SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:

- a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
- b. Are periodically inspected by a NRTL.
- c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and noninvasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - 1. Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these

approved documents present and available at the time and place of energized electrical work.

- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.

- 5. Minimum arc rating of clothing.
- 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION____
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.

- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. 4Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-16

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-16

This page intentionally left blank.

SECTION 26 05 13

MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. A representative sample of Medium-voltage cables from each lot shall be factory tested per NEMA WC 74 to ensure that there are no electrical defects in that specific lot of cable.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
 - 2. Samples:
 - a. After approval of submittal and prior to installation, Contractor shall furnish sample in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.

Medium-Voltage Cables

- b. Field Test Reports: Submit field test reports for approval.
- c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
- d. Two weeks prior to final inspection, submit the following.
 - 1) Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - 2) Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install cables, splices, and terminations shall have a minimum of five years of experience splicing and terminating cables, including experience with the materials in the approved splices and terminations. Qualified workers who perform cable testing shall have a minimum of five year of experience performing electrical testing of medium-voltage cables, including the ability to understand, interpret test results and develop test report.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-13.....Standard Specification for Soft or Annealed Copper Wire

C.	Institute of Electrical and Elect 48-09	tronics Engineers, Inc. (IEEE): .Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded Insulation Rated 2.5 kV through 500 kV
	386-06	.Separable Insulated Connector Systems for Power Distribution Systems above 600 V
	400-12	. Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems
	400.2-13	. Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF)
	404-12	. Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V
D.	National Electrical Manufactur WC 71-14	ers Association (NEMA): .Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy
	WC 74-12	.5-46 KV Shielded Power Cable for Use in the Transmission and Distribution of Electric Energy
E.	National Fire Protection Assoc 70-2020	siation (NFPA): .National Electrical Code (NEC)
F.	Underwriters Laboratories (UL 1072-06	.): .Medium-Voltage Power Cables

Medium-Voltage Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected against physical, mechanical and environmental damage. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or field-installed heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with ASTM, IEEE, NEC, NEMA and UL, and as shown on the drawings.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 1. 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP, XLPE, or TR-XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helically-applied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - 1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Class 3 terminations for outdoor use: Kit with stress cone and compression-type connector.
 - 3. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.

Medium-Voltage Cables

4. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- I. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including powerdriven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.

- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be executed by qualified person trained to perform medium-voltage equipment installations. Tools shall be as recommended or provided by the manufacturer. Installation shall comply with manufacturer's instructions.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. General:
 - 1. Perform tests in accordance with the latest IEEE 400 and 400.2, manufacturer's recommendations, and as specified in this specification.
 - 2. Contractor shall make arrangements to have tests witnessed by the COR. Contractor shall proceed with tests only after obtaining approval from the COR.
- B. Visual Inspection: Perform visual inspection prior to electrical tests.
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.

- 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
- 4. Verify installation of fireproofing tape and identification tags.
- At the time of final acceptance, Contractor shall provide the COR visual field inspection 5. notes, findings, and photographs detailing accessible inspection locations.
- C. Electrical Tests - New Cables: Perform preparation and tests in order shown below:
 - Preparation Prior to Testing: Splices and terminations applied to new cables shall be 1 completed prior to testing. For renovation installation, ends of new cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
 - 2. Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - Apply test voltage for a period sufficient to stabilize output voltage and insulation a. resistance measurement.
 - Test data shall include megohm, applied test voltage, and leakage current b. readings.
 - Further testing shall not continue unless the insulation resistance test results meet c. or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be:
 - Voltage Class Test Voltage 1) Min. Insulation Resistance
 - 1,000 megohms 2) 5kV 2,500 VDC 3)
 - 5,000 megohms 15kV 2,500 VDC
 - 4) 5,000 VDC 20,000 megohms 25kV
 - 15,000 VDC 100.000 meaohms 35kV 5)
 - 3. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the Very Low Frequency (VLF) Withstand test
 - 4. Perform Very Low Frequency (VLF) Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- D. Electrical Tests - Service-Aged Cables: Tests shall be performed for serviced-age cables before inter-connecting to new cables. Perform tests in order shown below:
 - Preparation Prior to Testing: Splices and terminations applied to cables shall be 1. completed prior to testing. Ends of cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
 - 2. Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - Apply test voltage for a period sufficient to stabilize output voltage and insulation a. resistance measurement.
 - Test data shall include megohm, applied test voltage, and leakage current b. readings.
 - Further testing shall not continue unless the insulation resistance test results meet C. or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be:
 - 3. Voltage Class Test Voltage Min. Insulation Resistance
 - 1.000 meaohms 2.500 VDC 5kV 4.
 - 15kV 2.500 VDC 5,000 megohms 5.
 - 5,000 VDC 20,000 megohms 6. 25kV
 - 7. 35kV 15.000 VDC 100.000 meaohms
 - 8. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the VLF Withstand test.
 - 9. Perform VLF Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- E. Field Test Report: Submit a field test report to the COR that includes the following information:

- 1. Project Name, Location, Test Date.
- 2. Name of Technician and Company performing the test.
- 3. Ambient temperature and humidity at time of test.
- 4. Name, Model Number and Description of Test Equipment used.
- 5. Circuit identification, cable length, cable type and size, insulation type, cable manufacturer, service age (if any), voltage rating, description of splices or terminations.
- 6. Visual field inspection notes, findings, and photographs.
- 7. Insulation Resistance Test results:
 - a. Test voltage.
 - b. Measurement in Megohms.
 - c. Leakage current.
- 8. Tan Delta results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Mean Tan Delta at V_0 .
 - d. Stability measured by Standard Deviation at V₀.
 - e. Differential Tan Delta.
 - f. IEEE Condition Assessment Rating.
 - VLF Withstand results:
 - a. Test voltage.

9.

- b. Waveform (sinusoidal or cosine-rectangular).
- c. Pass/Fail Rating.
- 10. Conclusions. If any deficiency is discovered based on test results, provide recommendations for corrective action.
- F. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the COR.

---END----

This page intentionally left blank.

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, connection, and testing of the electrical Α. conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 **RELATED WORK**

- Α. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fireresistant rated construction.
- Β. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26. GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for D. conductors and cables.
- Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors Ε. and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS Α. AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

2.

- Α. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - Submit sufficient information to demonstrate compliance with drawings and a. specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable. 1) 2)
 - Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the conductors and cables conform to the a. requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 **APPLICABLE PUBLICATIONS**

- Publications listed below (including amendments, addenda, revisions, supplements and errata) Α. form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- Β. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

D2304-10	Test Method for Thermal End	durance of Rigid Electrical Ins	ulating
	Materials	-	-

D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

- C. National Electrical Manufacturers Association (NEMA): WC 70-09Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Direct Burial Cable: UF or USE cable.
- E. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V	
Black	А	Brown	
Red	В	Orange	
Blue	С	Yellow	
White	Neutral	Gray *	
* or white with colored (other than green) tracer.			

- 5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be cadmium-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - 1. Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Underground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation. Listed for wet locations, and approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- F. Underground Splices for No. 8 AWG and Larger:
 - 1. Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

- 3. Splice and insulation shall be product of the same manufacturer.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be cadmium-plated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.

- 4. All conductors in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 DIRECT BURIAL CABLE INSTALLATION

- A. Tops of the cables:
 - 1. Below the finished grade: Minimum 600 mm (24 inches) unless greater depth is shown.

- 2. Below road and other pavement surfaces: In conduit as specified, minimum 760 mm (30 inches) unless greater depth is shown.
- 3. Do not install cables under railroad tracks.
- B. Under road and paved surfaces: Install cables in concrete-encased galvanized steel rigid conduits. Size as shown on plans, but not less than 50 mm (2 inches) trade size with bushings at each end of each conduit run. Provide size/quantity of conduits required to accommodate cables plus one spare.
- C. Work with extreme care near existing ducts, conduits, cables, and other utilities to prevent any damage.
- D. Excavation and backfill is specified in Section 31 20 00, EARTH MOVING. In addition:
 - 1. Place 75 mm (3 inches) bedding sand in the trenches before installing the cables.
 - 2. Place 75 mm (3 inches) shading sand over the installed cables.
 - 3. Install continuous horizontal 25 mm by 200 mm (1 inch x 8 inches) preservativeimpregnated wood planking 75 mm (3 inches) above the cables before backfilling.
- E. Provide horizontal slack in the cables for contraction during cold weather.
- F. Install the cables in continuous lengths. Splices within cable runs shall not be accepted.
- G. Connections and terminations shall be listed submersible-type designed for the cables being installed.
- H. Warning tape shall be continuously placed 300 mm (12 inches) above the buried cables.

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

----END----

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- E. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- F. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- G. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
 - 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B1-13.....Standard Specification for Hard-Drawn Copper Wire B3-13.....Standard Specification for Soft or Annealed Copper Wire B8-11....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
 C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-12.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance
 - 81-12IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements

D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)

70E-15.....National Electrical Safety Code

- 99-15 Health Care Facilities

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

Grounding and Bonding for Electrical Systems

- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinetenclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

Grounding and Bonding for Electrical Systems

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

Grounding and Bonding for Electrical Systems

- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - 1. Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

A. Drive ground rods until the top is 300 mm (12 inches) below grade. Attach a No. 4 AWG copper conductor by exothermic weld to the ground rods, and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 300 mm (12 inches) of fence mesh and fasten by two approved bronze compression fittings, one to bond the wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 3 mm x 25 mm (0.375 inch x 1 inch) flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.10 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.11 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional un-spliced length in and above foundation as required to reach pole ground stud.

3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.13 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-ofpotential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-17

This page intentionally left blank.

This page intentionally left blank.

SECTION 26 05 33

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- J. Section 31 20 00, EARTHWORK: Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - 2. Certifications: Two weeks prior to final inspection, submit the following:

- a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of Cold-Formed Steel Structural Members

C.	National Electrical Manufacturers Association (NEMA): C80.1-15Electrical Rigid Steel Conduit
	C80.3-15Steel Electrical Metal Tubing
	C80.6-05Electrical Intermediate Metal Conduit
	FB1-14Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
	FB2.10-13Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing)
	FB2.20-14Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable
	TC-2-13 Electrical Polyvinyl Chloride (PVC) Tubing and Conduit
	TC-3-13PVC Fittings for Use with Rigid PVC Conduit and Tubing
D.	National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)
E.	Underwriters Laboratories, Inc. (UL): 1-05Flexible Metal Conduit
	5-16 Surface Metal Raceway and Fittings
	6-07 Electrical Rigid Metal Conduit - Steel
	50-15 Enclosures for Electrical Equipment
	360-13Liquid-Tight Flexible Steel Conduit
	467-13Grounding and Bonding Equipment
	514A-13Metallic Outlet Boxes
	514B-12Conduit, Tubing, and Cable Fittings
	514C-14Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
	651-11 Schedule 40 and 80 Rigid PVC Conduit and Fittings
	651A-11Type EB and A Rigid PVC Conduit and HDPE Conduit
	797-07Electrical Metallic Tubing
	1242-14 Electrical Intermediate Metal Conduit - Steel
	Raceway and Boxes for Electrical Systems

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid aluminum: Shall conform to UL 6A and NEMA C80.5.
 - 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
 - 5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 6. Flexible Metal Conduit: Shall conform to UL 1.
 - 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
 - 8. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 9. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Rigid Aluminum Conduit Fittings:
 - a. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4% copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - 3. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and rain-tight, with connectors having insulated throats.
 - d. Setscrew Couplings and Connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - e. Indent-type connectors or couplings are prohibited.

- f. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual

hammer-type drills are not allowed, except when permitted by the COR where working space is limited.

- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
 - 14. Do not use aluminum conduits in wet locations.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown on drawings.
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.

- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

A. Use rigid steel conduit only.
B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquid-tight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:

Raceway and Boxes for Electrical Systems

- 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
- 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

---END---

Raceway and Boxes for Electrical Systems

26 05 33 - 8

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

SECTION 26 05 41

UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

2.

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the COR for approval prior to construction.
 - 2. Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI):

C.	Building Code Requirements for Structural Concrete 318-14/318M-14Building Code Requirements for Structural Concrete & Commentary
	SP-66-04ACI Detailing Manual
D.	American National Standards Institute (ANSI): 77-14Underground Enclosure Integrity
E.	American Society for Testing and Materials (ASTM): C478 REV A-15Standard Specification for Precast Reinforced Concrete Manhole Sections
	C858-10Underground Precast Concrete Utility Structures
	C990-09Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants.
F.	National Electrical Manufacturers Association (NEMA): TC 2-13Electrical Polyvinyl Chloride (PVC) Conduit
	TC 3-15Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing
	TC 6 & 8-13Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations
	TC 9-04Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation
G.	National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)
	70E-15National Electrical Safety Code
H.	Underwriters Laboratories, Inc. (UL): 6-07Electrical Rigid Metal Conduit-Steel
	467-13Grounding and Bonding Equipment
	651-11 Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

PART 2 - PRODUCTS

2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE

- A. Structure: Factory-fabricated, reinforced-concrete, monolithically-poured walls and bottom. Frame and cover shall form top of manhole.
- B. Cable Supports:
 - Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - 4. Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.

- C. Ladder: Aluminum with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep.
- D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed.
- E. Sump: Provide 305 mm x 305 mm (12 inches x 12 inches) covered sump frame and grated cover.

2.2 PULLBOXES

- A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 5 loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangular-shaped opening.
- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom.
- C. Fiberglass Pullboxes: Shall be sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- D. Concrete Pullboxes: Shall be monolithically-poured reinforced concrete.

2.3 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90° C (194° F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.
- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. Schedule 40 PVC or HDPE conduit.
 - b. Duct shall be suitable for use with 75° C (167° F) rated conductors.
 - 2. Rigid metal conduit: UL 6 and NEMA RN1 galvanized rigid metal, half-lap wrapped with 10 mil PVC tape.

2.4 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.5 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.6 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULLBOX INSTALLATION

A. Assembly and installation shall be per the requirements of the manufacturer.1. Install manholes and pullboxes level and plumb.

