Tectonic

PRACTICAL SOLUTIONS. EXCEPTIONAL SERVICE.

GEOTECHNICAL EVALUATION PROPOSED STORMWATER DRAINAGE IMPROVEMENTS AND GAS MAIN YONKERS PUBLIC SCHOOL 16 759 NORTH BROADWAY YONKERS, NEW YORK

SAMMEL ARCHITECTURE PLLC 332 Route 100 Somers, New York 10589

Attention:

Ms. Charlene Gabriel VIA E-MAIL (cg@sammelarchitecture.com)

September 16, 2019

RE: W.O. 9617.01 **GEOTECHNICAL EVALUATION** PROPOSED STORMWATER DRAINAGE IMPROVEMENTS AND GAS MAIN **YONKERS PUBLIC SCHOOL 16 759 NORTH BROADWAY YONKERS, NEW YORK**

Dear Ms. Gabriel;

Tectonic Engineering & Surveying Consultants P.C. is pleased to submit this subsurface investigation and geotechnical engineering evaluation for the proposed new gas main and storm drainage improvements at Public School 16. located at 759 North Broadway in Yonkers, New York. The purpose of the investigation and evaluation was to identify the subsurface conditions in the areas of the proposed improvements and to develop geotechnical recommendations for their installation. This report presents our findings and recommendations.

We appreciate this opportunity to assist you with this project. If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

Newburgh Office

1279 Route 300 | Newburgh, NY 12550 845.567.6656 Tel | 845.567.8703 Fax

tectonicengineering.com Equal Opportunity Employer

GEOTECHNICAL EVALUATION PROPOSED STORMWATER DRAINAGE IMPROVEMENTS AND GAS MAIN YONKERS PUBLIC SCHOOL 16 759 NORTH BROADWAY YONKERS, NEW YORK

TABLE OF CONTENTS

SECTION	ITEM	PAGE
1.0	INTRODUCTION	1
2.0	SCOPE OF SERVICES	1
3.0	SITE AND PROJECT DESCRIPTION	1
4.0	SUBSURFACE INVESTIGATION	2
5.0	LABORATORY TESTING	3
6.0	SUBSURFACE CONDITIONS	3 3 4
7.0	SEISMIC SITE COEFFICIENTS AND LIQUEFACTION POTENTIAL	4
8.0	DISCUSSION AND CONCLUSIONS	4
9.0	RECOMMENDATIONS 9.1 Foundations 9.2 Design for Lateral Loading	5 5 5
10.0	EARTHWORK CONSTRUCTION CRITERIA 10.1 General Site Preparation 10.2 Subgrade Preparation 10.3 Protection of Subgrades. 10.4 Fill and Backfill Materials. 10.5 General Excavation	6 7 7 7 8
11.0	CONSTRUCTION MONITORING	9
12.0	LIMITATIONS	9

FIGURE I BORING LOCATION PLAN

APPENDIX IBORING LOGSAPPENDIX IILABORATORY TEST RESULTS

1.0 INTRODUCTION

Tectonic Engineering & Surveying Consultants P.C. (Tectonic), has completed a subsurface investigation and geotechnical engineering evaluation for the proposed new gas main and storm drainage improvements at Public School 16, located at 759 North Broadway in Yonkers, New York. The purpose of the investigation and evaluation was to identify the subsurface conditions in the areas of the proposed improvements and to develop geotechnical recommendations for their installation. This report presents our findings and recommendations.

2.0 <u>SCOPE OF SERVICES</u>

The following services were performed for Sammel Architecture PLLC, hereafter referred to as Client:

- Drilling, sampling, and logging of seven (7) test borings to depths ranging from 8 to 12 feet below existing grade.
- Field inspection of test borings, including confirming conformance of drilling and sampling procedures to appropriate ASTM standards, classifying and logging soils samples, and recording groundwater depths.
- Laboratory testing of soil samples to assist in the evaluation of the engineering properties of the soils.
- Geotechnical engineering evaluation of the subsurface conditions as they relate to the design and construction of the proposed storm water improvements and gas main installation.
- Preparation of this engineering report presenting the results of the subsurface investigation, engineering analyses, and our geotechnical recommendations for the design and construction of the proposed improvements.

3.0 SITE AND PROJECT DESCRIPTION

The project site comprises the grounds of Public School 16, which is located at 759 North Broadway, in the City of Yonkers, Westchester County, New York. The school grounds consist of an existing two-story brick school building with asphalt paved parking areas, asphalt paved and concrete sidewalks, and landscaped areas containing mature trees. The parking areas are located to the south and west of the school building. The school building is separated from North Broadway by walkways and landscaped areas. The north end of the school is bounded by landscaped areas.

Regionally, the school is located near the crest of a small ridge, with surface grades dropping down away from the site to the north, west and east. Based on the drawing provided by the Client entitled "Site Restoration", drawing number A-101, grades within the paved region of the site generally slope down from the northwest to the southeast, with surface elevations ranging from approximately +284 feet on the northwest end of the site, to approximately +268 feet on the southeast end.

Based on information provided by the Client, it is our understanding that the proposed site improvements consist of the installation of a new gas main, stormwater drainage piping, and two catch basins. The catch basins are to be located in the parking lot south of the school building, and the drainage piping, which is to be 4-inch nominal diameter pipe, is to be located in both the west and south parking lots, as well as the landscaped area located east of the building. The location of the gas main is not identified. The size and bearing depths of the catch basins are also not identified.

4.0 SUBSURFACE INVESTIGATION

The subsurface investigation consisted of the drilling, sampling, and logging of seven (7) test borings, designated as B-1 through B-3, B-3A, and B-4 through B-6. Boring B-3A was performed due to the relatively shallow refusal at boring B-3. In general, the borings were performed at the approximate locations identified on the drawing entitled "PS 16 Yonkers, Arial View Borings Locations", which was provided by the Client. The as-drilled boring locations are shown on the Boring Location Plan, which is attached as Figure 1.

