow.
- 6. Fire-extinguishing system operation.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Unlock electric door locks in designated egress paths.
 - 5. Release fire and smoke doors held open by magnetic door holders.
 - 6. Activate voice/alarm communication system.
 - 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 - 8. Close smoke dampers in air ducts of designated air-conditioning duct systems.
 - 9. Recall elevators to primary or alternate recall floors.
 - 10. Record events in the system memory.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. Carbon monoxide detector.
 - 3. Elevator shunt-trip supervision.
 - 4. User disabling of zones or individual devices.
 - 5. Loss of communication with any panel on the network.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator or Ethernet module.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
 - 10. Hose cabinet door open.
- E. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 - 3. Record the event on system printer.
 - 4. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.
 - 5. Transmit system status to building management system.

- F. Elevator shaft or elevator machine room heat detector signal shall initiate the following actions in addition to the action indicated above:
 - 1. Activate elevator shunt trip. There shall be a delay in the activation of the power shunt trip. This delay will be the time it takes the elevator to travel from the top of the hoist way to the lowest recall level.
- G. Signal from carbon monoxide detector shall initiate the following actions:
 - 1. Initiate supervisory signal to system and records at the main panel and remote annunciator.
 - 2. Transmits a (supervisory) carbon monoxide signal to central station.
 - 3. Continuously operate sounder base associated with the carbon monoxide detector.
 - 4. Continuously operate carbon monoxide alarm audio/visual notification devices.

2.3 FIRE-ALARM CONTROL UNIT

- A. Manufacturers: Subject to compliance with requirements all equipment shall be Siemens CerberusTM PRO FC-922 by Open system Metro In order to assure the Owner of all factory warranties, all equipment shall be obtained from an approved factory authorized distributor. The manufacturer and/or his authorized distributor shall show satisfactory evidence that he maintains a fully equipped factory authorized service organization, stocked with factory approved replacement parts and is capable of furnishing adequate inspection and service of equipment.
 - 1. Provided and subject to compliance with requirements herein, the following alternate manufacturers are approved:
 - **a.** Notifier a GE-Honeywell Company
 - b. EST, UTC Fire & Security, A United Technologies Company
- B. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 - b. Include a real-time clock for time annotation of events on the event recorder and printer.
 - c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 - d. The FACP shall be listed for connection to a central-station signaling system service.
 - e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

- 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
- 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, three line(s) of 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.
- D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class B.
 - 2. Pathway Survivability: Level 0.
 - 3. Install no more than 100 addressable devices on each signaling-line circuit.
 - 4. Serial Interfaces:
 - a. One dedicated RS 485 port for central-station operation using point ID DACT.
 - b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 - c. One USB port for PC configuration.
- E. Notification-Appliance Circuit:
 - 1. FIRE ALARM: Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - 2. CARBON MONOXIDE ALARM: Audible appliances shall sound in a four-pulse temporal pattern, as defined in NFPA 72, or a constant tone. Carbon monoxide alarm sound shall be different than the fire alarm sound.
 - 3. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
 - 4. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- F. Elevator Recall:
 - 1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 - a. Elevator lobby detectors except the lobby detector on the designated floor.
 - b. Smoke detector in elevator machine room.
 - c. Smoke detectors in elevator hoistway.

- 2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
- 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 - a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.
- G. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.
- H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals, and supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the powersupply module rating.
- J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
 - 1. Batteries: Sealed lead calcium.
- K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.
- L. The system shall support H or O -series devices and Siemens Cerberus[™] PRO series devices.
- M. The system shall be capable of remote monitoring via Siemens Cerberus[™] PROView®, a proprietary software system that provides a graphical representation of the fire alarm control panel at a remote PC when connected via Ethernet to the system. The display will show the exact state of the panel, including blinking LEDs, and with menu buttons for control.

2.4 MANUAL FIRE-ALARM BOXES

- A. Manufacturers: Devices shall be compatible with new Fire Alarm control panel. Subject to compliance with requirements, provide products by the following:
 - 1. Siemens Cerberus or approved equal.

- B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

- A. Manufacturers: Devices shall be compatible with new Fire Alarm control panel. Subject to compliance with requirements, provide products by the following:
 - 1. Siemens Cerberus or approved equal
- B. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be two-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and poweron status.
 - 7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 - a. Multiple levels of detection sensitivity for each sensor.
 - b. Sensitivity levels based on time of day.
- C. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- 3. Each sensor shall have multiple levels of detection sensitivity.
- 4. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 CARBON MONOXIDE DETECTORS

- A. General: Carbon monoxide detector listed for connection to fire-alarm system.
 - 1. Mounting: Adapter plate for outlet box mounting.
 - 2. Testable by introducing test carbon monoxide into the sensing cell.
 - 3. Detector shall provide alarm contacts and trouble contacts.
 - 4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
 - 5. Comply with UL 2075.
 - 6. Locate, mount, and wire according to manufacturer's written instructions.
 - 7. Provide means for addressable connection to fire-alarm system.
 - 8. Test button simulates an alarm condition.
 - 9. Provide with sounder bases for local audio annunciation.

