SPECIFICATIONS TABLE OF CONTENTS

DIVISION	SECTION TITLE	PAGES
DIVISION	26 - ELECTRICAL	
260500	COMMON WORK RESULTS FOR ELECTRICAL INSTALLATIONS	12
260500	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	5
260515	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	5 7
260520	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS	6
260523	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	12
260535	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL STSTEMS	4
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	13
260800	COMMISSIONING OF ELECTRICAL	3
260923	LIGHTING CONTROL DEVICES	7
261219	PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS	13
262213	LOW-VOLTAGE DISTRIBUTION TRANSFORMERS	8
262413	SWITCHBOARDS	12
262416	PANELBOARDS	10
262419	MOTOR-CONTROL CENTERS	17
262726	WIRING DEVICES	9
262813	FUSES	4
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	6
263213.14	DIESEL ENGINE GENERATORS	19
263600	TRANSFER SWITCHES	9
264313	SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS	5
265119	LED INTERIOR LIGHTING	9
265219	EMERGENCY AND EXIT LIGHTING	9
DIVISION	28 - ELECTRONIC SAFETY AND SECURITY	
280513	CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY	11
283111	DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM	18

END OF TABLE OF CONTENTS

ELECTRICAL TABLE OF CONTENTS

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL INSTALLATIONS

PART 1 -

1.1 RELATED DOCUMENTS

- A. These basic Electrical Requirements apply to all Division 26000 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>Electrical Installations and related</u> work for this project, as required by the contract documents.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.3 REFERENCES

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. SMACNA Sheet Metal and Air Conditioning Contractors National Association.
- C. ASME American Society of Mechanical Engineers.
- D. UL Underwriters Laboratory.
- E. NFPA National Fire Protection Association.

1.4 REGULATORY REQUIREMENTS

- A. Conform to New York State Building Codes and Energy Code as well as all local codes.
- B. Electrical : Conform to National Electrical Code, NFPA 70 (2017).
- C. Obtain permits, and request inspections from authority having jurisdiction.

1.5 QUALITY ASSURANCE

A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field, which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the Contract, or otherwise performing work required by the Contract.

B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.6 PROJECT/SITE CONDITIONS

- A. Install Work in approximate locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.7 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all electrical work and related work including but not limited to the following:
 - 1. Demolition of existing work including, but not limited to, generator, transformers, switchboards, panelboards, lighting, wiring, electrical accessories/equipment, control panels, miscellaneous equipment.
 - 2. Equipment Supports
 - 3. Vibration isolation.
 - 4. Motor starters and disconnects.
 - 5. Protection.
 - 6. Identification.
 - 7. Coordination.
 - 8. Phasing.
 - 9. Rigging.
 - 10. Shop Drawings.
 - 11. As-Built Drawings and Maintenance Manuals.
 - 12. Warrantees.
 - 13. Commissioning

PART 2 - PRODUCTS – NOT USED

PART 3 - EXECUTION

3.1 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Construct all equipment in accordance with requirements of all applicable codes.
- C. Provide all wiring, equipment, accessories and other components necessary to make all systems complete and operable.
- D. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of year from the date of acceptance by the owner, in writing. Certain equipment, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.2 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

- A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of all items listed in the following paragraphs.
- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all Electrical equipment noted and scheduled on plans including but not limited to the following:
 - 1. Generator
 - 2. Transformers
 - 3. Switchboards
 - 4. MCCs
 - 5. Panelboards
 - 6. Raceways and boxes
 - 7. Lighting and controls
 - 8. Wiring devices
- D. The contractor shall, upon award, submit a schedule for the engineer's review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manner as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.

- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- F. Coordinated shop drawings shall indicate all existing and/or new sheet metal, lights, walls, piping, structural elements, existing work, conduits, equipment, fire alarm devices etc. and dimension locations of ductwork including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have been reviewed, said review does not mean that drawings have been checked in detail; said review does not substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications. It does not relieve the contractor of the responsibility to perform all work to accepted industry standards and in a code compliant manor. Approval of shop drawings containing errors does not relieve the contractor from making corrections at his expense.
- H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.
- I. Approval of shop drawings
 - 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
 - 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
 - 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
 - 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.
- J. The contractor shall submit a composite shop drawing layout plan. This shall include all trades including plumbing mechanical and electrical trades. It shall indicate all equipment, piping conduit. It shall include an accurate architectural background. The composite drawing is for contractors and subcontractors to coordinate their work with the work of other trades prior to submitting to the engineer for review and approval. Identify equipment clearances as required for service and maintenance by the manufacture. Indicate conflicts for resolution.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

K. Coordination submittals for piping, conduit and equipment within the building shall be made using 3-d software such as Autocad and shall include plan view sections and elevations as necessary to full illustrate and evaluate and resolve all structural, piping, major conduit and equipment for conflicts with other trades.

3.3 CHARTS AND TAGS

A. Comply with Supplemental and general Conditions

3.4 CODES AND STANDARDS

A. All equipment and installation methods shall conform to the applicable standards and/or recommendations set forth in the New York State Building Code, Local Codes as well as all Codes and Standards listed in the general requirements sections of the specification.

3.5 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required related to this scope of work

3.6 PAINTING

- A. All equipment and all other factory manufactured and assembled apparatus shall be factory coated with one coat of primer and one coat of machinery enamel standard color at the factory and after installation, all finishes shall be cleaned and touched up to repair any damage incurred during construction.
- B. All supports, nuts, bolts and hanger fasteners located outside shall be galvanized or nickel plated.

3.7 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- B. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- C. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- D. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.8 CUTTING AND PATCHING

- A. All cutting and patching required for conduits, etc., passing through walls, floors, and roof shall be provided by this Contractor under this contract unless otherwise noted.
- B. Patching materials and application shall match existing construction. It also includes patch to match any voids left behind by removals. Hire a skilled tradesman (mason, carpenter, etc.) to perform this work.
- C. Where applicable, new holes for piping installation shall be core drilled.
- D. Pipe Sleeves & Fire-stopping:
 - 1. Provide for all pipes, conduits ducts, and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe. When pipe, conduit ducts or other such element penetrates other than fire rated assembly and is insulated, insulation shall pass continuously through sleeves with 1/2 inch clearance between insulation and sleeve.
 - 2. Where pipes, conduits and other such elements penetrate fire rated assemblies, or where holes or voids are created to extend mechanical systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- E. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.
- F. Submit location drawings and sizes for review prior to installation.

3.9 PROTECTION-COORDINATE WITH DIVISION 1

- A. Special protection is required for installation of a Derrick or other device for rigging purposes. This Contractor shall coordinate with the rigger to facilitate rigging work.
- B. Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with inso-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- F. All openings cut in walls, floors, roof or ceilings of the building, for conduit, pipe, ductwork, etc., shall be closed off with box-type temporary protective enclosures of ¹/₄" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and water tight.
- G. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of 1/4" hardboard, "Masonite", laid with joints taped together. Roofs shall be protected with 1/2" plywood

3.10 EQUIPMENT SUPPORTS

A. A.Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.

3.11 WELDING

- A. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- C. Provide all temporary ventilation, and ventilation air systems required during welding operations as required by OSHA.

3.12 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing actual installation and locations of all new and existing equipment, piping, and ductwork in the entire building. Schedules shall be revised to indicate actual equipment installed.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1 and shall be submitted in paper format for review. Accepted as builts shall then be submitted in AutoCAD format on hard disc.

3.13 CONDITIONS

A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.

B. Discrepancies: In the event of discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.14 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.15 CLOSING-IN OF UNINSPECTED WORK

- A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.
- B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.16 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction and/or knock-down of equipment to suit conditions. Special attention should be given to equipment installation. Provide all labor and material to facilitate installation.

3.17 COOPERATION WITH OTHER TRADES PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- B. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- C. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipment, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, ductwork, equipment, diffusers and grilles.
- D. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the HVAC contractor shall submit a schedule in writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner.

3.18 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.19 COMPLETENESS

A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer and in accordance with generally accepted industry good practice.

3.20 FIRE PREVENTION DURING HOT WORK

- A. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. Contractor shall furnish suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- B. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- C. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings and roofs from the operations.

3.21 SAFETY MEASURES

A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to assure that each area is safe. The Contractor is responsible for arranging and paying for each test.

- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.
- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.
- G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.
- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. Suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor form performing his work within the Contract period for the Contract price.

3.22 USE OF OWNERS EQUIPMENT

A. The contractor shall only use the owners equipment where agreed prior and with 5 days notice minimum or as agreed.

3.23 CLOSEOUT PROCEDURES

- A. General Operating and Maintenance Instructions: Arrange for each installer of operating equipment and other work that requires regular or continuing maintenance, to meet at the site with the Owner's personnel to provide necessary basic instructions in the proper operation and maintenance of the entire Work. Where installers are not expert in the required procedures, include instruction by the manufacturer's representatives.
- B. Where applicable, provide instruction and training, including application of special coatings systems, at manufacturer's recommendation.
- C. Provide a detailed review of the following items:
 - 1. Maintenance manuals
 - 2. Record documents and catalog cuts for each piece of equipment.
 - 3. Spare parts and materials
 - 4. Tools
 - 5. Lubricants
 - 6. Fuels
 - 7. Identification systems
 - 8. Control sequences
 - 9. Hazards
 - 10. Cleaning
- D. Warranties, bonds, maintenance agreements, and similar continuing commitments.
- E. Demonstrate the following procedures:
 - 1. Start-up
 - 2. Shut-down
 - 3. Emergency operations
 - 4. Noise and vibration adjustments
 - 5. Safety procedures
 - 6. Economy and efficiency adjustments
 - 7. Effective energy utilization.
 - 8. Periodic maintenance
- F. Prepare instruction periods to consist of classroom and or "hands-on" instruction. Provide all equipment including, but not limited to, the following.
 - 1. Generator
 - 2. Lighting and controls
 - 3. MCC
 - 4. Switchboard and metering
 - 5. Circuit breakers

Consult individual equipment specification sections for additional training requirements.

G. Prepare a written agenda for each session and submit for review and approval. Include date, location, purpose, specific scope, proposed attendance and session duration.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

H. Record training sessions in digital format, format as selected by the Owner. Turn over digital files to the Owner after training has been completed.

END OF SECTION

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Alpha Wire Company</u>.
 - 2. <u>Belden Inc</u>.
 - 3. <u>Cerro Wire LLC</u>.
 - 4. <u>Encore Wire Corporation</u>.
 - 5. <u>General Cable Technologies Corporation</u>.
 - 6. <u>General Cable; General Cable Corporation</u>.

- 7. <u>Senator Wire & Cable Company</u>.
- 8. <u>Southwire Company</u>.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.
- D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI and Type SO with ground wire.
- E. VFC Cable:
 - 1. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable.
 - 2. Type TC-ER with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 CONNECTORS AND SPLICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>3M</u>.
 - 2. AFC Cable Systems, Inc.
 - 3. <u>Gardner Bender</u>.
 - 4. <u>Hubbell Power Systems, Inc</u>.
 - 5. <u>Ideal Industries, Inc</u>.
 - 6. <u>ILSCO</u>.
 - 7. <u>NSi Industries LLC</u>.
 - 8. <u>O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business</u>.
 - 9. <u>Tyco Electronics Corp</u>.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway or Mineral-insulated, metal-sheathed cable, Type MI.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
- I. VFC Output Circuits: Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - b. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency and testing agency's field supervisor.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. <u>ERICO International Corporation</u>.
 - 3. <u>Galvan Industries, Inc.; Electrical Products Division, LLC</u>.
 - 4. <u>Harger Lightning & Grounding</u>.
 - 5. <u>ILSCO</u>.
 - 6. <u>O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business</u>.
 - 7. <u>Siemens Power Transmission & Distribution, Inc</u>.