The subsurface investigation was performed on November 12, 2018 by Craig Test Boring Co., Inc. using a truck mounted CME 75 drill rig. All of the borings except B-3A, B-4 and B-5 were advanced by continuous sampling with a split-spoon sampler. Borings B-3A, B-4 and B-5 were advanced using a 3-7/8-inch diameter tricone bit and mud rotary drilling techniques inside an upper section of 4-inch nominal driven steel casing that was installed to a depth of about 3.5 feet. Standard Penetration Testing was also performed continuously at borings B-4 and B-5. Borings B-1, B-2 and B-3A were performed to a depth of 10 feet. Borings B-4, B-5 and B-6 were advanced to a depth of 12 feet. Boring B-3 was terminated at a depth of 8 feet on split-spoon sampler refusal on an apparent cobble or boulder.

A geotechnical engineer observed the subsurface investigation and prepared logs of the encountered subsurface conditions under the direct purview of a Professional Engineer licensed in the State of New York. The materials encountered were classified in accordance with the modified Burmister Soil Classification

System and the Unified Soil Classification System (ASTM D2488). Copies of the boring logs are included in Appendix I.

5.0 LABORATORY TESTING

Laboratory testing was conducted on samples selected to assist in identifying the soils' engineering properties. The laboratory testing included four (4) soil gradations, performed in general accordance with ASTM D6913. The results of the laboratory testing are provided in Appendix II and are included in the soil descriptions presented below.

6.0 SUBSURFACE CONDITIONS

The results of our subsurface investigation indicate that in general, the site is underlain by fill soils, the majority of which appear to be reworked native site soils, and then native silty, gravelly sand soils. The fill soils underlie a variable 3 to 4 inch thick layer of asphalt pavement and an approximately 3 to 4 inch thick gravel subbase. Generalized descriptions of the encountered soil and groundwater conditions are provided below. More detailed descriptions are provided on the boring logs included in Appendix I.

6.1 Fill

Fill soils extend to an estimated depth of approximately 2 to 6 feet at all of the boring locations. The fill soils typically consist of coarse to fine sand with up to 50 percent silt and gravel. In boring B-6, the fill consists of coarse to fine gravel with up to 50 percent sand and up to 10 percent silt. A brick fragment was noted within the fill at boring B-2. Standard Penetration Test (SPT) N-Values within the fill vary from 4 to 26 blows per foot (bpf), which indicates that it is in a loose to medium dense state.

6.2 Native Soils

Native soils underlie the fill and extend to the 8 to 12 foot termination depths of the borings. As with the fill soils, the native soils most commonly consist of silty, gravelly sand, though occasionally at greater depths, the gravel content exceeds the sand content. At these locations, the gravel appears to consist of coarse gravel, cobble or boulder fragments. The sands vary from being coarse to fine to medium to fine in gradation, and the silt contents most commonly vary from about 10 to 35 percent. Silt contents in the gravel dominated soils are lower, ranging from a trace to approximately 20 percent. SPT N-values within the native soils ranged from 5 to 170 bpf, indicating that the soils range from a loose to a very dense state. The looser zones, encountered at borings B-2 through B-4,

extend to a depth of about 6 feet, and it is possible that they also represent disturbed soils. The native soils are typically dense to very dense below a depth of 6 feet at borings B-1, B-3, B-3A and below a depth of 8 feet at borings B-4 and B-6.

6.3 Groundwater

Groundwater was not encountered in any of the borings at the time of the subsurface investigation. It should be noted, however, that groundwater levels fluctuate with season and weather conditions. Consequently, groundwater should be anticipated to be encountered at other depths at other times.

7.0 SEISMIC SITE COEFFICIENTS AND LIQUEFACTION POTENTIAL

Should design of any of the proposed structures require consideration of earthquake inertial forces, the site falls under Site Class D for seismic design based on the encountered subsurface conditions. The corresponding spectral acceleration at short periods (S_{MS}) is equal to 0.440g, and the corresponding spectral acceleration at a 1-second period (S_{M1}) is equal to 0.174g.

As groundwater was not encountered at any of the test borings and all of the test borings were terminated in medium dense to very dense soils, the site soils are not subject to liquefy during the design earthquake event.

8.0 DISCUSSION AND CONCLUSIONS

As the installation of catch basins typically results in a decrease in stress at the bearing elevation and the installation of piping generally results in a negligible stress increase on supporting soils, soil bearing capacity and structure settlement are not typically design concerns considering the subsurface conditions encountered. Subgrades consisting of the loose soils encountered to depths up to 6 feet at borings B-2, B-3 and B-4 can be assumed to have a net allow bearing pressure of 2,500 pounds per square foot (psf), whereas the medium dense to very dense soils encountered below these loose soils, and comprising the native soils elsewhere, can be assumed to have a minimum net allowable bearing capacity of 4,000 psf provided subgrades are prepared as described in this report. Unless substantial grade changes are made subsequent to the installation of the improvements, negligible structure settlements are anticipated.

The main geotechnical consideration in regards to the proposed improvements include that dense to very dense soils with cobbles and possibly boulders were encountered below a depth of approximately 6 feet at borings B-1 and B-3 and below a depth of 8 feet at boring B-6. Shallower soils may also contain oversized materials. Excavation of these materials will likely require heavy duty excavation equipment.

As the majority of the site soils contain relatively high quantities of silt, and are susceptible to frost heave, it is recommended that the native site soils not be used as structural fill. However, they can be used as general fill provided oversized particles are removed and the moisture conditions are within an acceptable range.