- 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inch) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.
- C. Grounding in Manholes:
 - 1. Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor.
 - 2. Install a No. 3/0 AWG bare copper ring grounding conductor around the inside perimeter of the manhole and anchor to the walls with metallic cable clips.
 - 3. Connect the ring grounding conductor to the ground rod by an exothermic welding process.
 - 4. Bond the ring grounding conductor to the duct bank equipment grounding conductors, the exposed non-current carrying metal parts of racks, sump covers, and like items in the manholes with a minimum No. 6 AWG bare copper jumper using an exothermic welding process.

3.2 TRENCHING

- A. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- B. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- C. Cut the trenches neatly and uniformly.
- D. For Concrete-Encased Ducts:
 - 1. After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 feet) intervals to establish the grade and route of the duct bank.
 - 2. Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - 4. After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- E. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COR.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - 1. Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - 2. Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inches) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.

- 6. Install insulated grounding bushings on the conduit terminations.
- 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
- 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).
 - b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - 1. Install concrete-encased ducts for medium-voltage systems, low-voltage systems, and signal systems, unless otherwise shown on the drawings.
 - 2. Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - 4. Extend the concrete envelope encasing the ducts not less than 75 mm (3 inches) beyond the outside walls of the outer ducts.
 - 5. 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
 - 6. Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
 - 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.

- 8. Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by COR.
- C. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 300 mm (12 inches) in each direction. Perimeter of the duct bank opening in the manhole shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure.
- D. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- E. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- F. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - 1. Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COR.
 - 4. Mandrel pulls shall be witnessed by the COR.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-17

SECTION 26 05 73

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the utility source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- C. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- D. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- E. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - 2. Complete study as described in paragraph 1.6. Submittal of the study shall be wellcoordinated with submittals of the shop drawings for equipment in related specification sections.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

Overcurrent Protective Device Coordination Study

	242-03	Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems	
	399-97	Recommended Practice for Industrial and Commercial Power Systems Analysis	
	1584-02	Performing Arc-Flash Hazards Calculations	
	1584A-04	Performing Arc-Flash Hazards Calculations – Amendment 1	
	1584B-11	Performing Arc-Flash Hazards Calculations – Amendment 2	
National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)			
	70E-18	Standard for Electrical Safety in the Workplace	
	99-18	Health Care Facilities Code	

1.6 STUDY REQUIREMENTS

C.

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- D. Short-Circuit Study:
 - 1. The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - 2. Calculate the fault impedance to determine the available short-circuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - 1. Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.

Overcurrent Protective Device Coordination Study

- c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
- d. Applicable circuit breaker or protective relay characteristic curves.
- e. No-damage, melting, and clearing curves for fuses.
- f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 2. Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PART 2 - PRODUCTS (NOT USED)

PART 3 - PART 3 - EXECUTION (NOT USED)

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

Α. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit

Commissioning of Electrical Systems

Hudson Valley Health Care System New Community Living Center Project #: 620-334 11-01-16

training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 11-01-16

SECTION 26 09 23

LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- Β. National Electrical Manufacturer's Association (NEMA): C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15Standard for Industrial Control and Systems General Requirements ICS-2-05Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16Standard for Industrial Controls and Systems Enclosures C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) Underwriters Laboratories, Inc. (UL): D. 20-10 Standard for General-Use Snap Switches 98-16 Enclosed and Dead-Front Switches 773-16 Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting 773A-16.....Nonindustrial Photoelectric Switches for Lighting Control 916-15Standard for Energy Management Equipment Systems 917-06 Clock Operated Switches 924-16 Emergency Lighting and Power Equipment (for use when

controlling emergency circuits).

PART 2 - PRODUCTS

2.1 ELECTRONIC TIME SWITCHES

- A. Electronic, solid-state programmable units with alphanumeric display; complying with UL 916 and or 917.
 - 1. Contact Configuration: DPDT.
 - 2. Contact Rating: 30-A inductive or resistive120-277 volt.
 - 3. Astronomical Clock: Capable of switching a load on at sunset and off at sunrise, and automatically changing the settings each day in accordance with seasonal changes of sunset and sunrise. Additionally, it shall be programmable to a fixed on/off weekly schedule.
 - 4. Power Backup: Battery or capacitor for schedules and time clock.

2.2 ELECTROMECHANICAL-DIAL TIME SWITCHES

- A. Electromechanical-dial time switches; complying with UL 917.
 - 1. Contact Configuration: DPDT.
 - 2. Contact Rating: 30-A inductive or resistive, 120-277 volt.

Lighting Controls

26 09 23 - 2

3. Wound-spring reserve carryover mechanism to keep time during power failures.

2.3 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with DPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 16.14 to 108 lx (1.5 to 10 fc), with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - 4. Mounting: Twist lock, with base-and-stem mounting or stem-and-swivel mounting accessories as required.

2.4 TIMER SWITCHES

- A. Digital switches with backlit LCD display, 120/277 volt rated, fitting as a replacement for standard wall switches.
 - 1. Compatibility: Compatible with all ballasts.
 - 2. Warning: Audible warning to sound during the last minute of "on" operation.
 - 3. Time-out: Adjustable from 5 minutes to 12 hours.
 - 4. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.5 CEILING-MOUNTED PHOTOELECTRIC SWITCHES

- A. Solid-state, light-level sensor unit, with separate relay unit.
 - 1. Sensor Output: Contacts rated to operate the associated relay. Sensor shall be powered from the relay unit.
 - 2. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 3. Monitoring Range: 108 to 2152 lx (10 to 200 fc), with an adjustment for turn-on and turnoff levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with deadband adjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.6 SKYLIGHT PHOTOELECTRIC SENSORS

- A. Solid-state, light-level sensor; housed in a threaded, plastic fitting for mounting under skylight; with separate relay unit.
 - 1. Sensor Output: Contacts rated to operate the associated relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 2. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 3. Monitoring Range: 10,800 to 108,000 lx (1000 to 10,000 fc), with an adjustment for turnon and turn-off levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with deadband adjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.7 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.

Lighting Controls

- b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.8 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.9 OUTDOOR MOTION SENSOR (PIR)

- A. Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 degrees F (minus 40 to plus 54 degrees C).
 - 1. Operation: Turn lights on when sensing infrared energy changes between background and moving body in area of coverage; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outdoor junction box.
 - b. Relay: Internally mounted in a standard weatherproof electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 3. Bypass Switch: Override the on function in case of sensor failure.
 - 4. Automatic Light-Level Sensor: Adjustable from 11 to 215 lx (1 to 20 fc); keep lighting off during daylight hours.
- B. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in).

- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.
- D. Individually Mounted Sensor: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 1. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 2. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.

2.10 LIGHTING CONTROL SYSTEM – RELAY PANEL TYPE (STAND ALONE)

- A. System Description:
 - 1. The lighting control system shall be with lighting relay panels. Lighting control devices connect to the relay panels and communicate via the panel controller. System includes all interfaces and wiring, relay panels, control modules, input modules, panel processors, relays, photocells, switches, dimmers, time clock, and occupancy sensors.
 - 2. System shall include the capability of BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 3. Panel Controller shall provide programmable operation of lights connected via system relays and controlled with system devices. System software shall provide control of relays and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Panel Controller: Comply with UL 508; programmable, solid-state, astronomic 365-day control unit with non-volatile memory, mounted in preassembled relay panel with low-voltage-controlled, latching-type, single-pole lighting circuit relays. Controller shall be capable of receiving inputs from control devices and other sources. Where indicated, a limited number of digital or analog, low-voltage control-circuit outputs shall be supported by control unit and circuit boards associated with relays.
- C. Cabinet: Steel with hinged, locking door. Barriers separate low-voltage and line-voltage components.
- D. Directory: Identifies each relay as to load controlled.
- E. System Power Supply: Transformer and full-wave rectifier with filtered dc output for panel, controllers and control devices. Feed from an equipment emergency circuit at a minimum.
- F. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125 volt AC for tungsten filaments and 20 A, 277 volt AC for electronic ballasts, 50,000 cycles at rated capacity.
- G. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and designed to operate on system network. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.

Lighting Controls 26 09 23 - 5

- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 8-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the COR.
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

---END---

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

This page intentionally left blank.

Lighting Controls 26 09 23 - 1

SECTION 26 12 19

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pull-boxes, and ducts for underground raceway systems.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - a. Perform insulation-resistance tests, winding-to-winding and each winding-toground.
 - b. Perform turns-ratio tests at all tap positions.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
 - 2. Manuals:

- a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - 2) Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - 3) Approvals will be based on complete submissions of manuals, together with shop drawings.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 1) Update the manual to include any information necessitated by shop drawing approval.
 - 2) Show all terminal identification.
 - 3) Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.
 - 4) Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.

B. Certifications:

- 1. Two weeks prior to the final inspection, submit the following certifications.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): D3487-16.....Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus
- C. Institute of Electrical and Electronic Engineers (IEEE): 48-09 Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded Insulation Rated 2.5kV Through 500kV 386-16 Separable Insulated Connector Systems for Power Distribution Systems Above 600 V 592-07 Exposed Semiconducting Shields on High-Voltage Cable Joints and Separable Connectors C2-17.....National Electrical Safety Code C37.47-11.....Specification for High Voltage (>1000V) Distribution Class Current-Limiting Fuses and Fuse Disconnecting Switches C57.12.00-15.....Liquid-Immersed Distribution, Power and Regulating Transformers C57.12.10-13.....Liquid-Immersed Power Transformers

C57.12.25-90	. Pad-Mounted, Compartmental-Type, Self-Cooled, Single-Phase Distribution-Transformers with Separable Insulated High Voltage Connectors; High Voltage, 34500 Grd Y/19920 Volts and Below; Low-Voltage 240/120 Volts; 167 kVA and Smaller Requirements
C57.12.28-14	Pad-Mounted Equipment - Enclosure Integrity
C57.12.29-14	Pad-Mounted Equipment – Enclosure Integrity for Coastal Environments
C57.12.34-15	Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers, 5 MVA and Smaller; High Voltage, 34.5 kV Nominal System Voltage and Below; Low Voltage, 15kV Nominal System Voltage and Below

- C57.12.90-15......Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers
- C62.11-12......Metal-Oxide Surge Arresters for AC Power Circuits
- D. International Code Council (ICC): IBC-18International Building Code
- E. National Electrical Manufacturers Association (NEMA): TR 1-13Transformers, Regulators, and Reactors
- F. National Fire Protection Association (NFPA): 70-20National Electrical Code (NEC)
- G. Underwriters Laboratories Inc. (UL): 467-13Grounding and Bonding Equipment
- H. United States Department of Energy (DOE): 10 CFR Part 431 Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Transformers shall be in accordance with ASTM, IEEE, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.
- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat, except where a different color is specified in Section 09 06 00, SCHEDULE FOR FINISHES. All surfaces of the transformer that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be weatherproof and in accordance with IEEE C57.12.28 when installed in coastal environments.

- 2. The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
- 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
- 4. All bolts, nuts, and washers shall be zinc-plated steel.
- 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
- 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.
- B. Doors:
 - 1. Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

A. 15 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

- A. The primary fuse assembly shall be load-break combination fuse and dry-well fuse holder rated for system voltage, rated for 10 load makes and 10 load breaks, with rated 200 amp load current at 75% power factor, 10,000 symmetrical A close-in on fault duty, and 95 kV BIL. The entire fuse assembly shall be removable through the use of hot stick.
 - 1. The fuses shall be concealed, hot stick removable, 50,000 A symmetrical interrupting, non-expulsion, current-limiting primary distribution type, of the size and voltage class as shown on the drawings. The fuses shall operate within the fuse holder as a unit disconnecting means. Fuses shall be in accordance with ANSI C37.47.
 - 2. Transformers shall not have internal "weak link" fuses that require transformer tank cover removal for replacement.
 - 3. For units above 500 kVA using fusing above the 50 A 15 kV and 100 A 5 kV application, a clip-mounted arrangement of the current limiting fuses (i.e., live-front configuration) is required.

2.5 PRIMARY CONNECTIONS

- A. Primary connections shall be 200 A dead-front loadbreak wells and inserts for cable sizes shown on the drawings.
- B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11, supported from tank wall.

2.6 MEDIUM-VOLTAGE SWITCH

- A. The transformer primary disconnect switch shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated at ampacity and system voltage as shown on the drawings, with a minimum momentary withstand rating of not less than the calculated available fault current shown on the drawings.
- B. For loop feeds, switch shall be a four-position, T-blade manual switch located in the medium-voltage compartment and hot-stick-operated.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200 A loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands
- B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the transformer secondary main molded case circuit breaker, low-voltage bushings, and hot stick in the low-voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- B. Temperature rises shall not exceed the NEMA TR 1 of 65° C (149° F) by resistance.
- C. Transformer insulating material shall be mineral oil in accordance with ASTM D 3487.
- D. Transformer impedance shall be not less than 4-1/2% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- E. Sound levels shall conform to NEMA TR 1 standards.
- F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - 2. Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - 1. Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - 2. Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - 3. Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tie-downs for coil windings.
- I. The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.

- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.
 - e. Liquid level gauge and filling plug.
 - f. A grounding pad in the medium- and low-voltage compartments.
 - g. A diagrammatic nameplate.
 - h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
 - i. Hot stick. Securely fasten hot stick within low-voltage compartment.
 - 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- K. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy 10 CFR Part 431.

2.10 CABLE FAULT INDICATORS (LOOP SYSTEM ONLY):

- A. Provide each incoming and outgoing cable within the medium-voltage compartment with a single-phase cable fault indicator with in-rush restraint. Mount the indicator on the cable support member.
 - 1. The sensor assembly shall have a split-core for easy installation over the incoming and outgoing cable. The core shall be laminated, grain-oriented silicon steel, and encapsulated. Provide a clamp to secure the two coil halves around the cable.
 - 2. Select the coil to the pick-up at the current setting shown on the drawings.
 - a. The coil setting shall be accurate to within 10% of the pick-up.
 - b. The coil current-time curve shall coordinate with the primary current-limiting fuse.
- B. Upon restoration of the system to normal operating conditions, the cable fault indicator shall automatically reset to normal and be ready to operate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Grounding:
 - 1. Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.