2.2 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 5/8 by 96 inches.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
- C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- D. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

- E. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. For grounding electrode system, install at least two rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- D. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

- E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
- F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.
- G. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Manhole Grounds: 10 ohms.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Trapeze hangers.
 - d. Clamps.
 - e. Turnbuckles.
 - f. Sockets.
 - g. Eye nuts.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Allied Tube & Conduit</u>.
 - b. <u>Cooper B-Line, Inc.; a division of Cooper Industries</u>.
 - c. <u>ERICO International Corporation</u>.
 - d. <u>GS Metals Corp</u>.
 - e. <u>Thomas & Betts Corporation, A Member of the ABB Group</u>.
 - f. <u>Unistrut; an Atkore International company</u>.
 - 2. Material: Galvanized steel.
 - 3. Channel Width: 1-5/8 inches.
 - 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Hilti, Inc</u>.
 - 2) <u>ITW Ramset/Red Head; Illinois Tool Works, Inc</u>.
 - 3) <u>MKT Fastening, LLC</u>.
 - 4) <u>Simpson Strong-Tie Co., Inc</u>.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Cooper B-Line, Inc.; a division of Cooper Industries</u>.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) <u>Hilti, Inc</u>.
 - 4) <u>ITW Ramset/Red Head; Illinois Tool Works, Inc</u>.
 - 5) <u>MKT Fastening, LLC</u>.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
- 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

- 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems, Inc.
 - 2. <u>Allied Tube & Conduit</u>.
 - 3. <u>O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business</u>.
 - 4. <u>Republic Conduit</u>.
 - 5. <u>Southwire Company</u>.
 - 6. <u>Thomas & Betts Corporation, A Member of the ABB Group</u>.
 - 7. <u>Western Tube and Conduit Corporation</u>.
 - 8. <u>Wheatland Tube Company</u>.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. FMC: Comply with UL 1; zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- I. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Arnco Corporation.
 - 3. <u>CANTEX INC</u>.
 - 4. <u>CertainTeed Corporation</u>.
 - 5. <u>Kraloy</u>.
 - 6. <u>RACO; Hubbell</u>.
 - 7. <u>Thomas & Betts Corporation, A Member of the ABB Group</u>.
- B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Cooper B-Line, Inc.; a division of Cooper Industries</u>.
 - 2. <u>Hoffman; a brand of Pentair Equipment Protection</u>.
 - 3. <u>MonoSystems, Inc</u>.
 - 4. <u>Square D</u>.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - b. <u>MonoSystems, Inc</u>.
 - c. <u>Legrand/Wiremold</u>
 - d. Panduit

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Cooper Technologies Company</u>.
 - 2. <u>EGS/Appleton Electric</u>.
 - 3. Erickson Electrical Equipment Company.
 - 4. <u>Hoffman; a brand of Pentair Equipment Protection</u>.
 - 5. <u>Hubbell Incorporated</u>.
 - 6. <u>MonoSystems, Inc</u>.
 - 7. <u>O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business</u>.
 - 8. <u>RACO; Hubbell</u>.
 - 9. <u>Thomas & Betts Corporation, A Member of the ABB Group</u>.
 - 10. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.

- 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- K. Gangable boxes are allowed.
- L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- M. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Armorcast Products Company</u>.
 - b. <u>Carson Industries LLC</u>.
 - c. <u>NewBasis</u>.
 - d. <u>Oldcastle Precast, Inc</u>.
 - e. Quazite: Hubbell Power Systems, Inc.
 - f. <u>Synertech Moulded Products</u>.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "ELECTRIC.".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.7 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC.
 - 2. Concealed Conduit, Aboveground: GRC or IMC.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- 3. Underground Conduit: RNC, Type EPC-40-PVC or Type EPC-80-PVC.
- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC or IMC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings.
- F. Install surface raceways only where indicated on Drawings.
- G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inchesof enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from RNC, Type EPC-40-PVC to GRC or IMC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

- O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- Q. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- U. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.

- 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
- 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
- 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- V. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- W. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.
- X. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- Y. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- Z. Locate boxes so that cover or plate will not span different building finishes.
- AA. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- BB. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- CC. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction

as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

- 4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
- 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Rectangular Openings:

- 1. Material: Galvanized sheet steel.
- 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Advance Products & Systems, Inc</u>.
 - b. <u>CALPICO, Inc</u>.
 - c. <u>Metraflex Company (The)</u>.
 - d. <u>Pipeline Seal and Insulator, Inc.</u>
 - e. <u>Proco Products, Inc</u>.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Plastic.
 - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>HOLDRITE</u>.
- 2.4 GROUT
 - A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-firerated walls or floors.

- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.
- 2.5 SILICONE SEALANTS
 - A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 - B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels.
 - 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- C. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Champion America</u>.
 - c. <u>emedco</u>.
 - d. <u>Grafoplast Wire Markers</u>.
 - e. <u>LEM Products Inc</u>.
 - f. <u>Marking Services, Inc</u>.
 - g. Panduit Corp.
 - h. <u>Seton Identification Products</u>.

- B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Marking Services, Inc</u>.
 - c. <u>Panduit Corp</u>.
 - d. <u>Seton Identification Products</u>.
- C. Self-Adhesive Labels:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>A'n D Cable Products</u>.
 - b. <u>Brady Corporation</u>.
 - c. <u>Brother International Corporation</u>.
 - d. <u>emedco</u>.
 - e. <u>Grafoplast Wire Markers</u>.
 - f. <u>Ideal Industries, Inc</u>.
 - g. <u>LEM Products Inc</u>.
 - h. <u>Marking Services, Inc</u>.
 - i. <u>Panduit Corp</u>.
 - j. <u>Seton Identification Products</u>.
 - 2. Preprinted, 3-mil-thick, polyester or vinyl flexible label with acrylic pressure-sensitive adhesive.
 - a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the cable or raceway diameter, such that the clear shield overlaps the entire printed legend.
 - 3. Polyester or Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 - a. Nominal Size: 3.5-by-5-inch.
 - 4. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - 5. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.4 BANDS AND TUBES:

- A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solidcolored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Marking Services, Inc</u>.
 - c. <u>Panduit Corp</u>.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Panduit Corp</u>.

2.5 TAPES AND STENCILS:

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Carlton Industries, LP</u>.
 - b. <u>Champion America</u>.
 - c. <u>Ideal Industries, Inc</u>.
 - d. <u>Marking Services, Inc</u>.
 - e. <u>Panduit Corp</u>.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.

- b. <u>Carlton Industries, LP</u>.
- c. <u>emedco</u>.
- d. <u>Marking Services, Inc</u>.
- C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>LEM Products Inc</u>.
 - b. <u>Marking Services, Inc</u>.
 - c. <u>Seton Identification Products</u>.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Carlton Industries, LP</u>.
 - b. <u>Seton Identification Products</u>.
- E. Underground-Line Warning Tape
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Ideal Industries, Inc</u>.
 - c. <u>LEM Products Inc</u>.
 - d. <u>Marking Services, Inc</u>.
 - e. <u>Reef Industries, Inc</u>.
 - f. <u>Seton Identification Products</u>.
 - 2. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 3. Color and Printing:

- a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
- b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
- c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
- 4. Tag:
 - a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 - b. Width: 3 inches.
 - c. Overall Thickness: 5 mils.
 - d. Foil Core Thickness: 0.35 mil.
 - e. Weight: 28 lb/1000 sq. ft..
 - f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.
- 2.6 Tags
 - A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>emedco</u>.
 - d. <u>Marking Services, Inc</u>.
 - e. <u>Seton Identification Products</u>.
 - B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>emedco</u>.
 - d. <u>Grafoplast Wire Markers</u>.

- e. <u>LEM Products Inc</u>.
- f. <u>Marking Services, Inc</u>.
- g. <u>Panduit Corp</u>.
- h. <u>Seton Identification Products</u>.
- C. Write-On Tags:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Carlton Industries, LP</u>.
 - b. <u>LEM Products Inc</u>.
 - c. <u>Seton Identification Products</u>.
 - 2. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
 - 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.
- 2.7 Signs
 - A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 7 by 10 inches.
 - 4. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Carlton Industries, LP</u>.
 - b. <u>Champion America</u>.
 - c. <u>emedco</u>.
 - d. <u>Marking Services, Inc</u>.
 - B. Metal-Backed Butyrate Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396inch galvanized-steel backing and with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 10 by 14 inches.
 - 4. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. <u>Brady Corporation</u>.
- b. <u>Champion America</u>.
- c. <u>emedco</u>.
- d. <u>Marking Services, Inc</u>.
- C. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches, minimum 1/16-inch-
 - b. For signs larger than 20 sq. inches, 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
 - 3. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>emedco</u>.
 - d. <u>Marking Services, Inc</u>.

2.8 CABLE TIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Ideal Industries, Inc</u>.
 - 2. <u>Marking Services, Inc</u>.
 - 3. <u>Panduit Corp</u>.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.

- 3. Temperature Range: Minus 40 to plus 185 deg F.
- 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.

- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
- J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

- A. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Snap-around labels. Install labels at 10-foot maximum intervals.
- B. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.
- C. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "STANDBY POWER."
 - 2. "POWER."
 - 3. "UPS."
- D. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

- 1. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- E. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- F. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive, self-laminating polyester labels with the conductor or cable designation, origin, and destination.
- H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive, self-laminating polyester labels with the conductor designation.
- I. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.
- J. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

- K. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.
- L. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Metalbacked, butyrate warning signs.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- N. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- O. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- P. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

- d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
- 2. Equipment To Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchboards.
 - e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - f. Emergency system boxes and enclosures.
 - g. Enclosed switches.
 - h. Enclosed circuit breakers.
 - i. Enclosed controllers.
 - j. Variable-speed controllers.
 - k. Push-button stations.
 - 1. Power-transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery-inverter units.
 - p. Power-generating units.
 - q. Monitoring and control equipment.
 - r. UPS equipment.

END OF SECTION 260553

SECTION 260800

COMMISSIONING OF ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes commissioning process requirements for electrical systems.
- B. Related Sections:
 - 1. 019113 Building System Commissioning
 - 2. Division 26 Sections

1.3 SCOPE

A. Commissioning requires the participation of Division 26, Electrical, to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 019113. Division 26, Electrical, shall be familiar with Section 019113 and the Commissioning Plan issued by the Commissioning Agent (CA) and shall execute all commissioning responsibilities assigned to them in the Contract Documents.

1.4 SYSTEMS TO BE COMMISSIONED

- A. The following Electrical systems will be commissioned on this project:
 - 1. Emergency Power System: Emergency Generator.

1.5 RESPONSIBILITIES

A. Electrical Contractor: Commissioning responsibilities applicable to the Electrical contractor of Division 26 are as described in Section 019113, Paragraph 1.10-I.

1.6 OPERATION AND MAINTENANCE (O&M) MANUALS

A. Compile and prepare documentation for all equipment and systems covered in Division 26, Electrical, and deliver to Construction Manager for inclusion in O&M Manuals in accordance with Division 1.

B. Provide the Commissioning Agent with a copy of O&M Manuals for review.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. Provide test equipment necessary to fulfill testing requirements of Divisions 26, Electrical.
- B. Refer to Section 019113 and Division 26 specification for other additional Division 26, Electrical requirements.

PART 3 - EXECUTION

3.1 PREFUNCTIONAL CHECKLISTS AND STARTUP

- A. Prefunctional tests and checklists (PFT's) are important to ensure that the equipment and systems are connected properly and are operational. PFT's ensure that functional performance testing may proceed without unnecessary delays. The Contractor shall be responsible for performing Prefunctional testing. EVERY piece of equipment receives a full Prefunctional checkout.
- B. Division 26, Electrical, has start-up responsibility and is required to complete systems and subsystems so they are fully functional, meeting design objectives of Contract Documents. Commissioning procedures and functional testing do not relieve or lessen this responsibility or shift that responsibility partially to CA or Owner.