Other conclusions that can be drawn from the investigation are as follows:

- The site soils impacting the proposed construction can be assumed to fall under OSHA Class C soils.
- As groundwater was not encountered, the need for dewatering is not anticipated.
- The site soils are not subject to liquefy during the design earthquake event.

9.0 **RECOMMENDATIONS**

The following recommendations are based on the results of the subsurface investigation, geotechnical evaluations and Tectonic's experience with similar soil conditions.

9.1 Foundations

For the design of catch basins, soils characterized as loose can be assumed to have a net allowable bearing capacity of 2,500 pounds per square foot (psf), and the soils characterized as medium dense to very dense can be assumed to have a minimum net allowable bearing capacity of 4,000 psf. These incorporate a minimum factor of safety of 2 against bearing failure. As the proposed structures will result in minimal stress increase at the bearing elevation, foundation settlement can be expected to be minimal if the subgrades are prepared as recommended herein.

9.2 Design for Lateral Loading

If needed for the design of the proposed catch basins, the following design parameters can be used to evaluate lateral earth pressure.

Soil Parameter	Existing Soil	Structural Fill	Crushed Stone Fill ⁽¹⁾
Angle of internal Friction	30°	34°	45°
At rest earth pressure Coefficient (Ko)	0.50	0.44	0.29
Passive earth pressure Coefficient ⁽¹⁾	3.00	3.54	5.83
Coefficient of base Friction	0.26	0.31	0.40
Total unit weight of soil (pounds per cubic foot)	115	135	125

Notes:

1) Passive pressure should be reduced by ½ within the zone of frost penetration (3.5 feet).

Additional loading due to temporary and permanent surcharges should be added to the lateral loading exerted by the backfill. Loads due to supported structures should be applied in appropriate combinations with the lateral loads.

10.0 EARTHWORK CONSTRUCTION CRITERIA

The following sub-sections present our recommendations regarding general site preparation and earthwork construction.

10.1 General Site Preparation

The areas of proposed improvements should be cleared of existing pavement, surface and subsurface obstructions, vegetation and topsoil. Topsoil and subsoils that contain appreciable amounts of organic materials should be stripped and stockpiled separately for re-use in landscape areas (if warranted). Tectonic has not performed any laboratory testing to determine the organic content or other horticultural properties of near-surface materials encountered in unpaved areas of the subsurface investigation. Therefore, the term "topsoil" used within this report should not be confused with any topsoil materials that may be specified for the project. If a contractor wishes to use surficial soils encountered at the site for the project, it should be specified that it is their responsibility to have the material tested to verify that it fits project specifications or needs augmentation to do so.

Debris, vegetation, and deleterious materials from the clearing and stripping operations should be removed from the site and disposed of in accordance with local ordinances. The limits of surface preparation should extend no less than 3 feet horizontally beyond the edge of the excavations, as permissible.

10.2 Subgrade Preparation

It is anticipated that the soils encountered below a depth of 2 feet at the boring locations will provide satisfactory bearing for the proposed catch basins and utility lines. However, as noted in Section 9, in the event that proposed structures require a bearing capacity in excess of 2,500 psf, any loose existing fill or native soils should be removed and replaced with properly compacted fill. All soils encountered at the borings are suitable for support of pipe bedding.

All subgrades should be inspected by the geotechnical engineer prior to placement of fill, bedding or structures. If fill soils contain oversize materials, debris or otherwise deleterious materials, or if organic soils or other materials determined by the geotechnical engineer to be unsuitable for bearing are encountered, they should be removed as directed by the geotechnical engineer. Once an approved subgrade is achieve, the bedding (or fill, if necessary) and structure may be placed.

10.3 Protection of Subgrades

Subgrades should be protected from the effects of frost, construction traffic, and surface water. The necessary protection should be provided until the bedding or the structures themselves are placed. Although not anticipated, if groundwater is encountered, dewatering should be performed to allow construction in the dry.

10.4 Fill and Backfill Materials

It is recommended that the on-site fill and native soils not be used for structural fill. This is due to their relatively high silt contents, and the moisture sensitivity that results, the presence of oversized materials, and the frost susceptibility of the soils. Structural fill should consist of sand, gravel, crushed stone, or a mixture of these, and should contain no organic matter. The structural fill materials should meet the requirements from NYDOT for Select Granular Fill (Item Nos. 733.1301 to 733.1305) and conform to the following gradation:

<u>Sieve Size</u>	Percent Finer by Weight
4 inch	100
No. 40	0 - 70
No. 200	0 - 15

The fill and native soil can be used as general fill, provided oversized particles are removed and the moisture conditions are within an acceptable range. All fill should be compacted to at least 95 percent of the maximum dry density, as determined by the modified Proctor test (ASTM Standard D1557). The degree of compaction should be tested and documented by a geotechnical engineer for each lift of fill.

The lift thickness for the fill soils will vary depending on the type of compaction equipment used. Fill should generally be placed in uniform horizontal lifts not exceeding 8 inches in loose thickness when compacted with a trench roller. In confined areas, the loose lift thickness should be 4 inches or less and each lift should be compacted with sufficient passes of hand operated vibratory or impact compaction equipment. A geotechnical engineer with appropriate field and laboratory support should inspect all subgrades, approve materials for use as fill, and test backfill materials for compliance with the recommended compaction.

All bedding should be in accordance with manufacturer's recommendations and guidelines. Bedding should be specified to be "well-compacted". For the purpose of this project 'well-compacted" should be defined as compacted by either a minimum of 4 passes of a vibratory trench compactor having a static weight of 3,000 pounds, or greater, or a minimum of 6 passes of a vibratory plate tamper having a static weight of at least 1,000 pounds, or a "jumping jack" compactor. Lighter plate tampers should not be used.

