Limited Additional Environmental Assessment

Location:

Raymond Eng et al. Property 1998 South Road (U.S. Route 9) Town of Poughkeepsie, Dutchess County, New York

Prepared for:

Diamond Point Development, LLC 800 Marietta Highway, Suite 630-243 Roswell, Georgia 30075

LaBella Project No. CZ82133.00

May 26, 2022

21 Fox Street | Poughkeepsie, NY 12601 | p 888-539-9073

Table of Contents

1.0	INTRODUCTION	3
1.1	Special Terms & Conditions	3
1.2	Limitations & Exceptions	4
2.0	FIELD INVESTIGATION	4
2.1	Geophysical Survey and Results	4
2.2	Test Pit Installation, Field Observations, and Sampling	5
2.3	Soil Sampling	6
2.4	Buried Debris Sampling	7
3.0	ANALYTICAL RESULTS	7
3.1	Soil Sample Results	7
3.2	Building Materials Sample Results	8
4.0	FINDINGS AND CONCLUSIONS	8
5.0	RECOMMENDATIONS	9
6.0	SIGNATURES OF ENVIRONMENTAL PROFESSIONALS	10

FIGURES

- 1 Site Location Map
- 2 Test Pit Locations
- 3 Test Pit Locations on Grading Plan

TABLES

1 Summary of Soil Sample Analytical Results

APPENDIX

- 1 Subsurface Utility Mark Out Report
- 2 Field Logs
- 3 NYS Asbestos Certifications
- 4 Laboratory Reports
- 5 NYSDEC's May 24, 2022, email regarding Spill 2201488

1.0 INTRODUCTION

LaBella Associates, D.P.C. ("LaBella") was retained by Diamond Point Development to conduct additional environmental assessment at the Raymond Eng et al. property located at 1998 South Road (U.S> Route 9) in the Town of Poughkeepsie, Dutchess County, New York, hereinafter referred to as the "Site" (see Figure 1). This additional assessment has been performed consistent with the scope and limitations of LaBella's April 1, 2022, proposal.

Objective

The Site is a (\pm) 1.97-acre property occupied by a vacant restaurant building.

LaBella's Phase I Environmental Site Assessment, Raymond Eng et al. property, 1998 South Road, Town of Poughkeepsie, New York dated March 25, 2022, identified the following significant data gaps (SDGs).

SDGs:

- The Subject Property was first developed in the early 1900s, and no information was provided regarding the use of the property between first development and the mid-1960s. The lack of information regarding prior activities on the Subject Property impacts the Environmental Professional's ability to determine if petroleum and/or hazardous substances may have been stored, used, or disposed of on the Subject Property. Therefore, this data gap is considered an SDG.
- 2. Provided information indicates the building previously had an oil heating system. No information was provided on when this system was installed, when the system was removed, where the oil was stored, or if other prior heating systems were used on the Subject Property, which is considered an SDG. LaBella notes that a fire occurred on the property in the early 1980s, and the heating system for the structure at that time was not provided.
- 3. Spill No. 1401563 was reported for the southern and eastern adjoining property when contamination was reported in the soil sampled from test pits. Concrete debris was also observed in the test pits, and the spill has not been closed by the NYSDEC. Court documents between the adjoining property owners and potential buyers indicate that there is asbestos contaminated material (ACM) on central part of the adjoining property. No information was provided on the extent, nature or concentrations of the impacts. Therefore, the open spill event on this adjoining property is considered an SDG.

Based on the Objective, this additional assessment included the following:

- a) Subsurface utility mark out (geophysical survey) to assess for evidence of USTs on the Site property.
- b) Installation of test pits near one GPR-identified anomaly suggestive of a possible UST and along the eastern property line to assess for potential buried debris and evidence of prior property uses.

1.1 Special Terms & Conditions

The findings of this additional assessment are based on the scope of work and project objectives as stated in LaBella Professional Services Change Order dated April 1, 2022.

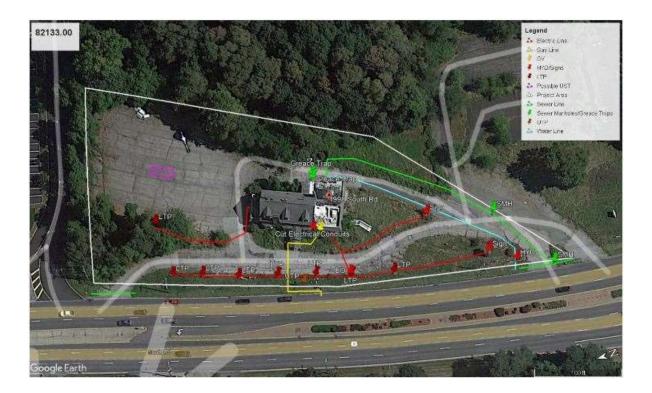
1.2 Limitations & Exceptions

Work associated with this additional assessment was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella Associates, D.P.C., makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts, or reports.

This is a screening level assessment to investigate specific potential environmental concerns identified in the Phase I ESA and is not an exhaustive assessment of environmental conditions on the property. This additional assessment is not intended to delineate the nature and extent of contamination at the site, nor address complex geological settings, the fate and transport characteristics of certain hazardous substances. physical limitations imposed by the location of utilities and other man-made objects, and the limitations of assessment technologies

In addition, LaBella cannot provide guarantees, certifications, or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point or monitoring well may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

2.0 FIELD INVESTIGATION


The following Scope of Work was performed:

2.1 Geophysical Survey and Results

On April 20, 2022, LaBella conducted a geophysical survey (subsurface utility mark out) using ground penetrating radar (GPR) technology to explore for anomalies indicative of potential USTs in the area of the restaurant building and the eastern property boundary. This nondestructive method uses electromagnetic radiation in the microwave band (UHF/VHF frequencies) of the radio spectrum, and detects the reflected signals from subsurface structures. A copy of the summary report is included as Appendix 1.

An anomaly considered to be a potential UST was identified in the northern parking area and is identified by a pink rectangle on the figure below and geophysical summary report. Other subsurface utilities were marked out in the study area for reference during the test pit investigation and to assist with selection of appropriate investigation locations.

This geophysical survey (subsurface utility mark out) does not relieve interested parties from their responsibility to make required notifications/inquiries prior to subsurface disturbance.

2.2 Test Pit Installation, Field Observations, and Sampling

Prior to the initiation of subsurface work, Core Down Drilling, LLC, of Brewster, New York, LaBella's subcontracted excavator, performed underground utility stake-out, via *Dig Safely New York* to locate utilities in the areas near the property boundaries. See Section 2.1 for utility locating in specific areas of planned borings.

On May 5, 2022, eight test pits were advanced at the Site under supervision of LaBella personnel. Test pits were designated TP-01 through TP-08 and were installed as follows:

- To investigate SDG 2, TP-01 and TP-02 were installed in the location of the GPR-identified anomaly in the northern parking area to assess for the presence of a UST.
- To investigate SDGs 1 and 3, TP-03 through TP-06 were installed along the eastern property boundary to assess for the presence of buried debris and evidence of prior property use. Based on observations in TP-04, additional test pits TP-07 and TP-08 were advanced in an effort to delineate the area of buried debris noted in TP-04.

Each test pit was advanced using a Kubota LC-50 tractor, fitted with a BT900 backhoe capable of excavating to a maximum depth of eight feet below grade. Test pit locations are depicted on Figure 2.

Excavated soils were inspected from the ground surface to the bottom of each test pit. Soil samples in the excavator bucket were visually and physically examined by LaBella personnel, and observations made of the general lithology, visible layering, evidence of nonnative fill/historic fill materials, indications of chemical or other staining, odors, and other distinctive features. Portions of the soil were field screened for the presence of VOCs using a PID equipped with a 10.6 electronvolt (eV) lamp. Positive indications from any of these screening methods are collectively referred to as "evidence of impairment." PID data and observations from each boring are included on the test pit logs presented in Appendix 2.

Soils at the Site consisted generally of silty fine sand to sandy silt, with varying amounts gravel, cobbles and/or boulders. Some granular (sand/gravel) seams were noted. Grey limestone bedrock was identified at a depth of 2 feet in TP-01 and 3.5 feet in TP-02. No field evidence of soil impairment was noted. Additional test pits observations follow:

- At test pits TP-01 and TP-02, no evidence of a UST was identified. Apparent rising ridge of limestone bedrock was observed between 2 and 3.5 feet below ground surface (bgs).
- At test pit TP-03, traces of red brick with associated mortar and asphalt were noted in the top two feet of soil. No debris was present in deeper soils.
- At location TP-04, a significant layer of debris was noted, starting a depth of one foot and concentrated at the east end of the test pit. Debris extended to a depth of four feet and consisted of various building materials (including a 16-inch-thick layer of roofing material), plastic and glass containers, wood and scrap steel. Soils below four feet did not contain visible debris, and by a depth of 5.5 feet, soil appeared to not have been previously disturbed.

Based on the discovery of significant debris in test pit TP-04, two additional test pits were installed in an effort to delineate the extent of the buried debris. Test pit TP-07 was advanced approximately 10 feet north of TP-04 and did not identify debris or field evidence of soil impairment. Test pit TP-08 was installed approximately 10 feet south of TP-04 and also included a buried debris layer from one to four feet below grade. Debris was again concentrated at the east end of the test pit and consisted of various building materials, plastic and glass containers, wood and scrap steel and copper. Soils below four feet did not contain visible debris, and by a depth of 5.5 feet, soil appeared to not have been previously disturbed. Another test pit was planned further south, but could not be advanced due to mechanical difficulties experienced with the backhoe. The approximate area where these building materials are located is identified by a green outline on Figure 2. The dashed section of the green outline indicates uncertainty on the extent of buried debris in that direction.

• At locations TP-05 and TP-06, no debris was noted and soils to a depth of six feet did not exhibit field evidence of impairment.

Investigation locations were located with a global positioning system (TP-01 through TP-08) for inclusion on site maps.

Groundwater was not encountered in the test pits. Following completion of each test pit, excavated soils were returned to the pit and compacted/leveled with backhoe bucket. For locations TP-01 and TP-02, which were advanced through the asphalt parking area, cold patch asphalt was placed and hand-tamped to restore the surface.

2.3 Soil Sampling

Consistent with the proposal, soil samples for laboratory analysis were collected from the test pits where fill materials were observed (TP-03, TP-04, and TP-05). Each sample name incorporates a site identifier (OR for OSHO Restaurant), the test pit number, and sample depth in feet bgs is shown in parenthesis.

Soil samples were placed directly into laboratory-supplied containers, preserved as appropriate in a cooler, submitted to York Analytical Laboratories, Inc., which is a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP) certified laboratory under chain-ofcustody protocol. A laboratory courier was utilized to transport the samples to the lab from LaBella's Poughkeepsie, New York office.

Soil samples were submitted for analysis of petroleum range (CP-51 List) volatile organic compounds (VOCs) via USEPA method 8260, the CP-51 List semi-volatile organic compounds (SVOCs) via USEPA method 8270, and the NYSDEC Part 375 list of metals via USEPA methods 6010 and 7471.

2.4 Buried Debris Sampling

LaBella's on-site geologist during this investigation, Eric Orlowski, PG, is also a NYS-licensed asbestos inspector (License 11-01685 - relevant asbestos certifications are attached in Appendix 3). Mr. Orlowski collected representative bulk samples of observed building materials considered suspect asbestos-containing materials (SACMs) encountered in test pits TP-03, TP-04 and TP-08. SACMs noted among the various debris encountered in the test pits consisted of:

- Bricks and mortar
- Concrete, asphalt pavement
- Cast clay pipe sections
- Plaster and wallboard
- Roofing material, including tar paper
- Ceramic tiles, grout and leveling compound
- Vinyl sheeting, cove base and mastics
- Formica
- Wallpaper
- Insulation materials

Bulk samples of building materials considered SACMs were packaged appropriately and shipped under chain-of-custody protocol to AmeriSci Laboratory of New York City, New York for analysis for asbestos via NYS ELAP Method 198.1 (for friable materials) or NYS ELAP Methods 198.4 and 198.6 (for non-friable organically-bound [NOB] materials).

3.0 ANALYTICAL RESULTS

3.1 Soil Sample Results

The soil laboratory analytical results were compared to the NYSDEC Part 375 Soil Cleanup Objectives (SCOs) for Unrestricted Use (UUSCOs). Although the site is not in a NYSDEC remediation program, results were also compared to SCOs for other land uses, as a point of reference. The attached Table 1 presents the Soil Sample Results Summary and the laboratory report is included as Appendix 4.

VOCs:

VOCs in soil samples were not identified above laboratory method detection limits (MDLs).

SVOCs:

Trace SVOCs concentrations detected in samples from TP-04 and TP-08 at depths of 2 and 3 feet bgs, respectively, were less than the UUSCOs. The sample from test pit TP-03, from a depth of 2 feet bgs,

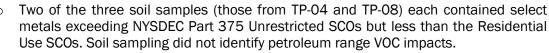
contained seven SVOCs at concentrations exceeding their UUSCOs. Of these, two exceeded their Commercial Use SCOs, which appears to be the most applicable considering past and contemplated future site use. The concentration of benzo(a)pyrene (5.9 mg/Kg) also exceeded the Industrial Use SCO of 1.1 mg/Kg. LaBella notes that this sample was obtained from soil immediately below a fill horizon containing asphalt debris. Based on this analytical result, a spill was reported to NYSDEC who assigned Spill ID 2201488.

Metals:

Metals concentrations in the test pit TP-03 soil sample were less than the UUSCOs. The test pit TP-04 soil sample from a depth of 2 feet bgs contained three metals (lead, mercury and zinc) exceeding UUSCOs but these concentrations were less than the next level of SCOs for Residential Use. The test pit TP-08 soil sample at a depth of 3 feet bgs also contained three metals (copper, lead and zinc) greater than UUSCOs but were also less than the Residential Use SCOs.

3.2 Building Materials Sample Results

Bulk Asbestos Analyses:


A total of 65 building materials samples were obtained by LaBella and submitted for analysis, which includes duplicate samples of each material as dictated by NYS Department of labor Code Rule 56 (12 NYCRR 56). The results of these analysis indicated one building material was identified as asbestos-containing material or ACM (defined as asbestos contact greater than 1% by weight): black tar paper associated with a deposit of roofing materials in test pit TP-04, spanning a depth of 1.5 to 3 feet bgs in the east bank of the pit.

4.0 FINDINGS AND CONCLUSIONS

LaBella was retained by Diamond Development to conduct a Limited Additional Environmental Assessment at the Raymond Eng, et al. Property located at 1998 South Road (U.S. Route 9), in the Town of Poughkeepsie, New York. The Limited Additional Environmental Assessment consisted of a geophysical survey to look for evidence of USTs, the advancement of eight test pits, and sampling and laboratory analysis of three soil and 65 bulk building materials samples.

Based on the completion of this investigation, the following findings were made:

- No UST was identified and the anomaly in the northern parking area appears to be a rising ridge of limestone bedrock.
- Three of six test pits advanced along the eastern property line encountered various building debris items. Representative samples of soil from these test pits, as well as bulk samples of individual building materials were analyzed.
 - One soil sample, from test pit TP-03 at 2 feet bgs, contained several SVOCs exceeding one or more NYSDEC Part 375 SCOs, including two constituents exceeding their Commercial Use SCOs, one of which also exceeded the Industrial Use SCO. Based on these results, a spill was reported to the NYSDEC and Spill ID 2201488 was assigned to the Site. LaBella notes that this sample was obtained from just beneath a fill horizon containing asphalt debris, which is considered a probable source for the detected SVOCs given the lack of evidence of a petroleum release.

Bulk building materials samples obtained from debris in test pits TP-03, TP-04 and TP-08. Most of the identified debris was noted in locations TP-04 and TP-08, and was concentrated in the eastern portion of each of these test pits. Among the samples, one material (tar paper from location TP-04) was identified as ACM.

5.0 **RECOMMENDATIONS**

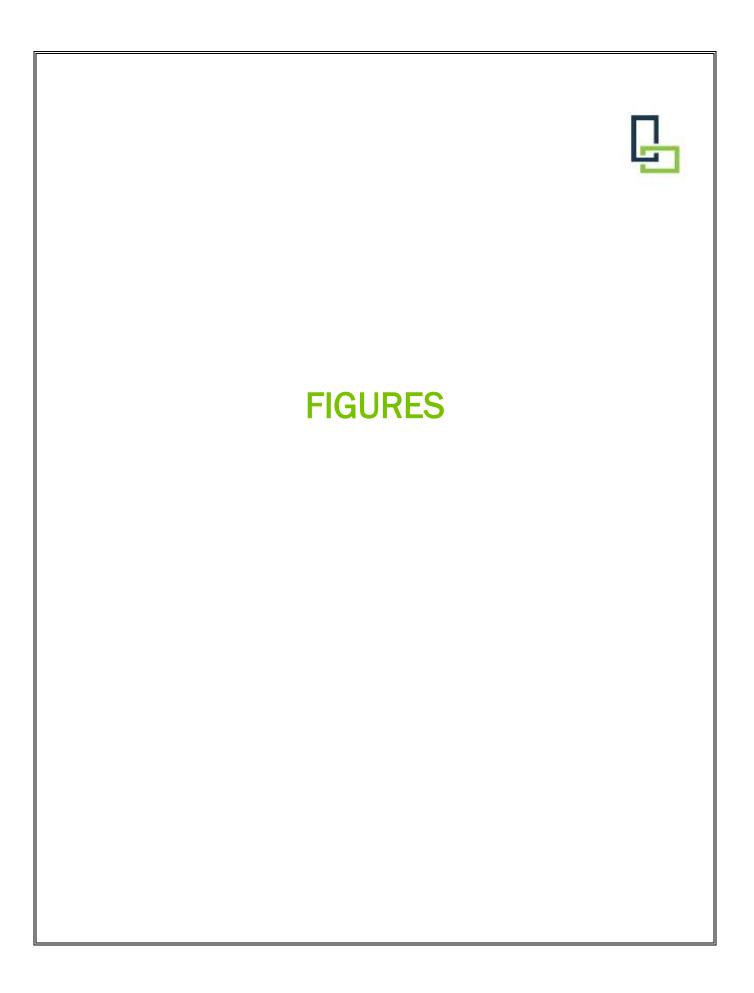
Based on the findings of this Limited Additional Environmental Assessment, LaBella offers the following conclusions/recommendations:

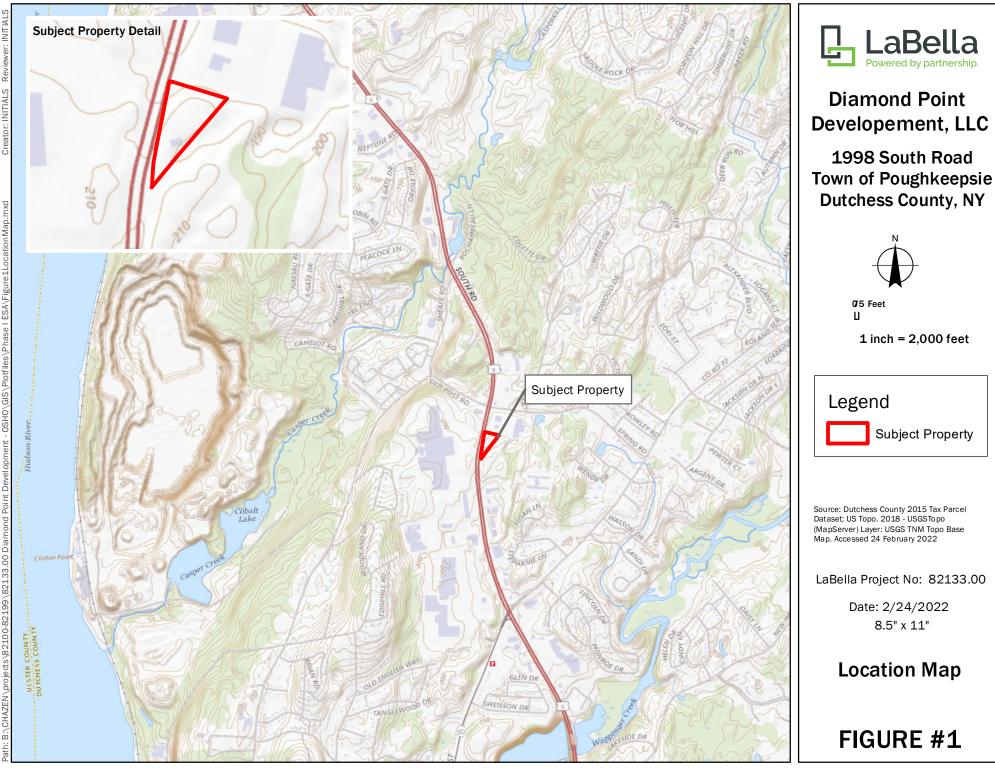
- The SUE investigation and subsequent test pitting in the northern parking lot did not identify a
 UST or evidence of prior heating systems. The GPR-identified anomaly was in the northern
 parking area and test pits of this anomaly show it to be a rising ridge of limestone bedrock and
 no UST was identified. As such, SDGs 1 and 2 listed in the introduction of this report and
 related to past heating systems or petroleum/chemical storage appear to have been resolved
 and no further investigation is recommended.
- Based on the findings of six test pits installed along the eastern property boundary, building material debris was identified in three locations (TP-03, TP-04, and TP-08), with the most significant quantities observed in test pits TP-04 and TP-08 at a depth range of 1 to approximately 4 feet and concentrated at the east end of these pits.
 - Select SVOCs are present in the test pit TP-03 and the presence of asphalt debris in fill material above this sample location suggests asphalt is the source rather than a release of petroleum product, as no other evidence of petroleum-impacted soil (odors, staining, free-phase products) was identified. NYSDEC has requested that the impacted material be removed followed by collection of endpoint confirmation soil samples for SVOC analysis, and that a report be provided documenting the removal and disposal (see email in Appendix 5) in order to receive closure of the Spill in NYSDEC's system. LaBella recommends complying with NYSDEC's request to remove the fill material containing asphalt, along with underlying soil. Based on the available grading plan (Figure 3), we understand that this area is already planned to be excavated to a depth of approximately 3.5 ft. Confirmation soil samples collected at that depth would advise if additional soil removal is needed. If timing for the construction in this area is limited, additional advanced investigation could be conducted prior to site construction to delineate the horizontal and vertical extent of the SVOCs prior to beginning excavation work, since the extent of the impacts in this area are not known. Waste characterization sampling could be included during this delineation effort. This would allow time for planning the soil removal and seeking disposal facility acceptance for the material, and minimize the need for and duration of soil stockpile staging during construction.
 - Significant building material debris was identified in test pits TP-04 and TP-08. Among this debris, one sampled material (tar paper associated with roofing material in TP-04) was confirmed to be ACM. The approximate area of emplaced building material debris is indicated by a green outline on Figure 2. As approximately one foot of soil exists above the debris layer, effectively encapsulating it, the buried material could be left in

place. However, the available site development plan shows this area is already planned to be excavated to depths of between 3.3 and 3.8 ft (see Figure 3). As such, excavated building materials and associated soils will be Regulated Asbestos-Containing Material (RACM) and disturbance of this material would constitute a form of asbestos abatement and require associated NYSDOL site-specific variance. LaBella recommends treating this area of buried building debris as RACM since the tar paper was broken up and mixed in with other roofing debris, and also since the condition of the debris prevented identify and sampling of all building materials emplaced in this site area. If other buried RACM debris is discovered during site redevelopment, then that material needs to either be tested to confirm if it is not RACM or assumed to be RACM and managed as such. While the horizontal limits of this RACM were not identified during test pit installation, we estimate an approximate area of 1,500 square feet. Based on an approximate thickness of 4 feet, project planning could estimate approximately 250 cubic yards of material would need to be abated and disposed of as RACM by a licensed abatement contractor.

• If site redevelopment activities uncover evidence of petroleum impacted soil, RACM, or other buried materials, those should be handled and managed appropriately.

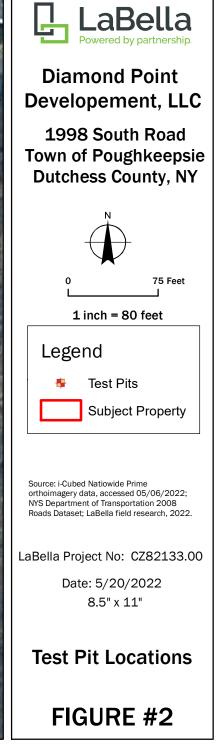
6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

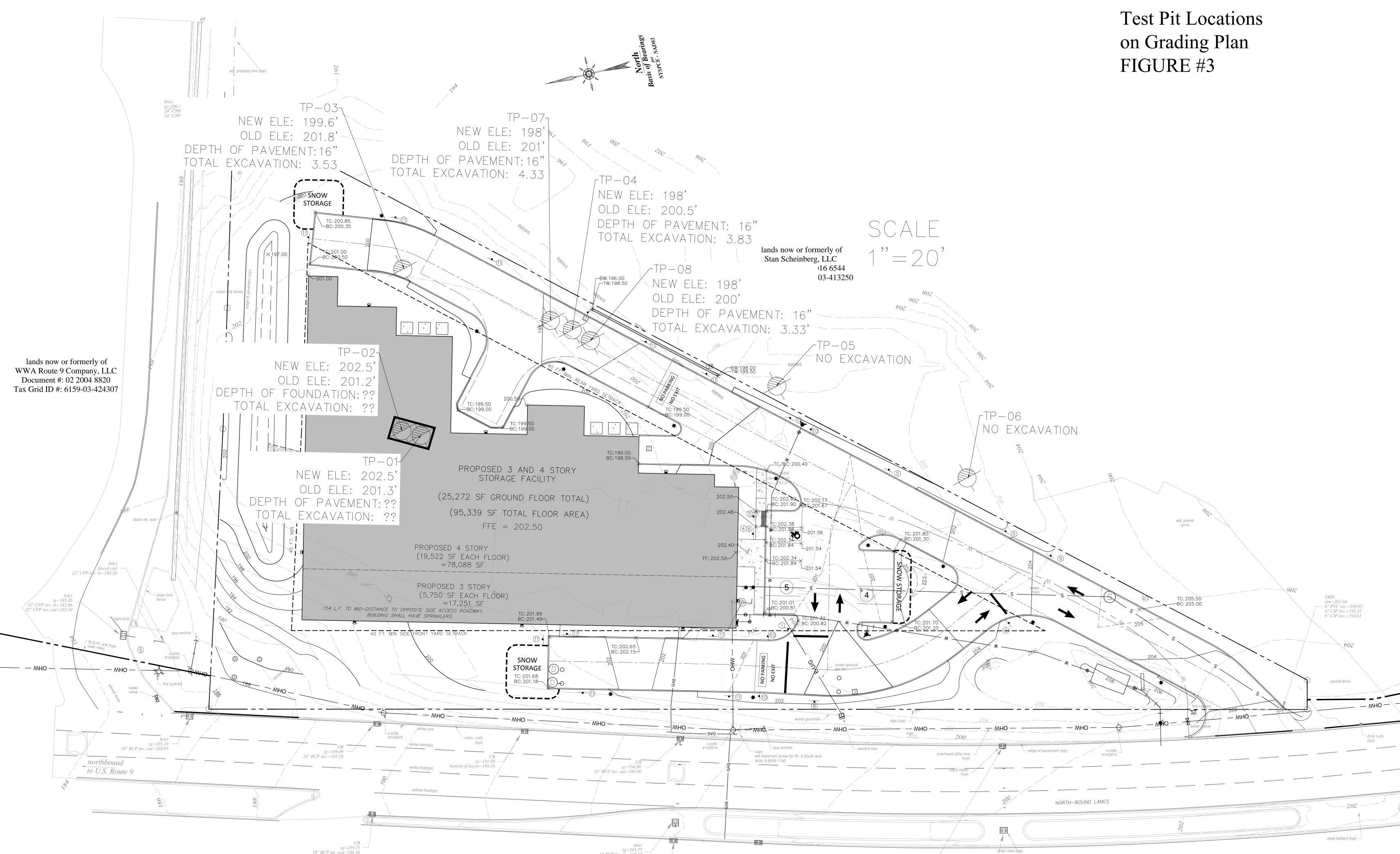

Report Prepared By:

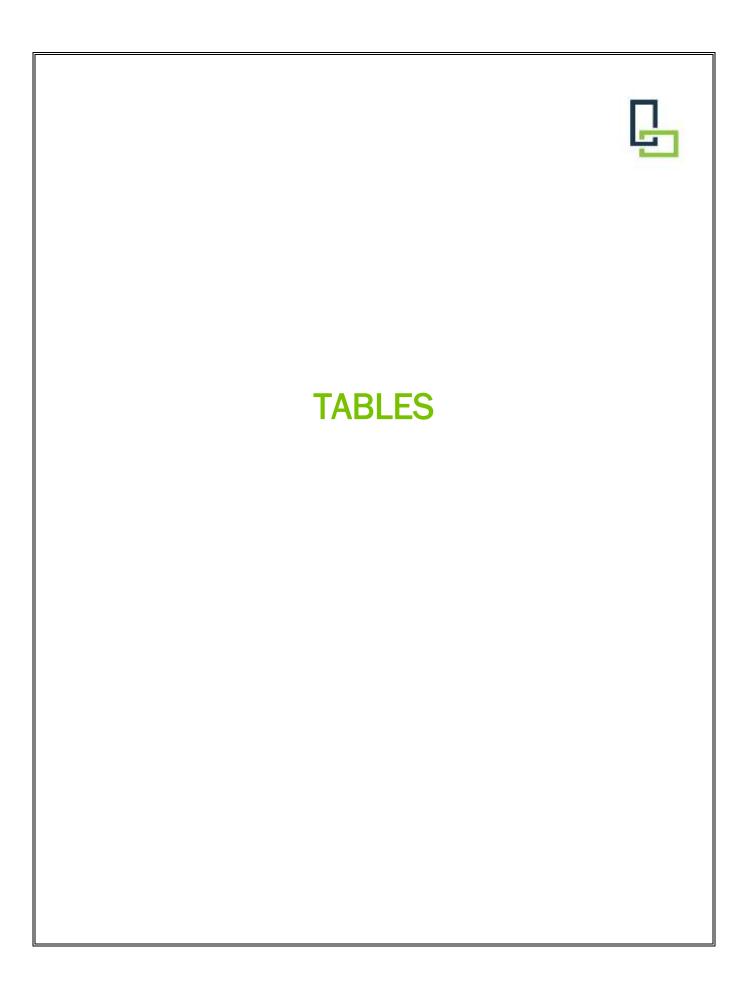

Eric Orlowski, PG Hydrogeologist

Report Reviewed By:

Arlette St. Romain Brownfields Program Manager


B:\CHAZEN\2022PROJECTS\GLASER WEIL\CA42178.01 - SISTER SERVANTS PH II\11_REPORTS\PHASE II REPORT





33.00

GPR Anomaly TP-02 **TP-03** TP-01 TP-07 **TP-04** TP-08 Approximate Area of 9 9 Buried Building Material Debris **TP-05 TP-06**

Table 1 Soil Sample Results Summary 1998 South Road, Poughkeepsie, Dutchess County, NY LaBella Project No. CZ82133.00

Sample ID	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375		OR-TP-03 (2)	OR-TP-04 (2)	OR-TP-08 (3)
York ID	Restricted Use Soil	Restricted Use Soil	Restricted Use Soil	Restricted Use Soil	NYSDEC Part 375	22E0326-01	22E0326-02	22E0326-03
Sampling Date Client Matrix	Cleanup Objectives-	Cleanup Objectives-	Cleanup Objectives -	Cleanup Objectives-	Unrestricted Use Soil Cleanup Objectives	5/5/2022 10:00 Soil	5/5/2022 10:30 Soil	5/5/2022 13:00 Soil
Compound	Industrial	Commercial	Restricted Residential	Residential	Cleanup Objectives	Result Q	Result Q	Result Q
Volatile Organics, CP-51 (fo	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor 1,2,4-Trimethylbenzene	380	190	52	47	3.6	1 ND	1 ND	1 ND
1,2,4-Trimethylbenzene	380	190	52	47	3.6 8.4	ND	ND	ND
Benzene	89	44	4.8	2.9	0.06	ND	ND	ND
Ethyl Benzene	780	390	41	30	1	ND	ND	ND
Isopropylbenzene	~	~	~	~	~	ND	ND	ND
Methyl tert-butyl ether (M1 Naphthalene	1000 1000	500 500	100 100	62 100	0.93 12	ND ND	ND ND	ND ND
n-Butylbenzene	1000	500	100	100	12	ND	ND	ND
n-Propylbenzene	1000	500	100	100	3.9	ND	ND	ND
o-Xylene	1000	500	100	100	0	ND	ND	ND
p- & m- Xylenes p-Isopropyltoluene	~	~	~	~	~	ND ND	ND ND	ND ND
sec-Butylbenzene	1000	500	100	100	11	ND	ND	ND
tert-Butylbenzene	1000	500	100	100	5.9	ND	ND	ND
Toluene Xylenes, Total	1000 1000	500 500	100 100	100 100	0.7 0.26	ND ND	ND ND	ND ND
Semi-Volatiles, CP-51 (form	mg/Kg	mg/Kg	mg/Kg	mg/Kg	0.26 mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						10	10	2
Acenaphthene	1000	500	100	100	20	0.075 J	ND	ND
Acenaphthylene	1000	500	100	100	100	0.32	0.24 J	0.13
Anthracene	1000	500	100	100	100	0.64	ND	0.13
Benzo(a)anthracene	11	5.6	1	1	1	4.3	0.54	0.40
Benzo(a)pyrene	1.1	1	1	1	1	5.9	0.41 J	0.36
Benzo(b)fluoranthene	11	5.6	1	1	1		0.41 J	0.24
. ,						<u>5.6</u>		
Benzo(g,h,i)perylene	1000	500	100	100	100	2.9	0.28 J	0.23
Benzo(k)fluoranthene	110	56	3.9	1	0.8	<u>5.2</u>	0.34 J	0.28
Chrysene	110	56	3.9	1	1	<u>5.2</u>	0.53	0.45
Dibenzo(a,h)anthracene	1.1	0.56	0.33	0.33	0.33	1.1	ND	0.11
Fluoranthene	1000	500	100	100	100	11	1.1	0.73
Fluorene	1000	500	100	100	30	0.18	ND	ND
Indeno(1,2,3-cd)pyrene	11	5.6	0.5	0.5	0.5	<u>2.7</u>	ND	0.21
Naphthalene	1000	500	100	100	12	ND	ND	ND
Phenanthrene	1000	500	100	100	100	2.9	ND	0.27
Pyrene	1000	500	100	100	100	6.5	1.10	0.61
Metals, NYSDEC Part 375	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1
Arsenic	16	16	16	16	13	7.34	9.09	11.4
Barium	10000	400	400	350	350	58.7	76.2	108
Beryllium Cadmium	2700 60	590 9.3	72 4.3	14 2.5	7.2	0.571 ND	0.511 ND	0.381 ND
Chromium	6800	9.3 1500	4.3	36	30	18.0	22.7	25.7
Copper	10000	270	270	270	50	32.1	40.3	76.8
Lead	3900	1000	400	400	63	45.2	79.9	93.6
Manganese	10000	10000	2000	2000	1600	863	759	920
Mercury	5.7	2.8	0.81	0.81	0.18	0.0620	0.654	0.122
Nickel	10000	310	310	140	30	26.3	29.1	28.6
Selenium	6800	1500	180	36	3.9	ND	ND	ND
Silver	6800	1500	180	36	2	ND	ND	ND
Zinc	10000	10000	10000	2200	109	82.4	167	333
Total Solids						%	%	%
Dilution Factor						1	1	1
% Solids	~	~	~	~	~	86.1	85.3	82

NOTES:

Exceedences of 6NYCRR Soil Cleanup Objectives for Unrestricted Use (UUSCOs) are highlighted

Q is the Qualifier Column with definitions as follows:

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

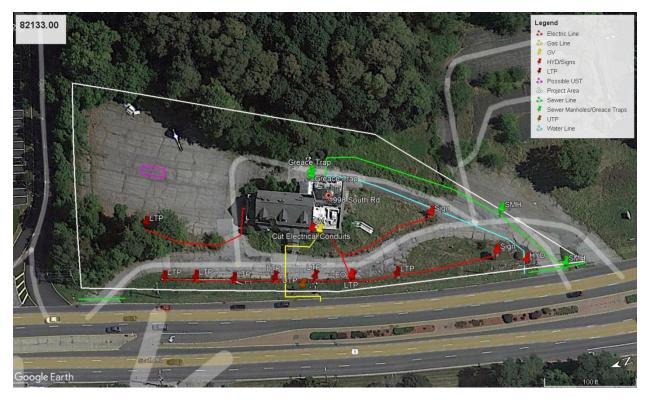
 \sim =this indicates that no regulatory limit has been established for this analyte

APPENDIX 1

Subsurface Utility Mark Out Report

Project # 82133.00

Project Name: Diamond Point Dev'l

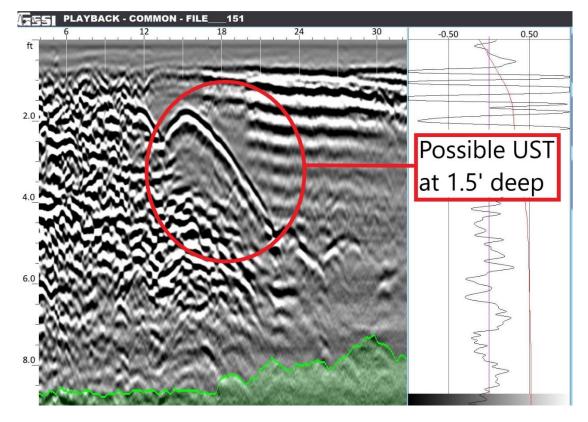

Site Location: 1998 South Rd Poughkeepsie, NY

Technician: Joseph Federico

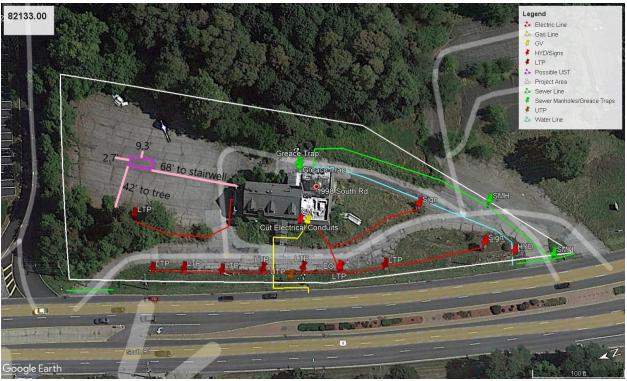
Date Performed: 4/20/22

Scope: The scope of this project was to search for UST's (Underground Storage Tanks) and utilities on in the project area.

GPR Findings: GPR located evidence of 1 possible UST and multiple utilities.


Project Site Picture

Septic Pictures/Descriptions



Above is the picture of the possible UST.

Below is the GPR data screenshot of the possible UST at 1.5' deep.

UST Dimensions Picture

APPENDIX 2

Field Logs

	aBella wered by partnership. ctor: Core Dow	12601	keepsie,	NY	PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 Start Date: 5/5/2022	Test Pit No.:TP-01Total Depth:2Total Length:3.5ft.
Excava Opera	ator: Kubota L ator: Joe Bellu ctor: Eric Orlov	C50 Icci	9		Start Date:5/5/2022Northing:Finish Date:5/5/2022Easting:El. Datum:Longitude:G.S. Elevation:0.00Latitude:	Total Length:3.511.Total Width:2ft.Depth to Water:NAft.Depth to Rock:2ft.
Depth (Feet)	Elevation (Feet)	Sample No.	PID (ppm)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comments:
1	-1		-		2" Asphalt Concrete 2" crushed stone base	
2			- <1		Brown silty fine sand, some sub-rounded gravel/cobbles dry, NOSOI	s/boulders,
2	-2				End of Test Pit at 2.0 feet bgs, due to refusal on app	parent
3	-3				bedrock. Groundwater not encountered.	
4	-4					
5	-5					
6	-6					
7	-7					
8						
9	-9					
10	-10					
11	-11					
12	-12					
13	-13					
14	-14					
15	-15					
16	-16					
17	-17					
18	-18					
19	-19					
20	-20					
					ation of Subsurface Logs" for additional symbology and ab accordance with ASTM D-2488 unless otherwise noted.	breviation definitions.
ADDIT	FIONAL NOTES		-100 0103			

TEST PIT RECORD TEST PIT ID: ____TP-01____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
	Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTA	LLATION:	5/5/2022
TIME START:	0920	
TIME END:	0930	
EXCAVAIE <u>D BY</u>	: Joe Bel	lucci

TEST PIT COORDINATES:

GEOLOGIST: Eric Orlowski, PG

.....