3.2 FUNCTIONAL PERFORMANCE TESTS

- C. Functional testing is intended to begin upon completion of a system. Functional testing may proceed prior to completion of systems or sub-systems at discretion of CA and CM. Beginning system testing before full completion does not relieve Contractor from fully completing system as soon as possible, including prefunctional checklists.
- D. Functional performance testing requirements are in addition to and do not replace any testing required by Code or listed elsewhere in Division 26.
- E. Functional performance testing procedures will be performed on but not limited to the following system types and equipment. Final functional testing requirements and procedures will be developed based on approved equipment shop drawings.
 - 1. Emergency Power System
 - a. Equipment:
 - 1) Emergency Generator

3.2 ISSUES AND DEFICIENCIES

A. Refer to Section 019113 for details relating to resolution of issues and deficiencies.

3.3 TRAINING OF OWNER PERSONNEL

- A. Contractor shall be responsible for training coordination and scheduling and ultimately to ensure that training is completed. Refer to Section 019113 for details.
- B. Duration of Training: Electrical Contractor shall provide training on each piece of equipment according to the following schedule:

System	Minimum Training Hours
Emergency Power System – Emergency Generator	8
Total Training Time	8 Hours

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Photoelectric switches.
 - 2. Indoor occupancy sensors.
 - 3. Switchbox-mounted occupancy sensors.
- B. Related Requirements:
 - 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control devices.
 - 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. Intermatic, Inc.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. <u>NSi Industries LLC</u>.
 - 5. <u>Tyco Electronics Corporation; a TE Connectivity Ltd. company</u>.
- B. Description: Solid state, with SPST dry contacts rated for 1000 W incandescent or 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen-second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Failure Mode: Luminaire stays ON.

2.2 INDOOR OCCUPANCY SENSORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Bryant Electric</u>.
 - 2. <u>Cooper Industries, Inc</u>.
 - 3. <u>Hubbell Building Automation, Inc.</u>
 - 4. <u>Leviton Manufacturing Co., Inc</u>.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. <u>Lutron Electronics Co., Inc</u>.
 - 7. <u>NSi Industries LLC</u>.
 - 8. <u>Philips Lighting Controls</u>.
 - 9. <u>Sensor Switch, Inc</u>.
 - 10. Square D.
 - 11. Watt Stopper.
- B. General Requirements for Sensors:
 - 1. Ceiling-mounted, solid-state indoor occupancy sensors.
 - 2. Dual technology.
 - 3. Separate power pack.
 - 4. Hardwired connection to switch.
 - 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 6. Operation:
 - a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 7. Sensor Output: Sensor is powered from the power pack.
 - 8. Power: Line voltage.
 - 9. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 10. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 12. Bypass Switch: Override the "on" function in case of sensor failure.
 - 13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 - 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180degree pattern centered on the sensor over an area of 1000 square feet when mounted48 inches above finished floor.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Bryant Electric.
 - 2. <u>Cooper Industries, Inc</u>.
 - 3. Hubbell Building Automation, Inc.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. <u>Lithonia Lighting; Acuity Brands Lighting, Inc.</u>
 - 6. <u>Lutron Electronics Co., Inc</u>.
 - 7. <u>NSi Industries LLC</u>.
 - 8. <u>Philips Lighting Controls.</u>
 - 9. <u>Sensor Switch, Inc</u>.
 - 10. <u>Square D</u>.
 - 11. <u>Watt Stopper</u>.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual onoff switch, suitable for mounting in a single gang switchbox using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.
- C. Wall-Switch Sensor Tag WS1:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft..

- 2. Sensing Technology: Dual technology PIR and ultrasonic.
- 3. Switch Type: SP.
- 4. Capable of controlling load in three-way application.
- 5. Voltage: Match the circuit voltage.
- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
- 9. Color: White.
- 10. Faceplate: Color matched to switch.

2.4 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 SENSOR INSTALLATION
 - A. Comply with NECA 1.

- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpowerlimited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Lighting control devices will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 261219 - PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pad-mounted, liquid-filled, medium-voltage distribution transformers, with primary and secondary bushings within or without air-terminal enclosures.

1.3 DEFINITIONS

- A. BIL: Basic Impulse Insulation Level.
- B. Bushing: An insulating structure including a central conductor, or providing a central passage for a conductor, with provision for mounting on a barrier, conducting or otherwise, for the purpose of insulating the conductor from the barrier and conducting current from one side of the barrier to the other.
- C. Bushing Elbow: An insulated device used to connect insulated conductors to separable insulated connectors on dead-front, pad-mounted transformers and to provide a fully insulated connection. This is also called an "elbow connector."
- D. Bushing Insert: That component of a separable insulated connector that is inserted into a bushing well to complete a dead-front, load break or nonload break, separable insulated connector (bushing).
- E. Bushing Well: A component of a separable insulated connector, either permanently welded or clamped to an enclosure wall or barrier, having a cavity that receives a replaceable component (bushing insert) to complete the separable insulated connector (bushing).
- F. Elbow Connector: See "bushing elbow" above.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For pad-mounted, liquid-filled, medium-voltage transformers.
 - 1. Include plans and elevations showing major components and features.
 - a. Include a plan view and cross section of equipment base, showing clearances, required workspace, and locations of penetrations for grounding and conduits.
 - 2. Include details of equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include single-line diagram.
 - 4. Include list of materials.
 - 5. Include nameplate data.
 - 6. Manufacturer's published time-current curves of the transformer high-voltage fuses, with transformer damage curve, inrush curve, and thru fault current indicated.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings:
 - 1. Utilities site plan, drawn to scale, showing heavy equipment or truck access paths for maintenance and replacement.
- B. Qualification Data: For testing agency.
- C. Product Certificates: For transformers, signed by product manufacturer.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformer and accessories to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with IEEE C2.
- C. Comply with IEEE C57.12.00.

2.2 PERFORMANCE REQUIREMENTS

- A. Windings Material: Aluminum.
- B. Surge Arresters: Comply with IEEE C62.11, Distribution Class; metal-oxide-varistor type, fully shielded, separable-elbow type, suitable for plugging into the inserts provided in the high-voltage section of the transformer. Connected in each phase of incoming circuit and ahead of any disconnecting device.
- C. Winding Connections: The connection of windings and terminal markings shall comply with IEEE C57.12.70.
- D. Efficiency: Comply with 10 CFR 431, Subpart K.
- E. Insulation: Transformer kVA rating shall be as follows: The average winding temperature rise above a 30 deg C ambient temperature shall not exceed 65 deg C and 80 deg C hottest-spot temperature rise at rated kVA when tested according to IEEE C57.12.90, using combination of connections and taps that give the highest average winding temperature rise.
- F. Tap Changer: External handle, for de-energized operation.
- G. Tank: Sealed, with welded-on cover.
- H. Enclosure Integrity: Comply with IEEE C57.12.28 for pad-mounted enclosures that contain energized electrical equipment in excess of 600 V that may be exposed to the public.
- I. Mounting: An integral skid mounting frame, suitable to allow skidding or rolling of transformer in any direction, and with provision for anchoring frame to pad.
- J. Insulating Liquids:
 - 1. Mineral Oil: ASTM D3487, Type II, and tested for compliance with ASTM D117.
- K. Sound level shall comply with NEMA TR 1 requirements.
- L. Corrosion Protection:

1. Transformer coating system shall be factory applied, complying with requirements of IEEE C57.12.29, in manufacturer's standard color green.

2.3 THREE-PHASE TRANSFORMERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Eaton</u>.
 - 2. <u>GE Power; General Electric Company</u>.
 - 3. Prolec GE; A Xignux and General Electric Company Joint Venture.
- B. Description:
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with IEEE C57.12.26.
- C. Compartment Construction:
 - 1. Double-Compartment Construction: Individual compartments for high- and low-voltage sections, formed by steel isolating barriers that extend full height and depth of compartments, with hinged, lift-off doors and three-point latching, with a stop in the open position and provision for padlocking.
- D. Primary Fusing: Designed and rated to provide thermal protection of transformer by sensing overcurrent and high liquid temperature.
 - 1. 150-kV BIL current-limiting fuses, conforming to requirements of IEEE C37.47.
 - 2. Interrupting Rating: 50,000 rms A symmetrical at system voltage.
 - 3. Fuse Assembly: Bayonet-type, liquid-immersed, expulsion fuses in series with liquidimmersed, partial-range, current-limiting fuses. Bayonet fuse shall sense both high currents and high oil temperature to provide thermal protection to the transformer. Connect current-limiting fuses ahead of radial-feed load-break switch.
 - 4. Provide bayonet fuse assembly with an oil retention valve and an external drip shield inside the housing to eliminate or minimize oil spills. Valve shall close when fuse holder is removed and an external drip shield is installed.
 - 5. Provide a conspicuously displayed warning adjacent to bayonet fuse(s), cautioning against removing or inserting fuses unless transformer has been de-energized and tank pressure has been released.
- E. High-Voltage Section: Dead-front design.
 - 1. To connect primary cable, use separable insulated connectors; coordinated with and complying with requirements of Section 260513 "Medium-Voltage Cables." Bushings shall be one-piece units, with ampere and BIL ratings the same as connectors.
 - 2. Bushing inserts:

- a. Conform to the requirements of IEEE 386.
- b. Rated at 200 A, with voltage class matching connectors. Provide a parking stand near each bushing well.
- c. Provide insulated protective caps for insulating and sealing out moisture from unused bushing inserts and insulated standoff bushings.
- 3. Bushing wells configured for loop-feed application.
- 4. Access to liquid-immersed fuses.
- 5. Dead-front surge arresters.
- 6. Tap-changer operator.
- 7. Ground pad.
- F. Low-Voltage Section:
 - 1. Bushings with spade terminals drilled for terminating the number of conductors indicated on the Drawings, and the lugs that comply with requirements of Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - 2. Taps: Comply with IEEE C57.12.26 requirements.
 - 3. Transformer BIL (kV): Comply with IEEE C57.12.26 requirements.
 - 4. Minimum Tested Impedance (Percent at 85 deg C): 5.75.
 - 5. K-factor: complying with UL 1562.
 - 6. Comply with UL listing requirements for combination classification and listing for transformer and less-flammable insulating liquid.
- G. Transformer Accessories:
 - 1. Drain and filter connection.
 - 2. Filling and top filter press connections.
 - 3. Pressure-vacuum gauge.
 - 4. Dial-type analog thermometer with alarm contacts.
 - 5. Magnetic liquid level indicator with high and low alarm contacts.
 - 6. Automatically resetting pressure-relief device. Device flow shall be as recommended by manufacturer. With alarm contacts and a manual bleeder.
 - 7. Stainless-steel ground connection pads.
 - 8. Machine-engraved nameplate, made of anodized aluminum or stainless steel.
 - 9. Sudden pressure relay for remote alarm or trip when internal transformer pressure rises at field-set rate. Provide with seal-in delay.

2.4 WARNING LABELS AND SIGNS

- A. Comply with requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."
 - 1. High-Voltage Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s). Sign legend shall be "DANGER HIGH VOLTAGE" printed in two lines of nominal 2-inch-high letters. The word "DANGER" shall be in white letters on a red background and the words "HIGH VOLTAGE" shall be in black letters on a white background.

2. Arc Flash Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s), warning of potential electrical arc flash hazards and appropriate personal protective equipment required.