- 2. Connect the ground rod to the ground pads in the medium- and low-voltage compartments.
- 3. Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable shield grounding adapter to the loadbreak or deadbreak elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torquewrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.
 - f. Verify correct liquid level in transformer tank.
 - g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - h. Verify the presence and connection of transformer surge arresters, if provided.
 - i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the COR two weeks prior to final inspection:
 - 1. Six insulated protective caps.
 - 2. One spare set of medium-voltage fuses for each size and type of fuse used in the project.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the COR.

---END----
SECTION 26 24 13

DISTRIBUTION SWITCHBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the low-voltage circuit-breaker distribution switchboards, indicated as switchboard(s) in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.
- E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- F. Section 26 25 11, BUSWAYS: Feeder busway and fittings.
- G. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices for switchboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. Tests shall be conducted per NEMA PB 2.
 - 2. Verify that circuit breaker sizes and types correspond to drawings, and the Overcurrent Protective Device Coordination Study.
 - 3. Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 4. Exercise all active components.
 - 5. Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
 - 6. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V DC for 300-volt rated cable and 1000 V DC for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
 - 7. If applicable, verify correct function of control transfer relays located in the switchboard with multiple control power sources.
 - 8. Perform phasing checks on double-ended or dual-source switchboards to insure correct bus phasing from each source.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Switchboard shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Prior to fabrication of switchboards, submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Circuit breaker sizes.
 - 3) Interrupting ratings.
 - 4) Safety features.
 - 5) Accessories and nameplate data.
 - 6) Switchboard one line diagram, showing ampere rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
 - 7) Elementary and interconnection wiring diagrams.
 - 8) Technical data for each component.
 - 9) Dimensioned exterior views of the switchboard.
 - 10) Dimensioned section views of the switchboard.
 - 11) Floor plan of the switchboard.
 - 12) Foundation plan for the switchboard.
 - 13) Provisions and required locations for external conduit and wiring entrances.
 - 14) Approximate design weights.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the switchboard.
 - Include information for testing, repair, trouble shooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the switchboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the switchboards have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): C37.13-15.....Low Voltage AC Power Circuit Breakers Used in Enclosures

C57.13-16.....Instrument Transformers

C62.41.1-02.....Surge Environment in Low-voltage (1000V and less) AC Power Circuits

C62.45-02.....Surge Testing for Equipment connected to Low-Voltage AC Power Circuits

- C. International Code Council (ICC): IBC-2018International Building Code
- D. National Electrical Manufacturer's Association (NEMA): PB 2-11Deadfront Distribution Switchboards

PB 2.1-13Proper Handling, Installation, Operation, and Maintenance of Deadfront Distribution Switchboards Rated 600 Volts or Less

- E. National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 GENERAL

- A. Shall be in accordance with IEEE, NEMA, NFPA, UL, as shown on the drawings, and have the following features:
 - 1. Switchboard shall be a complete, grounded, continuous-duty, integral assembly, dead-front, dead-rear, self-supporting, indoor type switchboard assembly, Incorporate devices shown on the drawings and all related components required to fulfill operational and functional requirements.
 - 2. Ratings shall not be less than shown on the drawings. Short circuit ratings shall not be less than the available fault current shown in the Overcurrent Protective Device Coordination Study.
 - 3. Switchboard shall conform to the arrangements and details shown on the drawings.
 - 4. Coordinate all requirements with the electric utility company supplying electrical service to the switchboard. The incoming electric utility feeder and revenue metering installation shall conform to the requirements of the electric utility company.
 - 5. Switchboards shall be assembled, connected, and wired at the factory so that only external circuit connections are required at the construction site. Split the structure only as required for shipping and installation. Packaging shall provide adequate protection against rough handling during shipment.
 - 6. All non-current-carrying parts shall be grounded per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS for additional requirements.
 - 7. Series rated switchboards are not allowed.

2.2 BASIC ARRANGEMENT

A. Type 1: Switchboard shall be front accessible with the following features:

- 1. Device mounting:
 - a. Main breaker: Individually mounted and compartmented or group mounted with feeder breakers.
 - b. Feeder breakers: Group mounted.
- 2. Section alignment: As shown on the drawings.
- 3. Accessibility:

Distribution Switchboards

- a. Main section line and load terminals: Front and side.
- b. Distribution section line and load terminals: Front.
- c. Through bus connections: Front and end.
- 4. Bolted line and load connections.
- 5. Full height wiring gutter covers for access to wiring terminals.

2.3 HOUSING

- A. Shall have the following features:
 - 1. Frames and enclosures:
 - a. The assembly shall be braced with reinforcing gussets using bolted connections to assure rectangular rigidity.
 - b. The enclosure shall be steel, leveled, and not less than the gauge required by applicable publications.
 - c. Die-pierce the holes for connecting adjacent structures to insure proper alignment, and to allow for future additions.
 - d. All bolts, nuts, and washers shall be cadmium-plated steel.
- B. Finish:
 - 1. All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.
 - 2. Provide a light gray finish for indoor switchboard.

2.4 BUSES

- A. Bus Bars and Interconnections:
 - 1. Provide copper phase and neutral buses, fully rated for the amperage as shown on the drawings for the entire length of the switchboard. Bus laminations shall have a minimum of 6 mm (1/4 inch) spacing.
 - 2. Mount the buses on appropriately spaced insulators and brace to withstand the available short circuit currents.
 - 3. The bus and bus compartment shall be designed so that the acceptable NEMA standard temperature rises are not exceeded.
 - 4. Install a copper ground bus the full length of the switchboard assembly.
 - 5. Main Bonding Jumper: An un-insulated copper bus, size as shown on drawings, shall interconnect the neutral and ground buses, when the switchboard is used to establish the system common ground point.
 - 6. All bolts, nuts, and washers shall be cadmium-plated steel. Bolts shall be torqued to the values recommended by the manufacturer.
 - 7. Make provisions for future bus extensions by means of bolt holes or other approved method.

2.5 MAIN CIRCUIT BREAKERS

- A. Type I or Type II Switchboards: Provide molded case main circuit breakers as shown on the drawings. Circuit breakers shall be the solid state adjustable trip type.
 - 1. Trip units shall have field adjustable tripping characteristics as follows:
 - a. Long time pickup.
 - b. Long time delay.
 - c. Short time pickup.
 - d. Short time delay.
 - e. Instantaneous.
 - f. Ground fault pickup.
 - g. Ground fault delay.
 - 2. Breakers with same frame size shall be interchangeable with each other.
 - 3.
- B. Type II Switchboards: Provide main power circuit breakers as shown on the drawings. Circuit breakers shall be the solid state adjustable trip type.

Distribution Switchboards

- 1. General: Circuit breakers shall be dead front, drawout, stored energy type with solid state trip devices. Arcing contacts shall be renewable.
- 2. Rating: Circuit breakers shall be 3 pole, 600 V AC and below, 60 cycle with frame size, trip rating and functions, and system voltage as shown on drawings. Breakers shall have 30 cycle short time current ratings.
- 3. Drawout Mounting: Provide a racking mechanism to position and hold the breaker in the connected, test, or disconnected position. Provide an interlock to prevent movement of the breaker into or out of the connected position unless the breaker is tripped open.
- 4. Trip Devices: Breakers shall be electrically and mechanically trip free and shall have trip devices in each pole. Unless otherwise indicated on drawings, each breaker shall have overcurrent and short-circuit, and integral ground fault trip devices. Trip devices shall be of the solid state type with adjustable pick-up settings, with both long time and short time elements, and integral trip unit testing provisions. Devices shall have time-delay band adjustment. Long-time delay element shall have inverse time characteristics. Main circuit breakers shall not have instantaneous trip function.
- 5. Position Indicator: Provide a mechanical indicator visible from the front of the unit to indicate whether the breaker is open or closed.
- 6. Trip Button: Equip each breaker with a mechanical trip button accessible from the front of the door.
- 7. Padlocking: Provisions shall be included for padlocking the breaker in the open position.
- 8. Operation: Unless otherwise indicated herein or on the drawings, breakers shall be manually operated.

2.6 FEEDER CIRCUIT BREAKERS

- A. Provide molded case circuit breakers as shown on the drawings.
- B. Non-adjustable Trip Molded Case Circuit Breakers:
 - 1. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time characteristics, and instantaneous magnetic trip.
 - 2. Breaker features shall be as follows:
 - a. A rugged, integral housing of molded insulating material.
 - b. Silver alloy contacts.
 - c. Arc quenchers and phase barriers for each pole.
 - d. Quick-make, quick-break, operating mechanisms.
 - e. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - f. Electrically and mechanically trip free.
 - g. An operating handle which indicates ON, TRIPPED, and OFF positions.
 - h. Line and load connections shall be bolted.
 - i. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.

2.7 SURGE PROTECTIVE DEVICES

A. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

2.8 METERING

- A. Refer to Section 25 10 10, ADVANCED UTILITY METERING. Refer to drawings for meter locations.
- B. Provide current transformers for each meter. Current transformers shall be wired to shortingtype terminal blocks.
- C. Provide voltage transformers including primary fuses and secondary protective devices for metering as shown on the drawings.

2.9 OTHER EQUIPMENT

- A. Furnish tools and accessories required for circuit breaker and switchboard test, inspection, maintenance, and proper operation.
- B. Panelboards: Requirements for panelboards shown to be installed in the switchboard shall be as shown on the drawings and in Section 26 24 16, PANELBOARDS.

2.10 CONTROL WIRING

A. Switchboard control wires shall not be less than No. 14 AWG copper 600 volt rated. Install wiring complete at the factory, adequately bundled and protected. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.11 NAMEPLATES AND MIMIC BUS

- A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.
- B. Mimic Bus: Provide an approved mimic bus on front of each switchboard assembly. Color shall be black for the Normal Power system and red for the Essential Electrical System, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switchboards in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor switchboards with rustproof bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Exterior Location. Mount switchboard on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Interior Location. Mount switchboard on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. Verifying tightness of accessible bolted electrical connections by calibrated torquewrench method, or performing thermographic survey after energization.
 - f. Vacuum-clean switchboard enclosure interior. Clean switchboard enclosure exterior.
 - g. Inspect insulators for evidence of physical damage or contaminated surfaces.
 - h. Verify correct shutter installation and operation.
 - i. Exercise all active components.
 - j. Verify the correct operation of all sensing devices, alarms, and indicating devices.
 - k. Verify that vents are clear.
 - 2. Electrical tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - c. Perform phasing check on double-ended switchboards to ensure correct bus phasing from each source.
- B. Prior to the final inspection for acceptance, a technical representative from the electric utility company shall witness the testing of the equipment to assure the proper operation of the individual components, and to confirm proper operation/coordination with electric utility company's equipment.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the switchboard is in good operating condition and properly performing the intended function.

3.4 WARNING SIGN

A. Mount on each entrance door of the switchboard room, approximately 1500 mm (5 feet) above grade or floor, a clearly lettered warning sign for warning personnel. The sign shall be attached with rustproof metal screws.

3.5 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

- A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchboard room or in the outdoor switchboard enclosure.
- B. Deliver an additional four copies of the as-built one line diagram to the COTR.

3.6 AS-LEFT TRIP UNIT SETTINGS

- A. The trip unit settings shall be set in the field by an authorized representative of the switchboard manufacturer per the approved Electrical System Protective Device Study in accordance with Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- B. The trip unit settings of the main breaker(s) shall be reviewed by the electric utility company to assure coordination with the electric utility company primary fusing. Prior to switchboard activation, provide written verification of this review to the COTR

Distribution Switchboards

26 24 13 - 7

C. Post a durable copy of the "as-left" trip unit settings in a convenient location in the switchboard room. Deliver four additional copies of the settings to the COTR. Furnish this information prior to the activation of the switchboard.

3.7 INSTRUCTION

A. Furnish the services of a factory-trained technician for one, 4-hour training period for instructing personnel in the maintenance and operation of the switchboards, on the dates requested by the COTR.

----END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

This page intentionally left blank.

Distribution Switchboards 26 24 13 - 1 This page intentionally left blank.

SECTION 26 24 16

PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 25 10 10, ADVANCED UTILITY METERING: Requirements for electrical metering.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- H. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.
- I. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

Panelboards

- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-2018International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11Panelboards 250-14Enclosures for Electrical Equipment (1,000V Maximum)
- D. National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC) 70E-18Standard for Electrical Safety in the Workplace
- E. Underwriters Laboratories, Inc. (UL): 50-15Enclosures for Electrical Equipment
 67-09Panelboards
 489-16Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 200% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.

Panelboards

26 24 16 - 2

- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - 1. Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 73, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.

Panelboards

9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END----

Panelboards 26 24 16 - 4

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

This page intentionally left blank.

Panelboards 26 24 16 - 1 This page intentionally left blank.

SECTION 26 25 11

BUSWAYS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of busways for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around busway penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around busway penetrations through the building envelope to prevent moisture migration into the building.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Circuit breakers for use in plug-in busway.
- F. Section 26 29 21, ENCLOSED SWITCHES AND CIRCUIT BREAKERS: Switches and fuses for use in plug-in busway.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings, dimensions, mounting details and position, mounting method, vertical supports, materials, fire stops, and weatherproofing.
 - 2) Detailed coordinated connections to equipment terminations such as switchgear, switchboards, and transformers.
 - 3) Coordination Drawings: Submit floor plans and sections, drawn to scale. Include bus assembly layouts and relationships between components and adjacent structural, mechanical, and electrical elements. Indicate vertical and horizontal enclosed busway runs, offsets, transitions, and clearances for access above and to the side of enclosed busways. Indicate vertical elevation of busway above the floor or bottom of structure. Indicate support locations, type of support, and weight on each support.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - 1) Include information for testing, repair, troubleshooting, assembly, and disassembly.