10.5 General Excavation

All excavations should conform to the latest OSHA requirements regarding worker safety. We recommend that the existing soils on the site be assumed to have the OSHA designation of Type C soils. All vertical cuts in soil greater than 4 feet in height should be sloped back for safety unless sheeting or a bracing system is used. Design of all shoring and bracing should be performed by a Professional Engineer licensed in the State of New York.

11.0 CONSTRUCTION MONITORING

A geotechnical engineer familiar with the existing subsurface conditions and having the appropriate laboratory and field testing support should be engaged by the owner to observe that all earthwork is performed in accordance with the specifications, the Code, and the criteria provided in this report. As a minimum, the following work should be performed under the observation of the geotechnical engineer:

- Inspection of subgrades
- Placement and compaction of fill
- Dewatering, if necessary
- Shoring/excavation support, if necessary

12.0 LIMITATIONS

Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable geotechnical engineers and geologists practicing in this or similar situations. The interpretation of the field data is based on good judgment and experience. However, no matter how qualified the geotechnical engineer or detailed the investigation, subsurface conditions cannot always be predicted beyond the points of actual sampling and testing. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The recommendations contained in this report are intended for design purposes only. Contractors and others involved in the construction of this project are advised to make an independent assessment of the soil, bedrock, and groundwater conditions for the purpose of establishing quantities, schedules and construction techniques.

This report has been prepared for the exclusive use of Sammel Architecture PLLC and their designees for the proposed site improvements described in this report. We recommend that prior to construction, Tectonic review the project plans and specifications. It should be noted that upon review of those documents, some recommendations presented herein might be revised or modified. In the event that any changes in the design or location of the proposed structures are planned, Tectonic shall not consider the conclusions and recommendations contained in this report valid unless reviewed and verified in writing. It is further recommended that Tectonic be retained to provide construction monitoring and inspection services to ensure proper implementation of the recommendations contained herein.

FIGURE I

APPENDIX I

								PROJECT N	o. 9617	.01		F			3 N	n F	R_1			
					ni			PROJECT:	PS 1	6		_ ~				0. L	J-1			
								LOCATION:	Yonk	ers, NY						SF	IEET N	lo. 1 of	f 1	
CLIE	NT: S	ammel A	Archite	ecture	PLLC				д ж	DATE	TIME	DE	PTH	INSF	PECTO	R: Li	iam Mo	Grath		
CON	TRACT	OR: Cr	aig Te	st Bori	ings Co	o., In	с.		ROUN					DRIL	LER:	Μ	lark Ac	quino		
METHO	DD OF /	ADVANCIN	NG BOF	RING	DIA.		DE	PTH	₽ ₽					SUR	FACE	ELEVA	TION:	28	BO.O	
POW	/ER AU	GER:					-	ГО	MON. \	WELL	YES	X	NO	DAT	UM:	:	See Re	marks		
ROT	. DRILL	:					-	ГО	SCREE	EN DEPTH:	ТО		-	DAT	E STAF	RT:	11/12	2/18		
CASI	ING:							го то	WEATI	HER: Clear	TEMF	² : 45	°F				11/12	2/18 STRENG	TH	
		ORE:	Autom					10							•	(TON	IS/FT)	OTTEN		Ê
CME	75 Tru				nmer PI FS				CHAN	GES IN STRA		ED				2	3 4 TEP			E) Z
(.FT.)	I./FT.	NCE NCE		REC	OV.	ш	ASS.		DE	SCRIPTIC	N		ر کړ		i⊤ % ← — –		ENT % 8— — -		Г% Ъ	
PTH (R MIN	ETRA SISTA	APLE	۲,	0 -	STUR	L CL			OF			10L0	1	0 2	0 3	30 4	0 50)	E <
DE	0 Z	RES (E	SAN	ENG.	RQI (%)	NOIS	SOI		N	IATERIAL			<u>É</u>	•	PENE	STAN IRATIO	IDARD N (BLOW	/S/FT.)		Ē
		8						3" Asnhalt	4" subl	hase				,		.0 .	4		,	
1	- 13	7 6	S-1	16		М	SM	Bwn-gy m	f SAND	, little c-f Gr	avel, little Sil	t			•					-
2	_	5						(1122)												Γ
3	- 15	7	S-2	14		М	SM	Bwn-gy c-t	f SAND,	and Silt, tra	ce f Gravel									F
4	_	6																		F
5	- 14	7	- S-3	16		М	SM	Bwn m-f S	AND lit	tle Silt, trace	e f Gravel									_275.0
6		7 9							,	,										
7	50	22 29	0.4	10				Gy & bwn	c-f SAN	D, and c-f G	ravel, trace S	Silt								
	- 58	29 27	5-4	18		M	SP-SM	(Gravel ap cobble)	pears to	o de tracture	a, aecompos	ea								-
0	_	30																	/	-
9	- 48	20 - 22	S-5	12		М	SP-SM	Same										Ó		-
10		14																		_270.0
11	-	-							End	of Boring at	10'									-
12	-	-																		-
13	_	-																		F
14	_		-																	F
15	_																			_265.0
16	_																			Ļ
17	_																			L
18																				
	-]																	-
	-	-	1																	-
פֿן 20 פֿר	_	-	1																	_260.0
21 2	_	-	-																	-
22	_	-	-																	Ē
23	_	-	-																	Γ
24	_	-	-																	F
ິ <u>ງ</u> 25	_																			_255.0
	ARKS:	Site el Groun	evatio dwate	ns esti r not er	mated ncount	base ered	ed on top to depth	oographic sur explored.	rvey prov	vided by Sam	mel Architect	ure P	LLC, e	ntitled	"Site	Resto	ration"			
BOR																				