2.5 SOURCE QUALITY CONTROL

- A. Provide manufacturer's certificate that the transformer design tests comply with IEEE C57.12.90.
 - 1. Perform the following factory-certified routine tests on each transformer for this Project:
 - a. Resistance.
 - b. Turns ratio, polarity, and phase relation.
 - c. Transformer no-load losses and excitation current at 100 percent of ratings.
 - d. Transformer impedance voltage and load loss.
 - e. Operation of all devices.
 - f. Lightning impulse.
 - g. Low frequency.
 - h. Leak.
 - i. Transformer no-load losses and excitation current at 110 percent of ratings.
 - j. Insulation power factor.
 - k. Applied potential, except that this test is not required for single-phase transformers or for three-phase Y-Y-connected transformers.
 - l. Induced potential.
 - m. Resistance measurements of all windings on rated voltage connection and at tap extreme connections.
 - n. Ratios on rated voltage connection and at tap extreme connections.
 - o. Polarity and phase relation on rated voltage connection.
 - p. No-load loss at rated voltage on rated voltage connection.
 - q. Exciting current at rated voltage on rated voltage connection.
 - r. Impedance.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine pad-mounted, liquid-filled, medium-voltage transformers upon delivery.
 - 1. Upon delivery of transformers and prior to unloading, inspect equipment for any damage that may have occurred during shipment or storage.
 - 2. Verify that tie rods and chains are undamaged and tight, and that all blocking and bracing is tight. Verify that there is no evidence of load shifting in transit, and that readings from transportation shock recorders, if equipped, are within manufacturer's recommendations.
 - 3. Verify that there is no indication of external damage and no dents or scratches in doors and sill, tank walls, radiators and fins, or termination provisions.

- 4. Verify that there is no evidence of insulating-liquid leakage on transformer surfaces, at weld seams, on high- or low-voltage bushing parts, and at transformer base.
- 5. Verify that there is positive pressure or vacuum on tank. Check pressure gauge; it is required to read other than zero.
- 6. Compare transformers and accessories received with bill of materials to verify that shipment is complete. Verify that transformers and accessories conform with manufacturer's quotation and shop drawings. If shipment is incomplete or does not comply with Project requirements, notify manufacturer in writing immediately.
- 7. Verify presence of polychlorinated biphenyl content labeling.
- 8. Unload transformers carefully, observing all packing label warnings and handling instructions.
- 9. Open termination compartment doors and inspect components for damage or displaced parts, loose or broken connections, cracked or chipped insulators, bent mounting flanges, dirt or foreign material, and water or moisture.
- B. Handling:
 - 1. Handle transformers carefully, in accordance with manufacturer recommendations, to avoid damage to enclosure, termination compartments, base, frame, tank, and internal components. Do not subject transformers to impact, jolting, jarring, or rough handling.
 - 2. Protect transformer termination compartments against entrance of dust, rain, and snow.
 - 3. Transport transformers upright, to avoid internal stresses on core and coil mounting assembly and to prevent trapping air in windings. Do not tilt or tip transformers.
 - 4. Verify that transformer weights are within rated capacity of handling equipment.
 - 5. Use only manufacturer-recommended points for lifting, jacking, and pulling. Use all lifting lugs when lifting transformers.
 - 6. Use jacks only at corners of tank base plate.
 - 7. Use nylon straps of same length to balance and distribute weight when handling transformers with a crane.
 - 8. Use spreaders or a lifting beam to obtain a vertical lift and to protect transformer from straps bearing against enclosure. Lifting cable pull angles may not be greater than 15 degrees from vertical.
 - 9. Exercise care not to damage tank base structure when handling transformer using skids or rollers. Use skids to distribute stresses over tank base when using rollers under large transformers.
- C. Storage:
 - 1. Store transformers in accordance with manufacturer's recommendations.
 - 2. Transformers may be stored outdoors. If possible, store transformers at final installation locations on concrete pads. If dry concrete surfaces are unavailable, use pallets of adequate strength to protect transformers from direct contact with ground. Ensure transformer is level.
 - 3. Ensure that transformer storage location is clean and protected from severe conditions. Protect transformers from dirt, water, contamination, and physical damage. Do not store transformers in presence of corrosive or explosive gases. Protect transformers from weather when stored for more than three months.
 - 4. Store transformers with compartment doors closed.

- 5. Regularly inspect transformers while in storage and maintain documentation of storage conditions, noting any discrepancies or adverse conditions. Verify that an effective pressure seal is maintained using pressure gauges. Visually check for insulating-liquid leaks and rust spots.
- D. Examine areas and space conditions for compliance with requirements for pad-mounted, liquid-filled, medium-voltage transformers and other conditions affecting performance of the Work.
- E. Examine roughing-in of conduits and grounding systems to verify the following:
 - 1. Wiring entries comply with layout requirements.
 - 2. Entries are within conduit-entry tolerances specified by manufacturer, and no feeders will cross section barriers to reach load or line lugs.
- F. Examine concrete bases for suitable conditions for transformer installation.
- G. Pre-Installation Checks:
 - 1. Verify removal of any shipping bracing after placement.
 - 2. Remove a sample of insulating liquid according to ASTM D923. Insulating-liquid values shall comply with NETA ATS, Table 100.4. Sample shall be tested for the following:
 - a. Dielectric Breakdown Voltage: ASTM D877 or ASTM D1816.
 - b. Acid Neutralization Number: ASTM D974.
 - c. Interfacial Tension: ASTM D971.
 - d. Color: ASTM D1500.
 - e. Visual Condition: ASTM D1524.
- H. Verify that ground connections are in place and that requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at transformer location.
- I. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install transformers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." Shall be to Power Utility Company specifications.
- B. Transformer shall be installed level and plumb and shall tilt less than 1.5 degrees while energized.
- C. Comply with requirements for vibration isolation and seismic control devices specified in Section 260529 "Hangers and Supports for Electrical Systems" and Section 260548.16 "Seismic Controls for Electrical Systems."

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and IEEE C2.

3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. For counterpoise, use tinned bare copper cable not smaller than No. 4/0 AWG, buried not less than 30 inches below grade interconnecting the grounding electrodes. Bond surge arrester and neutrals directly to transformer enclosure and then to grounding electrode system with bare copper conductors, sized as shown. Keep lead lengths as short as practicable, with no kinks or sharp bends.
 - 2. Fence and equipment connections shall not be smaller than No. 4 AWG. Ground fence at each gate post and corner post and at intervals not exceeding 10 feet. Bond each gate section to fence post using 1/8 by 1 inch [tinned]flexible braided copper strap and clamps.
 - 3. Make joints in grounding conductors and loops by exothermic weld or compression connector.
 - 4. Terminate all grounding and bonding conductors on a common equipment grounding terminal on transformer enclosure.
 - 5. Complete transformer tank grounding and lightning arrester connections prior to making any other electrical connections.
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Maintain air clearances between energized live parts and between live parts and ground for exposed connections in accordance with manufacturer recommendations.
 - 2. Bundle associated phase, neutral, and equipment grounding conductors together within transformer enclosure. Arrange conductors such that there is not excessive strain that could cause loose connections. Allow adequate slack for expansion and contraction of conductors.
- C. Terminate medium-voltage cables in incoming section of transformers according to Section 260513 "Medium-Voltage Cables."

3.4 SIGNS AND LABELS

- A. Comply with installation requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."
- B. Install warning signs as required to comply with 29 CFR 1910.269.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform the following tests and inspections:
 - 1. General Field-Testing Requirements:
 - a. Comply with provisions of NFPA 70B Ch. "Testing and Test Methods."
 - b. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - c. After installing transformer but before primary is energized, verify that grounding system at the transformer is tested at specified value or less.
 - d. After installing transformer and after electrical circuitry has been energized, test for compliance with requirements.
 - e. Visual and Mechanical Inspection:
 - 1) Verify equipment nameplate data complies with Contract Documents.
 - 2) Inspect bolted electrical connections for high resistance using one of the following two methods:
 - a) Use a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - b) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In absence of manufacturer's published data, use NETA ATS, Table 100.12.
 - f. Remove and replace malfunctioning units and retest.
 - g. Prepare test and inspection reports. Record as-left set points of all adjustable devices.
 - 2. Medium-Voltage Surge Arrester Field Tests:
 - a. Visual and Mechanical Inspection:
 - 1) Inspect physical and mechanical condition.
 - 2) Verify arresters are clean.
 - 3) Verify that ground lead on each device is individually attached to a ground bus or ground electrode.
 - b. Electrical Test:
 - 1) Perform an insulation-resistance test on each arrester, phase terminal-toground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS,

Table 100.1. Replace units that fail to comply with recommended minimum insulation resistance listed in that table.

- 2) Perform a watts-loss test. Evaluate watts-loss values by comparison with similar units and test equipment manufacturer's published data.
- 3. Liquid-Filled Transformer Field Tests:
 - a. Visual and Mechanical Inspection:
 - 1) Test dew point of tank gases if applicable.
 - 2) Inspect anchorage, alignment, and grounding.
 - 3) Verify bushings are clean.
 - 4) Verify that alarm, control, and trip settings on temperature and level indicators are set and operate within manufacturer's recommended settings.
 - 5) Verify that liquid level in tanks is within manufacturer's published tolerances.
 - 6) Perform specific inspections and mechanical tests recommended by manufacturer.
 - 7) Verify presence of transformer surge arresters and that their ratings are as specified.
 - 8) Verify that as-left tap connections are as specified.
 - b. Electrical Tests:
 - 1) Perform insulation-resistance tests winding-to-winding and each windingto-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index; the value of the index shall not be less than 1.0.
 - 2) Perform power-factor or dissipation-factor tests on all windings according to test equipment manufacturer's published data. Maximum winding insulation power-factor/dissipation-factor values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.3.
 - 3) Measure core insulation resistance at 500-V dc if the core is insulated and the core ground strap is removable. Core insulation-resistance values shall not be less than 1 megohm at 500-V dc.
 - 4) Perform turns-ratio tests at tap positions. Turns-ratio test results shall not deviate by more than one-half percent from either adjacent coils or calculated ratio. If test fails, replace transformer.
 - 5) Perform an excitation-current test on each phase. The typical excitationcurrent test data pattern for a three-legged core transformer is two similar current readings and one lower current reading. Investigate and correct if test shows a different pattern.
 - 6) Measure resistance of each winding at each tap connection, and record temperature-corrected winding-resistance values in the Operations and Maintenance Manual.
 - 7) Perform an applied-voltage test on high- and low-voltage windings-toground. Comply with IEEE C57.12.91, Sections 10.2 and 10.9. This test is

not required for single-phase transformers and for three-phase Y-Y-connected transformers.

- 8) Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- 9) Remove a sample of insulating liquid according to ASTM D923, and perform dissolved-gas analysis according to IEEE C57.104 or ASTM D3612.

3.6 FOLLOW-UP SERVICE

- A. Voltage Monitoring and Adjusting: After Substantial Completion, if requested by Owner, but not more than six months after Final Acceptance, perform the following voltage monitoring:
 - 1. During a period of normal load cycles as evaluated by Owner, perform seven days of three-phase voltage recording at the outgoing section of each transformer. Use voltmeters with calibration traceable to the National Institute of Science and Technology standards and with a chart speed of not less than 1 inch per hour. Voltage unbalance greater than 1 percent between phases, or deviation of any phase voltage from the nominal value by more than plus or minus 5 percent during test period, is unacceptable.
 - 2. Corrective Action: If test results are unacceptable, perform the following corrective action, as appropriate:
 - a. Adjust transformer taps.
 - b. Prepare written request for voltage adjustment by electric utility.
 - 3. Retests: Repeat monitoring, after corrective action is performed, until satisfactory results are obtained.
 - 4. Report:
 - a. Prepare a written report covering monitoring performed and corrective action taken.
- B. Infrared Inspection: Perform survey during periods of maximum possible loading. Remove all necessary covers prior to inspection.
 - 1. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of transformer's electrical power connections.
 - 2. Instrument: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1 deg C at 30 deg C.
 - 3. Record of Infrared Inspection: Prepare a certified report that identifies testing technician and equipment used, and lists results as follows:
 - a. Description of equipment to be tested.
 - b. Discrepancies.
 - c. Temperature difference between area of concern and reference area.
 - d. Probable cause of temperature difference.
 - e. Areas inspected. Identify inaccessible and unobservable areas and equipment.
 - f. Identify load conditions at time of inspection.

- g. Provide photographs and thermograms of deficient area.
- 4. Act on inspection results according to recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain systems.