Busways

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the busway conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the busway has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. International Code Council (ICC): IBC-2018International Building Code
- C. National Electrical Manufacturers Association (NEMA): BU 1.1-10General Instructions for Handling, Installation, Operation and Maintenance of Busway Rated 600 Volts or Less
 - BU 1.2-13 Application Information for Busway Rated 600 Volts or Less
- D. National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)
- E. Underwriters Laboratories Inc. (UL): 857-09.....Busways

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Busway shall be in accordance with NEMA and UL.
- B. Busway shall be rated as shown on the drawings.
- C. C. Busway shall have the following features:
 - 1. For indoor locations; feeder type, totally enclosed and moisture resistant.
 - 2. For outdoor locations; feeder type only, totally enclosed and listed for outdoor use. Plugin busway is not allowed for outdoor installation.
 - 3. Short circuit current rating shall not be less than 42,000 A, or as required to withstand the available fault current shown on the drawings, whichever is higher.
 - 4. 3-phase, 4-wire, with full 200% neutral, except where 3-phase, 3-wire is shown on the drawings.
 - 5. Internal 50%-rated ground bus bar. Busway housing is not allowed to serve as the equipment grounding conductor.
 - 6. All bus bars, phase, neutral, and ground, for each busway shall be within a single housing.
 - 7. Bus Bars:
 - a. Shall be full round edge rectangular copper of sufficient cross-section to provide full current rating without exceeding a temperature rise of 55° C above a 40° C ambient.
 - b. Interconnection joints shall be tin or silver plated, with steel bolts, nuts, and Belleville washers.
 - c. Shall be completely insulated with flame-retardant, track-resistant, selfextinguishing insulation.
 - 8. Housings:

- a. Shall be steel or aluminum, with continuous mounting rails.
- b. Shall be thoroughly cleaned and painted at the factory with primer and the manufacturer's standard finish.
- c. Shall have rustproof metal hardware.
- d. Provide external flanges and weatherproofing at busway entrances to buildings.
- e. For busways that pass through fire-resistant rated construction, incorporate listed fire stops within the busway housings and external flanges.
- f. Install expansion fittings in the busway runs in compliance with the manufacturer's standard recommendations.
- g. The temperature rise at any point on the housing shall not exceed 30° C above an ambient temperature of 40° C.
- 9. Busway shall not be reduced in size at any point.
- 10. Provide manufacturer's fittings and accessories, including but not limited to elbows, tees, tap boxes, transformer taps, end boxes, expansion fittings, offsets, adapters, hangers, and mounting hardware.
- D. Dimensions and Configuration:
 - 1. Configure within the space designated for busway installation.
 - 2. Coordinate busway routing with equipment installation by other trades to avoid conflicts.
 - 3. Make final field measurements and check them with the busway coordination drawings prior to authorization of fabrication of the busways.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Support busways as required by the NEC and as required by manufacturer's shop drawings.
- C. Coordinate all of the busway terminations to equipment to ensure proper phasing.
- D. Tighten bolted connections with a torque wrench to values as required by the manufacturer.
- E. Install expansion fittings at locations where busways cross building expansion joints. Install at other locations so distance between expansion fittings does not exceed manufacturer's recommended distance between fittings.
- F. Install fire-stop assemblies per Section 07 84 00, FIRESTOPPING where busways penetrate fire-resistant construction.
- G. Install weatherproofing fittings and flanges where busways penetrate exterior elements such as walls or roofs. Seal around openings to make weathertight according to Section 07 92 00, JOINT SEALANTS.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method, or performing thermographic survey after energization.
 - e. Verify appropriate equipment grounding.

Busways

26 25 11 - 3

- f. Examine outdoor busways for removal of weep-hole plugs, if applicable, and the correct installation of joint shield.
- 2. Electrical Tests:
 - a. After installation, test busway phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Resulting values shall not be less than one megohm.

3.3 FOLLOW-UP VERIFICATION

- A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the busway is in good operating condition and properly performing the intended function.
- B. After the busways have been energized for a minimum of 30 days, repeat the torque wrench tightening of all bolt connections.

---END----

SECTION 26 27 26

WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

Wiring Devices

26 27 26 - 1

WD 1-99(R2015)General Color Requirements for Wiring Devices

WD 6-16Wiring Devices – Dimensional Specifications

- C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)
 - 99-18 Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL): 5-16Surface Metal Raceways and Fittings
 - 20-10 General-Use Snap Switches
 - 231-16 Power Outlets
 - 467-13 Grounding and Bonding Equipment
 - 498-17 Attachment Plugs and Receptacles
 - 943-16Ground-Fault Circuit-Interrupters
 - 1449-14Surge Protective Devices
 - 1472-15Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be White in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:

Wiring Devices

- a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.
 - 1. Bodies shall be White nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- F. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 Volts, and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.
- G. Cable Reel Receptacles:
 - 1. Reel shall have a heavy-duty spring motor, with self-contained rewind power and nonsparking ratchet assembly, a 4-way roller and adjustable cable stop, and a safety chain. Reel shall lock when desired cable has been payed out, and unlock and retract when cable is pulled to release lock.
 - 2. Reel shall be provided with minimum 40 foot cable rated for 30 amperes with required phase conductors, neutral, and equipment grounding conductor. Provide device with NEMA configuration as shown.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be White in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be White in color unless otherwise specified.

Wiring Devices

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type smooth nylon. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.

Wiring Devices 26 27 26 - 4

- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

This page intentionally left blank.

Wiring Devices 26 27 26 - 1

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 25 10 10, ADVANCED UTILITY METERING: For electricity metering installed in motor controllers.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
 - c. Certification from the manufacturer that representative motor controllers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - 2) Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - 3) Elementary schematic diagrams shall be provided for clarity of operation.

- 4) Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.

В.	Institute of Electrical and Elec 519-14	tronic Engineers (IEEE): Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
	C37.90.1-12	Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
C.	International Code Council (IC IBC-18	CC): International Building Code
D.	National Electrical Manufactur ICS 1-00(R2015)	rers Association (NEMA): Industrial Control and Systems: General Requirements
	ICS 1.1-84(R2015)	Safety Guidelines for the Application, Installation and Maintenance of Solid State Control
	ICS 2-00(R2005)	Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts
	ICS 4-15	Industrial Control and Systems: Terminal Blocks
	ICS 6-93(R2016)	Industrial Control and Systems: Enclosures
	ICS 7-14	Industrial Control and Systems: Adjustable-Speed Drives
	ICS 7.1-14	Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems
E.	National Fire Protection Assoc 70-20	ciation (NFPA): National Electrical Code (NEC)
F.	Underwriters Laboratories Inc 508A-13	. (UL): Industrial Control Panels
	508C-16	Power Conversion Equipment
	1449-14	Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.

- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with fused switch disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- D. Fused Switches:
 - a. Quick-make, quick-break type.
 - b. Minimum duty rating shall be NEMA classification Heavy Duty (HD) for all 240 through 480 Volts.
 - c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - 3) Fuse holders for the sizes and types of fuses specified or as shown on the drawings.
- E. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- F. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - 3. For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- G. Overload relays:
 - 1. Thermal type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- H. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- I. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- J. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- K. Provide green (RUN) and red (STOP) pilot lights.
- L. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.

Motor Controllers

26 29 11 - 3

M. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to de-energize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing across-the-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.3 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 331 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +90°F Minimum -10°F
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: Air conditioned space
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - 3. Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.

- 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
- 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - Incorrect phase sequence. a.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - Running overcurrent above 110 percent (VSMC shall not automatically reset for e. this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - Short duration power outages of 12 cycles or less (i.e., distribution line switching, g. generator testing, and automatic transfer switch operations.)
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- Power-Interruption Protection: To prevent motor from re-energizing after a power 9. interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in 10. either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- Μ. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities. 1.
 - Typical control functions shall include but not be limited to:
 - HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode. a.
 - b. NORMAL-BYPASS.
 - NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass C. mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - Output frequency (Hz). a.
 - Motor speed and status (run, stop, fault). b.
 - Output voltage and current. c.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, a. critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reversephase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- О. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMA-rated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, motor controllers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Install manual motor controllers in flush enclosures in finished areas.
- D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COTR before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

- g. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method in accordance with manufacturer's published data.
- h. Test all control and safety features of the motor controllers.
- i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COR.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-16

Motor Controllers 26 29 11 - 8

SECTION 26 29 21

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

Enclosed Switches and Circuit Breakers

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU I-12.....Low Voltage Cartridge Fuses
 - KS I-13......Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.
2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Service Entrance: Class RK1, fast acting
- C. Feeders: Class RK1, fast acting.
- D. Motor Branch Circuits: Class RK1 time delay.
- E. Other Branch Circuits: Class RK1, time delay.
- F. Control Circuits: Class CC, fast acting.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

Enclosed Switches and Circuit Breakers

This page intentionally left blank.

SECTION 26 32 13

ENGINE GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the low-voltage engine generators.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for pipe and equipment support and noise control.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements for hot piping and equipment insulation.
- H. Section 25 10 10, ADVANCED UTILITY METERING: Requirements for electrical metering.
- I. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Requirements for secondary distribution switchboards.
- J. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Requirements for automatic transfer switches for use with engine generators.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. Load Test: Shall include two hours while the engine generator is delivering 100% of the specified kW, and four hours while the engine generator is delivering 80% of the specified kW. During this test, record the following data at 20-minute intervals:

Time	Engine RPM	Oil Temperature Out
kW	Water Temperature In	Fuel Pressure
Voltage	Water Temperature Out	Oil Pressure
Amperes	Oil Temperature In	Ambient Temperature

Engine Generators

- 2. Cold Start Test: Record time required for the engine generator to develop specified voltage, frequency, and kW load from a standstill condition with engine at ambient temperature.
- 3. The manufacturer shall furnish fuel, load banks, testing instruments, and all other equipment necessary to perform these tests.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Scaled drawings, showing plan views, side views, elevations, and cross-sections.

В.

- 1. Diagrams:
 - a. Control system diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between engine generators, automatic transfer switches, paralleling switchgear, local control cubicles, remote annunciator panels, and fuel storage tanks, as applicable), and other like items.
- 2. Technical Data:
 - a. Published ratings, catalog cuts, pictures, and manufacturer's specifications for engine generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries and charger, jacket heaters, torsional vibration, and control and supervisory equipment.
 - b. Description of operation.
 - c. Short-circuit current capacity and sub-transient reactance.
 - d. Sound power level data.
- 3. Calculations:
 - a. Calculated performance derations appropriate to installed environment.
- 4. Manuals:
 - a. When submitting the shop drawings, submit complete maintenance and operating manuals, to include the following:
 - 1) Technical data sheets.
 - 2) Wiring diagrams.
 - 3) Include information for testing, repair, troubleshooting, and factory recommended periodic maintenance procedures and frequency.
 - 4) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 5. Test Reports:
 - a. Submit certified factory test reports for approval.
 - b. Submit field test reports two weeks prior to the final inspection.
- 6. Certifications:
 - a. Prior to fabrication of the engine generator, submit the following for approval:
 - A certification in writing that an engine generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.

Engine Generators

26 32 13 - 2

- 2) A certification in writing that devices and circuits will be incorporated to protect the voltage regulator and other components of the engine generator during operation at speeds other than the rated RPM while performing maintenance. Submit thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine generator at speeds other than the rated RPM.
- 3) A certification from the engine manufacturer stating that the engine exhaust emissions meet the applicable federal, state, and local regulations and restrictions. At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide, particulate matter, sulfur dioxide, non-methane hydrocarbon, and hazardous air pollutants (HPAs).
- b. Prior to installation of the engine generator at the job site, submit certified factory test data.
- c. Two weeks prior to the final inspection, submit the following.
 - 1) Certification by the manufacturer that the engine generators conform to the requirements of the drawings and specifications.
 - 2) Certification by the Contractor that the engine generators have been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Engine generators shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the engine generators in a location approved by the COR.

1.7 JOB CONDITIONS

A. Job conditions shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society of Testing Materials (ASTM):
 - A53/A53M-12Standard Specification for Pipe, Steel, Black, and Hot–Dipped, Zinc Coated Welded and Seamless
 - B88-16.....Specification for Seamless Copper Water Tube
 - B88M-16.....Specification for Seamless Copper water Tube (Metric)

D975-17.....Diesel Fuel Oils

- C. Institute of Electrical and Electronic Engineers (IEEE): C37.13-15.....Low Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-12.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
- D. International Code Council (ICC): IBC-2018International Building Code
- E. International Organization for Standardization (ISO):

		Current Generating Sets – Part 1: Application, Ratings and Performance
F.	National Electrical Manufa C38.50-12	acturers Association (NEMA): Low-Voltage AC Power Circuit Breakers Used In Enclosures - Test Procedure
	ICS 6-93(R2016)	Enclosures
	ICS 4-15	Application Guideline for Terminal Blocks
	MG 1-16	Motor and Generators
	MG 2-14	Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators
	PB 2-11	Dead-Front Distribution Switchboards
	250-14	Enclosures for Electrical Equipment (1000 Volts Maximum)
G.	National Fire Protection A 30-18	ssociation (NFPA): Flammable and Combustible Liquids Code
	37-18	Installations and Use of Stationary Combustion Engine and Gas Turbines
	70-2017	National Electrical Code (NEC)
	99-18	Health Care Facilities
	110-16	Standard for Emergency and Standby Power Systems
Н.	Underwriters Laboratories 50-15	, Inc. (UL): Enclosures for Electrical Equipment
	142-06	Steel Aboveground Tanks for Flammable and Combustible Liquids
	467-13	Grounding and Bonding Equipment
	489-16	Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures
	508-99	Industrial Control Equipment
	891-05	Switchboards
	1236-15	Battery Chargers for Charging Engine-Starter Batteries
	2085-97	Insulated Aboveground Tanks for Flammable and Combustible Liquids

8528-1-05 Reciprocating Internal Combustion Engine-Driven Alternate

2200-12 Stationary Engine Generator Assemblies

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. The engine generator system shall be in accordance with ASTM, ISO, NEMA, NFPA, UL, as shown on the drawings, and as specified herein.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine generator system, as well as all associate equipment and devices intended for the operating, control, monitoring, and remote manual stop functions.