								PROJECT N	o. 9617	7.01						3 N	n F	3_2			
17					ni			PROJECT:	PS 1	16							0. L	J-2			
								LOCATION:	Yon	kers, NY							S⊦	IEET N	lo. 1 o	f 1	
CLIE	INT: S	ammel /	Archite	ecture	PLLC				д и	DAT	ΓE	TIME	: C	DEPTH	INSF	PECTO	R: L i	am Mo	Grath		
CON	ITRACT	OR: Cr	aig Te	st Bor	ings C	o., In	с.		ROUN ATE						DRIL	LER:	М	ark Aq	uino		
METH	OD OF .	ADVANCI	NG BOF	RING	DIA.		DE	PTH	<u></u> 9 ≥						SUR	FACE	ELEVA	TION:	2	80.0	
POV	VER AU	IGER:					-	ТО	MON.	WELL] YES	X	NO	DAT	UM:	5	See Re	marks	;	
ROT	. DRILL	:					-	ТО	SCRE	EN DEPTH	1:	T	0		DAT	E STAI	RT:	11/12	/18		
CAS									WEAT	HER: C	lear	T	EMP: 4	5° F			SH: ED COM	11/12 PRESS.	/18 STRENG	GTH	
	10ND (CORE:		natic Ha	mmor			10			К: -				-	•	(TON	IS/FT)			
CIVIL				SAM	PLES				CITA					*	PLA	1 STIC	2 : WA	3 4 TFR		חוו	L Z
(FT.)	N./FT.	ATION NCE		REC	OV.	ш	ED ASS.		DE	SCRIP	10IT	Ν)G		іт % — — -		ENT % 8— — -		T % 4	
PTH	RMIN	ETR/ SIST/ BL/6 I	MPLE	, Этн		STUR	JNIFII IL CL			OF				-PL(1	0 2	20 3	80 4 	0 50)	
B	o z	PEN RE:	SAI	(IN	RQ %)	MOI	so		ſ	MATER	IAL			5	•	PENE	STAN TRATIOI	DARD N (BLOW	'S/FT.)	h	
		6						4" Asphalt	, 4" sub	base				\sim						<u> </u>	
1	- 10	4	- S-1	16		М	SM	Bwn m-f S fragment r	AND, s near top	ome Silt, of samp	, little ble (Fl	f Gravel	, brick								-
2		3									(,									-
3	- 7	4 .	S-2	20		М	SM	Bwn m-f S	AND, s	ome Silt,	, trace	e f Grave	el		•						-
4		3																			-
5	- 6	3	S-3	14		М	SM	Same, little	e c-f Gr	avel					: 						_275.0
6		4																			-
7	- 12	4	- S-4	0				No Recove	erv												-
8		8							,							$ \rangle$					_
9	- 17	10 8	S-5	6		м	SP-SM	Gy c-f SAL		t c_f Grav	vol tr	ace Silt									
10		9 51				IVI			ND, and		vei, u										270.0
11									End	of Borin	a at 1	0']						
										·	0										
	-																				-
13	-																				-
14	-		-																		-
15	-		-																		_265.0
16	-		-																		-
17	-		-																		F
<u> </u>	-		-																		F
19	Ļ		-																		ŀ
20	Ļ		-														 				_260.0
21	L																				Ļ
22																					
23																					
10 24	Γ]																		Γ
- 24			1																		
ッ 25 3 REM	⊢ IARKS:	Site e	evatio	ns esti	mated	base	ed on to	pographic sur	vey pro	vided by	Samn	nel Archit	tecture	 PLLC, €	ntitled	"Site	Resto	ration"			∟255.0
ORING		Groun	dwate	r not e	ncount	ered	to depth	n explored.		-											
۵																					

	PROJECT No. 9617.	01		BOR		B-3	
Tectonic ¹	PROJECT: PS 16	3		DON		. D-V	
ICCLOINC	LOCATION: Yonke	ers, NY			[SHEET No. 1	of 1
CLIENT: Sammel Architecture PLLC	D K	DATE	TIME	DEPTH	INSPECTOR:	Liam McGrat	h
CONTRACTOR: Craig Test Borings Co., Inc.	ROUN				DRILLER:	Mark Aquino	
METHOD OF ADVANCING BORING DIA. E	EPTH 5				SURFACE EL	EVATION:	280.0
POWER AUGER:	TO MON. W	VELL	YES	X NO	DATUM:	See Remark	S
ROT. DRILL:	TO SCREE	N DEPTH: -	то		DATE START	11/12/18	
CASING:	TO WEATH	IER: Clear	TEMP:	45° F	DATE FINISH	11/12/18	
DIAMOND CORE:	TO DEPTH	TO ROCK:	-			(TONS/FT)	
CME 75 Truck Rig with Automatic Hammer	*CHANC	GES IN STRATA	ARE INFERREI		1 2	3 4	5 [E1]
Image: Constraint of the second se	DES	SCRIPTION	I	G≺*	PLASTIC LIMIT %		
		OF		ОГО	10 20	30 40	
DEP PENE RESI RESI RESI REV RCD NOIS: VD NOIS: SOIL	M	IATERIAL		Ŭ Ŭ Ŭ	PENETR	STANDARD ATION (BLOWS/FT.)	EL
				_	10 20	30 40	50
¹ - 5 ² - S-1 16 M SM	4" Asphalt, 4" Subt Blk-bwn m-f SAND	base), some Silt, lit	tle c-f Grave	el 💥	•		-
2 3	(FILL)						
$\begin{vmatrix} 6 \\ 3 \\ -9 \end{vmatrix} = \begin{vmatrix} 6 \\ 4 \\ - \\ S \\ 2 \end{vmatrix} = \begin{vmatrix} 14 \\ - \\ S \\ M \end{vmatrix} = S $	Bwn m-f SAND litt	le Silt little c-	f Gravel (Fill	、 []]			
	Dwitting Of the, int			'			
		some Silt littl	le c-f Gravel				075.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(FILL)	Some ont, inti					
6 / 1 M CD CM	- Cy hwp o f CRAV/		nd trace Sil				75
750/2	Gy-bwirte-i GitAvi						
8	End o	of Boring at 7.2	2'				-
9							-
10							
11							
12							
13							
19							
20							
25	pographic survey prov	ided by Samm	el Architectu	re PLLC e	ntitled "Site P	estoration"	
Groundwater not encountered to dep	h explored.	aca by Camin					