Sketch Map of Test Pit Profile (ELEVATION)

 Asphalt concrete
 Grade

 Crushed stone base
 North

 South
 Silty brown fine sand, sub-rounded

 Gravel/cobbles/boulders
 North

 Grey limestone bedrock
 Image: State Stat

Notes:

	aBella wered by partnership.	Pough 12601	Street keepsie,	NY	PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00	Test Pit No.: Total Depth:	TP-02
Excava Opera	ctor: Core Dov ator: Kubota L ator: Joe Bellu ctor: Eric Orlov	C50 Icci	g		Start Date:5/5/2022Northing:Finish Date:5/5/2022Easting:El. Datum:Longitude:G.S. Elevation:0.00Latitude:	Total Length: Total Width: Depth to Water: Depth to Rock:	3.5 ft. 2 ft. NA ft. 3.5 ft.
Depth (Feet)	Elevation (Feet)	Sample No.	PID (ppm)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comme	nts:
1	-1		_		2" Asphalt Concrete 2" crushed stone base	n 1	
2	-2		< 1		Brown silty fine sand, some sub-rounded gravel/cobbles/boulders,		
3	-3		_		dry, NOSOI		
4	-4				End of Test Pit at 3.5 feet bgs, due to refusal on apparent bedrock. Groundwater not encountered.		
5	-5						
6	-6						
7	-7						
8	<u>-8</u> 						
9 10	<u>-10</u>						
11	-11						
12	-12						
13	-13				•		
14	-14						
15	-15						
16	-16						
17	-17						
18							
19	-19						
	-20 NDARD NOTES	2. Sam			ation of Subsurface Logs" for additional symbology and abbreviation c accordance with ASTM D-2488 unless otherwise noted.	lefinitions.	

TEST PIT RECORD TEST PIT ID: ____TP-02____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
	: Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTALL	ATION:	5/5/2022
TIME START:	0845	
TIME END:	0900	
EXCAVATED BY:	Joe Bellu	ICCI

TEST PIT COORDINATES:

GEOLOGIST: Eric Orlowski, PG

Sketch Map of Test Pit Profile (ELEVATION)

									Asphalt, stone base								Grade										
TP-01 South									Brc					with .ders		vel,			TP	-02			North				
			L	_ime	estc	one																					
																	Lim	esto	one								
Sample ID							De (f		rtica	l Sc	ale:	1" =				amp İng, G					tes, e	etc)					
	NONE																										

Notes:

g g <thg< th=""> <thg< th=""> <thg< th=""></thg<></thg<></thg<>	Contrac Excava Opera	ed by partnership. tor: Core Dov tor: Kubota L tor: Joe Bellu tor: Joe Bellu	12601 wn Drilling .C50 ucci	keepsie,	NY	PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 Start Date: 5/5/2022 Finish Date: 5/5/2022 El. Datum: Longitude: G.S. Elevation: 0.00	Test Pit No.:TP-03Total Depth:5Total Length:6ft.7Total Width:2pepth to Water:NADepth to Rock:NAft.
1 -1 Brown sity fine sand to sandy sit, little gravel and cobbles, few brick/mortar and aphalt fragments. dry. Soil Sample at 2' bgs. 3 -3 <1 Brown sity fine sand to sandy sit, little sub-rounded gravel, and cobbles, few builders, dry. NOSOI Soil Sample at 2' bgs. 4 -4 Brown sity fine sand to sandy sit, little sub-rounded gravel, cobbles and cobbles, few builders, dry. NOSOI Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI 5 -5 Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI 6 -6 Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI 7 -7 -6 Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI 9 -9 -6 Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI Brown sity fine sand with sub-rounded gravel, cobbles and builders, dry. NOSOI 10 -10 -10 -10 -11 -11 12 -12 -12 -13 -13 -13 16 -16 -					ة م		Depth to Rock: NA ft.
2 -2 -2 Soil Sample at 2' bgs. 3 -3 -4 Brown sitty fine sand to sandy sit, little sub-rounded gravel and cobbles, few boulders, dry, NOSOI Soil Sample at 2' bgs. 4 -4 Brown sitty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI Brown sitty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI Brown sitty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI 6 -6 - End of Test Pit at 50 feet bgs, refusal not encountered. 7 -7 - - 8 -8 - - 9 -9 - - 10 -10 - - 11 -11 - - 12 -12 - - 13 -13 - - 14 -14 - - 15 -15 - - 16 -16 - - 17 -17 - - 18 -18 - - 19 -39 - - 20 - <td< th=""><th>Deptŀ (Feet)</th><th>Eleva (Feet)</th><th>Samp</th><th>(mqq)</th><th>Group Symb</th><th></th><th>Field Notes, Comments:</th></td<>	Deptŀ (Feet)	Eleva (Feet)	Samp	(mqq)	Group Symb		Field Notes, Comments:
2 -2 Soit Sample at 2' bgs. 3 -3 <1	1	-1		-			
3 -3	2	-2				brick/mortar and asphalt fragments, dry.	Soil Sample at 2' bgs.
4 -4 Brown sitly fine sand with sub-rounded gravet, cobbles and boulders, dry, NOSOL 5 -5 Brown sitly fine sand with sub-rounded gravet, cobbles and boulders, dry, NOSOL 6 -6 Brown sitly fine sand with sub-rounded gravet, cobbles and boulders, dry, NOSOL 7 -7 Brown sitly fine sand with sub-rounded gravet, cobbles and bounders, dry, NOSOL 8 -6 Brown sitly fine sand with sub-rounded gravet, cobbles and bounders, dry, NOSOL 9 -7 Brown sitly fine sand with sub-rounded gravet, cobbles and bounders, dry, NOSOL 9 -7 Brown sitly fine sand with sub-rounded gravet, cobbles and bounders, dry, NOSOL 9 -7 Brown sitly fine sand with sub-rounded gravet, cobbles and bounders, dry, NOSOL 9 -9 Gravet, and the countered. 10 -10 Gravet, and the countered. 11 -11 Here is the integration of subsurface Logs' for additional symbology and abbreviation definitions. 13 -12 -12 14 -14 -16 15 -16 -16 16 -17 -17 18 -18 -19 20 -20 -20 STANDARD	3	-3		< 1			
5 -5 boulders. dry. NOSOL 6 -6 -6 7 -7 -6 8 -8 -8 9 -9 -6 10 -10 -7 11 -11 -11 12 -12 -11 13 -13 -11 14 -14 -11 15 -15 -16 16 -16 -16 17 -17 -17 18 -18 -19 19 -19 -10 20 -20 -20	4	-4		-			III
End of Test Pit at 50 feet bgs, refusal not encountered. Groundwater not encountered.	_			-			
6 -6 Groundwater not encountered. 7 -7 - 8 -8 - 9 -9 - 10 -10 - 11 -11 - 12 -12 - 13 -13 - 14 -14 - 15 -15 - 16 -16 - 17 -17 - 18 -18 - 19 -19 - 20 -20 - STANDARD NOTES: 1. Refer to the 'Interpretation of Subsurface Logs' for additional symbology and abbreviation definitions.	5	-5					-
8 8 9 -9 10 -10 11 -11 12 -12 13 -13 14 -14 15 -15 16 -16 17 -17 18 -18 19 -19 20 -20	6	-6					
9 -9 -9 10 -0 -10 11 -11 -11 12 -12 -12 13 -13 -11 14 -14 -14 15 -15 -16 16 -16 -16 17 -17 -17 18 -18 -19 19 -19 -10 20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	7	-7					
10 -10 -10 11 -11 -11 12 -12 -12 13 -13 -13 14 -14 -14 15 -15 -16 16 -16 -16 17 -17 -18 18 -18 -19 20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	8	-8					
11 -11 12 -12 13 -13 14 -14 15 -15 16 -16 17 -17 18 -18 19 -19 20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	9	-9					
12 -12 13 -13 14 -14 15 -15 16 -16 17 -17 18 -18 19 -19 20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	10	-10					
13 -13 -13 14 -14 -14 15 -15 -16 16 -16 -16 17 -17 -17 18 -18 -19 19 -19 -19 20 -20 -20	11	-11					
14 -14 1 15 -15 1 16 -16 1 17 -17 1 18 -18 1 19 -19 1 20 -20 1 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	12	-12					
15	13	-13					
16 -16 - 17 -17 - 18 -18 - 19 -19 - 20 -20 - STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	14	-14					
17 -17 -17 18 -18 -18 19 -19 -19 20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	15	-15					
18 -18 -18 19 -19 -19 20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	16	-16					
19 -19 -19 20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	17	-17					
20 -20 -20 STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	18	-18					
STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	19	-19					
STANDARD NOTES: 1. Refer to the "Interpretation of Subsurface Logs" for additional symbology and abbreviation definitions.	20	-20					
2. Samples classified in accordance with ASTM D-2488 unless otherwise noted. ADDITIONAL NOTES:	STAN		2. Samp				definitions.

TEST PIT RECORD TEST PIT ID: ____TP-03_____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
	1998 Route 9
CITY/TOWN:	Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTAL	LATION:	5/5/2022
TIME START:	0950 -	
TIME END:	1010	
EXCAVATED BY:	Joe Bell	ucci

TEST PIT COORDINATES:

GEOLOGIST: Eric Orlowski, PG

		a										Grad	e	
		brown												
West	gravel/	gravel/cobbles, few brick/mortar/asphalt East Silty brown fine sand to sandy silt, little gravel/cobbles, few boulders												
	Silty bro	wn fine s	sand with	h grave	el/cok	obles	s/bou	lders						
					-									
		ortical	Scolor	1" _			Foot		ļ					Ĺ
Sample ID Dep			Vertical Scale: 1" = 2 Feet Depth Sample Disposition (ft) (Field Screening, GC, Lab, Analyses, Notes, etc) 2 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals											
				LAD		01	• • • •	5, 01	91.94	000	, i ui	1375	fictat	

Pow Pow	aBella vered by partnership. ctor: Core Dov	12601	keepsie,	NY	PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 Start Date: 5/5/2022 Northing:	Test Pit No.: TP-04 Total Depth:6Total Length:7ft.
Excava Opera	ator: Kubota L ator: Joe Bellu ctor: Eric Orlo	.C50 ucci	5		Finish Date:5/5/2022Easting:El. Datum:Longitude:G.S. Elevation:0.00	Total Width:2ft.Depth to Water:NAft.Depth to Rock:NAft.
Depth (Feet)	Elevation (Feet)	Sample No.	(mqq)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comments:
1	-1		_		Brown silty fine sand to sandy silt, little gravel and cobbles, dry, NOSOI.	
2	-2		_		Brown silty fine sand to sandy silt, little sub-rounded gravel and	Soil Sample at 2' bgs.
3	-3		- <1		cobbles. Significant building material debris: concrete curb stops, brick, clay pipe, insulation, plaster, ceramic tiles/grout, roofing	
4	-4		-		material (approx. 16" layer), wood, scrap steel, glass, plastic	
5	-5		-		Brown silty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI.	
6	-6		-		End of Test Pit at 6.0 feet bgs, refusal not encountered.	4
7	-7				Groundwater not encountered.	
8	-8					
9	-9					
10	-10					
11 12	-11 					
13	-13					
- <u>5</u> 14	-14					
15	-15					
16	-16					
17	-17					
18	-18					
19	-19					
20	-20		(to the "			definitions
		2. Samp	oles class	sified in	ation of Subsurface Logs" for additional symbology and abbreviation of accordance with ASTM D-2488 unless otherwise noted. on surface: cardboard, paper, empty botttles.	aenn nuons.

TEST PIT RECORD

TEST PIT ID: ____TP-04_____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
CITY/TOWN	: Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTAL	LATION:	5/5/2022
TIME START:	1020	
TIME END:	1050	
EXCAVATED BY:	Joe Bell	UCCI

TEST PIT COORDINATES: ______ GEOLOGIST: Eric Orlowski, PG

Sketch Map of Test Pit Profile (ELEVATION)

Silty brown f. sand w/gravel/ cobbles. Significant building material debris. East Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand material debris. Image: Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders <t< th=""><th></th><th></th><th>— Sil</th><th>ty brow</th><th>vn fine</th><th>e sanc</th><th>l to sa</th><th>ndy si</th><th>ilt, lit</th><th>lle gra</th><th>avel/c</th><th>obble</th><th>es</th><th></th><th></th><th>G</th><th>ade</th></t<>			— Sil	ty brow	vn fine	e sanc	l to sa	ndy si	ilt, lit	lle gra	avel/c	obble	es			G	ade
Vertical Scale: 1" = 2 Feet Sample ID Image: Constraint of the second seco	We	est	cobbles. Significant building material debris. Silty brown f. sand								East						
(ft) (Field Screening, GC, Lab, Analyses, Notes, etc) OR-TP-04 (2') 2 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals			Silty	' brow	n fine	e san	d with	n grav	vel/	cobb	les/b	ould	ers				
(ft) (Field Screening, GC, Lab, Analyses, Notes, etc) OR-TP-04 (2') 2 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals																	
Building Materials 1 - 4 LAB - NYS Bulk Asbestos Analyses				Jepth (ft)	tical S	Scale		(Fie	eld Sc	reenin	g, GC, L	ab, Ar	nalyse	s, Noi	tes, et rt 37	<i>с)</i> 5 Ме	tals
	Building Mat	erials		1 - 4				L	AB -	NYS	Bulk	Asbe	estos	s Ana	alyse	ès	

	aBella ered by partnership.	21 Fox Poughl 12601	Street keepsie,	NY	 PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 	Test Pit No.: TP-05 Total Depth: 6 ^{ft.}
Excava Opera	ctor: Core Dov ator: Kubota L ator: Joe Bellu ctor: Eric Orlov	C50 Icci	g		Start Date:5/5/2022Northing:Finish Date:5/5/2022Easting:El. Datum:Longitude:G.S. Elevation:0.00Latitude:	Total Length:7ft.Total Width:2ft.Depth to Water:NAft.Depth to Rock:NAft.
Depth (Feet)	Elevation (Feet)	Sample No.	PID (ppm)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comments:
1	-1					
2	-2				Brown silty fine sand to sandy silt, little sub-rounded gravel and	
3	-3				cobbles, dry, NOSOI. Approximate 12-inch thick layer of gravelly fine	
4	-4		- <1		to coarse sand noted in northeast end of pit from 1-2 feet bgs.	
5	-5		-			
6			-		Brown silty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI.	n
					End of Test Pit at 6.0 feet bgs, refusal not encountered. Groundwater not encountered.	
7	-7					
8	-8					
9	-9					
10	-10					
11	-11					
12	-12				-	
13	-13					
14	-14					
15	-15					
16	-16					
17	-17					
18	-18					
19	-19					
20	-20					
STAN	NDARD NOTES			-	ation of Subsurface Logs" for additional symbology and abbreviation c accordance with ASTM D-2488 unless otherwise noted.	lefinitions.
ADDIT	IONAL NOTES		- 100 0100.			

TEST PIT RECORD TEST PIT ID: ____TP-05_____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
	Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTALL	_ATION:	5/5/2022
TIME START:	1105	
TIME END:	1120	
EXCAVATED BY:	Joe Belli	JCCI

TEST PIT COORDINATES:

Notes:

GEOLOGIST: Eric Orlowski, PG

			Grade 🖈
		-	
Northeast	Gravelly sand	Southwest	
Northeast		L Silty brown fine sand to	Southwest
		sandy silt, little sub-rounded	
		gravel and cobbles	
	Silty brown fine	e sand with gravel/cobbles/boulders	
	Vertical S	cale [,] 1" = 2 Feet	
Sample ID		cale: 1" = 2 Feet Sample Disposition	n
NONE	(ft)	(Field Screening, GC, Lab, Analyses,	, Notes, etc)
INGINE			

Sketch Map of Test Pit Profile (ELEVATION)

Pov	aBella wered by partnership.	21 Fox : Poughl 12601	Street keepsie,	NY	 PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 	Test Pit No.: Total Depth:	TP-06
Excav Oper	ctor: Core Dov ator: Kubota L ator: Joe Bellu ctor: Eric Orlov	.C50 Icci	g		Start Date:5/5/2022Northing:Finish Date:5/5/2022Easting:EL. Datum:Longitude:G.S. Elevation:0.00Latitude:	Total Length: Total Width: Depth to Water: Depth to Rock:	7 ft. 2 ft. NA ft. NA ft.
Depth (Feet)	Elevation (Feet)	Sample No.	PID (ppm)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comme	nts:
1	-1		-		Brown fine to medium sand, little to some sub-rounded gravel and		
2	-2		-		cobbles, dry, NOSOI	n	
			-				
3	-3		< 1		Brown silty fine sand to sandy silt, some sub-rounded gravel, little		
4	-4		-		sub-rounded cobbles and boulders, dry, NOSOI.		
5	-5		-				
6	-6		-				
7	7				End of Test Pit at 6.0 feet bgs, refusal not encountered. Groundwater not encountered.		
8	-8						
9	-9						
10	-10						
11	-11				-		
12	-12						
13	-13						
14	-14						
15	-15						
16	-16						
17							
18	-18						
19	-19						
20	-20						
					Lation of Subsurface Logs" for additional symbology and abbreviation c	lefinitions.	
ADDIT	FIONAL NOTES		DIES CLAS	Siried in	accordance with ASTM D-2488 unless otherwise noted.		

TEST PIT RECORD TEST PIT ID: ____TP-06_____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
CITY/TOWN	: Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTALLA	ATION:	5/5/2022
TIME START:	1130 -	
TIME END:	1145	
EXCAVATED BY:	Joe Belli	JCCI

TEST PIT COORDINATES: ______ GEOLOGIST: Eric Orlowski, PG

Sketch Map of Test Pit Profile (ELEVATION)

		West			Bro	wn fi		o me grav			e to s	som	e				G East	rade	×	
				 Bro' 	wn si	ty fir.		ind t obb			ne gi	rave	≥l, lit	tle						
Sample ID NONE					Ve Depth (ft)	rtica 1	LSca	le: 1'		Fee Si	t amp ing, Go	le D C, La)ispc b, An	ositio alyse	on es, Noi	tes, ei	tc)			-
otes:																				

21 Fox Street Powered by partnership. Powered by partnership. Powered by partnership. Poughkeepsie, NY 12601 Contractor: Core Down Drilling				NY	PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 Start Date: 5/5/2022 Northing:	Test Pit No.: TP-07 Total Depth:6ft.Total Length:7
Excava Opera	ator: Kubota Lu ator: Joe Bellu ctor: Eric Orlov	C50 Icci	9		Finish Date:5/5/2022Finish Date:El. Datum:Longitude:G.S. Elevation:0.00	Total Width:2ft.Depth to Water:NAft.Depth to Rock:NAft.
Depth (Feet)	Elevation (Feet)	Sample No.	(mqq)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comments:
1	-1		-			
2	-2		-			
3	-3		- <1		Brown silty fine sand to sandy silt, some sub-rounded gravel,	
4	-4		_		cobbles and boulders, dry, NOSOI	
5	-5		_			
6	-6		-		End of Test Pit at 6.0 feet bgs, refusal not encountered.	_
7	-7				Groundwater not encountered.	
8	-8					
9	-9					
10	-10					
11	-11					
12	-12					
13	-13					
14	-14					
15	-15					
16	-16					
17	-17					
18	-18					
19	-19					
20 STAN	-20 NDARD NOTES	: 1. Refer	r to the "li	nterpret	ation of Subsurface Logs" for additional symbology and abbreviation	n definitions.
	IONAL NOTES	2. Samp			accordance with ASTM D-2488 unless otherwise noted.	