Engine Generators 26 32 13 - 4

- C. Engine Generator Parameter Schedule:
 - 1. Power Rating: Emergency Standby
 - 2. Voltage: 120/208V
 - 3. Rated Power: 300 kW
 - 4. Power Factor: 0.8 lagging
 - 5. Engine Generator Application: stand-alone
 - 6. Fuel: diesel
 - 7. Voltage Regulation: + 2% (maximum) (No Load to Full Load) (standalone applications)
 - 8. Phases: 3 Phase, Wye
- D. Assemble, connect, and wire the engine generator at the factory so that only the external connections need to be made at the construction site.
- E. Engine Generator Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.
 - 2. Engine generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.15 mm (0.0059 inch), with an overall velocity limit of 24 mm/sec (0.866 inch per second) RMS, for all speeds.
 - 3. The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
 - 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.
- I. Each engine generator specified for parallel operation shall be configured for automatic parallel operation.

2.2 ENGINE

- A. The engine shall be coupled directly to a generator.
- B. Minimum four cylinders.
- C. The engine shall be able to start in a 4.5 °C (40 °F) ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.
- D. The engine shall be equipped with electric heater for maintaining the coolant temperature between 32-38 °C (90-100 °F), or as recommended by the manufacturer.
 - 1. Install thermostatic controls, contactors, and circuit breaker-protected circuits for the heaters.
 - 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

- A. Isochronous, electronic type.
- B. Steady-state speed band at 60 Hz shall not exceed plus or minus 0.33%.

2.4 LUBRICATION OIL SYSTEM

A. Pressurized type.

- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be cleanable or replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.
- F. Provide a 120-volt oil heater for exterior engine generator.

2.5 FUEL SYSTEM

- A. Shall comply with NFPA 37 and NFPA 30, and have the following features:
 - 1. Injection pump(s) and nozzles.
 - 2. Plungers shall be carefully lapped for precision fit and shall not require any packing.
 - 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
 - 4. Return surplus oil from the injectors to the main storage tank by gravity or a pump.
 - 5. Filter System:
 - a. Dual primary filters shall be located between the main fuel oil storage and day tank.
 - b. Secondary filters (engine-mounted) shall be located such that the oil will be thoroughly filtered before it reaches the injection system assemblies.
 - c. Filters shall be cleanable or replaceable type and shall entrap and remove water from oil as recommended by the engine manufacturer.
- B. Day Tank:
 - 1. Each engine generator shall be provided with a welded steel separate self-supporting day tank with double-wall fuel containment.
 - 2. Each day tank shall have capacity to supply fuel to the engine for a 4-hour period at 100% rated load without being refilled, including fuel that is returned to the main fuel storage tank. The calculation of the capacity of each day tank shall incorporate the requirement to stop the supply of fuel into the day tank at 90% of the ultimate volume of the tank.
 - 3. Secure, pipe, and connect the tank adequately for maximum protection from fire hazards, including oil leaks.
 - 4. Incorporate a vent, drain cock, shutoff cocks, and gauge glass. Terminate the vent piping outdoors with mushroom vent cap.
 - 5. Incorporate a float switch on the day tank to control the fuel oil transfer pump and to actuate an alarm in the engine generator control cubicle when the oil level in the tank drops below the level at which the transfer pump should start to refill the tank.
 - a. The float switch contacts controlling the fuel oil transfer pump shall be set to energize the pump when the liquid level in the tank reaches one-third of the total volume of the tank.
 - b. The float switch contacts that actuate the low fuel oil day tank alarm device shall be set to alarm and energize the second fuel transfer pump when the liquid level in the tank reaches one-quarter of the total volume of the tank.
 - 6. Day tank and engine supply line elevations shall be below the elevation of the injector return outlet on the engine.
- C. Fuel Transfer Pump Main Storage Tank to Day Tank(s):
 - 1. Electric motor-driven, duplex arrangement, close-coupled, single-stage, positivedisplacement type with built-in pressure relief valves. When the fuel is used for cooling components of the fuel injection system, the engine's fuel return line shall be returned to the main storage tank, rather than the day tank.

Engine Generators 26 32 13 - 6

- 2. Include a heavy-duty automatic alternator and H-O-A switch to alternate sequence of pumps. Pumps shall be controlled with the float switch on the day tank and H-O-A selector switch such that the day tank will be refilled automatically when the oil level lowers to the low limit for the float switch. The H-O-A selector switches shall enable the pumps to be operated manually at any time.
- 3. For all engines, the related transfer pump and its electrical and plumbing connections shall be sized to provide a flow rate of at least four times the engine's fuel pumping rate.
- 4. Provide a manually-operated, rotary-type transfer pump connected in parallel with the electric motor-driven transfer pumps so that oil can be pumped to the day tank while the electric motor-driven pumps are inoperative.
- D. Piping System: Black steel standard weight ASTM A-53 pipe and necessary valves and pressure gauges between:
 - 1. The engine and the day tank as shown on the drawings.
 - 2. The day tank and the supply and return connections at the underground storage tank as shown on the drawings. Connections at the engine shall be made with flexible piping suitable for the fuel furnished.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine generator, as shown on the drawings.
- B. Cooling capacity shall not be less than the cooling requirements of the engine generator and its lubricating oil while operating continuously at 100% of its specified rating.
- C. Coolant shall be extended-life antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- D. Fan shall be driven by a totally enclosed electric motor.
- E. Coolant hoses shall be flexible, per manufacturer's recommendation.
- F. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.
- G. Motor-Operated Dampers:
 - 1. Dampers, which are provided under Section 23 31 00, HVAC DUCTS AND CASINGS, shall be two-position, electric motor-operated.
 - 2. Dampers shall open simultaneously with the starting of the diesel engine and shall close simultaneously with the stopping of the diesel engine.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

- A. Air Intake:
 - 1. Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator.
- B. Exhaust System:
 - 1. Exhaust Muffler:
 - 2. Shall be critical grade type and capable of the following noise attenuation:

Octave Band Hertz (Mid Frequency)	Minimum db Attenuation (.0002 Microbar Reference)
31	5
63	10
125	27
500	37
1000	31
2000	26
4000	25
8000	26

Engine Generators

a.

- 3. Pressure drop in the complete exhaust system shall be small enough for satisfactory operation of the engine generator while it is delivering 100% of its specified rating.
- 4. Exhaust pipe size from the engine to the muffler shall be as recommended by the engine manufacturer. Pipe size from muffler to air discharge shall be two pipe sizes larger than engine exhaust pipe.
- 5. Connections at the engine exhaust outlet shall be made with a flexible exhaust pipe. Provide bolted type pipe flanges welded to each end of the flexible section.
- C. Condensate drain at muffler shall be made with schedule 40 black steel pipe through a petcock.
- D. Exhaust Piping and Supports: Black steel pipe, ASTM A-53 standard weight with welded fittings. Spring type hangers, as specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, shall support the pipe.
- E. Insulation for Exhaust Pipe and Muffler:
 - 1. Calcium silicate minimum 75 mm (3 inches) thick.
 - 2. Insulation shall be as specified in Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
 - 3. The installed insulation shall be covered with aluminum jacket 0.4 mm (0.016 inch) thick. The jacket is to be held in place by bands of 0.38 mm (0.015 inch) thick by 15 mm (0.5 inch) wide aluminum.
 - 4. 4Insulation and jacket are not required on flexible exhaust sections.
- F. Sleeves: Pipe sleeves (thimble) shall be Schedule 40 standard weight steel pipe. Flash exhaust pipe thimble through roof with 16 oz soft sheet copper, flanged, and made watertight under built-up roofing and extended up around pipe thimble. The exhaust pipe shall be positioned within the thimble by four 150 mm (6 inches) wide spiders welded to the exhaust pipe.
- G. Vertical exhaust piping shall be provided with a hinged, gravity-operated, self-closing rain cover.

2.8 ENGINE STARTING SYSTEM

- A. The engine starting system shall start the engine at any position of the flywheel.
- B. Electric cranking motor:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of seconds cranking each at 10-second intervals, for a total of 50 seconds of actual cranking without damage (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
- C. Batteries shall be lead-acid high discharge rate type.
 - 1. Each battery cell shall have minimum and maximum electrolyte level indicators and a fliptop flame arrestor vent cap.
 - 2. Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands:
 - a. Five consecutive starting attempts of 10 seconds cranking at 10 second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
 - 4. Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - 1. A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger shall be capable of an equalize-

Engine Generators

charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition.

2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 LUBRICATING OIL HEATER

A. Provide a thermostatically-controlled electric heater to automatically maintain the oil temperature within plus or minus 1.7 °C (3 °F) of the control temperature.

2.10 JACKET COOLANT HEATER

A. Provide a thermostatically-controlled electric heater mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 1.7 °C (3 °F) of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.11 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards.
- E. Designed for sustained operation at 100% of the RPM specified for the engine generator without damage.
- F. Telephone influence factor shall conform to NEMA MG 1.
- G. Furnished with brushless excitation system or static-exciter-regulator assembly.
- H. Nameplates attached to the generator shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated in the same junction box as the phase conductors.

2.12 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator circuit breaker shall be molded-case, electronic-trip type, and 100% rated, complying with UL 489. Tripping characteristics shall be adjustable long-time and short-time delay and instantaneous. Provide shunt trip to trip breaker when engine generator is shut down by other protective devices.
- B. Overcurrent protective device cubicle shall contain terminations for neutral and equipment grounding conductors as necessary.

2.13 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s).
- B. General:
 - 1. Control equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.
 - 4. Coordinate controls with the automatic transfer switches shown on the drawings so that the systems will operate as specified.
 - 5. Cubicles:

- a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
- b. Doors shall be gasketed, attached with concealed or semi-concealed hinges, and shall have a permanent means of latching in closed position.
- c. Panels shall be wall-mounted or incorporated in other equipment as indicated on the drawings or as specified.
- d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
- 6. Wiring: Insulated, rated at 600 V.
 - a. Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
- 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
- 8. The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
- 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.
- 10. Meters shall be per the requirements of Section 25 10 10, ADVANCED UTILITY METERING.
- 11. The manufacturer shall coordinate the interconnection and programming of the generator controls with all related equipment, including automatic transfer switches and generator paralleling controls as applicable, specified in other sections.
- C. Engine generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."
 - c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine generator shall stop.
 - d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
 - e. With selector switch is in MANUAL position, depressing the MANUAL STOP pushbutton momentarily shall stop the engine after a cool-down period.
 - f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cool-down period, independent of the position of the selector switch.
 - 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that will be independent of the battery voltage fluctuations.
 - b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.
 - c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
 - d. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by self-contained,

speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.

- e. After the engine has stopped, the cranking control shall reset.
- 3. Supervisory Controls:
 - a. Overcrank:
 - 1) When the cranking control system completes one cranking cycle (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
 - 2) The cranking control system shall lock-out, and shall require a manual reset.
 - b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately -12 °C (10 °F).
 - 4) Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 21 °C (70 °F), the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
 - c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.
 - d. Lubricating Oil Pressure:
 - When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
 - 4) The pressure settings near the associated signal light shall be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
 - e. Overspeed:
 - 1) When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - 2) Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
 - f. f. Low Fuel Day Tank:
 - When the fuel oil level in the day tank decreases to less than the level at which the fuel oil transfer pump should start to refill the tank, the LOW FUEL DAY TANK light and the audible alarm shall be energized.
 - g. Low Fuel Main Storage Tank:
 - 1) When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.

Engine Generators

26 32 13 - 11

- h. Reset Alarms and Signals:
 - 1) Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays or solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the engine generator room in a location as directed by the COTR. The audible alarm shall be rated for 85 dB at 3 M (10 feet).
- i. Generator Breaker Signal Light:
 - 1) A flashing green light shall be energized when the engine generator circuit breaker is in the OPEN or TRIPPED position.
 - 2) Simultaneously, the audible alarm shall be energized.
- 4. Monitoring Devices:
 - a. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges may be engine mounted with proper vibration isolation.
 - b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
 - c. A voltmeter, ammeter, frequency meter, kilowatt meter, manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
 - d. Install potential and current transformers as required.
 - e. Visual Indications:
 - 1) OVERCRANK
 - 2) HIGH COOLANT TEMPERATURE FIRST STAGE
 - 3) HIGH COOLANT TEMPERATURE SECOND STAGE
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE FIRST STAGE
 - 6) OIL PRESSURE SECOND STAGE
 - 7) LOW COOLANT LEVEL
 - 8) GENERATOR BREAKER
 - 9) OVERSPEED
 - 10) LOW FUEL DAY TANK
 - 11) LOW FUEL MAIN STORAGE TANK
 - f. Lamp Test: The LAMP TEST momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.
 - b. Shall include voltage level rheostat located inside the control cubicle.
 - c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.14 REMOTE MANUAL STOP STATION

- A. Shall be provided per NFPA 101, and shall be a red mushroom-head push-button switch.
- B. Shall be connected to the main generator control panel to provide emergency shutdown of the generator.
- C. Shall be located outside the room housing the generator.
- D. Shall have permanent label reading "EMERGENCY STOP".

2.15 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at location as shown on the drawings.
- B. The annunciator shall indicate alarm conditions as required by NFPA 99 and 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.16 SOUND-ATTENUATED ENCLOSURE

- A. The engine generator and related equipment shall be housed in an outdoor weatherproof enclosure.
- B. The enclosure shall be provided with a factory-installed and factory-wired panelboard, 20A 120V receptacles, and compact fluorescent light fixtures with guards and switches.
- C. Enclosure shall be weatherproof and sound-attenuated (maximum 85 dBA at 1525 mm (5 feet) from any side, top and bottom to no more than 75 dBA when measured at 15 M (50 feet) horizontally from any part of the enclosure). Sound ratings shall be based on full load condition of engine generator in a single unit operation condition.
- D. Airflow configuration shall be intake through rear of unit, and discharge air vertically up. Enclosure shall be suitable for winds up to 193 kmh (120 miles per hour) roof load shall be equal to or greater than 200 kg/sq m (40 pounds per square foot) Non-distributed loading as required.
- E. The enclosure shall meet the following requirements:
 - 1. Radiator exhaust outlet shall be ducted through the end of the enclosure.
 - 2. All exterior surfaces shall be factory-painted with industrial enamel.
 - 3. Unit shall have sufficient guards to prevent entrance by small animals.
 - 4. Batteries shall fit inside enclosure and alongside the engine generator. Batteries under the generator are not acceptable.
 - 5. The muffler shall be mounted and thermally-insulated inside the enclosure.