Toctonic PROJECT: PS 16	
LOCATION: Yonkers, NY	SHEET No. 1 of 1
CLIENT: Sammel Architecture PLLC	NSPECTOR: Liam McGrath
CONTRACTOR: Craig Test Borings Co., Inc.	RILLER: Mark Aquino
METHOD OF ADVANCING BORING DIA. DEPTH 0 ≤ s	URFACE ELEVATION: 280.0
POWER AUGER: TO MON. WELL YES X NO D	ATUM: See Remarks
ROT. DRILL: 3 7/8" 0 TO 6' SCREEN DEPTH: TO D	ATE START: 11/12/18
CASING: TO WEATHER: Clear TEMP: 45° F D	ATE FINISH: 11/12/18
DIAMOND CORE: TO DEPTH TO ROCK:	● (TONS/FT)
CME 75 Truck Rig with Automatic Hammer *CHANGES IN STRATA ARE INFERRED	
	PLASTIC WATER LIQUID Z LIMIT % CONTENT % LIMIT %
	10 20 30 40 50
	STANDARD III PENETRATION (BLOWS/FT.)
3 Drilled to Clusitheut compliant	
	275.0
7 - 60 25 - S-1 18 M GP-GM Gy-bwn c-f GRAVEL, and c-f Sand, trace Silt	
8 35 GV of GRAVEL trace of Sand (apparent	89
9	
10 End of Boring at 8.2'	
15	
16	
19	
REMARKS: Site elevations estimated based on topographic survey provided by Sammel Architecture PLLC, entitl	ed "Site Restoration".

	_							PROJECT N	o. 9617.	01		BOF	SINC	R Na	n B	2_4		
	6				ni			PROJECT:	PS 16	i					J. L			
								LOCATION:	Yonke	ers, NY					SH	EET No	o. 1 of 1	
CLIE	NT: S	ammel A	rchite	ecture	PLLC				DN R	DATE	TIME	DEPTH	INSP	ECTOR	R: Lia	am Mc(Grath	
CON	TRACT	OR: Cra	aig Te	st Bor	ings Co	o., In	с.		ROU				DRIL	LER:	Ма	ark Aqu	uino	
METHO	DD OF	ADVANCIN	IG BOR	RING	DIA.		DE	PTH	₽ ≥				SUR	FACE E	LEVAT	ION:	279	.0
POW	/ER AU	GER:						то	MON. W	/ELL	YES	X NO	DATU	JM:	S	ee Ren	narks	
ROT	. DRILL	:			3 7/8"		0	TO 10'	SCREE	N DEPTH:	то		DATE	E STAR	T:	11/12/	18	
CASI	NG:				4"		0	to 4'	WEATH	IER: Clear	TEMP:	49° F	DATE	E FINISI	H:	11/12/	18	
DIAN	IOND C	ORE:						ТО	DEPTH	TO ROCK:			UNC		D COMP (TONS	PRESS. S B/FT)	STRENGTH	
CME	75 Tru	ck Rig with	Autom	natic Ha	mmer				*CHANC	GES IN STRATA	ARE INFERRE	D	1	2	3	4	5	(FT
(;	Ľ.			SAM	PLES		- vi		DES	SCRIPTIO	N	ž	PLAS LIMI	STIC T %	WAT CONTE	ER NT %	Liquid Limit %	
. Н	MIN./	TAT TAN 6 IN	ШЧЦ	REC	COV.	URE	FIED		DLC	OF	N			← — — 0 20	· — —⊗) 30	→ — —) 40	— —∆ 50	VAT
DEPT	OR	ENET (BL)	SAMF	NGT NGT	00) (%)	OIST	UN		М	ATERIAL		E			STANE	DARD)/===)	
	z		ωz	Ē	ш -	ž	0,						1	0 20	0 30	(BLOWS) 40	5/FT.) 50	
1	- 6	4 3 3 2	S-1	22		М	SM	4" Asphalt Bwn-blk m (FILL)	, 4" Subb I-f SAND	base , and Silt, litt	le c-f Gravel							-
3.	- 12	5 6 _ 3	S-2	16		М	SM	Same, trac	ce f Grav	el (FILL)								-
5	- 7	3 4 3	S-3	20		М	SM	Same, sor	ne Silt, tr	race f Gravel	(FILL)							274.0
7	- 11	9 5 6 8	S-4	20		М	SM	Bwn m-f S	AND, so	me c-f Grave	el, little Silt							-
9	- 35	25 20 15 13	S-5	10		М	SM	Bwn-blk m	-f SAND	, some c-f G	ravel, little Si	ilt	•			•		-
11	- 35	24 20 15 10	S-6	8		М	GM	Bwn-blk c-	f GRAVE	EL, and c-f S	and, little Sil	t				•		_
13	_	-							End o	of Boring at 1	2'							
14 15	_	-																
16 17	_	-																-
18 19	_	-																-
20	_	-																259.0
21 22	_	-																-
23 24	_	-																-
25	_													<u></u>		<u></u>	<u></u>	254.0
REM	ARKS:	Site el Groun	evatio dwatei	ns esti r not e	mated I ncounte	base ered	d on to to deptl	pographic sui n explored.	rvey prov	ided by Samr	nel Architectu	Ire PLLC,	entitled	"Site F	<estora< td=""><td>ation".</td><td></td><td></td></estora<>	ation".		