TEST PIT RECORD TEST PIT ID: ____TP-07____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
CITY/TOWN	Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTALL	ATION:	5/5/2022
TIME START:	1230	
TIME END:	1245	
EXCAVATED BY:	Joe Belli	JCCI

TEST PIT COORDINATES:

GEOLOGIST: Eric Orlowski, PG

	Grade
West	Brown silty fine sand to sandy silt, some gravel/cobbles/boulders
Sample ID NONE	Vertical Scale: 1" = 2 Feet Output Image: 1 the state of the sta
es:	Image: Constraint of the second of

Sketch Map of Test Pit Profile (ELEVATION)

21 Fox Street Powered by partnership. 21 Fox Street Poughkeepsie, NY 12601 Contractor: Core Down Drilling					PROJECT: Former OSHO Restaurant LOCATION: 1998 Route 9, Poughkeepsie, NY CLIENT: Diamond Development PROJECT NO.: CZ82133.00 Start Date: 5/5/2022	Test Pit No.: TP-08 Total Depth: 6 ft. Total Length: 7 ft.		
Excavator: Kubota LC50 Operator: Joe Bellucci Inspector: Eric Orlowski, PG					Finish Date:5/5/2022Easting:El. Datum:Longitude:G.S. Elevation:0.00	Total Width:2ft.Depth to Water:NAft.Depth to Rock:NAft.		
Depth (Feet)	Elevation (Feet)	Sample No.	(mqq)	Group Symbol	Stratum and Field Descriptions:	Field Notes, Comments:		
1	-1		-		Brown silty fine sand to sandy silt, little gravel and cobbles, dry, NOSOI.			
2	-2				Brown silty fine sand to sandy silt, little sub-rounded gravel and			
			-		cobbles. Significant building material debris: vinyl sheeting/flooring, formica, cove base, wallboard, ceramic tiles, grout, mastics,	Soil Sample at 3' bgs.		
3	-3		< 1		wallpaper, slates with leveling compound, insulation, wood, scrap	Son Sample at 3 bys.		
4	-4		-		copper/steel, glass, plastic			
5	-5		1		Brown silty fine sand with sub-rounded gravel, cobbles and boulders, dry, NOSOI.			
6	-6		1			-		
7	7				End of Test Pit at 6.0 feet bgs, refusal not encountered. Groundwater not encountered.			
8								
9	-9							
10	-10							
11	-11							
12	-12							
13	-13							
14								
15	-15							
-0 16	-16							
17								
18	-18							
19	-19							
20 STAN			to the "	ntorner	ation of Subsurface Logs" for additional sumbalance and abbreviations	ofinitions		
		2. Samp	oles class	sified in	ation of Subsurface Logs" for additional symbology and abbreviation c accordance with ASTM D-2488 unless otherwise noted. on surface: cardboard, paper, empty botttles.	lennillons.		
			-					

TEST PIT LOG

TEST PIT RECORD TEST PIT ID: ____TP-08_____ PROFILE ID: _____

PROJECT:	Former OHSO Resturant
SITE:	1998 Route 9
CITY/TOWN	: Poughkeepsie
COUNTY:	Dutchess
STATE:	New York

PROJECT NO.	CZ82133.00	
DATE OF INSTALL	ATION:	5/5/2022
TIME START:	1255	
TIME END:	1320	
EXCAVATED BY:	Joe Belli	JCCI

TEST PIT COORDINATES:

GEOLOGIST: Eric Orlowski, PG

Sketch Map of Test Pit Profile (ELEVATION)

West Silty brown f. sand w/gravel/ cobbles. Significant building material debris. East Silty brown f. sand w/gravel/cobbles Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Image: Silty brown f. sand w/gravel/cobbles Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Image: Silty brown fine sand with gravel/cobbles/boulders Sample ID Image: Silty brown fine sand with gravel/cobs, Silty		Silty brown fine sand to sandy silt, litlle gravel/cobbles
Vertical Scale: 1" = 2 Feet Sample ID Image: Control of the second	West	cobbles. Significant building material debris.
(ft) (Field Screening, GC, Lab, Analyses, Notes, etc) OR-TP-08 (2') 3 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals		Silty brown fine sand with gravel/cobbles/boulders
(ft) (Field Screening, GC, Lab, Analyses, Notes, etc) OR-TP-08 (2') 3 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals		Vertical Scale: 1" = 2 Feet
Building Materials 1 - 4 LAB - NYS Bulk Asbestos Analyses		Deptn Sample Disposition (ft) (Field Screening, GC, Lab, Analyses, Notes, etc) 3 LAB - CP-51 VOCs, CP-51 SVOCs, Part 375 Metals
	Building Materials	1 - 4 LAB - NYS Bulk Asbestos Analyses
	S.	

APPENDIX 3

NYS Asbestos Certifications

New York State – Department of Labor

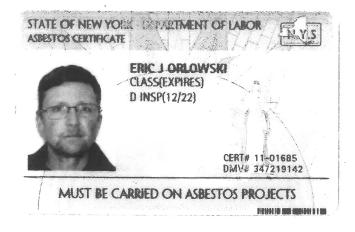
Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240

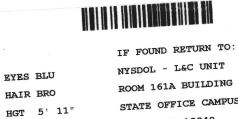
ASBESTOS HANDLING LICENSE

LaBella Associates, D.P.C. Suite 201 300 State Street

Rochester, NY 14614

FILE NUMBER: 99-1172 LICENSE NUMBER: 29278 LICENSE CLASS: RESTRICTED DATE OF ISSUE: 03/30/2022 EXPIRATION DATE: 03/31/2023


Duly Authorized Representative – Greg Senecal:


This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.

This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

SH 432 (8/12)

Amy Phillips, Director For the Commissioner of Labor

01213 006208386 05

NYSDOL - L&C UNIT ROOM 161A BUILDING 12 STATE OFFICE CAMPUS ALBANY NY 12240

APPENDIX 4

Laboratory Reports

NYSDEC's May 24, 2022, email regarding Spill 2201488

Technical Report

prepared for:

LaBella Associates (Poughkeepsie) 21 Fox Street Poughkeepsie NY, 12601 Attention: Eric Orlowski

Report Date: 05/16/2022 Client Project ID: CZ82133.00 FORMER OSHO RESTAURANT York Project (SDG) No.: 22E0326

CT Cert. No. PH-0723 New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 05/16/2022 Client Project ID: CZ82133.00 FORMER OSHO RESTAURANT York Project (SDG) No.: 22E0326

LaBella Associates (Poughkeepsie)

21 Fox Street Poughkeepsie NY, 12601 Attention: Eric Orlowski

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 09, 2022 and listed below. The project was identified as your project: CZ82133.00 FORMER OSHO RESTAURANT.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

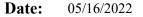
The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
22E0326-01	OR-TP-03 (2)	Soil	05/05/2022	05/09/2022
22E0326-02	OR-TP-04 (2)	Soil	05/05/2022	05/09/2022
22E0326-03	OR-TP-08 (3)	Soil	05/05/2022	05/09/2022

General Notes for York Project (SDG) No.: 22E0326

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.


5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.

- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Och I most

Cassie L. Mosher Laboratory Manager

Client Sample ID:	OR-TP-03 (2)

Client Sample ID: OR-TP-03	3 (2)		York Sample ID:	22E0326-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:00 am	05/09/2022

	organics, CP-51 (formerly STAR	S) List			<u>Log-in </u>]	Notes:		<u>San</u>	<u>iple Note</u>	<u>s:</u>		
CAS No	ed by Method: EPA 5035A D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
95-63-6	1,2,4-Trimethylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
71-43-2	Benzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
100-41-4	Ethyl Benzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
98-82-8	Isopropylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
91-20-3	Naphthalene	ND		mg/kg dry	0.0027	0.011	1	EPA 8260C Certifications:	NELAC-NY	05/11/2022 09:00 ¥10854,NELAC-NY1	05/11/2022 12:47 2058,NJDEP,PADEP	FTR
104-51-8	n-Butylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
103-65-1	n-Propylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
95-47-6	o-Xylene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,PADEF	FTR
179601-23-1	p- & m- Xylenes	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,PADEF	FTR
99-87-6	p-Isopropyltoluene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
135-98-8	sec-Butylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR P,PADEP
98-06-6	tert-Butylbenzene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
108-88-3	Toluene	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR PADEP
1330-20-7	Xylenes, Total	ND		mg/kg dry	0.0027	0.0053	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 12:47 AC-NY12058,NJDEF	FTR
	Surrogate Recoveries	Result		Accep	otance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	99.6 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	113 %			76-130							
Somi Val-	tiles, CP-51 (formerly STARS)	List			Log-in 1	Notes		Som	iple Note	e •		

<u>Semi-Volatil</u>	es, CP-51 (formerly STA	RS) List			Log-in	Notes:		Sample Not	es:		
Sample Prepared b	y Method: EPA 3546 SVOA										
CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEA	RCH DRIVE	STRATFORD, C	T 06615			13	2-02 89th AV	/ENUE	RICHMOND HILL	., NY 11418	
www.YORK	LAB.com	(203) 325-1371				FA	X (203) 357-	-0166	ClientServices@	Page 4	of 26

Client Sample ID: OR-TP-0	3 (2)		York Sample ID:	22E0326-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:00 am	05/09/2022

Sample Prepare CAS No 33-32-9	ed by Method: EPA 3546 SVOA 0. Parameter											
3-32-9		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
	Acenaphthene	0.075	J	mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	КН
				000				Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
08-96-8	Acenaphthylene	0.32		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	КН
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
20-12-7	Anthracene	0.64		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
6-55-3	Benzo(a)anthracene	4.3		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	КН
								Certifications:	CTDOH,NE	LAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	5.9		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	LAC-NY10854,NJD	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	5.6		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	LAC-NY10854,NJD	EP,PADEP	
91-24-2	Benzo(g,h,i)perylene	2.9		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	КН
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
07-08-9	Benzo(k)fluoranthene	5.2		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
218-01-9	Chrysene	5.2		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	1.1		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
206-44-0	Fluoranthene	11		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	0.18		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	KH
								Certifications:	NELAC-NY	10854,NJDEP,PADE	EΡ	
193-39-5	Indeno(1,2,3-cd)pyrene	2.7		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
91-20-3	Naphthalene	ND		mg/kg dry	0.048	0.097	2	EPA 8270D Certifications:	CTDOH,NE	05/12/2022 13:38 LAC-NY10854,NJDI	05/13/2022 12:09 EP,PADEP	КН
85-01-8	Phenanthrene	2.9		mg/kg dry	0.048	0.097	2	EPA 8270D		05/12/2022 13:38	05/13/2022 12:09	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
29-00-0	Pyrene	6.5		mg/kg dry	0.24	0.48	10	EPA 8270D		05/12/2022 13:38	05/16/2022 10:08	KH
								Certifications:	CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	77.9 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	83.4 %			21-113							
1718-51-0	Surrogate: SURR: Terphenyl-d14	91.3 %			24-116							

Metals, NYSDEC Part 375

Log-in Notes:

Sample Notes:

Sample Prepared by Method: I	EPA 3050B								
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DR	IVE	STRATFORD, C	T 06615		132-02 89th AV	/ENUE	RICHMOND HIL	L, NY 11418	
www.YORKLAB.com	ı	(203) 325-1371			FAX (203) 357-	0166	ClientServices@	Page 5	of 26

<u>Client Sample ID:</u> O	R-TP-03 (2)		York Sample ID	<u>:</u> 22E0326-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:00 am	05/09/2022

<u>Metals, N</u>	Metals, NYSDEC Part 375					<u>Log-in Notes:</u>		Sam	Sample Notes:			
Sample Prepa	red by Method: EPA	3050B										
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		7.34		mg/kg dry	1.74	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:49	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-39-3	Barium		58.7		mg/kg dry	2.90	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:49	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-41-7	Beryllium		0.571		mg/kg dry	0.058	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:49	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-43-9	Cadmium		ND		mg/kg dry	0.348	1	EPA 6010D Certifications:	CTDOH N	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:49	RTH
7440-47-3	Chromium		10.0		mg/kg dry	0.591	,	EPA 6010D	CTD011,IV	05/11/2022 10:37	05/12/2022 16:49	RTH
/440-4/-3	Chronnum		18.0		ing/kg dry	0.581	1	Certifications:		UELAC-NY10854,NJD		КІП
7440-50-8	Copper		22.1			2.22		EPA 6010D	CIDOII,F	05/11/2022 10:37	05/12/2022 16:49	RTH
/440-30-8	Copper		32.1		mg/kg dry	2.32	1	Certifications:		UELAC-NY10854,NJD		КІП
7439-92-1	Lead		45.0		ma/Ira dari	0.501		EPA 6010D	CIDOII,I	05/11/2022 10:37	05/12/2022 16:49	RTH
/439-92-1	Leau		45.2		mg/kg dry	0.581	1	Certifications:	CTDOHN	UELAC-NY10854,NJD		КІП
7439-96-5	Manganese		9(2			0.501		EPA 6010D	CIDOII,I	05/11/2022 10:37	05/12/2022 16:49	RTH
/439-90-3	wanganese		863		mg/kg dry	0.581	1	Certifications:		UELAC-NY10854,NJD		KIH
7440.02.0	Nickel							EPA 6010D	CIDOII,F			RTH
7440-02-0	NICKEI		26.3		mg/kg dry	1.16	1	Certifications:		05/11/2022 10:37 IELAC-NY10854,NJD	05/12/2022 16:49	KIH
									CIDOII,F			
7782-49-2	Selenium		ND		mg/kg dry	2.90	1	EPA 6010D Certifications:	CTDOH N	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:49 EP PADEP	RTH
7440-22-4	C:1		ND		ma/Ira dari	0.581	1	EPA 6010D	orboria	05/11/2022 10:37	05/12/2022 16:49	RTH
/ 440-22-4	Silver		ND		mg/kg dry	0.581	1	Certifications:	CTDOH,N	ELAC-NY10854,NJD		КІП
7440-66-6	Zinc		82.4		mg/kg dry	2.90	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:49	RTH
					,			Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

Mercury by 7473					Log-in Notes:		Sample Note	es:
Sample Prepared by Metho	od: EPA 7473 soil							
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	I
7439-97-6 Mercur	y	0.0620		mg/kg dry	0.0348	1	EPA 7473	05/

		Certifications: CTDOH,NJDEP,NELAC-NY10854,PADEP
Total Solids	Log-in Notes:	Sample Notes:
Sample Prepared by Method: % Solids Prep		

CA	S No.	Parameter	Result	Flag	Units	Reported t LOQ	° Dilutior	n Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		86.1		%	0.100	1	SM 2540G		05/11/2022 11:34	05/11/2022 15:11	VR
								Certifications:	CTDOH			

Date/Time Prepared

05/12/2022 12:20

Date/Time Analyzed

05/13/2022 09:38

Analyst

BML

Client Sample ID: OR-TP-04	(2)		<u>York Sample ID:</u>	22E0326-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:30 am	05/09/2022

Volatile Organics, CP-51 (formerly STARS) List					Log-in Notes:			Sample Notes:				
Sample Prepare	ed by Method: EPA 5035A D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
71-43-2	Benzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
100-41-4	Ethyl Benzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR PADEP
98-82-8	Isopropylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
91-20-3	Naphthalene	ND		mg/kg dry	0.0034	0.013	1	EPA 8260C Certifications:	NELAC-N	05/11/2022 09:00 Y10854,NELAC-NY1	05/11/2022 13:14 2058,NJDEP,PADEP	FTR
104-51-8	n-Butylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
103-65-1	n-Propylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
95-47-6	o-Xylene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,PADEI	FTR
179601-23-1	p- & m- Xylenes	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,PADEI	FTR
99-87-6	p-Isopropyltoluene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
135-98-8	sec-Butylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
98-06-6	tert-Butylbenzene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
108-88-3	Toluene	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR P,PADEP
1330-20-7	Xylenes, Total	ND		mg/kg dry	0.0034	0.0067	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:14 AC-NY12058,NJDEF	FTR
	Surrogate Recoveries	Result		Accep	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	99.7 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	114 %			76-130							

Semi-Volatiles, CP-51 (formerly STARS) List

Sample Pre	epared by Method: EPA 3	546 SVOA											
CAS	5 No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene		ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,N	05/12/2022 13:38 ELAC-NY10854,NJDH	05/13/2022 12:40 EP,PADEP	КН
120 F	120 RESEARCH DRIVE		STRATFORD, CT 06615				132-02 89th AVENUE				RICHMOND HILL, NY 11418		
www.	www.YORKLAB.com		(203) 325-1371				FA	X (203) 35	7-0166		ClientServices@	Page 7	of 26

Log-in Notes:

Sample Notes:

Client Sample ID: OR-TP	-04 (2)		York Sample ID:
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:30 am

	ttiles, CP-51 (formerly STARS) I ed by Method: EPA 3546 SVOA	<u>List</u>			<u>Log-in</u>	Notes:		Sample Notes:				
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
208-96-8	Acenaphthylene	0.24	J	mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,N	05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40 DEP,PADEP	КН
120-12-7	Anthracene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJD	05/13/2022 12:40 EP,PADEP	КН
56-55-3	Benzo(a)anthracene	0.54		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,N	05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40 DEP,PADEP	KH
50-32-8	Benzo(a)pyrene	0.41	J	mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,N	05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40 DEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	0.47	J	mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH.N	05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40 DEP.PADEP	KH
191-24-2	Benzo(g,h,i)perylene	0.28	J	mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40	КН
207-08-9	Benzo(k)fluoranthene	0.34	J	mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40	КН
218-01-9	Chrysene	0.53		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40	КН
53-70-3	Dibenzo(a,h)anthracene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 ELAC-NY10854,NJD	05/13/2022 12:40	КН
206-44-0	Fluoranthene	1.1		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40	КН
86-73-7	Fluorene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:		05/12/2022 13:38 Y10854,NJDEP,PADE	05/13/2022 12:40	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJD	05/13/2022 12:40 EP,PADEP	КН
91-20-3	Naphthalene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJD	05/13/2022 12:40 EP,PADEP	КН
85-01-8	Phenanthrene	ND		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJD	05/13/2022 12:40 EP,PADEP	КН
129-00-0	Pyrene	1.1		mg/kg dry	0.24	0.48	10	EPA 8270D Certifications:	CTDOH,N	05/12/2022 13:38 ELAC-NY10854,NJE	05/13/2022 12:40 DEP,PADEP	КН
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	24.4 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	35.6 %			21-113							

Metals, NYSDEC Part 375

Surrogate: SURR: Terphenyl-d14

1718-51-0

Log-in Notes:

Sample Notes:

22E0326-02

Date Received 05/09/2022

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
440-38-2	Arsenic		9.09		mg/kg dry	1.76	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:51	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	ep,padep	
440-39-3	Barium		76.2		mg/kg dry	2.93	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:51	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
120 RE	SEARCH DRIVE		STRATFORD, C	T 06615		132-	-02 89th A	VENUE	F		L, NY 11418	
www.YC	ORKLAB.com		(203) 325-1371			FAX	(203) 35	7-0166	(ClientServices@	Page 8	of 26

24-116

50.4 %

<u>Client Sample ID:</u> OR-TP-04 (2)

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 10:30 am	05/09/2022

York Sample ID:

22E0326-02

Metals, NYSDEC Part 375 Sample Prepared by Method: EPA 3050B			Log-in Notes:		<u>Sam</u> j	ole Note	<u>s:</u>	<u>:</u>				
CAS N		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-41-7	Beryllium		0.511		mg/kg dry	0.059	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51 DEP,PADEP	RTH
7440-43-9	Cadmium		ND		mg/kg dry	0.352	1	EPA 6010D Certifications:	CTDOH,NI	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:51 EP,PADEP	RTH
7440-47-3	Chromium		22.7		mg/kg dry	0.586	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51 DEP,PADEP	RTH
7440-50-8	Copper		40.3		mg/kg dry	2.35	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51 DEP,PADEP	RTH
7439-92-1	Lead		79.9		mg/kg dry	0.586	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854.NJD	05/12/2022 16:51 DEP,PADEP	RTH
7439-96-5	Manganese		759		mg/kg dry	0.586	1	EPA 6010D Certifications:	CTDOH.N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51 DEP.PADEP	RTH
7440-02-0	Nickel		29.1		mg/kg dry	1.17	1	EPA 6010D Certifications:		05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51	RTH
7782-49-2	Selenium		ND		mg/kg dry	2.93	1	EPA 6010D Certifications:		05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:51	RTH
7440-22-4	Silver		ND		mg/kg dry	0.586	1	EPA 6010D Certifications:	CTDOH,NI	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:51 EP,PADEP	RTH
7440-66-6	Zinc		167		mg/kg dry	2.93	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:51 DEP,PADEP	RTH

Mercury	Mercury by 7473					Log-in Notes:		Sample N			
Sample Prepa	ared by Method: El	PA 7473 soil									
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time d Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.654		mg/kg dry	0.0352	1	EPA 7473 Certifications: CTDC	05/12/2022 12:20 H,NJDEP,NELAC-NY108	05/13/2022 10:12 354,PADEP	BML

Total Solids					Log-in Notes:		Sample Not	Sample Notes:				
Sample Prepared by	Method: % Solids Prep											
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
solids * %	% Solids	85.3		%	0.100	1	SM 2540G	05/11/2022 11:34	05/11/2022 15:11	VR		

Sample Information

Client Sample ID: OR-TP-0	8 (3)		York Sample ID:	22E0326-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 1:00 pm	05/09/2022
120 RESEARCH DRIVE	STRATFORD, CT 06615	132-02 89th AVENUE	RICHMOND HILL, NY 1	1/19
120 RESEARCH DRIVE	STRAIFORD, CT 00015	132-02 6911 AVENUE		1410
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientServices@ Pa	age 9 of 26