END OF SECTION 261219

SECTION 262213 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
- B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Source quality-control reports.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 - 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.
- B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.
- C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
- D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Acme Electric Corporation</u>.
 - 2. <u>Eaton</u>.
 - 3. <u>General Electric Company</u>.
 - 4. <u>Hammond Power Solutions Inc</u>.
 - 5. <u>Powersmiths International Corp.</u>
 - 6. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 7. <u>Square D; by Schneider Electric</u>.
- B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Comply with NFPA 70.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Transformers Rated 15 kVA and Larger:
 - 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 - 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70, and list and label as complying with UL 1561.
- B. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - 1. One leg per phase.
 - 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 - 3. Grounded to enclosure.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Coil Material: Aluminum.
 - 2. Internal Coil Connections: Brazed or pressure type.
 - 3. Terminal Connections: Bolted.
- D. Enclosure: Ventilated.
 - 1. NEMA 250, Type 2 or Type 3R: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air. Refer to plans for NEMA enclosure requirements of individual transformers.
 - 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 - 3. Wiring Compartment: Sized for conduit entry and wiring installation.
- E. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.
- F. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
- G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.
- H. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
- I. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- J. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
- K. Wall Brackets: Manufacturer's standard brackets.

- L. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 - 1. 9.00 kVA and Less: 40 dBA.
 - 2. 9.01 to 30.00 kVA: 45 dBA.
 - 3. 30.01 to 50.00 kVA: 45 dBA.
 - 4. 50.01 to 150.00 kVA: 50 dBA.
 - 5. 150.01 to 300.00 kVA: 55 dBA.
 - 6. 300.01 to 500.00 kVA: 60 dBA.
 - 7. 500.01 to 700.00: 62 dBA.

2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 - 1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
 - 2. Ratio tests at rated voltage connections and at all tap connections.
 - 3. Phase relation and polarity tests at rated voltage connections.
 - 4. No load losses, and excitation current and rated voltage at rated voltage connections.
 - 5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
 - 6. Applied and induced tensile tests.
 - 7. Regulation and efficiency at rated load and voltage.
 - 8. Insulation-Resistance Tests:
 - a. High-voltage to ground.
 - b. Low-voltage to ground.
 - c. High-voltage to low-voltage.
 - 9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
- B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Secure transformer to concrete base according to manufacturer's written instructions.
- D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection.
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.
 - e. Perform specific inspections and mechanical tests recommended by manufacturer.
 - f. Verify that as-left tap connections are as specified.
 - g. Verify the presence of surge arresters and that their ratings are as specified.
 - 2. Electrical Tests:
 - a. Measure resistance at each winding, tap, and bolted connection.
 - b. Perform insulation-resistance tests winding-to-winding and each winding-toground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 - c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 - d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- C. Large (Larger Than 167-kVA Single Phase or 500-kVA Three Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.

- e. Perform specific inspections and mechanical tests recommended by manufacturer.
- f. Verify that as-left tap connections are as specified.
- g. Verify the presence of surge arresters and that their ratings are as specified.
- 2. Electrical Tests:
 - a. Measure resistance at each winding, tap, and bolted connection.
 - b. Perform insulation-resistance tests winding-to-winding and each winding-toground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 - c. Perform power-factor or dissipation-factor tests on all windings.
 - d. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 - e. Perform an excitation-current test on each phase.
 - f. Perform an applied voltage test on all high- and low-voltage windings to ground. See IEEE C57.12.91, Sections 10.2 and 10.9.
 - g. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- D. Remove and replace units that do not pass tests or inspections and retest as specified above.
- E. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262213

SECTION 262413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service and distribution switchboards rated 600 V and less.
 - 2. Surge protection devices.
 - 3. Disconnecting and overcurrent protective devices.
 - 4. Instrumentation.
 - 5. Control power.
 - 6. Accessory components and features.
 - 7. Identification.

1.3 ACTION SUBMITTALS

- A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
 - 1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
 - 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
 - 6. Detail utility company's metering provisions with indication of approval by utility company.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 8. Include schematic and wiring diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Routine maintenance requirements for switchboards and all installed components.
 - b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
 - 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 - 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 - 5. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
- B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation.
- C. Handle and prepare switchboards for installation according to NEMA PB 2.1.

1.9 FIELD CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.

1.10 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion.

- B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 SWITCHBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>. Basis of Design
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 4. Square D; by Schneider Electric.
- B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 2.
- F. Comply with NFPA 70.
- G. Comply with UL 891.
- H. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- I. Nominal System Voltage: 480Y/277 V.
- J. Main-Bus Continuous: Refer to drawings for ampere ratings.
- K. Indoor Enclosures: Steel, NEMA 250, Type 1.

- L. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- M. Barriers: Between adjacent switchboard sections.
- N. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.
- O. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.
- P. Customer Metering Compartment: A separate customer metering compartment and section with front hinged door, for indicated metering, and current transformers for each meter. Current transformer secondary wiring shall be terminated on shorting-type terminal blocks.
- Q. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- R. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- S. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 - 2. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silverplated.
 - 3. Copper feeder circuit-breaker line connections.
 - 4. Ground Bus: 1/4-by-2-inch-hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
 - 5. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - 6. Disconnect Links:
 - a. Isolate neutral bus from incoming neutral conductors.
 - b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 - 7. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
 - 8. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- T. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.3 SURGE PROTECTION DEVICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Advanced Protection Technologies Inc. (APT).
 - 2. <u>Eaton</u>.
 - 3. <u>General Electric Company</u>.
 - 4. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 5. <u>Square D; by Schneider Electric</u>.
- B. SPDs: Comply with UL 1449, Type 2.
- C. Features and Accessories:
 - 1. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 2. Indicator light display for protection status.
 - 3. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 - 4. Surge counter.
- D. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 300 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- E. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V.
 - 3. Line to Line: 2000 V for 480Y/277 V.
- F. SCCR: Equal or exceed 100 kA.
- G. Nominal Rating: 20 kA.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

- 3. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 4. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - h. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - i. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- B. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Boltswitch, Inc</u>.
 - b. <u>Eaton</u>.
 - c. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - d. <u>Square D</u>.
 - 2. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 3. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.
 - a. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
 - 4. Auxiliary Switches: Factory installed, SPDT, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
 - 5. Service-Rated Switches: Labeled for use as service equipment.
 - 6. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.

- a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
- b. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch.
- c. Test Control: Simulates ground fault to test relay and switch (or relay only if "no-trip" mode is selected).
- 7. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- D. Fuses are specified in Section 262813 "Fuses."

2.5 INSTRUMENTATION

- A. Instrument Transformers: NEMA EI 21.1, and the following:
 - 1. Potential Transformers: NEMA EI 21.1; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.
 - 2. Current Transformers: NEMA EI 21.1; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.
 - 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.
 - 4. Current Transformers for Neutral and Ground-Fault Current Sensing: Connect secondary wiring to ground overcurrent relays, via shorting terminals, to provide selective tripping of main and tie circuit breaker. Coordinate with feeder circuit-breaker, ground-fault protection.
- B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or fourwire systems and with the following features:
 - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 - d. Megawatts: Plus or minus 1 percent.
 - e. Megavars: Plus or minus 1 percent.
 - f. Power Factor: Plus or minus 1 percent.
 - g. Frequency: Plus or minus 0.1 percent.
 - h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
 - i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.6 CONTROL POWER

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from controlpower transformer.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

2.8 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.
 - 1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
 - 2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
 - 3. Protect from moisture, dust, dirt, and debris during storage and installation.
 - 4. Install temporary heating during storage per manufacturer's instructions.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1.

- B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 - 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to switchboards.
 - 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.
- D. Install filler plates in unused spaces of panel-mounted sections.
- E. Install overcurrent protective devices, surge protection devices, and instrumentation.
- F. Install spare-fuse cabinet.
- G. Comply with NECA 1.

3.3 CONNECTIONS

- A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.
- B. Support and secure conductors within the switchboard according to NFPA 70.
- C. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Acceptance Testing:
 - a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 - b. Test continuity of each circuit.
 - 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 5. Perform the following infrared scan tests and inspections, and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 6. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Switchboard will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

3.7 **PROTECTION**

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 262413

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.

- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.
- E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 4.
 - c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 2. Height: 84 inches maximum.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

- 4. Finishes:
 - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
- F. Incoming Mains:
 - 1. Location: Convertible between top and bottom.
 - 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- G. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- H. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- I. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 20 percent.

- J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 POWER PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Energy.
 - 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: Circuit breaker or Lugs only.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Energy.
 - 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Siemens Energy.
 - 4. Square D; by Schneider Electric.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 - 3. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
 - 4. Subfeed Circuit Breakers: Vertically mounted.
 - 5. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - h. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 - i. Multipole units enclosed in a single housing with a single handle.
 - j. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.

PANELBOARDS

- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- G. Mount panelboard cabinet plumb and rigid without distortion of box.
- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.
- J. Mount surface-mounted panelboards to steel slotted supports 1 1/4 inch in depth. Orient steel slotted supports vertically.
- K. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- M. Install filler plates in unused spaces.
- N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Perform optional tests. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 **PROTECTION**

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

SECTION 262419

MOTOR-CONTROL CENTERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes MCCs for use with ac circuits rated 600 V and less, with combination controllers and having the following factory-installed components:
 - 1. Feeder-tap units.
 - 2. Measurement and control.
 - 3. Auxiliary devices.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCC: Motor-control center.
- C. MCCB: Molded-case circuit breaker.
- D. MCP: Motor-circuit protector.
- E. OCPD: Overcurrent protective device.
- F. PID: Control action; proportional plus integral plus derivative.
- G. PT: Potential transformer.
- H. SPD: Surge protective device.
- I. SCR: Silicon-controlled rectifier.
- J. VFC: Variable-frequency controller.
- K. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for MCCs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories for each cell of the MCC.
- B. Shop Drawings: For each MCC, manufacturer's approval drawings as defined in UL 845. In addition to requirements specified in UL 845, include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 - 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Enclosure types and details.
 - d. Nameplate legends.
 - e. Short-circuit current (withstand) rating of complete MCC, and for bus structure and each unit.
 - f. Features, characteristics, ratings, and factory settings of each installed controller and feeder device, and installed devices.
 - g. Specified optional features and accessories.
 - 2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring for each installed controller.
 - 3. Nameplate legends.
 - 4. Vertical and horizontal bus capacities.
 - 5. Features, characteristics, ratings, and factory settings of each installed unit.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around MCCs where pipe and ducts are prohibited. Show MCC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- B. Product Certificates: For each MCC.
- C. Source quality-control reports.
- D. Field quality-control reports.

- E. Load-Current and Overload Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- F. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.
- G. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For MCCs, all installed devices, and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 2. Manufacturer's Record Drawings: As defined in UL 845. In addition to requirements specified in UL 845, include field modifications and field-assigned wiring identification incorporated during construction by manufacturer, Contractor, or both.
 - 3. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - 4. Manufacturer's written instructions for setting field-adjustable overload relays.
 - 5. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 - 6. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Source Limitations: Obtain MCCs and controllers of a single type from single source from single manufacturer.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, and marked for intended use.
- C. UL Compliance: MCCs shall comply with UL 845 and shall be listed and labeled by a qualified testing agency.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Handle MCCs according to the following:
 - 1. NECA 402, "Recommended Practice for Installing and Maintaining Motor Control Centers."
 - 2. NEMA ICS 2.3, "Instructions for the Handling, Installation, Operation, and Maintenance of Motor Control Centers Rated Not More Than 600 Volts."
- B. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside MCCs; install temporary electric heating, with at least 250 W per vertical section.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace MCC and SPD that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Eaton</u>. Basis of Design
 - 2. <u>ABB, Electrification Business</u>
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 4. <u>Square D; Schneider Electric USA</u>.