2.17 SPARE PARTS

- A. For each engine generator:
 - 1. Six lubricating oil filters.
 - 2. Six primary fuel oil filters.
 - 3. Six secondary fuel oil filters.
 - 4. Six intake air filters.
- B. For each battery charger:
 - 1. Three complete sets of fuses.
- C. For each control panel:
 - 1. Three complete sets of fuses, if applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install concrete bases of dimensions shown on the drawings.
- B. Installation of the engine generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:
 - 1. Support the base of engine generator on vibration isolators, each isolator bolted to the floor (pad), and the generator base bolted to isolator.

- 2. Install sufficient isolators so that the floor (pad) bearing pressure under each isolator is within the floor (pad) loading specification.
- 3. Install equal number of isolators on each side of the engine generator's base.
- 4. Locate isolators for approximately equal load distribution and deflection per isolator. The base of the engine generator shall be drilled at the factory for the isolator bolts.
- 5. Isolators shall be shipped loose with the engine generator.
- 6. All connections between the engine generator and exterior systems, such as fuel lines, electrical connections, and engine exhaust system and air exhaust shroud, shall be flexible.
- D. Balance:
 - 1. The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 16.25 mm (0.65 inch) per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.
- E. Connect all components of the generator system so that they will continue to be energized during failure of the normal electrical power supply system.
- F. Install piping between engine generator and remote components of cooling, fuel, and exhaust systems.
- G. Flexible connection between radiator and exhaust shroud at the wall damper:
 - 1. Install noncombustible flexible connections made of 20-oz neoprene-coated fiberglass fabric approximately 150 mm (6 inches) wide.
 - 2. Crimp and fasten the fabric to the sheet metal with screws 50 mm (2 inches) on center. The fabric shall not be stressed, except by the air pressure.
- H. Exhaust System Insulation:
 - 1. Adhesive and insulation materials shall be applied on clean, dry surfaces from which loose scale and construction debris has been removed by wire brushing.
 - 2. Fill all cracks, voids, and joints of applied insulation material with high temperature 1093 °C (2000 °F) insulating cement before applying the outer covering.
 - 3. The installation shall be clean and free of debris, thermally and structurally tight without sag, neatly finished at all hangers or other penetrations, and shall provide a smooth finished surface.
 - 4. Insulation and jacket shall terminate hard and tight at all anchor points.
 - 5. Insulate completely from engine exhaust flexible connection through roof or wall construction, including muffler.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine generator manufacturer to inspect field-assembled components and equipment installation, and to supervise the field tests.
- B. When the complete engine generator system has been installed and prior to the final inspection, test all components of the system in the presence of the COR for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish fuel oil, lubricating oil, anti-freeze liquid, water treatment, rust-inhibitor, and load bank for testing of the engine generator.
- D. Visual Inspection: Visually verify proper installation of engine generator and all components per manufacturer's pre-functional installation checklist.
- E. Set engine generator circuit breaker protective functions per Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- F. Field Tests:

- 1. Perform manufacturer's after-starting checks and inspections.
- 2. Test the engine generator for six hours of continuous operation as follows:
 - a. Two hours while delivering 100% of the specified kW.
 - b. Four hours while the engine generator is delivering 80% of its specified kW rating.
 - c. If during the 6-hour continuous test, an engine generator failure occurs or the engine generator cannot maintain specified power output, the test(s) are null and void. After repair and/or adjustments, the test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained.
- 3. Record the following test data at 30-minute intervals:
 - a. Time of day, as well as reading of running time indicator.
 - b. kW.
 - c. Voltage on each phase.
 - d. Amperes on each phase.
 - e. Engine RPM.
 - f. Frequency.
 - g. Coolant water temperature.
 - h. Fuel pressure.
 - i. Oil pressure.
 - j. Outdoor temperature.
 - k. Average ambient temperature in the vicinity of the engine generator.
- 4. Demonstrate that the engine generator will attain proper voltage and frequency within the specified time limit from a cold start after the closing of a single contact.
- 5. Furnish a resistance-type load for the testing of the engine generator. Test loads shall always include adequate resistance to assure stability of the loads and equipment during all of the testing operations. The test load kW rating shall not be less than 100% of the specified kW rating of the engine generator.
- G. Starting System Test:
 - 1. Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off.
- H. Remote Annunciator Panel and Remote Manual Stop Tests:
- I. Simulate conditions to verify proper operation of each visual or audible indication, interconnecting hardware and software, and reset button. Simulate emergency stop of the generator by initiating the remote manual stop station, while the generator is in operation.
- J. Automatic Operation Tests:
- K. Test the engine generator and associated automatic transfer switches to demonstrate automatic starting, loading and unloading. The load for this test shall be the actual connected loads. Initiate loss of normal source and verify the specified sequence of operation. Restore the normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.
- L. At the completion of the field tests, fill the main storage tank and day tank with fuel of grade and quality as recommended by the manufacturer of the engine. Fill all engine fluids to levels as recommended by manufacturer.
- M. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 6-hour continuous test as requested by the COR, at no additional cost to the Government.
- N. Provide test and inspection results in writing to the COR.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the engine generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

Engine Generators

26 32 13 - 15

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine generator at a location per the COR.
- B. Furnish the services of a competent and factory-trained technician for one 4-hour period for instructions to VA personnel in operation and maintenance of the equipment, on the date requested by the COR.

----END----

SECTION 26 33 53

STATIC UNINTERRUPTIBLE POWER SUPPLY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the static uninterruptible power supply, indicated in this section as UPS.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- F. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: For low-voltage switchboard required for maintenance bypass of multiple module UPS.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. UPS shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - UPS shall be factory full-load tested to meet the requirements specified using a test battery (not the battery to be supplied with the system) with AC input power and with battery power for a minimum of 8 hours, with meter readings taken every 30 minutes. Should a malfunction occur, the problem shall be corrected and the test shall be repeated. The tests shall encompass all aspects of operation, such as module failure, static bypass operation, battery failure, input power failure and overload ratings.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, plan, front, side, and rear elevations, accessories, and device nameplate data.

- c. Provide detailed and project-specific system diagram, showing maintenance bypass, UPS module(s), battery cabinet(s) and batteries, major circuit protective devices, interconnecting power and control wiring, key-type mechanical interlocks, and connections to power sources and loads, as applicable. Indicate whether interconnections are factory-provided/factory-installed, factory-provided/fieldinstalled, or field-provided/field installed.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - 2) Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnection between the items of equipment.
 - 3) Provide a clear and concise description of operation, which gives, in detail, the information required to properly operate the UPS, including but not limited to bypass switchboard, UPS, key-type mechanical interlocks, remote devices, emergency power off buttons, fire alarm interface, and other components as applicable.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 1) Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - 2) Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - 3) The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- 3. Test Reports:

4.

- a. Submit certified factory design and production test reports for approval.
- b. Two weeks prior to the final inspection, submit certified field test reports and data sheets to the COR.
- 4. Certifications: Two weeks prior to final inspection, submit the following.
- a. Certification by the manufacturer that the UPS conforms to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the UPS has been properly installed, adjusted, and tested.

1.6 1APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata), form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.

В.	Institute of Engineering and El C57.110-08	ectronic Engineers (IEEE): Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents
	C62.41.1-02	.Surge Environment in Low-Voltage (1000 V and Less) AC Power Circuits
	C62.41.2-02	. Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits
	450-10	. Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications
	485-10	. Sizing Lead-Acid Batteries for Stationary Applications

- C. International Code Council (ICC): IBC-2018International Building Code
- D. National Electrical Manufacturers Association (NEMA): PE 1-12Uninterruptible Power Systems - Specification and Performance Verification
- E. National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. System Capacity: Unless stated otherwise, the parameters listed are under full rated output load at a minimum of 0.9 power factor, with batteries fully charged and floating on the DC bus and with nominal input voltage. Overall kVA, redundant, at 40 °C.
- B. Battery Capacity: Discharge time to end voltage: 15 minutes, at 25 °C (77 °F). Battery shall be capable of delivering 125 percent of full rated output load at initial start-up.
- C. System Bus Bracing: Braced for amperes symmetrical interrupting capacity as shown on drawings.
- D. AC Input:
 - 1. Voltage 208 volts line-to-line.
 - 2. Number of phases: 3-phase, 3-wire, plus ground.
 - 3. Voltage Range: Plus 10 percent, minus 15 percent, without affecting battery float voltage or output voltage.
 - 4. Frequency: 60 Hz, plus or minus 5 percent.
 - 5. Total harmonic current distortion (THD) reflected into the primary line: 10 percent maximum.
- E. AC Output
 - 1. Voltage 208 volts line-to-line, 120 volts line-to-neutral.
 - 2. Number of phases: 3-phase, 4-wire, plus ground.
 - 3. Voltage regulation:
 - a. Balanced load: Plus or minus 1.0 percent.
 - b. 100 percent load imbalance, phase-to-phase: Plus or minus 3 percent.
 - 4. Frequency: 60 Hz.
 - 5. Frequency regulation: Plus or minus 0.05 percent.
 - 6. Harmonic content (RMS voltage): 5 percent maximum total harmonic distortion with 100% nonlinear load.
 - 7. Load power factor operating range: 1.0 to 0.8 lagging.
 - 8. Phase displacement:
 - a. Balanced load: Plus or minus 1 degree of bypass input.
 - 9. Overload capability (at full voltage) (excluding battery):
 - a. 125 percent load for 10 minutes.
 - b. 150 percent load for 1 minute.
- F. Voltage Transient Response:
 - 1. 100 percent load step: Plus or minus 5 percent.

2.2 UPS

A. General Description: UPS module shall consist of a rectifier/charger unit and a 3-phase inverter module unit with their associated transformers, synchronizing equipment, input and output circuit breakers, and accessories as required for operation.

- B. Rectifier/Charger Unit: Rectifier/charger unit shall be solid state and shall provide direct current to the DC bus.
 - 1. Input Circuit Breaker: Rectifier/charger unit shall be provided with an input circuit breaker. The circuit breaker shall be sized to accept simultaneously the full-rated load and the battery recharge current.
 - 2. Sizing: Rectifier/charger unit shall be sized for the following two simultaneous operating conditions:
 - a. Supplying the full rated load current to the inverter.
 - b. Recharging a fully-discharged battery to 95 percent of rated ampere-hour capacity within ten times the discharge time after normal AC power is restored, with the input protective device closed.
- C. Inverter Unit: Inverter unit shall be a solid-state device capable of accepting power from the DC bus and providing AC power within specified limits.
 - 1. Output Overload: The inverter shall be able to sustain an overload as specified across its output terminals.
 - 2. Synchronism: The inverter shall normally operate in phase-lock and synchronism with the bypass source.
 - 3. Modular Construction: Each control logic printed circuit board shall be electrically and physically packaged on an individual plug-in module with separate indication and adjustments.
 - 4. Output Circuit Breaker: The output circuit breaker shall be capable of shunt tripping and shall have interrupting capacity as specified. Circuit breaker shall have provision for locking in the "off" position.
- D. External Protection: UPS module shall have built-in self-protection against undervoltage, overvoltage, overvoltage, overcurrent and surges introduced on the AC input source and/or the bypass source. The UPS system shall sustain input surges without damage in accordance with IEEE C62.41.1 and IEEE C62.41.2. The UPS shall also have built-in self-protection against overvoltage and voltage surges introduced at the output terminals by paralleled sources, load switching, or circuit breaker operation in the critical load distribution system.
- E. Internal Protection: UPS module shall be self-protected against overcurrent, sudden changes in output load and short circuits at the output terminals. UPS module shall be provided with output reverse power detection which shall cause that module to be disconnected from the critical load bus when output reverse power is present. UPS module shall have built-in protection against permanent damage to itself and the connected load for predictable types of failure within itself and the connected load. At the end of battery discharge limit, the module shall shut down without damage to internal components.

2.3 STATIC BYPASS TRANSFER SWITCH

- A. A static bypass transfer switch shall be provided as an integral part of the UPS and shall consist of a static switch and a bypass protective device or bypass switch. The control logic shall contain an automatic transfer circuit that senses the status of the inverter logic signals and alarm conditions and provides an uninterrupted transfer of the load to the bypass AC power source, without exceeding the transient limits specified herein, when a malfunction occurs in the UPS or when an external overload condition occurs.
 - 1. Static Bypass Transfer Switch Disconnect: A disconnect shall be incorporated to isolate the static bypass transfer switch assembly so it can be removed for servicing. The disconnect shall be equipped with auxiliary contacts and provision for padlocking in either the "on" or "off" position.

2.4 MAINTENANCE BYPASS - SINGLE-MODULE UPS

A. A maintenance bypass switch shall be provided as an integral part of the UPS and located within the UPS module. The maintenance bypass switch shall provide the capability to

continuously support the load from the bypass AC power source while the UPS is isolated for maintenance. The maintenance bypass switch shall be housed in an isolated compartment inside the UPS cabinet. Switch shall contain a maintenance bypass protective device and a module isolation protective device.

B. The maintenance bypass switch shall provide the capability of transferring the load from the UPS static bypass transfer switch to maintenance bypass and then back to the UPS static bypass transfer switch with no interruption to the load

2.5 BATTERY SYSTEM

- A. General: A storage battery with sufficient ampere-hour rating to maintain UPS output at full capacity for the specified duration shall be provided for each UPS module.
- B. Battery Type: Lead calcium.
- C. Battery Construction: The battery shall be of the valve-regulated, sealed, non-gassing, recombinant type.
- D. Battery Cabinet: The batteries shall be furnished in a battery cabinet matching the UPS. The battery cabinet shall be provided with smoke and high temperature alarms.
- E. Battery Rack: Battery rack shall be steel and shall be protected with electrolyte-resistant paint. No more than three tiers are allowed.
- F. Battery Cables: Battery-to-battery connections shall be stranded cable with proper cable supports.
- G. Battery Disconnect: Each battery cabinet or rack shall have a fused disconnect switch or circuit breaker, lockable in the "off" position, provided in a NEMA 1 enclosure.