<u>Client Sample ID:</u> OR-TP-08 (3)		York Sample ID:	22E0326-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 1:00 pm	05/09/2022

	rganics, CP-51 (formerly STAR	<u>S) List</u>			<u>Log-in Notes:</u>			Sample Notes:				
Sample Prepare CAS No	d by Method: EPA 5035A D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
95-63-6	1,2,4-Trimethylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR P,PADEP
71-43-2	Benzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR P,PADEP
100-41-4	Ethyl Benzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
98-82-8	Isopropylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
91-20-3	Naphthalene	ND		mg/kg dry	0.0032	0.013	1	EPA 8260C Certifications:	NELAC-NY	05/11/2022 09:00 ¥10854,NELAC-NY1	05/11/2022 13:42 2058,NJDEP,PADEP	FTR
104-51-8	n-Butylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
103-65-1	n-Propylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
95-47-6	o-Xylene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,PADEF	FTR
179601-23-1	p- & m- Xylenes	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,PADEF	FTR
99-87-6	p-Isopropyltoluene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
135-98-8	sec-Butylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
98-06-6	tert-Butylbenzene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR PADEP
108-88-3	Toluene	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR P,PADEP
1330-20-7	Xylenes, Total	ND		mg/kg dry	0.0032	0.0064	1	EPA 8260C Certifications:	CTDOH,NI	05/11/2022 09:00 ELAC-NY10854,NEL	05/11/2022 13:42 AC-NY12058,NJDEP	FTR
	Surrogate Recoveries	Result		Accep	otance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	98.9 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	110 %			76-130							

Semi-Volatiles,	CP-51 (formerly	STARS) List
Sample Prepared by Me	thad EDA 3	SAC SVOA		

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene		ND		mg/kg dry	0.050	0.099	2	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJDE	05/13/2022 13:11 EP,PADEP	KH
120 RE	SEARCH DRIVE		STRATFORD, C	T 06615			132	-02 89th A	VENUE	F	RICHMOND HILI	L, NY 11418	
www.Yo	ORKLAB.com		(203) 325-1371				FAX	K (203) 35	7-0166	(ClientServices@	Page 10	of 26

Log-in Notes:

Sample Notes:

<u>Client Sample ID:</u> OR-TP-08	(3)		York Sample ID:	22E0326-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 1:00 pm	05/09/2022

	tiles, CP-51 (formerly STARS) I	<u>List</u>			Log-in	Notes:		<u>Sample Notes:</u>				
Sample Prepare CAS No	d by Method: EPA 3546 SVOA Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
208-96-8	Acenaphthylene	0.13		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
120-12-7	Anthracene	0.13		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
56-55-3	Benzo(a)anthracene	0.40		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	0.36		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
205-99-2	Benzo(b)fluoranthene	0.24		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
191-24-2	Benzo(g,h,i)perylene	0.23		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
207-08-9	Benzo(k)fluoranthene	0.28		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
218-01-9	Chrysene	0.45		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	DEP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	0.11		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
206-44-0	Fluoranthene	0.73		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	ND		mg/kg dry	0.050	0.099	2	EPA 8270D Certifications:	NELAC-N	05/12/2022 13:38 Y10854,NJDEP,PADE	05/13/2022 13:11 P	КН
193-39-5	Indeno(1,2,3-cd)pyrene	0.21		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
91-20-3	Naphthalene	ND		mg/kg dry	0.050	0.099	2	EPA 8270D Certifications:	CTDOH,NI	05/12/2022 13:38 ELAC-NY10854,NJDI	05/13/2022 13:11 EP,PADEP	КН
85-01-8	Phenanthrene	0.27		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
129-00-0	Pyrene	0.61		mg/kg dry	0.050	0.099	2	EPA 8270D		05/12/2022 13:38	05/13/2022 13:11	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	62.5 %		-	22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	69.2 %			21-113							
1718-51-0	Surrogate: SURR: Terphenyl-d14	69.8 %			24-116							

Metals, NYSDEC Part 375

Sample Prepared by Method: EPA 3050B

CAS N	o. P	arameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		11.4		mg/kg dry	1.83	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:53	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-39-3	Barium		108		mg/kg dry	3.05	1	EPA 6010D		05/11/2022 10:37	05/12/2022 16:53	RTH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
120 RES	SEARCH DRIVE		STRATFORD, C	T 06615		132	-02 89th A	VENUE		RICHMOND HILI	L, NY 11418	
www.YC	RKLAB.com		(203) 325-1371			FAX	(203) 357	7-0166		ClientServices@	Page 11	of 26

Log-in Notes:

Sample Notes:

<u>Client Sample ID:</u> OR-TP-08	3 (3)		York Sample ID:	22E0326-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
22E0326	CZ82133.00 FORMER OSHO RESTAURANT	Soil	May 5, 2022 1:00 pm	05/09/2022

	NYSDEC Part red by Method: EPA 3					<u>Log-in Notes:</u>		Sam	ple Note	<u>s:</u>		
CAS N		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-41-7	Beryllium		0.381		mg/kg dry	0.061	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 EP,PADEP	RTH
7440-43-9	Cadmium		ND		mg/kg dry	0.366	1	EPA 6010D Certifications:	CTDOH,NI	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:53 EP,PADEP	RTH
7440-47-3	Chromium		25.7		mg/kg dry	0.610	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 DEP,PADEP	RTH
7440-50-8	Copper		76.8		mg/kg dry	2.44	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 EP,PADEP	RTH
7439-92-1	Lead		93.6		mg/kg dry	0.610	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 DEP,PADEP	RTH
7439-96-5	Manganese		920		mg/kg dry	0.610	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 DEP,PADEP	RTH
7440-02-0	Nickel		28.6		mg/kg dry	1.22	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 DEP,PADEP	RTH
7782-49-2	Selenium		ND		mg/kg dry	3.05	1	EPA 6010D Certifications:	CTDOH,NI	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:53 EP,PADEP	RTH
7440-22-4	Silver		ND		mg/kg dry	0.610	1	EPA 6010D Certifications:	CTDOH,NI	05/11/2022 10:37 ELAC-NY10854,NJDI	05/12/2022 16:53 EP,PADEP	RTH
7440-66-6	Zinc		333		mg/kg dry	3.05	1	EPA 6010D Certifications:	CTDOH,N	05/11/2022 10:37 ELAC-NY10854,NJD	05/12/2022 16:53 DEP,PADEP	RTH

Mercury	by 7473					Log-in Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepar	red by Method: EI	PA 7473 soil										
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.122	I	mg/kg dry	0.0366	1	EPA 7473 Certifications:	CTDOH,N.	05/12/2022 12:20 IDEP,NELAC-NY108	05/13/2022 10:19 54,PADEP	BML

<u>Total Sol</u>	<u>lids</u>					<u>Log-in Notes:</u>		Sample Note	es:		
Sample Prepa	ared by Method: % S	olids Prep									
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		82.0		%	0.100	1	SM 2540G Certifications: CTDOH	05/11/2022 11:34	05/11/2022 15:11	VR

Analytical Batch Summary

Batch ID: BE20602	Preparation Method:	EPA 5035A	Prepared By:	FTR
YORK Sample ID	Client Sample ID	Preparation Date		
22E0326-01	OR-TP-03 (2)	05/11/22		
22E0326-02	OR-TP-04 (2)	05/11/22		
22E0326-03	OR-TP-08 (3)	05/11/22		
BE20602-BLK1	Blank	05/11/22		
BE20602-BLK2	Blank	05/11/22		
BE20602-BS1	LCS	05/11/22		
BE20602-BSD1				
Batch ID: BE20626	Preparation Method:	EPA 3050B	Prepared By:	BML
YORK Sample ID	Client Sample ID	Preparation Date		
22E0326-01	OR-TP-03 (2)	05/11/22		
22E0326-02	OR-TP-04 (2)	05/11/22		
22E0326-03	OR-TP-08 (3)	05/11/22		
BE20626-BLK1	Blank	05/11/22		
BE20626-DUP1	Duplicate	05/11/22		
BE20626-MS1	Matrix Spike	05/11/22		
BE20626-PS1	Post Spike	05/11/22		
BE20626-SRM1	Reference	05/11/22		
Batch ID: BE20632	Preparation Method:	% Solids Prep	Prepared By:	VR
YORK Sample ID	Client Sample ID	Preparation Date		
22E0326-01	OR-TP-03 (2)	05/11/22		
22E0326-02	OR-TP-04 (2)	05/11/22		
22E0326-03	OR-TP-08 (3)	05/11/22		
BE20632-DUP1	Duplicate	05/11/22		
Batch ID: BE20710	Preparation Method:	EPA 7473 soil	Prepared By:	BML
YORK Sample ID	Client Sample ID	Preparation Date		
22E0326-01	OR-TP-03 (2)	05/12/22		
22E0326-02	OR-TP-04 (2)	05/12/22		
22E0326-03	OR-TP-08 (3)	05/12/22		
BE20710-BLK1	Blank	05/12/22		
BE20710-DUP1	Duplicate	05/12/22		
BE20710-MS1	Matrix Spike	05/12/22		
BE20710-SRM1	Reference	05/12/22		
Batch ID: BE20722	Preparation Method:	EPA 3546 SVOA	Prepared By:	VS
YORK Sample ID	Client Sample ID	Preparation Date		
22E0326-01	OR-TP-03 (2)	05/12/22		
120 RESEARCH DRIVE				
	STRATFORD, CT 06615	132-02 89th AVENUE	RICHMON	ND HILL, NY 11418

22E0326-01RE1	OR-TP-03 (2)	05/12/22
22E0326-02	OR-TP-04 (2)	05/12/22
22E0326-03	OR-TP-08 (3)	05/12/22
BE20722-BLK1	Blank	05/12/22
BE20722-BS1	LCS	05/12/22
BE20722-MS1	Matrix Spike	05/12/22
BE20722-MSD1	Matrix Spike Dup	05/12/22

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20602 - EPA 5035A											
Blank (BE20602-BLK1)							Prep	ared & Anal	yzed: 05/11/	2022	
1,2,4-Trimethylbenzene	ND	0.0050	mg/kg wet								
1,3,5-Trimethylbenzene	ND	0.0050	"								
Benzene	ND	0.0050	"								
Ethyl Benzene	ND	0.0050	"								
Isopropylbenzene	ND	0.0050	"								
Methyl tert-butyl ether (MTBE)	ND	0.0050	"								
Naphthalene	ND	0.010	"								
n-Butylbenzene	ND	0.0050	"								
n-Propylbenzene	ND	0.0050	"								
o-Xylene	ND	0.0050	"								
p- & m- Xylenes	ND	0.0050	"								
p-Isopropyltoluene	ND	0.0050	"								
sec-Butylbenzene	ND	0.0050	"								
tert-Butylbenzene	ND	0.0050	"								
Toluene	ND	0.0050	"								
Xylenes, Total	ND	0.0050	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	51.7		ug/L	50.0		103	77-125				
Surrogate: SURR: Toluene-d8	49.3		"	50.0		98.5	85-120				
Surrogate: SURR: p-Bromofluorobenzene	54.6		"	50.0		109	76-130				
Blank (BE20602-BLK2)							Prep	ared & Anal	yzed: 05/11/	2022	
1,2,4-Trimethylbenzene	ND	0.50	mg/kg wet								
1,3,5-Trimethylbenzene	ND	0.50	"								
Benzene	ND	0.50	"								
Ethyl Benzene	ND	0.50	"								
Isopropylbenzene	ND	0.50	"								
Methyl tert-butyl ether (MTBE)	ND	0.50	"								
Naphthalene	ND	1.0	"								
n-Butylbenzene	ND	0.50	"								
n-Propylbenzene	ND	0.50	"								
o-Xylene	ND	0.50	"								
p- & m- Xylenes	ND	0.50	"								
p-Isopropyltoluene	ND	0.50	"								
sec-Butylbenzene	ND	0.50	"								
tert-Butylbenzene	ND	0.50	"								
Toluene	ND	0.50	"								
Xylenes, Total	ND	0.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	51.7		ug/L	50.0		103	77-125				
Surrogate: SURR: Toluene-d8	49.4		"	50.0		98.7	85-120				
Surrogate: SURR: p-Bromofluorobenzene	54.8		"	50.0		110	76-130				

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
atch BE20602 - EPA 5035A											
LCS (BE20602-BS1)							Prep	ared & Analy	yzed: 05/11/	2022	
,2,4-Trimethylbenzene	48		ug/L	50.0		96.5	84-125				
,3,5-Trimethylbenzene	48		"	50.0		95.0	82-126				
Benzene	51		"	50.0		101	77-127				
thyl Benzene	49		"	50.0		97.3	84-125				
sopropylbenzene	49		"	50.0		98.0	81-127				
1ethyl tert-butyl ether (MTBE)	51		"	50.0		103	74-131				
laphthalene	50		"	50.0		101	86-141				
Butylbenzene	49		"	50.0		98.4	80-130				
-Propylbenzene	49		"	50.0		97.6	74-136				
-Xylene	49		"	50.0		98.0	83-123				
- & m- Xylenes	100		"	100		99.5	82-128				
-Isopropyltoluene	49		"	50.0		97.7	85-125				
ec-Butylbenzene	48		"	50.0		96.4	83-125				
rt-Butylbenzene	44		"	50.0		87.4	80-127				
bluene	48		"	50.0		95.3	85-121				
urrogate: SURR: 1,2-Dichloroethane-d4	51.7		"	50.0		103	77-125				
urrogate: SURR: Toluene-d8	48.9		"	50.0		97.9	85-120				
urrogate: SURR: p-Bromofluorobenzene	51.1		"	50.0		102	76-130				
CS Dup (BE20602-BSD1)							Prep	ared & Analy	vzed: 05/11/	2022	
2,4-Trimethylbenzene	49		ug/L	50.0		98.4	84-125	<u></u>	1.91	30	
3,5-Trimethylbenzene	49		ug/L "	50.0		96.9	82-126		1.98	30	
enzene	48 51			50.0		90.9 101	77-127		0.375	30	
hyl Benzene	49			50.0		98.1	84-125		0.798	30	
opropylbenzene	50			50.0		101	81-127		2.72	30	
lethyl tert-butyl ether (MTBE)	51			50.0		101	74-131		0.939	30	
aphthalene	50			50.0		99.9	86-141		0.957	30	
Butylbenzene	50			50.0		99.9 99.5	80-141		1.11	30	
Propylbenzene	50			50.0		99.5	74-136		1.95	30	
Xylene				50.0		99.3 98.6	74-130 83-123		0.651	30	
& m- Xylenes	49 100			30.0 100		98.0 100	83-123 82-128		0.701	30	
Isopropyltoluene	50			50.0		99.1	82-128 85-125		1.42	30 30	
c-Butylbenzene	50 49			50.0 50.0		99.1 99.0	83-125 83-125		2.64	30 30	
rt-Butylbenzene	49			50.0		99.0 89.1	83-125 80-127		2.04 1.95	30 30	
oluene	45 49			50.0 50.0		89.1 97.1	80-127 85-121		1.95	30	
urrogate: SURR: 1,2-Dichloroethane-d4	51.6		"	50.0		103	77-125		- 100	20	
0	51.6 49.1		"			103 98.2					
urrogate: SURR: Toluene-d8			"	50.0			85-120				
urrogate: SURR: p-Bromofluorobenzene	51.0			50.0		102	76-130				

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20722 - EPA 3546 SVOA											
Blank (BE20722-BLK1)							Prepa	ured: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Acenaphthene	ND	0.042	mg/kg wet								
Acenaphthylene	ND	0.042	"								
Anthracene	ND	0.042	"								
Benzo(a)anthracene	ND	0.042	"								
Benzo(a)pyrene	ND	0.042	"								
Benzo(b)fluoranthene	ND	0.042	"								
Benzo(g,h,i)perylene	ND	0.042	"								
Benzo(k)fluoranthene	ND	0.042	"								
Chrysene	ND	0.042	"								
Dibenzo(a,h)anthracene	ND	0.042	"								
Fluoranthene	ND	0.042	"								
Fluorene	ND	0.042	"								
Indeno(1,2,3-cd)pyrene	ND	0.042									
Naphthalene	ND	0.042	"								
Phenanthrene	ND	0.042	"								
Pyrene	ND	0.042	"								
Surrogate: SURR: Nitrobenzene-d5	0.53		"	0.831		64.2	22-108				
Surrogate: SURR: 2-Fluorobiphenyl	0.62		"	0.831		75.1	21-113				
Surrogate: SURR: Terphenyl-d14	0.73		"	0.831		87.5	24-116				
LCS (BE20722-BS1)							Prepa	ured: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Acenaphthene	0.65	0.042	mg/kg wet	0.831		78.2	17-124				
Acenaphthylene	0.66	0.042		0.831		79.2	16-124				
Anthracene	0.68	0.042	"	0.831		81.3	24-124				
Benzo(a)anthracene	0.71	0.042	"	0.831		86.1	25-134				
Benzo(a)pyrene	0.75	0.042	"	0.831		89.9	29-144				
Benzo(b)fluoranthene	0.81	0.042	"	0.831		97.1	20-151				
Benzo(g,h,i)perylene	0.85	0.042	"	0.831		102	10-153				
Benzo(k)fluoranthene	0.71	0.042	"	0.831		85.5	10-148				
Chrysene	0.68	0.042	"	0.831		81.3	24-116				
Dibenzo(a,h)anthracene	0.94	0.042	"	0.831		113	17-147				
Fluoranthene	0.66	0.042	"	0.831		79.9	36-125				
Fluorene	0.66	0.042	"	0.831		79.0	16-130				
Indeno(1,2,3-cd)pyrene	1.2	0.042	"	0.831		148	10-155				
Naphthalene	0.66	0.042	"	0.831		79.8	20-121				
Phenanthrene	0.64	0.042	"	0.831		77.3	24-123				
Pyrene	0.67	0.042		0.831		80.5	24-132				
Surrogate: SURR: Nitrobenzene-d5	0.59		"	0.831		71.2	22-108				
Surrogate: SURR: 2-Fluorobiphenyl	0.68		"	0.831		81.8	21-113				
Surrogate: SURR: Terphenyl-d14	0.80		"	0.831		96.8	24-116				

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20722 - EPA 3546 SVOA											
Aatrix Spike (BE20722-MS1)	*Source sample: 2	2E0336-07 (N	/latrix Spike)				Prepa	ared: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Acenaphthene	0.65	0.086	mg/kg dry	0.855	ND	76.0	13-133				
Acenaphthylene	0.62	0.086	"	0.855	ND	72.8	25-125				
Anthracene	0.66	0.086	"	0.855	ND	77.4	27-128				
Benzo(a)anthracene	0.71	0.086	"	0.855	ND	83.6	20-147				
Benzo(a)pyrene	0.79	0.086	"	0.855	ND	92.6	18-153				
Benzo(b)fluoranthene	0.82	0.086	"	0.855	ND	95.5	10-163				
Benzo(g,h,i)perylene	0.77	0.086	"	0.855	ND	90.6	10-157				
Benzo(k)fluoranthene	0.79	0.086	"	0.855	ND	92.2	10-157				
Chrysene	0.66	0.086	"	0.855	ND	77.1	18-133				
Dibenzo(a,h)anthracene	0.90	0.086	"	0.855	ND	105	10-146				
Iuoranthene	0.64	0.086	"	0.855	ND	74.9	10-155				
luorene	0.69	0.086	"	0.855	ND	80.4	12-150				
ndeno(1,2,3-cd)pyrene	1.1	0.086	"	0.855	ND	133	10-155				
Japhthalene	0.74	0.086	"	0.855	ND	86.9	15-132				
henanthrene	0.65	0.086	"	0.855	ND	75.8	10-151				
yrene	0.68	0.086	"	0.855	ND	79.0	13-148				
urrogate: SURR: Nitrobenzene-d5	0.67		"	0.855		78.5	22-108				
urrogate: SURR: 2-Fluorobiphenyl	0.67		"	0.855		79.0	21-113				
urrogate: SURR: Terphenyl-d14	0.77		"	0.855		90.3	24-116				
1atrix Spike Dup (BE20722-MSD1)	*Source sample: 2	2E0336-07 (N	/latrix Spike I	Dup)			Prepa	ared: 05/12/2	2022 Analyz	ed: 05/14/2	2022
Acenaphthene	0.63	0.086	mg/kg dry	0.855	ND	73.8	13-133		2.99	30	
Acenaphthylene	0.63	0.086	"	0.855	ND	73.5	25-125		0.984	30	
Anthracene	0.67	0.086		0.855	ND	78.4	27-128		1.34	30	
Benzo(a)anthracene	0.72	0.086		0.855	ND	84.1	20-147		0.573	30	
Benzo(a)pyrene	0.82	0.086		0.855	ND	96.3	18-153		3.90	30	
Benzo(b)fluoranthene	0.85	0.086		0.855	ND	99.4	10-163		4.02	30	
Benzo(g,h,i)perylene	0.76	0.086	"	0.855	ND	89.0	10-157		1.87	30	
Benzo(k)fluoranthene	0.80	0.086	"	0.855	ND	94.0	10-157		1.89	30	
Chrysene	0.66	0.086	"	0.855	ND	77.5	18-133		0.517	30	
Dibenzo(a,h)anthracene	0.83	0.086	"	0.855	ND	97.6	10-146		7.11	30	
luoranthene	0.71	0.086	"	0.855	ND	83.4	10-155		10.8	30	
luorene	0.66	0.086	"	0.855	ND	77.7	12-150		3.44	30	
ndeno(1,2,3-cd)pyrene	1.2	0.086	"	0.855	ND	135	10-155		1.14	30	
Vaphthalene	0.65	0.086	"	0.855	ND	76.3	15-132		12.9	30	
Phenanthrene	0.70	0.086	"	0.855	ND	81.4	10-151		7.02	30	
Pyrene	0.72	0.086	"	0.855	ND	84.0	13-148		6.08	30	
urrogate: SURR: Nitrobenzene-d5	0.59		"	0.855		68.9	22-108				
urrogate: SURR: 2-Fluorobiphenyl	0.66		"	0.855		76.9	21-113				
urrogate: SURR: Terphenyl-d14	0.77		"	0.855		89.8	24-116				
mirogane. Sorta. respicityi-u14	0.77			0.055		09.0	27-110				