2.2 SYSTEM DESCRIPTION

- A. NEMA Compliance: Fabricate and label MCCs to comply with NEMA ICS 18.
- B. Ambient Environment Ratings:
 - 1. Ambient Temperature Rating: Not less than 0 deg F and not exceeding 104 deg F, with an average value not exceeding 95 deg F over a 24-hour period.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- 2. Ambient Storage Temperature Rating: Not less than minus 4 deg F and not exceeding 140 deg F
- 3. Humidity Rating: Less than 95 percent (noncondensing).
- 4. Altitude Rating: Not exceeding 6600 feet, or 3300 feet if MCC includes solid-state devices.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

- A. Capacities and Characteristics:
 - 1. MCC Enclosure and Assembly:
 - a. Nominal System Voltage: 277/480-V ac.
 - b. Service Equipment Rated: No.
 - c. Enclosure: NEMA 250, Type 1.
 - 2. Integrated Short-Circuit Rating for MCC:
 - a. Fully rated; 65 kA.
 - 3. Integrated Short-Circuit Rating for Each Unit:
 - a. Fully rated; 65 kA.
 - 4. Wiring Class: 1B.
 - 5. Bus:
 - a. Horizontal Bus: 65 kA.
 - b. Neutral Bus: Full size.
 - 6. Main Disconnect Device:
 - a. Main Disconnect: MLO
 - b. SPD: UL 1449, Type 2.
 - 7. VFCs:
 - a. All loads shall be controlled via VFCs. See schedule on drawings.
 - 1) Bypass Mode: Manual
 - 2) Bypass Style: Two contactor style.
 - 3) Bypass Contactor Classification: Full-voltage (across-the-line).
 - 4) Overload Relays: Bimetallic. Class 20.
 - 5) Isolated Overload Alarm Contact: NC.

- 8. Controller-Mounted Auxiliary Devices:
 - a. Push Buttons and Selector Switches: Heavy-duty, oiltight type.
 - b. Feeder Tap Units: Main Disconnect: MCCB, UL 489, three pole, see plans for trip ratings

2.4 MOTOR CONTROL CENTER ENCLOSURES

- A. Indoor Enclosures: Freestanding steel cabinets unless otherwise indicated. NEMA 250, Type 1 unless otherwise indicated to comply with environmental conditions at installed location.
- B. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

2.5 ASSEMBLY

- A. Structure:
 - 1. Units up to and including Size 3 shall have drawout mountings with connectors that automatically line up and connect with vertical-section buses while being racked into their normal, energized positions.
 - 2. Units in Type B and Type C MCCs shall have pull-apart terminal strips for external control connections.
- B. Compartments: Modular; individual lift-off doors with concealed hinges and quick-captive screw fasteners.
 - 1. Interlock compartment door to require that the disconnecting means is "off" before door can be opened or closed, except by operating a concealed release device.
 - 2. Compartment construction shall allow for removal of units without opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of other units in MCC.
 - 3. The same-size compartments shall be interchangeable to allow rearrangement of units, such as replacing three single units with a unit requiring three spaces, without cutting or welding.
- C. Interchangeability: Compartments constructed to allow for removal of units without opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of other units in MCC; same-size compartments to permit interchangeability and ready rearrangement of units, such as replacing three single units with a unit requiring three spaces, without cutting or welding.
- D. Wiring Spaces:
 - 1. Vertical wireways in each vertical section for vertical wiring to each unit compartment; supports to hold wiring in place.

- 2. Horizontal wireways in bottom and top of each vertical section for horizontal wiring between vertical sections; supports to hold wiring in place.
- E. Provisions for Future:
 - 1. Compartments marked "future" shall be bused, wired and equipped with guide rails or equivalent, and ready for insertion of drawout units.
 - 2. Compartments marked "spare" shall include provisions for connection to the vertical bus.
- F. Integrated Short-Circuit Rating:
 - 1. Short-Circuit Current Rating of MCC: Fully rated with its main overcurrent device; 65 kA.
- G. Control Power:
 - 1. 120-V ac; obtained from CPT integral with controller; with primary and secondary fuses. The CPT shall be of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
- H. Factory-Installed Wiring: Factory installed, with bundling, lacing, and protection included. Use flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.
 - 1. Wiring Class: NEMA ICS 18, Class I, Type B.
 - 2. Control and Load Wiring: Factory installed, with bundling, lacing, and protection included. Use flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.
- I. Bus:
 - 1. Main Horizontal and Equipment Ground Buses: Uniform capacity for entire length of MCC's main and vertical sections. Provide for future extensions.
 - 2. Vertical Phase and Equipment Ground Buses: Uniform capacity for entire usable height of vertical sections, except for sections incorporating single units.
 - 3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent minimum conductivity or tin-plated, high-strength, electrical-grade aluminum alloy, with mechanical connectors for outgoing conductors.
 - 4. Ground Bus: Hard-drawn copper of 98 percent minimum conductivity, with pressure connector for ground conductors, minimum size 1/4-by-2 inches. Equip with mechanical connectors for outgoing conductors.

2.6 MAIN DISCONNECT AND OVERCURRENT PROTECTIVE DEVICE(S)

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- a. Instantaneous trip.
- b. Long- and short-time pickup levels.
- c. Long and short time adjustments.
- d. Ground-fault pickup level, time delay, and I squared t response.
- 2. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
- B. Surge Suppression: Factory installed as an integral part of the incoming feeder, complying with UL 1449, SPD Type 2.

2.7 MAGNETIC CONTROLLERS

- A. Controller Units: Combination controllers.
- B. Disconnects:
 - 1. MCCB:
 - a. UL 489, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 - b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - c. Lockable Handle: For three padlocks and interlocks with cover in closed position.
- C. Controllers: Comply with UL 508.
 - 1. Full-Voltage Magnetic Controllers: Electrically held, full voltage, NEMA ICS 2, general purpose, Class A.
 - a. Classification: Nonreversing.
- D. Overload Relays:
 - 1. Bimetallic Overload Relays:
 - a. Inverse-time-current characteristic.
 - b. Class 20 tripping characteristic.
 - c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - d. Ambient compensated.
 - e. Automatic resetting.
 - 2. Solid-State Overload Relays:

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- a. Switch or dial selectable for motor-running overload protection.
- b. Sensors in each phase.
- c. Class 20 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- 3. External overload reset push button.

2.8 VFC

- A. Controller Units: Combination controllers, consisting of variable-frequency power converter that is factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged for self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency. Comply with NEMA ICS 7, NEMA ICS 61800-2, UL 508C, and UL 508E.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- B. Disconnects:
 - 1. MCCB:
 - a. UL 489, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 - b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - c. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 - 2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
- C. Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 - 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
 - 6. Overload Capability:

- a. For variable-torque controllers, 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- b. For constant-torque controllers, 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- 7. Starting Torque: Minimum of 100 percent of rated torque from 3 to 60 Hz.
- 8. Speed Regulation: Plus or minus 5 percent.
- 9. Output Carrier Frequency: Field selectable.
- 10. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- 11. Internal Adjustability Capabilities:
 - a. Minimum Speed: 5 to 25 percent of maximum rpm.
 - b. Maximum Speed: 80 to 100 percent of maximum rpm.
 - c. Acceleration: 0.1 to 999.9 seconds.
 - d. Deceleration: 0.1 to 999.9 seconds.
 - e. Current Limit: 30 to a minimum of 150 percent of maximum rating.
- 12. Self-Protection and Reliability Features:
 - a. Input transient protection by means of SPDs for three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 - b. Loss of Input Signal Protection: Selectable response strategy including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - c. Under- and overvoltage trips.
 - d. Inverter overcurrent trips.
 - e. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved and listed and labeled by an NRTL.
 - f. Critical frequency rejection, with three selectable, adjustable deadbands.
 - g. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - h. Loss-of-phase protection.
 - i. Reverse-phase protection.
 - j. Short-circuit protection.
 - k. Motor overtemperature fault.
- 13. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- 14. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- D. Operator Station:
 - 1. Inverter Logic: Microprocessor based, 16 bit, isolated from all power circuits.
 - 2. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

- 3. Panel-mounted, manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - a. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - b. Security Access: Electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.

E. Displays:

- 1. Historical Logging Information and Displays:
 - a. Real-time clock with current time and date.
 - b. Running log of total power versus time.
 - c. Total run time.
 - d. Fault log, maintaining last four faults with time and date stamp for each.
- 2. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including the following:
 - a. Output frequency (Hz).
 - b. Motor speed (rpm).
 - c. Motor status (running, stop, fault).
 - d. Motor current (amperes).
 - e. Motor torque (percentage).
 - f. Fault or alarming status (code).
 - g. PID feedback signal (percentage).
 - h. DC-link voltage (V dc).
 - i. Set-point frequency (Hz).
 - j. Motor output voltage (V ac).
- F. Bypass Systems:
 - 1. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes, and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
 - 2. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
 - 3. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller arranged to isolate the power converter input and output and permit safe testing of the power converter, both energized and de-energized, while motor is operating in bypass mode.
 - a. Bypass Contactor: Load-break, NEMA-rated contactor.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- b. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
- c. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.
- 4. Bypass Contactor Classification: Full-voltage (across-the-line) type.
- 5. NORMAL/BYPASS selector switch.
 - a. HAND/OFF selector switch.
 - b. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - c. Contactor Coils: Pressure-encapsulated type.
 - 1) Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 2) Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
- 6. Overload Relays: NEMA ICS 2.
 - a. Bimetallic Overload Relays:
 - 1) Inverse-time-current characteristic.
 - 2) Class 20 tripping characteristic.
 - 3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - b. Solid-State Overload Relays:
 - 1) Switch or dial selectable for motor-running overload protection.
 - 2) Sensors in each phase.
 - 3) Class 20 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- G. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- H. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- I. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

J. Communication Port: Ethernet and/or RS-232 port or equivalent connection Capable of connecting to BAS system (BACNet).

2.9 CONTROLLER-MOUNTED AUXILIARY DEVICES

- A. Control-Circuit and Pilot Devices: Factory installed in controller enclosure cover unless otherwise indicated. Comply with NEMA ICS 5.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty type.
 - a. Push Buttons: Recessed types; momentary contact unless otherwise indicated.
 - b. Pilot Lights: LED types; Red
 - c. Selector Switches: Rotary type.
- B. Auxiliary Dry Contacts: (2) NC and (2) NO.
- C. Control Relays:
 - 1. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections and adjustable undervoltage, overvoltage, and time-delay settings.

2.10 FEEDER TAP UNITS

A. MCCBs (to 1200 A): Fixed mounted, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. Comply with UL 489, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

2.11 SOURCE QUALITY CONTROL

- A. MCC Testing: Test and inspect MCCs according to requirements in NEMA ICS 18.
- B. VFC Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - 1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- C. MCCs will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive MCCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. NEMA Industrial Control and Systems Standards: Comply with parts of NEMA ICS 2.3 for installation and startup of MCCs.
- B. Floor Mounting: Install MCCs on 4-inch nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- E. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
- F. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- G. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification of MCC, MCC components, and control wiring.
 - 1. Identify field-installed conductors, interconnecting wiring, and components.

- 2. Install required warning signs.
- 3. Label MCC and each cubicle with engraved nameplate.
- 4. Label each enclosure-mounted control and pilot device.
- 5. Mark up a set of manufacturer's connection wiring diagrams with field-assigned wiring identifications and return to manufacturer for inclusion in Record Drawings.
- B. Operating Instructions: Frame printed operating instructions for MCCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of MCCs.

3.4 CONNECTIONS

- A. Comply with requirements for installation of conduit in Section 260533 "Raceways and Boxes for Electrical Systems." Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 4. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multipole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multipole enclosed controller 11 months after date of Substantial Completion.

- c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Submit calibration record for device.
- 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- 6. Mark up a set of manufacturer's drawings with all field modifications incorporated during construction and return to manufacturer for inclusion in Record Drawings.
- D. MCCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to NETA Acceptance Testing Specification and manufacturer's written instructions.