PART 3 - EXECUTION

3.1 INSTALLATION

A. The UPS shall be set in place, wired, and connected in accordance with the approved shop drawings and manufacturer's instructions.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the UPS manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted, and tested in accordance with the manufacturer's recommendations.
- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method, or performing thermographic survey after energization.
 - e. Verify grounding connections.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify the correct operation of all alarms and indicating devices.
 - h. Attach a phase rotation meter to the UPS input, output, and bypass buses, and observe proper phase sequences.
 - i. Check and test controls for proper operation.

- j. Check doors for proper alignment and operation.
- k. Check and test each protective device for proper mechanical and electrical operation.
- I. Verify protective device overcurrent trip settings against approved coordination study.
- 2. Load Test: The UPS shall be load tested for a continuous 24 hour period by means of resistive load banks, sized for full rated output load and provided by the UPS manufacturer. The UPS shall be continuously tested at 1/2 load for 8 hours, 3/4 load for 8 hours and full load for 8 hours. If a failure occurs during the burn-in period, the tests shall be repeated. Instrument readings shall be recorded every half hour for the following:
 - a. Input voltage and current (all three phases, for each module).
 - b. Input and output frequency.
 - c. Battery voltage for each module.
 - d. Output voltage and current (all three phases, for each module).
 - e. Output kilowatts for each module.
 - f. Output voltage and current (all three phases).
 - g. Output kilowatts.
- 3. Full Load Burn In Test: The UPS shall undergo an additional full load burn-in period of 24 continuous hours by means of resistive load banks, sized for full rated output load and provided by the UPS manufacturer. If a failure occurs during the burn-in period, the tests shall be repeated. Instrument readings shall be recorded every half hour as above. The following tests shall be performed:
 - a. With the UPS carrying full rated output load and supplied from the normal source, switch 100 percent of load bank capacity on and off a minimum of five times within the burn-in period.
 - b. With the UPS carrying maximum continuous design load and supplied from the emergency source, repeat the switching operations described above.
- 4. Full Load Battery Burn In Test: The UPS shall undergo a full load battery test by means of resistive load banks, sized for full rated output load and provided by the UPS manufacturer. If a failure occurs during the battery discharge time, the tests shall be repeated. Instrument readings shall be recorded every half hour as above.
 - a. With the UPS carrying full rated output load and operating on battery power, switch 100 percent of load bank capacity on and off a minimum of five times within the battery discharge time.
- 5. Battery Discharge and Recharge Test: With the battery fully charged, the UPS shall undergo a complete battery discharge test to full depletion followed by a full recharge. Instrument readings shall be recorded every minute during discharge for the following:
 - a. Battery voltage and current for each module.
 - b. Output voltage and current (all three phases) for each module.
 - c. Output kilowatts for each module.
 - d. Output voltage and current (all three phases).
 - e. Output kilowatts (system).
 - f. Output frequency.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the UPS is in good operating condition and properly performing the intended function.

3.4 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted near the UPS.

- B. Furnish a written sequence of operation for the UPS and connected line side/load side electrical distribution equipment. The sequence of operation shall be laminated or mounted under acrylic glass, and installed in a frame mounted near the UPS.
- C. Deliver an additional four copies of the as-built one line diagram and sequence of operation to the COR.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the UPS, on the dates requested by the COR.

----END----

This page intentionally left blank.

SECTION 26 36 23

AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of open-transition automatic transfer switches with bypass isolation, indicated as automatic transfer switches or ATS in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- F. Section 26 32 13, ENGINE-GENERATORS: Requirements for normal and emergency power generation.
- G. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General communications requirements that are common to more than one section in Division 27.
- H. Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATION SYSTEMS: Raceways for communications cabling.
- I. SECTION 27 15 00, COMMUNICATIONS HORIZONTAL CABLING: Communications media for interconnecting automatic transfer switches and remote control and annunciation components.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.
- C. Automatic transfer switch, bypass/isolation switch, and annunciation control panels shall be products of the same manufacturer.

1.4 FACTORY TESTS

- A. ATS shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Perform visual inspection to verify that each ATS is as specified.
 - 2. Perform mechanical test to verify that ATS sections are free of mechanical defects.
 - 3. Perform insulation resistance test to ensure electrical integrity and continuity of entire system.

Automatic Transfer Switches

- 4. Perform main switch contact resistance test.
- 5. Perform electrical tests to verify complete system electrical operation.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include voltage rating, continuous current rating, number of phases, withstand and closing rating, dimensions, weights, mounting details, conduit entry provisions, front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
 - c. For automatic transfer switches that are networked together to a common means of annunciation and/or control, submit interconnection diagrams as well as site and building plans, showing connections for normal and emergency sources of power, load, control and annunciation components, and interconnecting communications paths. Equipment locations on the diagrams and plans shall match the site, building, and room designations on the drawings.
 - d. Complete nameplate data, including manufacturer's name and catalog number.
 - e. A copy of the markings that are to appear on the automatic transfer switches when installed.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the automatic transfer switches.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 1) Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - 2) Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - 3) The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
 - 3. Certifications:
 - a. When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
 - b. Two weeks prior to final inspection, submit the following.
 - 1) Certification by the manufacturer that the ATS conform to the requirements of the drawings and specifications.
 - 2) Certification by the Contractor that transfer switches have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

В.	Institute of Electrical and Elect 446-95	ronic Engineers (IEEE): .Emergency and Standby Power Systems for Industrial and Commercial Applications
	C37.90.1-12	Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
	C62.41.1-02	.Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits
	C62.41.2-02	Recommended Practice on Characterization of Surges in Low- Voltage (1000 V and Less) AC Power Circuits
C.	International Code Council (IC IBC-2018	C): .International Building Code
D.	National Electrical Manufactur	ers Association (NEMA): .Enclosures for Electrical Equipment (1000 Volts Maximum)
	ICS 6-06	Enclosures
	ICS 4-15	Application Guideline for Terminal Blocks
	MG 1-16	Motors and Generators
E.	National Fire Protection Assoc 70-2017	iation (NFPA): .National Electrical Code (NEC)
	99-15	Health Care Facilities
	110-16	Emergency and Standby Power Systems
F.	Underwriters Laboratories, Inc 50-15	. (UL): .Enclosures for Electrical Equipment
	508-99	Industrial Control Equipment
	891-05	.Switchboards
	1008-14	.Transfer Switch Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Automatic transfer switches shall comply with IEEE, NEMA, NFPA, UL, and have the following features:
 - 1. Automatic transfer switches shall be open transition switches, 4- pole, draw-out construction, electrically operated, mechanically held open contact type, without integral overcurrent protection. Automatic transfer switches utilizing automatic or non-automatic molded case circuit breakers, insulated case circuit breakers, or power circuit breakers as switching mechanisms are not acceptable.
 - 2. Automatic transfer switches shall be completely factory-assembled and wired such that only external circuit connections are required in the field.
 - 3. Each automatic transfer switch shall be equipped with an integral bypass/isolation switch.
 - 4. Ratings:

- a. Phases, voltage, continuous current, poles, and withstand and closing ratings shall be as shown on the drawings.
- b. Transfer switches are to be rated for continuous duty at specified continuous current rating on 60Hz systems.
- c. Maximum automatic transfer switch rating: 800 A.
- 5. Markings:
 - a. Markings shall be in accordance with UL 1008.
- 6. Tests:
 - a. Automatic transfer switches shall be tested in accordance with UL 1008. The contacts of the transfer switch shall not weld during the performance of withstand and closing tests when used with the upstream overcurrent device and available fault current specified.
- 7. Surge Withstand Test:
 - Automatic transfer switches utilizing solid-state devices in sensing, relaying, operating, or communication equipment or circuits shall comply with IEEE C37.90.1.
- 8. Housing:
 - a. Enclose automatic transfer switches in wall- or floor-mounted steel cabinets, with metal gauge not less than No. 14, in accordance with UL 508, or in a switchboard assembly in accordance with UL 891, as shown on the drawings.
 - b. Enclosure shall be constructed so that personnel are protected from energized bypass-isolation components during automatic transfer switch maintenance.
 - c. Automatic transfer switch components shall be removable without disconnecting external source or load power conductors.
 - d. Finish: Cabinets shall be given a phosphate treatment, painted with rust-inhibiting primer, and finish-painted with the manufacturer's standard enamel or lacquer finish.
 - e. Viewing Ports: Provide viewing ports so that contacts may be inspected without disassembly.
- 9. Operating Mechanism:
 - a. Actuated by an electrical operator.
 - b. Electrically and mechanically interlocked so that the main contact cannot be closed simultaneously in either normal and emergency position.
 - c. Normal and emergency main contacts shall be mechanically locked in position by the operating linkage upon completion of transfer. Release of the locking mechanism shall be possible only by normal operating action.
 - d. Contact transfer time shall not exceed six cycles.
 - e. Operating mechanism components and mechanical interlocks shall be insulated or grounded.
- 10. Contacts:
 - a. Main contacts: Silver alloy.
 - b. Neutral contacts: Silver alloy, with same current rating as phase contacts.
 - c. Current carrying capacity of arcing contacts shall not be used in the determination of the automatic transfer switch rating, and shall be separate from the main contacts.
 - d. Main and arcing contacts shall be visible for inspection with cabinet door open and barrier covers removed.
- 11. Manual Operator:
 - a. Capable of operation by one person in either direction under no load.
- 12. Replaceable Parts:
 - a. Include the main and arcing contacts individually or as units, as well as relays, and control devices.
 - b. Automatic transfer switch contacts and accessories shall be replaceable from the front without removing the switch from the cabinet and without removing main conductors.

Automatic Transfer Switches

- 13. Sensing Features:
 - a. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-toground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100% of nominal, and dropout voltage is adjustable from 75 to 98% of pickup value. Factory set for pickup at 90% and dropout at 85%.
 - b. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - c. Voltage/Frequency Lockout Relay: Prevent premature transfer to the enginegenerator. Pickup voltage shall be adjustable from 85 to 100% of nominal. Factory set for pickup at 90%. Pickup frequency shall be adjustable from 90 to 100% of nominal. Factory set for pickup at 95%.
 - d. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - e. Test Switch: Simulate normal-source failure.
 - f. Switch-Position Indication: Indicate source to which load is connected.
 - g. Source-Available Indication: Supervise sources via transfer switch normal- and emergency-source sensing circuits.
 - h. Normal Power Indication: Indicate "Normal Source Available."
 - i. Emergency Power Indication: Indicate "Emergency Source Available."
 - j. Transfer Override Control: Overrides automatic retransfer control so that automatic transfer switch shall remain connected to emergency power source regardless of condition of normal source. Control panel shall indicate override status.
 - k. Engine Starting Contacts: One isolated and normally closed and one isolated and normally open; rated 5 A at 30 V DC minimum.
 - I. Engine Shutdown Contacts: Time delay adjustable from zero to 15 minutes, and factory set for 5 minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
 - m. Engine-Generator Exerciser: Programmable exerciser starts engine-generator(s) and transfers load to them from normal source for a preset time, then retransfers and shuts down engine-generator(s) after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period.
- 14. Controls:
 - a. Controls shall provide indication of switch status and be equipped with alarm diagnostics.
 - b. Controls shall control operation of the automatic transfer switches.
- 15. Factory Wiring: Train and bundle factory wiring and label either by color-code or by numbered/lettered wire markers. Labels shall match those on the shop drawings.
- 16. Annunciation, Control, and Programming Interface Components: Devices for communicating with remote programming devices, annunciators, or control panels shall have open-protocol communication capability matched with remote device.
- 17. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to the automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit in-rush and seal currents are rated for actual currents to be encountered.

2.2 SEQUENCE OF OPERATION

- A. The specified voltage decrease in one or more phases of the normal power source shall initiate the transfer sequence. The automatic transfer switch shall start the engine-generator(s) after a specified time delay to permit override of momentary dips in the normal power source.
- B. The automatic transfer switch shall transfer the load from normal to emergency source when the frequency and voltage of the engine-generator(s) have attained the specified percent of rated value.
- C. Engine Start: A voltage decrease, at any automatic transfer switch, in one or more phases of the normal power source to less than the specified value of normal shall start the engine-generator(s) after a specified time delay.
- D. Transfer to Emergency System Loads: Automatic transfer switches for Emergency System loads shall transfer their loads from normal to emergency source when frequency and voltage of the engine-generator(s) have attained the specified percent of rated value. Only those switches with deficient normal source voltage shall transfer.
- E. Transfer to Equipment Branch Loads: Automatic transfer switches for Equipment Branch loads shall transfer their loads to the engine-generator on a time-delayed, staggered basis, after the Emergency System switches have transferred. Only those switches with deficient normal source voltage shall transfer.
- F. Retransfer to Normal (All Loads): Automatic transfer switches shall retransfer the load from emergency to normal source upon restoration of normal supply in all phases to the specified percent or more of normal voltage, and after a specified time delay. Should the emergency source fail during this time, the automatic transfer switches shall immediately transfer to the normal source whenever it becomes available. After restoring to normal source, the engine-generator(s) shall continue to run unloaded for a specified interval before shut-down.