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20626 - EPA 3050B											
							D	1.05/11/0	22.4	1.05/12/	2022
Blank (BE20626-BLK1)							Prej	pared: 05/11/20	J22 Analyz	ed: 05/12/.	2022
Arsenic Barium	ND	1.50	mg/kg wet "								
	ND	2.50									
Beryllium Cadmium	ND	0.050									
Chromium	ND	0.300									
Copper	ND ND	0.500									
Lead		2.00									
	ND	0.500									
Manganese Nickel	ND	0.500									
	ND	1.00									
Selenium	ND	2.50									
Silver	ND	0.500									
Zinc	ND	2.50									
Duplicate (BE20626-DUP1)	*Source sample: 22	2E0355-01 (E	Ouplicate)				Prej	pared: 05/11/20)22 Analyz	ed: 05/12/	2022
Arsenic	6.58	1.62	mg/kg dry		10.1				42.3	35	Non-dir.
Barium	133	2.70	"		125				6.32	35	
Beryllium	ND	0.054	"		ND					35	
Cadmium	ND	0.324	"		ND					35	
Chromium	29.3	0.539	"		29.8				1.72	35	
Copper	122	2.16	"		109				11.4	35	
Lead	79.4	0.539	"		104				27.0	35	
Manganese	501	0.539	"		503				0.242	35	
Nickel	22.5	1.08	"		25.2				11.2	35	
Selenium	ND	2.70	"		ND					35	
Silver	ND	0.539	"		ND					35	
Zinc	114	2.70	"		161				33.9	35	
Matrix Spike (BE20626-MS1)	*Source sample: 22	2E0355-01 (N	latrix Spike)				Prep	pared: 05/11/20)22 Analyz	ed: 05/12/	2022
Arsenic	232	1.62	mg/kg dry	216	10.1	103	75-125				
Barium	438	2.70	"	216	125	145	75-125	High Bias			
Beryllium	4.68	0.054		5.39	ND	86.8	75-125				
Cadmium	5.92	0.324		5.39	ND	110	75-125				
Chromium	51.9	0.539		21.6	29.8	102	75-125				
Copper	154	2.16		27.0	109	166	75-125	High Bias			
Lead	171	0.539		53.9	104	124	75-125				
Manganese	604	0.539		53.9	503	188	75-125	High Bias			
Nickel	80.8	1.08		53.9	25.2	103	75-125				
Selenium	180	2.70		216	ND	83.5	75-125				
Silver	ND	0.539		5.39	ND		75-125	Low Bias			
Zinc	185	2.70		53.9	161	44.6	75-125	Low Bias			

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20626 - EPA 3050B											

Post Spike (BE20626-PS1)	*Source sample: 22E	0355-01 (P	ost Spike)				Prep	pared: 05/11/2022 Analyzed: 05/12/202
Arsenic	2.16		ug/mL	2.00	0.094	103	75-125	
Barium	3.44		"	2.00	1.16	114	75-125	
Beryllium	0.044		"	0.0500	-0.010	87.1	75-125	
Cadmium	0.054		"	0.0500	0.002	103	75-125	
Chromium	0.495			0.200	0.277	109	75-125	
Copper	1.32		"	0.250	1.01	122	75-125	
Lead	1.57		"	0.500	0.966	120	75-125	
Manganese	5.42		"	0.500	4.66	151	75-125	High Bias
Nickel	0.819		"	0.500	0.233	117	75-125	
Selenium	1.55		"	2.00	-0.248	77.3	75-125	
Silver	0.007		"	0.0500	-0.044	14.5	75-125	Low Bias
Zinc	2.09		"	0.500	1.49	120	75-125	
Reference (BE20626-SRM1)							Prep	pared: 05/11/2022 Analyzed: 05/12/202
Arsenic	122	1.50	mg/kg wet	109		112	63.7-118.3	
Barium	438	2.50	"	364		120	70.3-117	High Bias
Beryllium	62.6	0.050	"	57.0		110	69.3-115.4	
Cadmium	50.2	0.300	"	48.7		103	67.8-112.9	
Chromium	196	0.500		173		113	65.3-120.8	
Copper	224	2.00		179		125	70.9-117.9	High Bias
Lead	119	0.500	"	101		117	69.1-126.7	
Manganese	435	0.500		370		117	72.2-119.2	
Jickel	68.4	1.00	"	52.2		131	63.4-117.8	High Bias
elenium	79.9	2.50	"	104		76.9	58.5-122.1	
Silver	31.2	0.500	"	29.9		104	63.5-123.7	
Zinc	480	2.50		431		111	74.9-121.1	

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE20710 - EPA 7473 soil											
Blank (BE20710-BLK1)							Prep	ared: 05/12/	2022 Analyz	ed: 05/13/2	2022
Mercury	ND	0.0300	mg/kg wet								
Duplicate (BE20710-DUP1)	*Source sample: 221	E0326-01 (C	PR-TP-03 (2))				Prep	ared: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Mercury	ND	0.0348	mg/kg dry		0.0620					35	
Matrix Spike (BE20710-MS1)	*Source sample: 221	E0326-01 (C	PR-TP-03 (2))				Prep	ared: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Mercury	0.531		mg/kg	0.500	0.0534	95.5	75-125				
Reference (BE20710-SRM1)							Prep	ared: 05/12/2	2022 Analyz	ed: 05/13/2	2022
Mercury	22.916		mg/kg	27.2		84.2	59.9-140.1				

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE20632 - % Solids Prep											
Duplicate (BE20632-DUP1)	*Source sample: 22	E0344-06 (Dı	plicate)				Prep	ared & Anal	yzed: 05/11/2	2022	
% Solids	92.5	0.100	%		93.7				1.24	20	

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
22E0326-01	OR-TP-03 (2)	40mL Vial with Stir Bar-Cool 4° C
22E0326-02	OR-TP-04 (2)	40mL Vial with Stir Bar-Cool 4° C
22E0326-03	OR-TP-08 (3)	40mL Vial with Stir Bar-Cool 4° C

Sample and Data Qualifiers Relating to This Work Order

- M-SPKM The spike recovery is not within acceptance windows due to sample non-homogeneity, or matrix interference.
- M-DUPS The RPD between the native sample and the duplicate is outside of limits due to sample non-homogeneity
- M-CRL The RL check for this element recovered outside of control limits.
- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

Definitions and Other Explanations

- Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE www.YORKLAB.com 132-02 89th AVENUE FAX (203) 357-0166

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

			Loin of	C		YORK Project No.
		J DIAL	-IO-IIIAII	Custoa	Cliain-or-custody record	22E0326
		k Analytical Laboratories	s, Inc. (YORK)'s Standard T	erms & Conditions are li	York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.	
ANALYTICAL LABORATORI		This document serves a	ves as your written authorization for YORK to proceed with the analys	for YORK to proceed with	This document serves as your written authorization for YORK to proceed with the analyses requested below.	
120 Research Drive Stratford, CT 06615	132-02 89th Ave Queens, NY 11418		clientservices@yorklab.com	www.yorklab.com	CONTRINUONS. 800-306-YORK 800-306-9675	Page 1 of 1
YOUR Information	Report To:		Invoice To:	e To:	12	Aroun
Company: LABELLA	Company: LABELLA	A	Company: LABEUA	LA LA	1782133.00	RUSH - Next Day
Address	Address		Address			RUSH - Two Day
					YOUR Project Name	
Phone	Phone:		Phone.		FORMER OSHO RESTAURANT	- RUSH - Four Day
Contact ERIC ORLOWISHI	Correct ORLOWSKI /	A. ST. ROMAIN	2	ACCOUNTS PAYABLE		Standard (5-7 Day)
E-mail.	E-mail:		E-mail:		YOUR PO#:	
Please print clearly and legibly. All information must be complete.	must be complete.	Matrix Codes	Samples From	Report / E	Report / EDD Type (circle selections)	YORK Reg. Comp.
samples will not be logged in and the turn-around-une clock will not begin until any questions by YORK are resolved.	inu-unie ciock will not ed.	S - soil / solid	New York	Summary Report	CT RCP Standard Excel EDD	Standard Excel EDD Compared to the following
		GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE EQuIS (Standard)	
		DW - drinking water	Connecticut	NY ASP A Package	NJDEP Reduced NYSDEC EQuIS	CP-51/
FXIC URIOUSHI		WW - wastewater	Pennsylvania	NY ASP B Package	Deliverables NJDEP SRP HazSite	
Samples Collected by: (print AND sign your name)	ign your name)	0 - Oil Other	Other:		NJDKQP Other:	I HKI 217
Sample Identification	u	Sample Matrix	Date/Time Sampled	A	Analysis Requested	Container Description
0K-TP-03 (2')		Soil	5/5/2022 1000	CP-ST VOLS, CP-ST SVOLS,	CP-SI SUOLS, PART 375 MENNES	45 \x802, 1x402,44
0K-7f-04 (2)			1 1030			
OR-TP-08 (3')		P	1300	>	P P	9 A A
Comments: HOLD ALL ANAL	LYSES WNTIL	AUTHORIZED			Preservation: (check all that apply)	Special Instruction
BY LABELLA-THANK YOU!	A-THANK YOU		ON 200 children of the	MeOH /	03	Field Filtered
samules Relinouished by / Company	Date/Time	Samples iced/chilled at time of lab p 1 Samples Received by / Company	of lab pickup? circle TES or INO	ZnAc Ascorbic Acid	Acid Other: Company	Date/Time
2 HOlonly/LaBerra	515/2022 1600	SECURE FLIDGE C	e clabera 5-9-22	-9-22 10.10	Clie Youl 5-9.22	22 1231
software Received by 1 Company	Date/Time - / U· (U	3. Samples Relinquished by / Company	Company	Date/Time	3. Samples Received by / Company	Date/Time
Samples Relinquished by/ Company	Date/Time	4. Samples Received by / Company	mpany	Date/Time	Samples Received in LAB by Dat	te/Time Te
)	J Degrees C

AmeriSci Richmond

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: 8047631200 FAX: 8047631800

May 19, 2022

LaBella Associates Attn: Sharon Froedden 21 Fox Street Poughkeepsie, NY 12601

RE: LaBella Associates Job Number 122051476 P.O. #CZ82133.00 Ph 1300 CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

Dear Sharon Froedden:

Enclosed are the results of Asbestos Analysis - Bulk Protocol of the following LaBella Associates samples, received at AmeriSci on Thursday, May 12, 2022, for a 5 day turnaround:

Sample ID 01-BR-01A through 65-WB-01B

The 65 samples, placed in zip lock bag, were shipped to AmeriSci via Fed Ex 8110 6142 2187 B. LaBella Associates requested ELAP PLM/TEM analysis of these samples.

The results of the analyses which were performed under NYSDOH ELAP Lab Certification # 10984 following ELAP 198.4 TEM guidelines are presented within the Summary Table of this report. The presence of matrix reduction data in the Summary Table normally indicates an NOB sample. For NOB samples the individual matrix reduction and TEM analysis results are listed in Table I. Complete PLM results for individual samples analyzed by ELAP 198.1 (friable) and ELAP 198.6 (NOB) are presented in the PLM Bulk Asbestos Report. This combined report relates ONLY to sample analysis expressed as percent composition by weight and percent asbestos. This report must not be used to claim product endorsement or approval by these laboratories, NVLAP, ELAP or any other associated agency. The National Institute of Standards and Technology accreditation requirements, mandate that this report must not be reproduced, except in full without the written approval of the laboratory. This report may contain specific data not covered by NVLAP or ELAP accreditations respectively, if so identified in relevant footnotes.

AmeriSci appreciates this opportunity to serve your organization. Please contact us for any further assistance or with any questions.

Sincerely,

Cory M. Parnell Laboratory Manager | Authorized Signatory

13635 GENITO ROAD MIDLOTHIAN, VIRGINIA 23112 TEL: (804) 763-1200 • FAX: (804) 763-1800

PLM Bulk Asbestos Report

LaBella Associates	Date Received	05/12/22	AmeriSc	i Job) #	122051476
Attn: Sharon Froedden	Date Examined	05/19/22	P.O. #			
21 Fox Street	ELAP #	10984	Page	1	of	13
	RE: CZ82133.00 PI	h 1300; Forr	ner OSHO R	Resta	urant;	1998 Rt 9,
Poughkeepsie, NY 12601	Poughkeepsie	, NY				

Client No. / HG	A Lab No.	Asbestos Present	Total % Asbestos
01-BR-01A 1 Analyst Descrir	122051476-01 Location: TEST PIT 3 - RED CLAY BRICK tion: Red, Heterogeneous, Non-Fibrous, Cement	No	NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Ty			
02-BR-01B	122051476-02	No	NAD
1	Location: TEST PIT 3 - RED CLAY BRICK		(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Ty	o tion: Red, Heterogeneous, Non-Fibrous, Cement p es: prial: Non-fibrous 100%	itious, Bulk Material	
03-MRT-01A	122051476-03	No	NAD
2 Analyst Descript	Location: TEST PIT 3 - GREY MORTAR WITH		(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Ty			
04-MRT-01B	122051476-04	No	NAD
2	Location: TEST PIT 3 - GREY MORTAR WITH	I RED BRICK	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Ty	t ion: Gray, Heterogeneous, Non-Fibrous, Cemen / pes: e rial: Non-fibrous 100%	titious, Bulk Material	
05-MRT-01C	122051476-05	No	NAD
2	Location: TEST PIT 3 - GREY MORTAR WITH	I RED BRICK	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Ty	t ion: Gray, Heterogeneous, Non-Fibrous, Cemen / pes: e rial: Non-fibrous 100%	titious, Bulk Material	511 50, 15/22

PLM Bulk Asbestos Report

CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

Client No. / HGA	Lab No.	Asbestos Present	Total % Asbestos
0	122051476-06 E TEST PIT 3 - BLACK ASPHALT CON		NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Types: Other Material: Non-A			
Comment: Heat S	Sensitive (organic): 7.5%; Acid Soluble	(inorganic): 27.3%; Inert (Non-asbe	stos): 65.2%
0	122051476-07 I: TEST PIT 3 - BLACK ASPHALT CON		NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Analyst Description: Black Asbestos Types: Other Material: Non-A	Heterogeneous, Non-Fibrous, Bulk Ma	aterial	
Comment: Heat S	Sensitive (organic): 5.4%; Acid Soluble	(inorganic): 30.7%; Inert (Non-asbe	stos): 63.8%
08-AR-01A 4 Location	122051476-08 : TEST PIT 4 - RED/WHITE ASPHALT	No ROOFING MATERIAL	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Asbestos Types: Other Material: Non-A	Heterogeneous, Non-Fibrous, Bulk Ma sbestos 32.5% Sensitive (organic): 49.5%; Acid Soluble		actors): 32 5%
			-
09-AR-01B 4 Locatior	122051476-09 I: TEST PIT 4 - RED/WHITE ASPHALT	No ROOFING MATERIAL	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Analyst Description: Black Asbestos Types: Other Material: Non-A	Heterogeneous, Non-Fibrous, Bulk Ma	aterial	
Comment: Heat S	Sensitive (organic): 46.0%; Acid Soluble	e (inorganic): 15.6%; Inert (Non-asbe	estos): 38.4%
10-TP-01A 5 Location	122051476-10 : TEST PIT 4 - BLACK TAR PAPER	Yes	1.1% (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
	Heterogeneous, Non-Fibrous, Bulk Ma	aterial	
Asbestos Types: Chrys Other Material: Non-A	otile 1.1 %		

PLM Bulk Asbestos Report

CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

Client No. / H	GA	Lab No.	Asbestos Present	Total % Asbestos
11-TP-01B 5	Location: TEST PIT 4	122051476-11 4 - BLACK TAR PAPER		NA/PS
Analyst Descr Asbestos ⁻ Other Ma	••			
Com	ment: Heat Sensitive (org	anic): 66.2%; Acid Soluble	e (inorganic): 7.6%; Inert (Non-asbe	stos): 26.2%
12-CRT-01A		122051476-12	No	NAD
6	Location: TEST PIT 4	4 - WHITE GLAZED CERA	AMIC TILE WI RED BODY	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos	• •	ous, Non-Fibrous, Cemen	ititious, Bulk Material	
13-CRT-01B		122051476-13	No	NAD
6			AMIC TILE WI RED BODY	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos		ous, Non-Fibrous, Cemen	titious, Bulk Material	
14-GT-01A		122051476-14	No	NAD
7	Location: TEST PIT 4	4 - GREY GROUT WITH C	CERAMIC TILES	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos		ous, Non-Fibrous, Cement	itious, Bulk Material	
15-GT-01B		122051476-15	No	NAD
7	Location: TEST PIT 4	4 - GREY GROUT WITH C	CERAMIC TILES	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos		ous, Non-Fibrous, Cement	itious, Bulk Material	00007EE

PLM Bulk Asbestos Report

CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

Client No. / H	GA Lab No.	Asbestos Present	Total % Asbestos			
16-C0N-01A 8	Location: TEST PIT 4 - GREY CONCRETE CURB STOPS					
Asbestos	ription: Gray, Heterogeneous, Non-Fibrous, Cement Types: aterial: Non-fibrous 100%	titious, Bulk Material				
17-C0N-01B 8	122051476-17 Location: TEST PIT 4 - GREY CONCRETE CU		NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22			
Asbestos	ription: Gray, Heterogeneous, Non-Fibrous, Bulk Ma Types: a terial: Non-fibrous 100%	aterial				
18-BR-02A	122051476-18	No	NAD			
9	Location: TEST PIT 4 - RED CLAY BRICK		(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22			
Asbestos	r iption: Gray, Heterogeneous, Non-Fibrous, Bulk Ma Types: aterial: Non-fibrous 100%	aterial				
19-BR-02B	122051476-19	No	NAD			
9	Location: TEST PIT 4 - RED CLAY BRICK		(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22			
Asbestos	r iption: Red, Heterogeneous, Non-Fibrous, Bulk Ma Types: aterial: Non-fibrous 100%	terial				
20-BR-03A	122051476-20	No	NAD			
10	Location: TEST PIT 4 - GREY CAST CONCRE	ETE BRICK	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22			
Asbestos	r iption: Gray, Heterogeneous, Non-Fibrous, Cement Types: aterial: Non-fibrous 100%	titious, Bulk Material				
21-BR-03B	122051476-21	No	NAD			
10	Location: TEST PIT 4 - GREY CAST CONCRE	ETE BRICK	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22			
Asbestos	ription: Gray, Heterogeneous, Non-Fibrous, Cement Types: aterial: Non-fibrous 100%	titious, Bulk Material	by Eric H. Ahle on 05/19/22			