3.7 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload relay pickup and trip ranges.
- B. Adjust overload relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.
- D. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage, solid-state controllers.
- E. Program microprocessors in VFCs for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- F. Set field-adjustable circuit-breaker trip ranges

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 262419

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. USB charger devices.
 - 3. Twist-locking receptacles.
 - 4. Weather-resistant receptacles.
 - 5. Snap switches.
 - 6. Pendant cord-connector devices.
 - 7. Cord and plug sets.
 - 8. Floor service outlets and poke-through assemblies.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- C. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

WIRING DEVICES

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.
 - 2. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - 2. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. <u>Pass & Seymour/Legrand (Pass & Seymour)</u>.
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

2.3 USB CHARGER DEVICES

A. Tamper-Resistant, USB Charger Receptacles: 12 V dc, 2.0 A, USB Type A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Eaton (Arrow Hart)</u>.
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- 2. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated, brass mounting strap.
- 3. USB Receptacles: Dual, Type A.
- 4. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

2.4 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration as indicated on drawings, and UL 498.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).

2.5 PENDANT CORD-CONNECTOR DEVICES

- A. Description:
 - 1. Matching, locking-type plug and receptacle body connector.
 - 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.
 - 3. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
 - 4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.6 CORD AND PLUG SETS

- A. Description:
 - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.

- 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
- 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.7 DECORATOR-STYLE DEVICES

- A. Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, and UL 498.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- B. GFCI, Feed-Through Type, Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and UL 943 Class A.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- C. GFCI, Weather-Resistant Convenience Receptacles: Square face, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and UL 943 Class A.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Pass & Seymour/Legrand (Pass & Seymour).
- D. Toggle Switches, Square Face, 120/277 V, 20 A: Comply with NEMA WD 1, UL 20, and FS W-S-896.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
- E. Lighted Toggle Switches, Square Face, 120 V, 20 A: Comply with NEMA WD 1 and UL 20.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Cooper Wiring Devices, Inc.; Division of Cooper Industries, Inc.</u>
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
 - 2. Description: With neon-lighted handle, illuminated when switch is "off."
- F. All branch circuits rated at 15 amperes shall only have receptacles rated at 15 amperes connected to it.

2.8 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.9 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular, solid brass with satin finish.
- D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

2.10 POKE-THROUGH ASSEMBLIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - 2. <u>Pass & Seymour/Legrand (Pass & Seymour)</u>.
 - 3. <u>Square D; by Schneider Electric</u>.
 - 4. <u>Thomas & Betts Corporation, A Member of the ABB Group</u>.
 - 5. <u>Wiremold / Legrand</u>.
- B. Description:
 - 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 - 2. Comply with UL 514 scrub water exclusion requirements.
 - 3. Service-Outlet Assembly: Pedestal type with services indicated.
 - 4. Size: Selected to fit nominal 3-inch cored holes in floor and matched to floor thickness.
 - 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 - 6. Closure Plug: Arranged to close unused 3-inch cored openings and reestablish fire rating of floor.
 - 7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables.

2.11 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.

CAPITAL PROJECT 4466 BUILDING E UTILITY PLANT RENOVATION & IMPROVEMENTS DR. ROBERT L. YEAGER HEALTH CENTER

- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Verify that dimmers used for fan speed control are listed for that application.
- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Wiring device will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Switchboards.
 - c. Enclosed controllers.
 - d. Enclosed switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles. Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Coordination charts and tables and related data.
 - 3. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017700 "Closeout Procedures," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cooper Bussmann; a division of Cooper Industries</u>.
 - 2. Edison; a brand of Cooper Bussmann; a division of Cooper Industries.
 - 3. <u>Littelfuse, Inc</u>.
 - 4. <u>Mersen USA</u>.
- B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 - 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
 - 3. Type J: 600-V, zero- to 600-A rating, 200 kAIC.
 - 4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Service Entrance: Class L, time delay.
 - 2. Feeders: Class RK1, time delay.
 - 3. Motor Branch Circuits: Class RK1, time delay.
 - 4. Power Electronics Circuits: Class J, high speed.
 - 5. Other Branch Circuits: Class J, fast acting.
 - 6. Control Transformer Circuits: Class CC, time delay, control transformer duty.
 - 7. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Shunt trip switches.
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

- 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
- 2. Altitude: Not exceeding 6600 feet.

1.10 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton Electrical Sector; Eaton Corporation</u>.
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 5. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 6. Service-Rated Switches: Labeled for use as service equipment.
 - 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.2 NONFUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton Electrical Sector; Eaton Corporation</u>.
 - 2. <u>General Electric Company</u>.

- 3. <u>Siemens Industry, Inc</u>.
- 4. <u>Square D; by Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 5. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 SHUNT TRIP SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton Electrical Sector; Eaton Corporation</u>.
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc</u>.
- B. General Requirements: Comply with UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.
- C. Type HD, Heavy-Duty, Four Pole, Single-Throw Fusible Switch: 600-V ac, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- D. Type HD, Heavy-Duty, Four Pole, Single-Throw Nonfusible Switch: 600-V ac, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- E. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, pilot, indicating and control devices.
- F. Accessories:
 - 1. Oiltight key switch for key-to-test function.
 - 2. Oiltight green ON pilot light.
 - 3. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.

- 4. Form C alarm contacts that change state when switch is tripped.
- 5. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 7. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 4.
 - 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Install fuses in fusible devices.
- D. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 263213.14 - DIESEL ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes packaged engine generators used to supply non-emergency power, with the following features:
 - 1. Diesel engine.
 - 2. Diesel fuel-oil system.
 - 3. Control and monitoring.
 - 4. Generator overcurrent and fault protection.
 - 5. Generator, exciter, and voltage regulator.
 - 6. Outdoor engine generator enclosure.
 - 7. Vibration isolation devices.
 - 8. Finishes.
- B. Related Requirements:
 - 1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine generators.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Include thermal damage curve for generator.
 - 3. Include time-current characteristic curves for generator protective device.
 - 4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.

- 5. Include generator efficiency at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
- 6. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, with air-supply temperature of 95, 80, 70, and 50 deg F. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
- 7. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.
- B. Shop Drawings:
 - 1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Identify maximum circuit breaker heights. If circuit breaker heights exceed heights permissible by the NEC provide, as part of the shop drawing, 48" wide OSHA Compliant platform, stairs & rails to meet NEC requirements.
 - 4. Identify fluid drain ports and clearance requirements for proper fluid drain.
 - 5. Design calculations for selecting vibration isolators and for designing vibration isolation bases.
 - 6. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include base weights.
 - 7. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for engine generators and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and manufacturer.
- B. Source Quality-Control Reports: Including, but not limited to, the following:
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
 - 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 5. Report of sound generation.
 - 6. Report of exhaust emissions showing compliance with applicable regulations.
- C. Field quality-control reports.
- D. Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
 - b. Operating instructions laminated and mounted adjacent to generator location.
 - c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
 - 4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Caterpillar, Inc.; Electric Power Division</u>.

- 2. <u>Cummins Power Generation</u>.
- 3. <u>Generac Power Systems, Inc.</u> Basis of Design
- 4. <u>Kohler Power Systems</u>.
- B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. B11 Compliance: Comply with B11.19.
- B. NFPA Compliance:
 - 1. Comply with NFPA 37.
 - 2. Comply with NFPA 70.
- C. UL Compliance: Comply with UL 2200.
- D. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.
- E. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by engine generator including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.
- F. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 5 to 104 deg F.
 - 2. Altitude: Sea level to 1000 feet.

2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

- A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Power Rating: Industrial.
- D. Power Factor: 0.8, lagging.
- E. Frequency: 60 Hz.
- F. Voltage: 480-V ac.

- G. Phase: Three-phase, four wire, wye.
- H. Induction Method: Turbocharged.
- I. Governor: Adjustable isochronous, with speed sensing.
- J. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.
- K. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated excluding power required for the continued and repeated operation of the unit and auxiliaries, with capacity as required to operate as a unit as evidenced by records of prototype testing.
 - 2. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- L. Engine Generator Performance for Sensitive Loads:
 - 1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 - a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.
 - 2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.
 - 3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.
 - 4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.
 - 5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.
 - 7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 8. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not

less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.

- 9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 - a. Provide permanent magnet excitation for power source to voltage regulator.
- 10. Start Time: 10 seconds.

2.4 DIESEL ENGINE

- A. Fuel: ASTM D975, diesel fuel oil, Grade 2-D S15.
- B. Rated Engine Speed: 1800 rpm.
- C. Lubrication System: Engine or skid-mounted.
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- D. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with UL 499.
- E. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator set mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 - 4. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, UV-, and abrasion-resistant fabric.
 - a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.

- b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- F. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
 - 2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 78 dBA or less.
- G. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- H. Starting System: 24-V electric, with negative ground.
 - 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: 60 seconds.
 - 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 50 deg F regardless of external ambient temperature within range specified in "Performance Requirements" Article. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.
 - 7. Battery Stand: Factory-fabricated, two-tier metal with acid-resistant finish designed to hold the quantity of battery cells required and to maintain the arrangement to minimize lengths of battery interconnections.
 - 8. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
 - 9. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.

- d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
- e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
- f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 DIESEL FUEL-OIL SYSTEM

- A. Comply with NFPA 30.
- B. Piping: Fuel-oil piping shall be Schedule 40 black steel, complying with requirements in Section 231113 "Facility Fuel-Oil Piping." Cast iron, aluminum, copper, and galvanized steel shall not be used in the fuel-oil system.
- C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
- D. Fuel Filtering: Remove water and contaminants larger than 1 micron.
- E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
- F. Subbase-Mounted, Double-Wall, Fuel-Oil Day Tank: Factory installed and piped, complying with UL 142 fuel-oil tank. Features include the following:
 - 1. Tank level indicator.
 - 2. Fuel-Tank Capacity: As recommended by engine manufacturer for an uninterrupted period of 8 hours' operation at 100 percent of rated power output of engine generator system without being refilled
 - 3. Leak detection in interstitial space.
 - 4. Vandal-resistant fill cap.
 - 5. Containment Provisions: Comply with requirements of authorities having jurisdiction.
- G. Fuel Oil Transfer Pumps: Generator is provided with a separate main fuel-oil tank. The generator shall be provided with fuel-oil transfer pumps within its enclosure. Provide generator with supply and return connections piped to the outside of the enclosure for connection to the separate main fuel-oil tank.

2.6 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

- B. Provide minimum run time control set for 30 minutes with override only by operation of a remote emergency-stop switch.
- C. Comply with UL 508A.
- D. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.
 - 1. Wall-Mounting Cabinet Construction: Rigid, self-supporting steel unit complying with NEMA ICS 6.
- E. Control and Monitoring Panel:
 - 1. Digital engine generator controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
 - 2. Instruments: Located on the control and monitoring panel and viewable during operation.
 - a. Engine lubricating-oil pressure gage.
 - b. Engine-coolant temperature gage.
 - c. DC voltmeter (alternator battery charging).
 - d. Running-time meter.
 - e. AC voltmeter, connected to a phase selector switch.
 - f. AC ammeter, connected to a phase selector switch.
 - g. AC frequency meter.
 - h. Generator-voltage adjusting rheostat.
 - 3. Controls and Protective Devices: Controls, shutdown devices, and common alarm indication, including the following:
 - a. Cranking control equipment.
 - b. Run-Off-Auto switch.
 - c. Control switch not in automatic position alarm.
 - d. Overcrank alarm.
 - e. Overcrank shutdown device.
 - f. Low-water temperature alarm.
 - g. High engine temperature pre-alarm.
 - h. High engine temperature.
 - i. High engine temperature shutdown device.
 - j. Overspeed alarm.
 - k. Overspeed shutdown device.
 - 1. Low fuel main tank.