2.7 MULTICRITERIA DETECTORS

- A. Mounting: Twist-lock base interchangeable with smoke-detector bases.
- B. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- C. Automatically adjusts its sensitivity by means of drift compensation and smoothing algorithms. The detector shall send trouble alarm if it is incapable of compensating for existing conditions.
- D. Test button tests all sensors in the detector.
- E. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - 1. Primary status.
 - 2. Device type.
 - 3. Present sensitivity selected.
 - 4. Sensor range (normal, dirty, etc.).

- F. Sensors: The detector shall be comprised of four sensing elements including a smoke sensor, a carbon monoxide sensor, an infrared sensor, and a heat sensor.
 - 1. Smoke sensor shall be photoelectric type as described in "System Smoke Detectors" Article.
 - 2. Carbon monoxide sensor shall be as described in "Carbon Monoxide Detectors" Article.
 - 3. Heat sensor shall be as described in "Heat Detectors" Article.
 - 4. Each sensor shall be separately listed according to requirements for its detector type.

2.8 HEAT DETECTORS

- A. Manufacturers: Devices shall be compatible with new Fire-Lite Alarms control unit. Subject to compliance with requirements, provide products by the following:
 - 1. Siemens Cerberus or approved equal
- B. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- C. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.9 NOTIFICATION APPLIANCES

- A. Manufacturers: Devices shall be compatible with new Fire-Lite Alarms control unit. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. System Sensor.
 - 2. Wheelock; a brand of Eaton.
- B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

- D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 - 1. Rated Light Output:
 - a. 15/30/75/110 cd, selectable in the field.
 - 2. Mounting: Wall mounted unless otherwise indicated.
 - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 - 4. Flashing shall be in a temporal pattern, synchronized with other units.
 - 5. Strobe Leads: Factory connected to screw terminals.
 - 6. Mounting Faceplate:
 - a. Fire alarm unit: Factory finished, red with "FIRE" in white letters.
 - b. Carbon monoxide unit: Factory finished, white with "CARBON MONOXIDE" in blue letters.

2.10 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 - 1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.
 - 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 - 3. Rating: 24-V ac or dc.
- B. Material and Finish: Match door hardware.

2.11 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.12 ADDRESSABLE INTERFACE DEVICE

- A. General:
 - 1. Include address-setting means on the module.
 - 2. Store an internal identifying code for control panel use to identify the module type.
 - 3. Listed for controlling HVAC fan motor controllers.

- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.
- D. Control Module:
 - 1. Operate notification devices.

2.13 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from firealarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.
 - 3. LED display.
 - 4. Manual test report function and manual transmission clear indication.
 - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Address of the supervisory signal.
 - 3. Address of the trouble-initiating device.
 - 4. Loss of ac supply.
 - 5. Loss of power.
 - 6. Low battery.
 - 7. Abnormal test signal.
 - 8. Communication bus failure.
- E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.14 FIRE ALARM WIRE AND CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Comtran Corporation.
 - 2. Draka Cableteq USA.
 - 3. Genesis Cable Products; Honeywell International, Inc.
 - 4. Rockbestos-Suprenant Cable Corp.
 - 5. West Penn Wire.
- B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- C. Signaling Line Circuits: Twisted, shielded pair, not less than No. 16 AWG.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.
- D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
- E. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated.
- F. All conductors and cables run exposed shall be plenum rated.
- G. Fire alarm wire and cable shall be New York City certified and listed for 150°C minimum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 - 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Connect new equipment to new control panel in new part of the building.
 - 2. Connect new equipment to existing monitoring equipment at the supervising station.
 - 3. Expand, modify, and supplement existing control and monitoring equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
- C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
- D. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.
 - 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- E. Smoke- or Heat-Detector Spacing:
 - 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 - 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 - 3. Smooth ceiling spacing shall not exceed 30 feet.
 - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A or Annex B in NFPA 72.
 - 5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
 - 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

- F. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
- G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- H. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.
- I. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- J. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- K. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.
- L. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

- A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 - 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.
- B. Box covers shall be painted red enamel.

3.4 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method:
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Cables and pathways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - 3. Fire-Rated Cables: Use of two-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is permitted.
 - 4. Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or pathway as signaling line circuits.
- C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with

the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

- D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- E. Color Coding: Color code fire alarm conductors differently from the normal building power wiring. Use one color code for alarm circuit wiring and another for supervisory circuits. Paint fire alarm system junction boxes and covers red.
- F. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function

3.5 CONNECTIONS

- A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Alarm-initiating connection to fire suppression system in kitchen.
 - 2. Smoke dampers in air ducts of designated HVAC duct systems.
 - 3. Magnetically held-open doors.
 - 4. Electronically locked doors and access gates.
 - 5. Alarm-initiating connection to elevator recall system and components.
 - 6. Supervisory connections at valve supervisory switches.
 - 7. Supervisory connections at elevator shunt-trip breaker.
 - 8. Data communication circuits for connection to building management system.
 - 9. Supervisory connections at fire-extinguisher locations.
 - 10. Existing zoned annunciation circuits.

3.6 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.7 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.8 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 - 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 - 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 - 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- D. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 284621.11