Client No. / HGA	A Lab No.	Asbestos Present	Total % Asbestos
22-CP-01A 11	122051476-22 Location: TEST PIT 4 - DARK BROWN GLAZE	NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22	
Asbestos Typ	t ion: Brown, Heterogeneous, Non-Fibrous, Ceme bes: rial: Non-fibrous 100%	ntitious, Bulk Material	01100/10/22
23-CP-01B 11	122051476-23 Location: TEST PIT 4 - DARK BROWN GLAZE	No ED CLAY DRAIN PIPE	NAD (by NYS ELAP 198.1)
			by Eric H. Ahles on 05/19/22
Asbestos Typ	t ion: Brown, Heterogeneous, Non-Fibrous, Ceme bes: rial: Non-fibrous 100%	ntitious, Bulk Material	
	122051476-24	No	NAD
12	Location: TEST PIT 4 - OFFWHITE INSULATION	ON MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Typ	t ion: White, Heterogeneous, Fibrous, Bulk Materia bes: rial: Fibrous glass 98%, Non-fibrous 2%	al	
25-INS-01B	122051476-25	No	NAD
12	Location: TEST PIT 4 - OFFWHITE INSULATION	ON MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Typ	t ion: White, Heterogeneous, Fibrous, Bulk Materia bes: r ial: Fibrous glass 98%, Non-fibrous 2%	al	
	122051476-26	No	NAD
12	Location: TEST PIT 4 - OFFWHITE INSULATION	ON MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos Typ	t ion: White, Heterogeneous, Non-Fibrous, Bulk M bes: rial: Fibrous glass 98%, Non-fibrous 2%	laterial	
	-		
27-PLA-01A 13	122051476-27 Location: TEST PIT 4 - WHITE PLASTER SKIN	No M COAT	NAD (by NYS ELAP 198.1) by Eric H. Ahles
Asbestos Typ	t ion: White, Heterogeneous, Non-Fibrous, Bulk M Des: rial: Non-fibrous 100%	laterial	on 05/19/22

Client No. / HG	A Lab No.	Asbestos Present	Total % Asbestos				
28-PLA-01B 13	122051476-28 Location: TEST PIT 4 - WHITE PLASTER SK						
Asbestos Ty	tion: White, Heterogeneous, Non-Fibrous, Bulk I pes: rial: Non-fibrous 100%	Material					
29-PLA-01C	122051476-29	No	NAD				
13	Location: TEST PIT 4 - WHITE PLASTER SKIM COAT						
Asbestos Ty	tion: White, Heterogeneous, Non-Fibrous, Bulk I pes: rial: Fibrous glass Trace, Non-fibrous 100%	Material					
30PLA-02A	122051476-30	No	NAD				
14	Location: TEST PIT 4 - GREY PLASTER BOI	DY COAT	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22				
Asbestos Ty	tion:Brown, Heterogeneous, Non-Fibrous, Cem pes: rial: Non-fibrous 100%	entitious, Bulk Material					
31-PLA-02B	122051476-31	No	NAD				
14	Location: TEST PIT 4 - GREY PLASTER BOI	DY COAT	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22				
Asbestos Ty	tion:Brown, Heterogeneous, Non-Fibrous, Cem pes: rial: Non-fibrous 100%	entitious, Bulk Material					
32-PLA-02C	122051476-32	No	NAD				
14	Location: TEST PIT 4 - GREY PLASTER BOI	DY COAT	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22				
Asbestos Ty	tion:Brown, Heterogeneous, Non-Fibrous, Cem pes: rial: Non-fibrous 100%	entitious, Bulk Material	0.1.00, 10, EE				

Client No. / HO	GA Lab No.	Asbestos Present	Total % Asbestos	
33-WP-01A 15	122051476-33 Location: TEST PIT 8 - TEXTURED WHITE			
Asbestos T	ption:Black, Heterogeneous, Non-Fibrous, Bulk ypes: rerial: Non-Asbestos 54.9%	Material		
Com	ment: Heat Sensitive (organic): 29.4%; Acid Solu	uble (inorganic): 15.7%; Inert (Non-as	sbestos): 54.9%	
34-WP-01B 15	122051476-34 Location: TEST PIT 8 - TEXTURED WHITE	No WALLPAPER	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22	
Asbestos T Other Mat	erial: Non-Asbestos 16.1%			
Com	ment: Heat Sensitive (organic): 60.0%; Acid Solu	uble (inorganic): 23.9%; Inert (Non-as	sbestos): 16.1%	
35-LC-01A 16	122051476-35 Location: TEST PIT 8 - WHITE LEVELING (No CMPD ON SLATE TILE	NAD (by NYS ELAP 198.1) by Eric H. Ahles	
Asbestos T	ption: White, Heterogeneous, Non-Fibrous, Bulk ypes: erial: Non-fibrous 100%	k Material	on 05/19/22	
36-LC-01B	122051476-36	No	NAD	
16	Location: TEST PIT 8 - WHITE LEVELING (CMPD ON SLATE TILE	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22	
Asbestos T	ption: White, Heterogeneous, Non-Fibrous, Bulk ypes: erial: Non-fibrous 100%	(Material		
37-F0R-01A	122051476-37	No	NAD	
17	Location: TEST PIT 8 - DARK BROWN FOF	RMICA	(by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22	
Asbestos T	ption: Brown, Heterogeneous, Fibrous, Bulk Ma ypes: erial: Cellulose 80%, Non-fibrous 20%	terial		

Client No. / HG	A Lab No.	Asbestos Present	Total % Asbestos
38-F0R-01B 17	122051476-38 Location: TEST PIT 8 - DARK BROWN FORMIC		NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/19/22
Asbestos T	otion:Brown, Heterogeneous, Fibrous, Bulk Materia /pes: erial: Cellulose 80%, Non-fibrous 20%	al	
39-MST-01A	122051476-39	No	NAD
18	FORMICA FRAGMENTS	(by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22	
Asbestos T	otion: White, Heterogeneous, Non-Fibrous, Bulk Ma /pes: erial: Non-Asbestos 34.1%	aterial	
Comr	nent: Heat Sensitive (organic): 39.5%; Acid Soluble	e (inorganic): 26.4%; Inert (Non-asbe	estos): 34.1%
40-MST-01B 18	122051476-40 Location: TEST PIT 8 - WHITISH MASTIC ON F	No FORMICA FRAGMENTS	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Asbestos T	otion:White, Heterogeneous, Non-Fibrous, Bulk Ma /pes: erial: Non-Asbestos 33.9%	aterial	0.100,10,22
Comr	nent: Heat Sensitive (organic): 34.4%; Acid Soluble	e (inorganic): 31.6%; Inert (Non-asbe	estos): 33.9%
41-VS-01A	122051476-41	No	NAD
19	Location: TEST PIT 8 - WHITE/GREEN VINYL	SHEET. WHITE BACKING	(by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Asbestos T	otion:White, Heterogeneous, Non-Fibrous, Bulk Ma /pes: erial: Non-Asbestos 21.4%	aterial	
	nent: Heat Sensitive (organic): 64.1%; Acid Soluble	e (inorganic): 14.6%; Inert (Non-asbe	estos): 21.4%
42-VS-01B	122051476-42	Νο	NAD
19	Location: TEST PIT 8 - WHITE/GREEN VINYL		(by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22
Analyst Descri Asbestos T	otion:White, Heterogeneous, Non-Fibrous, Bulk Ma /pes:	aterial	
	erial: Non-Asbestos 29.4%		

Client No. / HGA	Lab No.	Asbestos Present	Total % Asbestos				
43-VS-02A 20 L	122051476-43 ocation: TEST PIT 8 - WHITE/GREEN VINYL SH	122051476-43NoNADT 8 - WHITE/GREEN VINYL SHEET. BROWN BACKING(by NYS ELAP 19by Eric H. Ahlesby Eric H. Ahleson 05/19/22					
Asbestos Types	n:White/green, Heterogeneous, Non-Fibrous, Bull :: : Non-Asbestos NAD	k Material					
Comment	: Heat Sensitive (organic): 98.2%; Acid Soluble (i	norganic): 1.8%					
44-VS-02B	122051476-44	No	NAD				
	Location: TEST PIT 8 - WHITE/GREEN VINYL SHEET. BROWN BACKING						
Asbestos Types	n:White/Green, Heterogeneous, Non-Fibrous, Bul :: : Non-Asbestos 7.8%	k Material					
Comment	: Heat Sensitive (organic): 87.4%; Acid Soluble (i	norganic): 4.8%; Inert (Non-asbes	stos): 7.8%				
45-CB-01A	122051476-45	No	NAD				
21 L	ocation: TEST PIT 8 - PINKISH VINYL COVE BA	ASE	(by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22				
Asbestos Types Other Materia	: Non-Asbestos 26.3%						
	: Heat Sensitive (organic): 20.8%; Acid Soluble (i		•				
46-CB-01B 21 L	122051476-46 ocation: TEST PIT 8 - PINKISH VINYL COVE BA	No ASE	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22				
Asbestos Types	n:Pink, Heterogeneous, Non-Fibrous, Bulk Materi :: : Non-Asbestos 18.9%	al					
Comment	: Heat Sensitive (organic): 24.9%; Acid Soluble (i	norganic): 56.2%; Inert (Non-asbe	estos): 18.9%				
47-MST-02A	122051476-47	No	NAD				
22 L	ocation: TEST PIT 8 - BROWN MASTIC ON CO	VE BASE	(by NYS ELAP 198.6) by Eric H. Ahles on 05/19/22				
Asbestos Types		erial					
Other Materia	: Non-Asbestos 51.4%						

	Lab No.	Asbestos Present	Total % Asbesto				
48-MST-02B 22 Loc	I-02B 122051476-48 No Location: TEST PIT 8 - BROWN MASTIC ON COVE BASE						
Asbestos Types:	Brown, Heterogeneous, Non-Fibrous, Bulk N Non-Asbestos 45.3%	laterial	on 05/19/22				
Comment: H	leat Sensitive (organic): 44.3%; Acid Soluble	e (inorganic): 10.4%; Inert (Non-asbe	estos): 45.3%				
49-CRT-02A	122051476-49	Νο	NAD				
20	ation: TEST PIT 8 - SPECKLED WHITE 4X		(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22				
Analyst Description: Asbestos Types: Other Material: N	Sray, Heterogeneous, Non-Fibrous, Bulk Ma Ion-fibrous 100%	terial					
50-CRT-02B	122051476-50	Νο	NAD				
23 Loc	ation: TEST PIT 8 - SPECKLED WHITE 4X	4 CERAMIC TILES	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22				
Analyst Description: Asbestos Types: Other Material: N	Gray, Heterogeneous, Non-Fibrous, Bulk Ma	terial					
		N/-					
51-MST-03A	122051476-51 ation: TEST PIT 8 - WHITE MASTIC ON BC	No DTH 4X4 TILE TYPES	NAD (by NYS ELAP 198.6) by Eric H. Ahles on 05/18/22				
51-MST-03A 24 Loc Analyst Description: E Asbestos Types:	122051476-51	OTH 4X4 TILE TYPES	(by NYS ELAP 198.6)				
51-MST-03A 24 Loc Analyst Description: E Asbestos Types: Other Material: N	122051476-51 ation: TEST PIT 8 - WHITE MASTIC ON BO Brown, Heterogeneous, Non-Fibrous, Bulk M	DTH 4X4 TILE TYPES	(by NYS ELAP 198.6) by Eric H. Ahles on 05/18/22				
51-MST-03A 24 Loc Analyst Description:E Asbestos Types: Other Material: N Comment: H	122051476-51 ation: TEST PIT 8 - WHITE MASTIC ON BO Brown, Heterogeneous, Non-Fibrous, Bulk M Non-Asbestos 42.8%	DTH 4X4 TILE TYPES	(by NYS ELAP 198.6) by Eric H. Ahles on 05/18/22				
51-MST-03A 24 Loc Analyst Description: E Asbestos Types: Other Material: N Comment: H 52-MST-03B	122051476-51 ation: TEST PIT 8 - WHITE MASTIC ON BO Brown, Heterogeneous, Non-Fibrous, Bulk M Jon-Asbestos 42.8% leat Sensitive (organic): 52.5%; Acid Soluble	DTH 4X4 TILE TYPES laterial e (inorganic): 4.7%; Inert (Non-asbes No	(by NYS ELAP 198.6) by Eric H. Ahles on 05/18/22				
51-MST-03A 24 Loc Analyst Description: E Asbestos Types: Other Material: N Comment: H 52-MST-03B 24 Loc Analyst Description: E Asbestos Types:	122051476-51 ation: TEST PIT 8 - WHITE MASTIC ON BO Brown, Heterogeneous, Non-Fibrous, Bulk M Non-Asbestos 42.8% leat Sensitive (organic): 52.5%; Acid Soluble 122051476-52	DTH 4X4 TILE TYPES laterial e (inorganic): 4.7%; Inert (Non-asbes No DTH 4X4 TILE TYPES	(by NYS ELAP 198.6) by Eric H. Ahles on 05/18/22 stos): 42.8% NAD (by NYS ELAP 198.6) by Eric H. Ahles				

	A Lab No.	Asbestos Present	Total % Asbestos		
53-CRT-03A 25	122051476-53 Location: TEST PIT 8 - WHITE 4X4 CERAMIC	122051476-53 No T PIT 8 - WHITE 4X4 CERAMIC TILES - FLOWER PATTERN			
Analyst Descri Asbestos T Other Mat	on 05/18/22				
54-CRT-03B	122051476-54	No	NAD		
25	Location: TEST PIT 8 - WHITE 4X4 CERAMIC	TILES - FLOWER PATTERN	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22		
Asbestos T	otion:White, Heterogeneous, Non-Fibrous, Cemer ypes: erial: Non-Asbestos 100%	titious, Bulk Material			
55-CRT-04A	122051476-55	Νο	NAD		
26	Location: TEST PIT 8 - BROWN 4X4 CERAMI	C TILES	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22		
Analyst Deseri					
Asbestos T	otion:White, Heterogeneous, Non-Fibrous, Cemer ypes: erial: Non-fibrous 100%	titious, Bulk Material			
Asbestos T Other Mat	ypes:	ititious, Bulk Material No	NAD		
Asbestos T Other Mat 56-CRT-04B	ypes: erial: Non-fibrous 100%	Νο	NAD (by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22		
Asbestos T Other Mat 56-CRT-04B 26 Analyst Descri Asbestos T	ypes: erial: Non-fibrous 100% 122051476-56 Location: TEST PIT 8 - BROWN 4X4 CERAMIN otion: Brown, Heterogeneous, Non-Fibrous, Cemer	No C TILES	(by NYS ELAP 198.1) by Eric H. Ahles		
Asbestos T Other Mat 56-CRT-04B 26 Analyst Descri Asbestos T Other Mat	ypes: erial: Non-fibrous 100% 122051476-56 Location: TEST PIT 8 - BROWN 4X4 CERAMI ption: Brown, Heterogeneous, Non-Fibrous, Cemer ypes:	No C TILES	(by NYS ELAP 198.1) by Eric H. Ahles		
Asbestos T Other Mat 56-CRT-04B 26 Analyst Descri Asbestos T Other Mat 57-MST-04A	ypes: erial: Non-fibrous 100% 122051476-56 Location: TEST PIT 8 - BROWN 4X4 CERAMI ption: Brown, Heterogeneous, Non-Fibrous, Cemer ypes: erial: Non-fibrous 100%	<i>No</i> C TILES ntitious, Bulk Material <i>No</i>	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22		
Asbestos T Other Mat 56-CRT-04B 26 Analyst Descri Asbestos T Other Mat 57-MST-04A 27 Analyst Descri Asbestos T	ypes: erial: Non-fibrous 100% 122051476-56 Location: TEST PIT 8 - BROWN 4X4 CERAMIN otion: Brown, Heterogeneous, Non-Fibrous, Cemer ypes: erial: Non-fibrous 100% 122051476-57 Location: TEST PIT 8 - OFFWHITE MASTIC O otion: Off-White, Heterogeneous, Non-Fibrous, Bul	No C TILES ntitious, Bulk Material No N BROWN 4X4 TILES	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22 NAD (by NYS ELAP 198.1) by Eric H. Ahles		

Client No. / HG	A Lab No.	Asbestos Present	Total % Asbestos			
58-MST-04B 27	122051476-58 Location: TEST PIT 8 - OFFWHITE MASTIC OI	122051476-58 No ST PIT 8 - OFFWHITE MASTIC ON BROWN 4X4 TILES				
Asbestos Ty	tion:Off-White, Heterogeneous, Non-Fibrous, Bull pes: rial: Non-Asbestos 11.9%	< Material				
Comm	ent: Heat Sensitive (organic): 42.6%; Acid Soluble	e (inorganic): 45.5%; Inert (Non-asb	estos): 11.9%			
59-GT-02A	122051476-59	Νο	NAD			
28	Location: TEST PIT 8 - GREY GROUT BETWE		(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22			
Asbestos Ty	tion:Gray, Heterogeneous, Non-Fibrous, Bulk Mat pes: erial: Non-fibrous 100%	terial				
60-GT-02B	122051476-60	Νο	NAD			
28						
Asbestos Ty	tion:Gray, Heterogeneous, Non-Fibrous, Bulk Mat pes: erial: Non-fibrous 100%	terial				
61-INS-02A	122051476-61	Νο	NAD			
29	Location: TEST PIT 8 - GREY BROWN INSULA	ATION MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22			
Asbestos Ty	tion:Gray/Brown, Heterogeneous, Non-Fibrous, B pes: rial: Fibrous glass 95%, Non-fibrous 5%	ulk Material				
62-INS-02B	122051476-62	No	NAD			
29	Location: TEST PIT 8 - GREY BROWN INSULA	ATION MATERIAL	(by NYS ELAP 198.1)			
29			by Eric H. Ahles on 05/18/22			

Page 13 of 13

PLM Bulk Asbestos Report

CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

Client No. / HGA	Lab No.	Asbestos Present	Total % Asbestos			
63-INS-02C	122051476-63	Νο	NAD (by NYS ELAP 198.1)			
29	Location: TEST PIT 8 - GREY BROWN INSULATION MATERIAL					
Asbestos Typ	ion:Gray, Heterogeneous, Fibrous, Bulk Materia les: ial: Fibrous glass 90%, Non-fibrous 10%					
64-WB-01A	122051476-64	No	NAD			
30	Location: TEST PIT 8 - GREYISH WALLBOAR	D MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22			
Asbestos Typ	ion: Gray, Heterogeneous, Non-Fibrous, Bulk Ma es: ial: Fibrous glass 3%, Non-fibrous 97%	terial				
65-WB-01B	122051476-65	No	NAD			
30	Location: TEST PIT 8 - GREYISH WALLBOAR	D MATERIAL	(by NYS ELAP 198.1) by Eric H. Ahles on 05/18/22			
Asbestos Typ	i on: Gray, Heterogeneous, Non-Fibrous, Bulk Ma ees: i al: Fibrous glass 3%, Non-fibrous 97%	terial				

Reporting Notes:

Analyzed by: Eric H. Ahles Date: 5/19/2022

(in apres

Reviewed by: Cory M. Parnell

*NAD = no asbestos detected, Detection Limit <1%, Reporting Limits: CVES = 1%, 400 Pt Ct = 0.25%, 1000 Pt Ct = 0.1%; "Present" or NVA = "No Visible Asbestos" are observations made during a qualitative analysis; NA = not analyzed; NA/PS = not analyzed / positive stop; PLM Bulk Asbestos Analysis using Meiji, Model MT 6130 microscope, Serial #1410298, by EPA 600/R-93/116 per 40 CFR 763 (NVLAP Lab Code 101904-0) and ELAP PLM Analysis Protocol 198.1 for New York friable samples which includes quantitation of any vermiculite observed (198.6 for NOB samples) or EPA 400 pt ct by EPA 600/M4-82-020 (NYSDOH ELAP Lab # 10984); CA ELAP Lab # 2508; Note: PLM is not consistently reliable in detecting asbestos in floor coverings and similar NOB materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos-containing in New York State (also see EPA Advisory for floor tile, FR 59, 146, 38970, 8/1/94). NIST Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the laboratory. This PLM report relates ONLY to the items tested.