								PROJECT No	o. 9617 .	.01		R	OR		3 N	n F	2_5			
	6				ni			PROJECT:	PS 10	6						0. L	5-0			
								LOCATION:	Yonk	ers, NY						S⊦	IEET N	lo. 1 c	f 1	
CLIE	NT: S	ammel /	Archite	ecture	PLLC				D R	DATE	TIME	DE	PTH	INSF	PECTO	R: Li	am Mo	Grath	l	
CON	TRACT	OR: Cr	aig Te	st Bori	ings Co	o., In	с.		ROUI					DRIL	LER:	М	ark Aq	uino		
METHO	DD OF /	ADVANCIN	IG BOF	RING	DIA.		DE	PTH	<u> </u>					SUR	FACE I	ELEVA	TION:	2	78.0	
POW	/ER AU	GER:						ГО	MON. V	VELL [] YES	X	NO	DAT	UM:	5	See Re	marks	5	
ROT.	. DRILL	:						то	SCREE	IN DEPTH:	TO			DAT	E STAF	RT:	11/12	2/18		
CASI							-				IEMP	: 49 °	F	UNC		SH: ED COM	11/12 PRESS.	2/18 STREN	GTH	
CME	75 Tru	ck Rig with		natic Ha	mmer			10	*CHAN	GES IN STRAT		-n			•	(TON	IS/FT)		_	<u>і</u> .
				SAM	PLES								*	PLA	I I STIC	WA	3 4 TER			L (F
(FT.)	N./FT	ATION NCE		REC	OV.	ш	ED ASS.		DE	SCRIPTIO	Ν		ЪGY		i⊤ % ← — –		ENT % 8— — -		T % ∆	ATIO
PTH	R MII	IETR/ SIST/ BL/61	MBLE	.) TH	Ω _	STUR	II CL		-	OF			HOLO	1	0 2	20 3	80 41 	0 5	0	
B	o z	PEN RE:	SAI	UIN)	RQ (%	NOI	so		N	IATERIAL			Ē	•	PENE [®]	STAN TRATIOI	IDARD N (BLOW	/S/FT.)	n	
		13						3" Asphalt	over 3"	subbase			XXX							
1	- 26	16	S-1	8		М	SP-SM	Gy c-f SAN	ND, and	c-f Gravel, t	race Silt (FILI	L)	\bigotimes	>		•				-
2	_	9 13											\propto							-
3	- 19	8 11	S-2	18		М	SM	Bwn c-f SA	AND, littl	le c-f Gravel,	little Silt									-
4		12 20														$\left \right\rangle$				-
5	- 27	12	S-3	20		М	SM	Same)				_273.0
6	_	12																		-
7	- 14	6	S-4	10		М	SM	Bwn c-f SA	AND. so	me Silt. trace	e f Gravel									-
8		8 13							,	,										_
9	- 25	8 11	85	16		M	CD	Gy-bwn c-	f GRAVI	EL, some m-	f Sand, trace									
10	- 25	14 12	5-5	10		IVI	GP	Silt												268.0
		13 10																		_200.0
	- 25	15	S-6	20		М	GP	Gy-bwn c-	f GRAVI	EL, and m-f :	Sand, trace S	Silt								-
12		21							F . 1		4.01									-
13	-	-	-						End	of Boring at	12									-
14	-	-	-																	-
15	-	-	-																	_263.0
16	-	-	-																	-
17	-	-																		F
18	_	-																		-
19	_																			Ļ
20	_																			_258.0
21	_																			L
22																				ľ
	-	-	1																	F
23	-	-	-																	-
24	-	-	-																	-
25 REM		Site el	evatio	ns esti	mated	hase	d on tor	ographic sur		ided by Sam	mel Architecti	Ire PI		ntitled	 "Site	Resto				_253.0
		Groun	dwate	r not ei	ncounte	ered	to depth	n explored.	, p.01				, 0		Cito					