2.3 REMOTE ANNUNCIATOR AND CONTROL SYSTEM

- A. Include the following functions for indicated automatic transfer switches:
 - 1. Indication of sources available, as defined by actual pickup and dropout settings of automatic transfer switch controls.
 - 2. Indication of automatic transfer switch position.
 - 3. Indication of automatic transfer switch in test mode.
 - 4. Indication of failure of communication link.
 - 5. Key-switch or user-code access to control functions of panel.
 - 6. Control of automatic transfer switch test initiation.
 - 7. Control of automatic transfer switch operation in either direction.
 - 8. Control of time-delay bypass for transfer to normal source.
- B. Malfunction of remote annunciator and control system or communication link shall not affect functions of automatic transfer switches. Automatic transfer switch sensing, controlling, or operating functions shall not depend on remote annunciator and control system for proper operation.
- C. Remote annunciation and control system shall include the following features:
 - 1. Touchscreen type operator interface.
 - 2. Control and indication means grouped together for each automatic transfer switch.
 - 3. Label each indication and control group. Indicate the automatic transfer switch it controls, the location of the automatic transfer switch, and the identity of the load that it serves.
 - 4. Digital Communication Capability: Matched to that of automatic transfer switches supervised.
 - 5. Mounting: Steel cabinet, flush or surface mounted, as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install automatic transfer switches and associated remote components in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Anchor automatic transfer switches with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Mount automatic transfer switches on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the automatic transfer switch manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.
- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method, or performing thermographic survey after energization.
 - f. Verify grounding connections.
 - g. Verify ratings of sensors.
 - h. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - i. Exercise all active components.
 - j. Verify that manual transfer warning signs are properly placed.
 - k. Verify the correct operation of all sensing devices, alarms, and indicating devices.
 - 2. Electrical tests:
 - a. Perform insulation-resistance tests.
 - b. After energizing circuits, demonstrate the interlocking sequence and operational function for each automatic transfer switch at least three times.
 - c. Test bypass-isolation unit functional modes and related automatic transfer switch operations.
 - d. Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.
 - e. Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.
 - f. Low phase-to-ground voltage shall be simulated for each phase of normal source.
 - g. Operation and settings shall be verified for specified automatic transfer switch operational feature, such as override time delay, transfer time delay, return time

Automatic Transfer Switches

delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.

- h. Verify pickup and dropout voltages by data readout or inspection of control settings.
- i. Verify that bypass and isolation functions perform correctly, including the physical removal of the automatic transfer switch while in bypass mode.
- j. Ground-fault tests: Verify that operation of automatic transfer switches shall not cause nuisance tripping or alarms of ground fault protection on either source.
- k. When any defects are detected, correct the defects and repeat the tests as requested by the COR at no additional cost to the Government.

3.3 FIELD SETTINGS VERIFICATION

A. The automatic transfer switch settings shall be verified in the field by an authorized representative of the manufacturer.

3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the automatic transfer switches are in good operating condition and properly performing the intended function.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the automatic transfer switches, on the dates requested by the COR.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-17

This page intentionally left blank.

This page intentionally left blank.
SECTION 26 43 13

SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: For factory-installed or external SPD.
- C. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits
 IEEE C62.45-08Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits
- C. National Fire Protection Association (NFPA): 70-2017National Electrical Code (NEC)

Surge Protective Devices

D. Underwriters Laboratories, Inc. (UL): UL 1283-15.....Electromagnetic Interference Filters

UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 SWITCHGEAR/SWITCHBOARD SPD

- A. General Requirements:
 - 1. Comply with IEEE and UL.
 - 2. Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 240kA per phase.

2.2 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - 2. Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 Å and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

2.3 ENCLOSURES

A. Enclosures: NEMA 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

Surge Protective Devices

- 1. Provide a circuit breaker as a dedicated disconnecting means for TVSS as shown on drawings.
- D. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torquewrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

----END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-17

This page intentionally left blank.

SECTION 26 51 00

INTERIOR LIGHTING

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
 - h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
 - i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
 - j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

Interior Lighting

26 51 00 - 1

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13.......Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings
- C. Environmental Protection Agency (EPA): 40 CFR 261Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15Radio Frequency Devices
 - CFR Title 47, Part 18Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA): LM-79-08.....Electrical and Photometric Measurements of Solid-State Lighting Products
 - LM-80-15 Measuring Lumen Maintenance of LED Light Sources

LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature

- F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995)Surge Voltages in Low Voltage AC Power Circuits
- G. International Code Council (ICC): IBC-15International Building Code
- H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps
 - C82.1-04(R2015)Lamp Ballasts Line Frequency Fluorescent Lamp Ballasts
 - C82.2-02(R2016) Method of Measurement of Fluorescent Lamp Ballasts
 - C82.4-17.....Lamp Ballasts Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type)
 - C82.11-17.....Lamp Ballasts High Frequency Fluorescent Lamp Ballasts
 - LL 9-11 Dimming of T8 Fluorescent Lighting Systems
 - SSL 1-16 Electronic Drivers for LED Devices, Arrays, or Systems
- I. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) 101-18Life Safety Code
- J. Underwriters Laboratories, Inc. (UL): 496-17Lampholders 542-05Fluorescent Lamp Starters

Interior Lighting

00 54 00 0

R44-12	Luminaires for	I lee in Hazardou	e (Classified) Locations
			3 (Olassincu	

- 924-16 Emergency Lighting and Power Equipment
- 935-01 Fluorescent-Lamp Ballasts
- 1029-94 High-Intensity-Discharge Lamp Ballasts
- 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts
- 1598-08Luminaires
- 1574-04.....Track Lighting Systems
- 2108-15.....Low-Voltage Lighting Systems

8750-15.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - 1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - 2. Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- F. Metal Finishes:
 - The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - 2. Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- H. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - 2. Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.

- 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.
- I. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.
- J. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic instant-start type, designed for type and quantity of lamps indicated. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion (THD): 10 percent or less.
 - 5. Transient Voltage Protection: IÉEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. EMR/RFI Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
 - 11. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
 - 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
 - 13. Dimming ballasts shall be as per above, except dimmable from 100% to 10% of rated lamp lumens. Dimming ballasts shall be fully compatible with the dimming controls.

2.3 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandalresistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.

- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.4 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - 2. LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: ≥ 0.95 .
 - f. Total Harmonic Distortion: $\leq 20\%$.
 - g. Comply with FCC 47 CFR Part 15.
 - 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - 1. Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed lighting fixtures:

- a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
- b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
- c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 5. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - 1) Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - 3) The outlet box is supported vertically from the building structure.
 - d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 6. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved

Interior Lighting

device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.

- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END----

Hudson Valley Health Care System New Community Living Center Project #: 620-334 01-01-18

This page intentionally left blank.

Interior Lighting 26 51 00 - 1

SECTION 26 56 00

EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- F. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- G. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
 - h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
 - i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
 - j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
 - k. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show

Exterior Lighting

computer generated point-by-point illumination calculations. Include lamp lumen and light loss factors used in calculations.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): LRFDLTS-17Structural Supports for Highway Signs, Luminaires and Traffic Signals
- C. American Concrete Institute (ACI): 318-14Building Code Requirements for Structural Concrete
- D. American National Standards Institute (ANSI): H35.1/H35 1M-17......American National Standard Alloy and Temper Designation Systems for Aluminum
- E. American Society for Testing and Materials (ASTM): A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
 - A153/A153M-16Zinc Coating (Hot-Dip) on Iron and Steel Hardware
 - B108/B108M-15Aluminum-Alloy Permanent Mold Castings
 - C1089-13 Spun Cast Prestressed Concrete Poles
- F. Federal Aviation Administration (FAA): AC 70/7460-IL-15.....Obstruction Lighting and Marking
 - AC 150/5345-43H-16Obstruction Lighting Equipment
- G. Illuminating Engineering Society of North America (IESNA): HB-9-00.....Lighting Handbook
 - RP-8-14Roadway Lighting
 - LM-52-03 Photometric Measurements of Roadway Sign Installations
 - LM-72-97(R2010) Directional Positioning of Photometric Data
 - LM-79-08......Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products
 - LM-80-15 Approved Method for Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules
 - TM-15-11.....Luminaire Classification System for Outdoor Luminaires
- H. National Electrical Manufacturers Association (NEMA): C78.41-16.....Electric Lamps – Guidelines for Low-Pressure Sodium Lamps
 C78.42-09(R2016)Electric Lamps – Guidelines for High-Pressure Sodium Lamps
 Exterior Lighting

		01-01-16
	C78.43-13	Electric Lamps – Single-Ended Metal-Halide Lamps
	C78.1381-98	Electric Lamps – 70-Watt M85 Double-Ended Metal-Halide Lamps
	C81.61-17	Electrical Lamp Bases – Specifications for Bases (Caps) for Electric Lamps
	C82.4-17	Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps (Multiple-Supply Type)
	C136.3-14	For Roadway and Area Lighting Equipment – Luminaire Attachments
	C136.17-05(R2010)(S2017)	Roadway and Area Lighting Equipment – Enclosed Side- Mounted Luminaires for Horizontal-Burning High-Intensity- Discharge Lamps – Mechanical Interchangeability of Refractors
	ICS 2-00(R2005)	Controllers, Contactors and Overload Relays Rated 600 Volts
	ICS 6-93(R2016)	Enclosures
Ν	lational Fire Protection Assoc 70-2017	iation (NFPA): National Electrical Code (NEC)
	101-18	Life Safety Code
ι	Inderwriters Laboratories, Inc 496-17	. (UL): .Lampholders

J.

773-16	Plug-In, Locking	Type Photocontrols for	Use with Area Lighting

- 773A-16Nonindustrial Photoelectric Switches for Lighting Control
- 1029-94High-Intensity-Discharge Lamp Ballasts
- 1598-08Luminaires

8750-15.....Light Emitting Diode (LED) Equipment for Use in Lighting Products

DELIVERY, STORAGE, AND HANDLING 1.6

Α. Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 **GENERAL REQUIREMENTS**

Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as Α. shown on the drawings and specified.

2.2 POLES

I.

- Α. General:
 - 1. Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
 - 2. The pole and arm assembly shall be designed for wind loading of 161 km/hr (100 mph) minimum, as required by wind loading conditions at project site, with an additional 30% gust factor and supporting luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected

area of the pole shall be applied at the height of the pole base, as shown on the drawings.

- 3. Poles shall be anchor-bolt type designed for use with underground supply conductors. Poles shall have handhole having a minimum clear opening of 65 x 125 mm (2.5 x 5 inches). Handhole covers shall be secured by stainless steel captive screws.
- 4. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
- 5. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.
- 6. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
- 7. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings.
- B. Types:
 - 1. Aluminum: Provide round aluminum poles manufactured of corrosion-resistant AA AAH35.1 aluminum alloys conforming to AASHTO LTS-4. Poles shall be seamless extruded or spun seamless type.

2.3 FOUNDATIONS FOR POLES

- A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.
- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 6 mm (0.25-inch) radius.
- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tiewire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning and relamping.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Lamp sockets for high intensity discharge (H.I.D) fixture shall have locking-type porcelain enclosures in conformance to the applicable requirements of ANSI C81.61-09 and UL 496-08.
- F. Pre-wire internal components to terminal strips at the factory.
- G. Bracket-mounted luminaires shall have leveling provisions and clamp-type adjustable slip-fitters with locking screws.

- H. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- I. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings.
- J. Luminaires shall carry factory labels, showing complete, specific lamp and ballast information.

2.5 LAMPS

- A. Install the proper lamps in every luminaire installed as shown on the drawings.
- B. Lamps shall be general-service, outdoor lighting types.
- C. High-Pressure Sodium (HPS) Lamps: Comply with NEMA C78.42, Color Rendering Index (CRI) 21 (minimum), wattage as indicated on fixture schedule. Lamps shall have minimum average rated life of 24,000 hours.
- D. Low-Pressure Sodium (LPS) Lamps: Comply with NEMA C78.41, wattage as indicated on fixture schedule. Lamps shall have minimum average rated life of 18,000 hours.
- E. Metal-Halide Lamps: Comply with NEMA C78.43 or NEMA C78.1381. Lamps shall be pulse start or ceramic type with wattage and correlated color temperature as indicated on fixture schedule.
- F. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 4500K.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
- G. Mercury vapor lamps shall not be used.

2.6 HIGH INTENSITY DISCHARGE BALLASTS

- A. Per NEMA C82.4 and UL 1029. Ballasts shall be single-lamp, copper-wound, constant-wattage autotransformer type, designed to operate on the voltage system to which they are connected, and capable of open-circuit operation without reducing lamp life.
- B. Ballasts shall have individual overcurrent protection in each ungrounded supply conductor.
- C. Ballast shall have an allowable line voltage variations of $\pm 10\%$, with a maximum 20% lamp wattage regulation spread.
- D. Power factor shall be not less than 90%.
- E. Ballast shall have a minimum starting temperature of -30 degrees C (-22 degrees F), and a normal ambient operating temperature of 40 degrees C (104 degrees F).
- F. Lamp current crest factor shall be 1.8 or less, in accordance with lamp manufacturer recommendations.

2.7 METAL HALIDE CORE AND COIL BALLASTS

- A. Shall be pulse start, linear reactor type for 277 volt luminaires and constant-wattage autotransformer (CWA) type for other voltage luminaires (if not otherwise specified).
- B. Ballasts shall have individual overcurrent protection in each ungrounded supply conductor.
- C. Power factor shall be not less than 90%.

- D. Ballast shall have an allowable line voltage variation of \pm 5% for linear reactor type and \pm 10% for CWA, with a maximum 20% lamp wattage regulation spread.
- E. Ballast shall have a minimum starting temperature of -40 degrees C (-40 degrees F).
- F. Lamp current crest factor shall be 1.8 or less, in accordance with lamp manufacturer recommendations.

2.8 METAL HALIDE ELECTRONIC BALLASTS

- A. Ballast shall be low-frequency electronic type, and shall operate pulse start and ceramic metal halide lamps at a frequency of 90 to 200 Hz square wave.
- B. Ballast shall be labeled Type '1' outdoor, suitable for recessed use, Class 'P'.
- C. Ballast shall have auto-resetting thermal protector to shut off ballast when operating temperatures reach unacceptable levels.
- D. Ballast shall have an end of lamp life detection and shut-down circuit.
- E. Lamp current crest factor shall be 1.5 or less.
- F. Ballasts shall comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
- G. Ballast shall have a minimum ballast factor of 1.0.
- H. Input current THD shall not exceed 20% for the primary lamp.
- I. Ballasts shall have ANSI C62.41, category 'A' transient protection.
- J. Ballasts shall have power factor greater than 90%.
- K. Ballast shall have a Class 'A' sound rating.

2.9 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.
 - 4. Power Supplies: Class I or II output.
 - Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1-minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): $\leq 20\%$.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
 - 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Pole Foundations:
 - 1. Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to prevent pressure between conductor, jacket, or sheath, and the end of conduit.
 - 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.

- 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
- 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 9 mm (0.375-inch) inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.
- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

A. Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

A. Verify operation after installing luminaires and energizing circuits.

---END---

This page intentionally left blank.