Table I

meriSci ample #	Client Sample#	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	Acid Soluble Inorganic %	Insoluble Non-Asbestos Inorganic %	** Asbestos % by PLM/DS	** Asbestos % by TEM
01	01-BR-01A	1					NAD	NA
Location:	TEST PIT 3 - RED CLAY BRI	СК						
02	02-BR-01B	1					NAD	NA
Location:	TEST PIT 3 - RED CLAY BRI	СК						
03	03-MRT-01A	2					NAD	NA
Location:	TEST PIT 3 - GREY MORTA	R WITH RED E	BRICK					
04	04-MRT-01B	2					NAD	NA
Location:	TEST PIT 3 - GREY MORTA	R WITH RED E	BRICK					
05	05-MRT-01C	2					NAD	NA
Location:	TEST PIT 3 - GREY MORTA	R WITH RED E	BRICK					
06	06-ASC-01A	3	0.400	7.5	27.3	65.2	NAD	NAD
Location:	TEST PIT 3 - BLACK ASPHA	LT CONCRET	E					
07	07-ASC-01B	3	0.295	5.4	30.7	63.8	NAD	NAD
Location:	TEST PIT 3 - BLACK ASPHA	LT CONCRET	E					
08	08-AR-01A	4	0.426	49.5	18.0	32.5	NAD	NAD
Location:	TEST PIT 4 - RED/WHITE AS	SPHALT ROOF	ING MATERIA	-				
09	09-AR-01B	4	0.453	46.0	15.6	38.4	NAD	NAD
Location:	TEST PIT 4 - RED/WHITE AS	SPHALT ROOF	ING MATERIA	-				
10	10-TP-01A	5	0.163	79.0	4.4	15.5	Chrysotile 1.1	NA
Location:	TEST PIT 4 - BLACK TAR PA	PER						
11	11-TP-01B	5	0.213	66.2	7.6	26.2	NA/PS	NA
Location:	TEST PIT 4 - BLACK TAR PA	PER						
12	12-CRT-01A	6					NAD	NA
Location:	TEST PIT 4 - WHITE GLAZE	D CERAMIC T	ILE WI RED BO	DY				
13	13-CRT-01B	6					NAD	NA
Location:	TEST PIT 4 - WHITE GLAZE	D CERAMIC T	ILE WI RED BO	DY				
14	14-GT-01A	7					NAD	NA
Location:	TEST PIT 4 - GREY GROUT	WITH CERAM	IIC TILES					
15	15-GT-01B	7					NAD	NA
Location:	TEST PIT 4 - GREY GROUT	WITH CERAM	IIC TILES					
16	16-C0N-01A	8					NAD	NA

Table I

meriSci ample #	Client Sample#	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	Acid Soluble Inorganic %	Insoluble Non-Asbestos Inorganic %	** Asbestos % by PLM/DS	** Asbestos % by TEM
17	17-C0N-01B	8					NAD	NA
Location: T	EST PIT 4 - GREY CONCR	ETE CURB ST	OPS					
18	18-BR-02A	9					NAD	NA
Location: T	EST PIT 4 - RED CLAY BRI	СК						
19	19-BR-02B	9					NAD	NA
Location: T	EST PIT 4 - RED CLAY BRI	СК						
20	20-BR-03A	10					NAD	NA
Location: T	EST PIT 4 - GREY CAST C	ONCRETE BR	ICK					
21	21-BR-03B	10					NAD	NA
Location: T	EST PIT 4 - GREY CAST C	ONCRETE BR	ICK					
22	22-CP-01A	11					NAD	NA
Location: T	EST PIT 4 - DARK BROWN	I GLAZED CLA	Y DRAIN PIPE					
23	23-CP-01B	11					NAD	NA
Location: T	EST PIT 4 - DARK BROWN	I GLAZED CLA	Y DRAIN PIPE					
24	24-INS-01A	12					NAD	NA
Location: T	EST PIT 4 - OFFWHITE INS	SULATION MA	TERIAL					
25	25-INS-01B	12					NAD	NA
Location: T	EST PIT 4 - OFFWHITE INS	SULATION MA	TERIAL					
26	26-INS-01C	12					NAD	NA
	EST PIT 4 - OFFWHITE INS		TERIAL					
27	27-PLA-01A	13					NAD	NA
	EST PIT 4 - WHITE PLAST	ER SKIM COA	Г					
28		13					NAD	NA
	EST PIT 4 - WHITE PLAST		Г					
	29-PLA-01C	13					NAD	NA
	EST PIT 4 - WHITE PLAST		Γ					
30	30PLA-02A	14					NAD	NA
	EST PIT 4 - GREY PLASTE		I					
31	31-PLA-02B	14					NAD	NA
	EST PIT 4 - GREY PLASTE		I					
32	32-PLA-02C	14					NAD	NA

Table I

neriSci mple #	Client Sample#	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	Acid Soluble Inorganic %	Insoluble Non-Asbestos Inorganic %	** Asbestos % by PLM/DS	** Asbestos % by TEM
33	33-WP-01A	15	0.766	29.4	15.7	54.9	NAD	NAD
Location:	TEST PIT 8 - TEXTURED WI	HITE WALLPA	PER					
34	34-WP-01B	15	0.223	60.0	23.9	16.1	NAD	NAD
Location:	TEST PIT 8 - TEXTURED WI	HITE WALLPA	PER					
35	35-LC-01A	16					NAD	NA
Location:	TEST PIT 8 - WHITE LEVELI	ING CMPD ON	SLATE TILE					
36	36-LC-01B	16					NAD	NA
Location:	TEST PIT 8 - WHITE LEVELI	ING CMPD ON	SLATE TILE					
37	37-F0R-01A	17					NAD	NA
Location:	TEST PIT 8 - DARK BROWN	I FORMICA						
38	38-F0R-01B	17					NAD	NA
Location:	TEST PIT 8 - DARK BROWN	I FORMICA						
39	39-MST-01A	18	0.270	39.5	26.4	34.1	NAD	NAD
Location:	TEST PIT 8 - WHITISH MAS	TIC ON FORM	ICA FRAGMEN	TS				
40	40-MST-01B	18	0.213	34.4	31.6	33.9	NAD	NAD
Location:	TEST PIT 8 - WHITISH MAS	TIC ON FORM	ICA FRAGMEN	TS				
41	41-VS-01A	19	0.040	64.1	14.6	21.4	NAD	NAD
Location:	TEST PIT 8 - WHITE/GREEN	VINYL SHEE	T. WHITE BACH	KING				
42	42-VS-01B	19	0.033	52.6	18.0	29.4	NAD	NAD
Location:	TEST PIT 8 - WHITE/GREEN	VINYL SHEE	T. WHITE BACH	KING				
43	43-VS-02A	20	0.171	98.2	1.8	0.0	NAD	NAD
Location:	TEST PIT 8 - WHITE/GREEN	VINYL SHEE	T. BROWN BAC	CKING				
44	44-VS-02B	20	0.171	87.4	4.8	7.8	NAD	NAD
Location:	TEST PIT 8 - WHITE/GREEN	VINYL SHEE	T. BROWN BAC	CKING				
45	45-CB-01A	21	0.496	20.8	52.9	26.3	NAD	NAD
Location:	TEST PIT 8 - PINKISH VINYI	L COVE BASE						
10	46-CB-01B	21	0.462	24.9	56.2	18.9	NAD	NAD
Location:	TEST PIT 8 - PINKISH VINYI	L COVE BASE						
47	47-MST-02A	22	0.431	44.3	4.3	51.4	NAD	NAD
Location:	TEST PIT 8 - BROWN MAST	IC ON COVE I	BASE					
48	48-MST-02B	22	0.403	44.3	10.4	45.3	NAD	NAD

Table I

meriSci ample #	Client Sample#	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	Acid Soluble Inorganic %	Insoluble Non-Asbestos Inorganic %	** Asbestos % by PLM/DS	** Asbestos % by TEM
49	49-CRT-02A	23					NAD	NA
Location: T	TEST PIT 8 - SPECKLED WI	HITE 4X4 CER	AMIC TILES					
50	50-CRT-02B	23					NAD	NA
Location: T	TEST PIT 8 - SPECKLED WI	HITE 4X4 CER	AMIC TILES					
51	51-MST-03A	24	0.391	52.5	4.7	42.8	NAD	NAD
Location: T	TEST PIT 8 - WHITE MASTI	C ON BOTH 42	X4 TILE TYPES					
52	52-MST-03B	24	0.609	53.2	6.9	39.9	NAD	NAD
Location: T	TEST PIT 8 - WHITE MASTI	C ON BOTH 42	X4 TILE TYPES					
53	53-CRT-03A	25					NAD	NA
Location: T	TEST PIT 8 - WHITE 4X4 CE	RAMIC TILES	- FLOWER PAT	TERN				
54	54-CRT-03B	25					NAD	NA
Location: T	TEST PIT 8 - WHITE 4X4 CE	RAMIC TILES	- FLOWER PAT	TERN				
55	55-CRT-04A	26					NAD	NA
Location: T	TEST PIT 8 - BROWN 4X4 C	ERAMIC TILE	S					
56	56-CRT-04B	26					NAD	NA
Location: T	TEST PIT 8 - BROWN 4X4 C	ERAMIC TILE	S					
57	57-MST-04A	27	0.540	45.1	20.8	34.1	NAD	NAD
Location: T	TEST PIT 8 - OFFWHITE MA	STIC ON BRO	OWN 4X4 TILES	i				
58	58-MST-04B	27	0.418	42.6	45.5	11.9	NAD	NAD
Location: T	TEST PIT 8 - OFFWHITE MA	STIC ON BRO	OWN 4X4 TILES	i				
59	59-GT-02A	28					NAD	NA
Location: T	TEST PIT 8 - GREY GROUT	BETWEEN BR	ROWN 4X4 TILE	S				
60	60-GT-02B	28					NAD	NA
	TEST PIT 8 - GREY GROUT		ROWN 4X4 TILE	ES				
	61-INS-02A	29					NAD	NA
	TEST PIT 8 - GREY BROWN		MATERIAL					
	62-INS-02B	29					NAD	NA
	TEST PIT 8 - GREY BROWN		MATERIAL					
63	63-INS-02C	29					NAD	NA
	TEST PIT 8 - GREY BROWN							
64	64-WB-01A TEST PIT 8 - GREYISH WAL	30					NAD	NA

Table ISummary of Bulk Asbestos Analysis Results

CZ82133.00 Ph 1300; Former OSHO Restaurant; 1998 Rt 9, Poughkeepsie, NY

AmeriSci Sample #	Client Sample#	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	Acid Soluble Inorganic %	Insoluble Non-Asbestos Inorganic %	** Asbestos % by PLM/DS	** Asbestos % by TEM
65	65-WB-01B	30					NAD	NA
_								

Location: TEST PIT 8 - GREYISH WALLBOARD MATERIAL

Analyzed by: Cory M. Parnell Date: 5/19/2022

Reviewed by: Cory M. Parnell

Semi-Quantitative Analysis: NAD = no asbestos detected; NA = not analyzed; NA/PS = not analyzed due to positive stop; Trace = <1%; PLM analysis by EPA 600/R-93/116 per 40 CFR 763 (NVLAP Lab Code 101904-0) or NY ELAP 198.1 for New York friable samples which includes quantitation of any vermiculite observed (198.6 for NOB samples) or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab # 10984); TEM prep by EPA 600/R-93/116 Section 2.3 (analysis by Section 2.5, not covered by NVLAP Bulk accreditation); or NY ELAP 198.4 for New York NOB samples (NY ELAP Lab # 10984). Analysis using Jeol, Model JEM-100CX II microscope, Serial #156147-247. ** Warning Notes: Consider PLM fiber diameter limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine grained matrix material and may not be representative of non-uniformly dispersed debris, soils or other heterogeneous materials for which a combination PLM/TEM evaluation is recommended; Quantitation for beginning weights of <0.1 grams should be considered as qualitative only.

Net YORK NY 10016 Street Address: 21 Fox Street Project: Former OSHO Restaurant Restent State NY
--

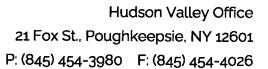
122051476

Sample ID	Sample Description	<u>HA #</u>	Date Sampled
01-BR-01A	TEST PIT 3 - RED CLAY BRICK	1	5/5/2022
02-BR-01B	TEST PIT 3 - RED CLAY BRICK	1	5/5/2022
03-MRT-01A	TEST PIT 3 - GREY MORTAR WITH RED BRICK	2	5/5/2022
04-MRT-01B	TEST PIT 3 - GREY MORTAR WITH RED BRICK	2	5/5/2022
05-MRT-01C	TEST PIT 3 - GREY MORTAR WITH RED BRICK	2	5/5/2022
06-ASC-01A	TEST PIT 3 - BLACK ASPHALT CONCRETE	3	5/5/2022
07-ASC-01B	TEST PIT 3 - BLACK ASPHALT CONCRETE	3	5/5/2022
08-AR-01A	TEST PIT 4 - RED/WHITE ASPHALT ROOFING MATERIAL	4	5/5/2022
99-AR-01B	TEST PIT 4 - RED/WHITE ASPHALT ROOFING MATERIAL		5/5/2022
0-TP-01A	TEST PIT 4 - BLACK TAR PAPER	5	5/5/2022
1-TP-01B	TEST PIT 4 - BLACK TAR PAPER	5	5/5/2022
2-CRT-01A	TEST PIT 4 - WHITE GLAZED CERAMIC TILE W/ RED BODY	6	5/5/2022
3-CRT-01B	TEST PIT 4 - WHITE GLAZED CERAMIC TILE W/ RED BODY	6	5/5/2022
4-GT-01A	TEST PIT 4 - GREY GROUT WITH CERAMIC TILES	7	5/5/2022
5-GT-01B	TEST PIT 4 - GREY GROUT WITH CERAMIC TILES	7	5/5/2022
6-CON-01A	TEST PIT 4 - GREY CONCRETE CURB STOPS	8	5/5/2022
7-CON-01B	TEST PIT 4 - GREY CONCRETE CURB STOPS	8	5/5/2022
8-BR-02A	TEST PIT 4 - RED CLAY BRICK	9	5/5/2022
9-BR-02B	TEST PIT 4 - RED CLAY BRICK	9	5/5/2022
0-BR-03A	TEST PIT 4 - GREY CAST CONCRETE BRICK	10	5/5/2022
1-BR-03B	TEST PIT 4 - GREY CAST CONCRETE BRICK	10	5/5/2022
2-CP-01A	TEST PIT 4 - DARK BROWN GLAZED CLAY DRAIN PIPE	11	5/5/2022
3-CP-01B	TEST PIT 4 - DARK BROWN GLAZED CLAY DRAIN PIPE	11	5/5/2022
4-INS-01A	TEST PIT 4 - OFFWHITE INSULATION MATERIAL	12	5/5/2022
5-INS-01B	TEST PIT 4 - OFFWHITE INSULATION MATERIAL	12	5/5/2022
6-INS-01C	TEST PIT 4 - OFFWHITE INSULATION MATERIAL	12	5/5/2022
7-PLA-01A	TEST PIT 4 - WHITE PLASTER SKIM COAT	13	5/5/2022

LaBella Project No:_______ 2782133.00

Inspector: OFLOWSKI

Page: 1 of 3



122051476

Hudson Valley Office 21 Fox St., Poughkeepsie, NY 12601 P: (845) 454-3980 F: (845) 454-4026

Sample ID	Sample Description	<u>HA #</u>	Date Sampled
8-PLA-01B	TEST PIT 4 - WHITE PLASTER SKIM COAT	13	5/5/2022
9-PLA-01C	TEST PIT 4 - WHITE PLASTER SKIM COAT	13	5/5/2022
OPLA-02A	TEST PIT 4 - GREY PLASTER BODY COAT	14	5/5/2022
1-PLA-02B	TEST PIT 4 - GREY PLASTER BODY COAT	14	5/5/2022
2-PLA-02C	TEST PIT 4 - GREY PLASTER BODY COAT	14	5/5/2022
3-WP-01A	TEST PIT 8 - TEXTURED WHITE WALLPAPER	15	5/5/2022
4-WP-01B	TEST PIT 8 - TEXTURED WHITE WALLPAPER	15	5/5/2022
5-LC-01A	TEST PIT 8 - WHITE LEVELING CMPD ON SLATE TILE	16	5/5/2022
6-LC-01B	TEST PIT 8 - WHITE LEVELING CMPD ON SLATE TILE	16	5/5/2022
7-FOR-01A	TEST PIT 8 - DARK BROWN FORMICA	17	5/5/2022
B-FOR-01B	TEST PIT 8 - DARK BROWN FORMICA	17	5/5/2022
9-MST-01A	TEST PIT 8 - WHITISH MASTIC ON FORMICA FRAGMENTS	18	5/5/2022
D-MST-01B	TEST PIT 8 - WHITISH MASTIC ON FORMICA FRAGMENTS	18	5/5/2022
-VS-01A	TEST PIT 8 - WHITE/GREEN VINYL SHEET, WHITE BACKING	19	5/5/2022
-VS-01B	TEST PIT 8 - WHITE/GREEN VINYL SHEET, WHITE BACKING	19	5/5/2022
-VS-02A	TEST PIT 8 - WHITE/GREEN VINYL SHEET, BROWN BACKING	20	5/5/2022
-VS-02B	TEST PIT 8 - WHITE/GREEN VINYL SHEET, BROWN BACKING	20	5/5/2022
CB-01A	TEST PIT 8 - PINKISH VINYL COVE BASE	21	5/5/2022
-CB-01B	TEST PIT 8 - PINKISH VINYL COVE BASE	21	5/5/2022
MST-02A	TEST PIT 8 - BROWN MASTIC ON COVE BASE	22	5/5/2022
-MST-02B	TEST PIT 8 - BROWN MASTIC ON COVE BASE	22	5/5/2022
-CRT-02A	TEST PIT 8 - SPECKLED WHITE 4X4 CERAMIC TILES	23	5/5/2022
-CRT-02B	TEST PIT 8 - SPECKLED WHITE 4X4 CERAMIC TILES	23	5/5/2022
-MST-03A	TEST PIT 8 - WHITE MASTIC ON BOTH 4X4 TILE TYPES	24	5/5/2022
-MST-03B	TEST PIT 8 - WHITE MASTIC ON BOTH 4X4 TILE TYPES	24	5/5/2022
-CRT-03A	TEST PIT 8 - WHITE 4X4 CERAMIC TILES - FLOWER PATTERN	25	5/5/2022
-CRT-03B	TEST PIT 8 - WHITE 4X4 CERAMIC TILES - FLOWER PATTERN	25	<u> </u>
Bella Project No:	782133.00	<u> </u>	0.03
spector:	ORLOWSKI Page: 2 of 3		BY

122051476

<u>Sample ID</u>	Sample Description	<u>HA #</u>	Date Sampled
55-CRT-04A	TEST PIT 8 - BROWN 4X4 CERAMIC TILES	26	5/5/2022
56-CRT-04B	TEST PIT 8 - BROWN 4X4 CERAMIC TILES	26	5/5/2022
57-MST-04A	TEST PIT 8 - OFFWHITE MASTIC ON BROWN 4X4 TILES	27	5/5/2022
58-MST-04B	TEST PIT 8 - OFFWHITE MASTIC ON BROWN 4X4 TILES	27	5/5/2022
59-GT-02A	TEST PIT 8 - GREY GROUT BETWEEN BROWN 4X4 TILES	28	5/5/2022
60-GT-02B	TEST PIT 8 - GREY GROUT BETWEEN BROWN 4X4 TILES		5/5/2022
61-INS-02A	TEST PIT 8 - GREY BROWN INSULATION MATERIAL	29	5/5/2022
62-INS-02B	TEST PIT 8 - GREY BROWN INSULATION MATERIAL	29	5/5/2022
63-INS-02C	TEST PIT 8 - GREY BROWN INSULATION MATERIAL	29	5/5/2022
64-WB-01A	TEST PIT 8 - GREYISH WALLBOARD MATERIAL	30	5/5/2022
65-WB-01B	TEST PIT 8 - GREYISH WALLBOARD MATERIAL	30	5/5/2022

RECEIVED

MAY 1 2 2022 TM BY:

LaBella Project No	(282133.00
Inspector:	

APPENDIX 5

NYSDEC's May 24, 2022, email regarding Spill 2201488

St.Romain, Arlette

From:Lenna, Meagan (DEC) <Meagan.Lenna@dec.ny.gov>Sent:Tuesday, May 24, 2022 11:44 AMTo:St.Romain, ArletteCc:Lenna, Meagan (DEC)Subject:[Ext] RE: 1998 South Rd Spill #2201488 (CZ82133.00)

Arlette,

Thank you for sending the data. Please remove the impacted soils and submit endpoint samples, disposal manifest and a summary of the work performed.

Thank you,

Meagan Lenna

she/her/hers Environmental Program Specialist New York State Department of Environmental Conservation Region 3 - Division of Environmental Remediation Spill Prevention, Response and Remediation 21 S Putt Corners Rd, New Paltz. NY 12561 P: 845-256-3120 meagan.lenna@dec.ny.gov NYSDEC 24 HR SPILL HOTLINE: 1-800-457-7362

www.dec.ny.gov | 🛐 | 💟 | 🞯

From: St.Romain, Arlette <astromain@LaBellaPC.com>
Sent: Tuesday, May 24, 2022 11:14 AM
To: Lenna, Meagan (DEC) <Meagan.Lenna@dec.ny.gov>
Subject: 1998 South Rd Spill #2201488 (CZ82133.00)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hi Meagan,

I'm glad we were able to connect about this. The results and figures are attached.

We look forward to your input and understand that initial thoughts are to do a soil removal action with confirmation soil sampling.

Thank you,

Arlette

Arlette St. Romain

LaBella Associates | Brownfields Program Manager

518-824-1928 direct 518-260-1811 cell 518-812-0513 office 5 McCrea Hill Road Ballston Spa, NY 12020 labellapc.com New email address astromain@labellapc.com

Your Chazen team under a new name!

CAUTION: This email originated from outside the LaBella organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.