	_							PROJECT No	o. 961	7.01						3 N	ΛF	R-6			
17	6				ni			PROJECT:	PS	16							0. 6	5-0			
								LOCATION:	Yor	nkers, NY							SH		lo. 1 o	f 1	
CLIE	NT: S	ammel A	Archite	ecture	PLLC				9.0		TE	TIM	E C	EPTH	INSF	PECTO	R: L i	iam Mo	Grath		
CON	TRACT	OR: Cr	aig Te	st Bor	ings Co	o., In	с.		ROUN						DRIL	LER:	Μ	lark Ac	luino		
METHO	DD OF /	ADVANCIN	IG BOF	RING	DIA.		DE	PTH	Ъ >	\$					SUR	FACE I	ELEVA	TION:	2	80.0	
POW	/ER AU	GER:					٦	го	MON	. WELL		YES	X	NO	DAT	UM:	\$	See Re	marks		
ROT	DRILL						٦	ГО	SCRE	EEN DEPTH	4:		то .		DAT	E STAF	RT:	11/12	2/18		
CASI	NG:						7	ГО	WEA	THER: C	Clear	7	TEMP: 4	5° F	DAT		SH:	11/12	2/18		
DIAN		ORE:	• .				٦	ГО	DEPT	TH TO ROC					-		(TON	IS/FT)	STREM		$\widehat{}$
CME	75 Tru	ck Rig with	Autom	SAM					*CHA	ANGES IN S	STRATA	A ARE INF	ERRED				2	3 4	4 5		И (FT
FT.)	L/FT.	NCE (')		REC	OV.	ш	ASS.		DI	ESCRIP	OIT	N]G⊀		STIC IT % ← — -		ENT %		ЛD Т% Δ	NOL
ртн (R MIN	ETRA ISTA IL/6 IN	APLE ABER	H L		TUR	L CLA			OF				IOLC	1	0 2	20 3	30 4	0 50)	EVA.
DEF	N OF	PENE RES (B	SAN	ENG.	RQE (%)	MOIS	N IOS			MATER	RIAL			<u></u>	•	PENE	STAN TRATIO	idard N (Blov	/S/FT.)		Ц
		7						2' Asphalt	/" Su	hhase					1	0 2	20 3	30 4	0 50)	
1	- 4	2 - 2	S-1	6		М	GP-GM	Gy-bwn c-t	f GRA	VEL, and	c-f Sa	and, tra	ce Silt							-	-
2	_	2						(FILL)												-	-
3	- 16	7	S-2	8		М	GP-GM	Gy-bwn c-t	f GRA	VEL, som	ne c-f	Sand, tr	ace Silt		>					-	-
4	_	5																			-
5	- 36	16 12	5-3	20		м	SP-SM	Bwn c-f S4	ND a	and c-f Gr	avel	trace Si	lt								_275.0
6	00	24 14		20				Built of C,			avoi,		i.								
7		17 6																			-
	- 11	5	S-4	14		М	SP-SM	Gy-bwn c-i	t SANI	D, some o	c-f Gra	avel, tra	ce Silt							Ī	-
8		29																			-
9	- 53	23	S-5	12		М	SP-SM	Same												•	-
10	_	31 80																			_270.0
11	- 170	60 110	S-6	20		М	SP-SM	Same												17	0
12	_	95													<u>.</u>					-	-
13	-	-	-						End	d of Borin	ng at 1	12'								-	-
14	-	-	-																	-	-
15	_	-	-																		_265.0
16	_	-																			_
17	_																				_
18		-																			
11/18	-	-	1																	Ī	-
19	_	-																		ŀ	-
ມີ 20 ອັງ	-	-																•••••			_260.0
21 22 22	_	-																		-	-
22	-	-																		-	-
L 23	-	-																		ŀ	-
0.10. 24	_	-																			-
ນ 25															<u></u>		<u></u>	<u></u>	<u>.</u>	<u></u>	_255.0
이 REM	ARKS:	Site el Groun	evatio dwate	ns esti r not e	mated	base ered	ed on top to denth	ographic sur	vey pro	ovided by	Samn	mel Arch	itecture I	PLLC, e	entitled	"Site	Resto	ration"			
BORI																					

LEGEND FOR SOIL DESCRIPTION

<u>COARSE G</u>	RAINED SOIL (Coa	irser the	en No.	200 Sieve)			
	DESCRIPTIVE TERM & GRATERMSANcoarse- cMmedium- mMfine- fM	<u>N SIZE</u> I <u>D</u> Io. 1 Io. 1 Io, 4	4 Siev 0 Siev 0 Siev	ve to No. ve to No. ve to No.	10 40 200	S S S	ieve lieve lieve	<u>GRAVEL</u> 3" to 3/4" 3/4" to 3/16"
	COBBLES 3" to 10"				<u>BOUL</u>	_DER	<u>S</u>	10" +
	GRADATION DESIGNATIONS fine, f medium to fine, m-f medium, m coarse to medium, c-m coarse, c coarse to fine, c-f	2			PROF Less Less Less Less Less All gr	PORT than than than than than ceater	10NS 0 10% c 10% c 10% c 10% f 10% f 10% m	DE COMPONENT coarse to medium coarse coarse and fine ine nedium and fine 10%
<u>FINE GRAIN</u>	NED SOIL (Finer than No). 200 S	Sieve)					
	DESCRIPTION Silt Clayey Silt Silt & Clay Clay & Silt Silty Clay Clay		<u>PLA</u>	STICITY IN 0 - 1 2 - 5 6 - 10 11 - 20 21 - 40 reater thar	NDEX			PLASTICITY none slight low medium high very high
PROPORTIO	<u>NC</u>							
	DESCRIPTIVE TERM trace little some and					Ē	PERCEI	NT OF SAMPLE WEIGHT 1 - 10 10 - 20 20 - 35 35 - 50
	The primary component is fu	lly capi [:]	talized					
COLOR	Blue - blue Blk - black Bwn - brown Gn - green		Gy Or Rd Tn	- gray - orange - red - tan			Wh Yl Lgt Dk	- white - yellow - light - dark
SAMPLE N	OTATION S - Split Spoon Soil Samp U - Undisturbed Tube San C - Core Sample B - Bulk Soil Sample NR - No Recovery of Sampl	le nple e			WOC WOR WOH PPR TV	- W - W - W - C P - S	Veight (Veight (Veight (Compre Pocket F Phear S	of Casing of Rods of Hammer essive Strength based on Penetrometer Strength (tsf) based on Torvane
Now Vork C	the Duilding Code call closelfie	tione e	re alu	n in noron	theore	o o+ +k		of each departation of material

New York City Building Code soil classifications are given in parentheses at the end of each description of material, if applicable. See sections 1804.2 of the 2008 Building Code for further details.

APPENDIX II

Tectonic

Fax: 845-534-59993

MOUNTAINVILLE, NY (CORPORATE OFFICE) 70 Pleasant Hill Road, PO Box 37 Mountainville, NY, 10953 Phone: 845-534-5959

www.TectonicEngineering.com