- 1) Low-fuel-level alarm shall be initiated when the level falls below that required for operation for duration required in "Fuel Tank Capacity" Subparagraph in "Diesel Fuel-Oil System" Article.
- m. Coolant low-level alarm.
- n. Coolant low-level shutdown device.
- o. Coolant high-temperature prealarm.
- p. Coolant high-temperature alarm.
- q. Coolant low-temperature alarm.
- r. Coolant high-temperature shutdown device.
- s. Battery high-voltage alarm.
- t. Low cranking voltage alarm.
- u. Battery-charger malfunction alarm.
- v. Battery low-voltage alarm.
- w. Lamp test.
- x. Contacts for local and remote common alarm.
- y. Low-starting air pressure alarm.
- z. Low-starting hydraulic pressure alarm.
- aa. Remote manual stop shutdown device.
- bb. Air shutdown damper alarm when used.
- cc. Air shutdown damper shutdown device when used.
- dd. Generator overcurrent-protective-device not-closed alarm.
- ee. Hours of operation.
- ff. Engine generator metering, including voltage, current, hertz, kilowatt, kilovolt ampere, and power factor.
- F. Engine Generator Metering: Comply with Section 262713 "Electricity Metering."
- G. Connection to Datalink:
 - 1. A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication.
 - 2. Provide connections for datalink transmission of indications to remote data terminals via ModBus.
- H. Remote Alarm Annunciator: An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
 - 1. Overcrank alarm.
 - 2. Low water-temperature alarm.
 - 3. High engine temperature pre-alarm.
 - 4. High engine temperature alarm.
 - 5. Low lube oil pressure alarm.
 - 6. Overspeed alarm.
 - 7. Low fuel main tank alarm.

- 8. Low coolant level alarm.
- 9. Low cranking voltage alarm.
- 10. Contacts for local and remote common alarm.
- 11. Audible-alarm silencing switch.
- 12. Air shutdown damper when used.
- 13. Run-Off-Auto switch.
- 14. Control switch not in automatic position alarm.
- 15. Fuel tank derangement alarm.
- 16. Fuel tank high-level shutdown of fuel supply alarm.
- 17. Lamp test.
- 18. Generator overcurrent-protective-device not-closed alarm.
- I. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.
- J. Remote Emergency-Stop Switch: Flush; wall mounted unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Overcurrent protective devices shall be coordinated to optimize selective tripping when a short circuit occurs.
- B. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristic: Designed specifically for generator protection.
 - 2. Trip Rating: Matched to generator output rating.
 - 3. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
 - 4. Mounting: Adjacent to, or integrated with, control and monitoring panel.
- C. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other engine generator protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector performs the following functions:
 - 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other engine generator malfunction alarms. Contacts shall be available for load shed functions.
 - 2. Under single- or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.

- 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the engine generator.
- 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.

2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide six-lead alternator.
- E. Range: Provide broad range of output voltage by adjusting the excitation level.
- F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- G. Enclosure: Dripproof.
- H. Instrument Transformers: Mounted within generator enclosure.
- I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 - 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
 - 2. Maintain voltage within 15 percent on one step, full load.
 - 3. Provide anti-hunt provision to stabilize voltage.
 - 4. Maintain frequency within 5 percent and stabilize at rated frequency within 2 seconds.
- J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- L. Subtransient Reactance: 12 percent, maximum.

2.9 OUTDOOR ENGINE GENERATOR ENCLOSURE

A. Description: Vandal-resistant, sound-attenuating, weatherproof steel housing; wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components

requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

- 1. Sound Attenuation Level: 2.
- B. Hinged Doors: With padlocking provisions.
- C. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.
- D. Muffler Location: Within enclosure.
- E. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.
 - 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Stormproof and drainable louvers prevent entry of rain and snow.
- F. Interior Lights with Switch: Factory-wired, vaporproof luminaires within housing; arranged to illuminate controls and accessible interior. Arrange for external electrical connection.
 - 1. AC lighting system and connection point for operation when remote source is available.
 - 2. DC lighting system for operation when remote source and generator are both unavailable.
- G. Convenience Outlets: Factory-wired, GFCI. Arrange for external electrical connection.
- H. If output circuit breaker heights exceed heights permissible by the NEC provide 48" wide OSHA Compliant platform, stairs & rails to meet NEC requirements.

2.10 VIBRATION ISOLATION DEVICES

- A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 - 1. Material: Standard neoprene separated by steel shims.
- B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch-thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment-mounting and -leveling bolt that acts as blocking during installation.
 - 2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.

- 3. Minimum Additional Travel: 50 percent of required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Minimum Deflection: 1 inch.
- C. Comply with requirements in Section 232116 "Hydronic Piping Specialties" for vibration isolation and flexible connector materials for steel piping.
- D. Comply with requirements in Section 233113 "Metal Ducts" for vibration isolation and flexible connector materials for exhaust shroud and ductwork.
- E. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

2.11 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.12 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with IEEE 115.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 - 2. Test generator, exciter, and voltage regulator as a unit.
 - 3. Full load run.
 - 4. Maximum power.
 - 5. Voltage regulation.
 - 6. Transient and steady-state governing.
 - 7. Single-step load pickup.
 - 8. Safety shutdown.
 - 9. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
 - 10. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.
- B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 404.
- B. Comply with packaged engine generator manufacturers' written installation and alignment instructions.
- C. Equipment Mounting:
 - 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
 - 3. Install packaged engine generator with elastomeric isolator pads or restrained spring isolators having a minimum deflection of 1 inch on 4-inch-high concrete base. Secure enclosure to anchor bolts installed in concrete bases.
- D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
- E. Exhaust System: Install Schedule 40 black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet.
 - 1. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 2. Install flexible connectors and steel piping materials according to requirements in Section 232116 "Hydronic Piping Specialties."
 - 3. Insulate muffler/silencer and exhaust system components according to requirements in Section 230719 "HVAC Piping Insulation."
 - 4. Install isolating thimbles where exhaust piping penetrates combustible surfaces with a minimum of 9 inches of clearance from combustibles.

- F. Drain Piping: Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40 black steel pipe with welded joints.
 - 1. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 2. Drain piping valves, connectors, and installation requirements are specified in Section 232116 "Hydronic Piping Specialties."
- G. Fuel Piping:
 - 1. Diesel storage tanks, tank accessories, piping, valves, and specialties for fuel systems are specified in Section 231113 "Facility Fuel-Oil Piping."
 - 2. Copper and galvanized steel shall not be used in the fuel-oil piping system.
- H. Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow space for service and maintenance.
- C. Connect engine exhaust pipe to engine with flexible connector.
- D. Connect fuel piping to engines with a gate valve and union and flexible connector.
- E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.
- G. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.4 IDENTIFICATION

- A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."
- B. Install a sign indicating the generator system is a separately derived system and contains a neutral to ground bond.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.
 - a. Visual and Mechanical Inspection:
 - 1) Compare equipment nameplate data with Drawings and the Specifications.
 - 2) Inspect physical and mechanical condition.
 - 3) Inspect anchorage, alignment, and grounding.
 - 4) Verify that the unit is clean.
 - b. Electrical and Mechanical Tests:
 - 1) Perform insulation-resistance tests according to IEEE 43.
 - a) Machines Larger Than 200 hp Test duration shall be 10 minutes. Calculate polarization index.
 - b) Machines 200 hp or Less: Test duration shall be one minute. Calculate the dielectric-absorption ratio.
 - 2) Test protective relay devices.
 - 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
 - 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 - 5) Perform vibration test for each main bearing cap.
 - 6) Verify correct functioning of the governor and regulator.
 - 2. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
 - 3. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.

- 4. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.
- 5. Exhaust Emissions Test: Comply with applicable government test criteria.
- 6. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
- 7. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 and 100 percent of rated linear load. Verify that harmonic content is within specified limits.
- 8. Noise Level Tests: Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.
- F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
- G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- H. Remove and replace malfunctioning units and retest as specified above.
- I. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.
- J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- K. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.
 - 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 2. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213.14

SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes automatic transfer switches rated 600 V and less.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
 - 2. Include material lists for each switch specified.
 - 3. Single-Line Diagram: Show connections between transfer switch, power sources, and load.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer-authorized service representative.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- a. Features and operating sequences, both automatic and manual.
- b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA ICS 1.
- C. Comply with NFPA 110.
- D. Comply with UL 1008 unless requirements of these Specifications are stricter.
- E. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- F. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Short-time withstand capability for three cycles.
- G. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
- H. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- I. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.

- J. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.
- K. Heater: Equip switches exposed to outdoor temperatures and humidity, and other units indicated, with an internal heater. Provide thermostat within enclosure to control heater.
- L. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.
- M. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed shrinkable sleeve markers at terminations. Color-coding and wire and cable markers are specified in Section 260553 "Identification for Electrical Systems."
 - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
 - 4. Accessible via rear and front access.
- N. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated. Switches to be installed within main switchboard.

2.2 CONTACTOR-TYPE AUTOMATIC TRANSFER SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>Emerson</u>.
 - 3. <u>GE Zenith Controls</u>.
 - 4. <u>General Electric Company</u>.
 - 5. <u>Hubbell Power Systems, Inc</u>.
 - 6. <u>Russelectric, Inc</u>.
- B. Comply with Level 1 equipment according to NFPA 110.
- C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are unacceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.
 - 3. Contacts: Silver composition or silver alloy for load-current switching. Contactor-style automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.

- 4. Conductor Connectors: Suitable for use with conductor material and sizes.
- 5. Material: Hard-drawn copper, 98 percent conductivity.
- 6. Main and Neutral Lugs: Mechanical type.
- 7. Ground Lugs and Bus-Configured Terminators: Mechanical type.
- 8. Ground bar.
- 9. Connectors shall be marked for conductor size and type according to UL 1008.
- D. Automatic Open-Transition Transfer Switches: Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
- E. Electric Nonautomatic Switch Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternative Source." Switch shall be capable of transferring load in either direction with either or both sources energized.
- F. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval shall be adjustable from 1 to 30 seconds.
- G. Automatic Transfer-Switch Controller Features:
 - 1. Controller operates through a period of loss of control power.
 - 2. Undervoltage Sensing for Each Phase of Normal and Alternate Source: Sense low phaseto-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - 5. Test Switch: Simulate normal-source failure.
 - 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
 - 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
 - 9. Transfer Override Switch: Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

- 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum. (One for permanent generator and one for temp roll up generator).
- 11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is unavailable.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect components, assembled switches, and associated equipment according to UL 1008. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.
- B. Prepare test and inspection reports.
 - 1. For each of the tests required by UL 1008, performed on representative devices, for emergency systems. Include results of test for the following conditions:
 - a. Overvoltage.
 - b. Undervoltage.
 - c. Loss of supply voltage.
 - d. Reduction of supply voltage.
 - e. Alternative supply voltage or frequency is at minimum acceptable values.
 - f. Temperature rise.
 - g. Dielectric voltage-withstand; before and after short-circuit test.
 - h. Overload.
 - i. Contact opening.
 - j. Endurance.
 - k. Short circuit.
 - 1. Short-time current capability.
 - m. Receptacle withstand capability.
 - n. Insulating base and supports damage.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Floor-Mounting Switch: Anchor to floor by bolting.
 - 1. Install transfer switches on cast-in-place concrete equipment base(s).
 - 2. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
 - 3. Provide workspace and clearances required by NFPA 70.
- B. Identify components according to Section 260553 "Identification for Electrical Systems."
- C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
- D. Comply with NECA 1.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to generator sets, control, and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Wiring Method: Install cables in raceways and cable trays except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- E. Route and brace conductors according to manufacturer's written instructions and Section 260529 "Hangers and Supports for Electrical Systems." Do not obscure manufacturer's markings and labels.
- F. Final connections to equipment shall be made with liquidtight, flexible metallic conduit no more than 18 inches in length.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- 1. After installing equipment, test for compliance with requirements according to NETA ATS.
- 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with Drawings and Specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and required clearances.
 - d. Verify that the unit is clean.
 - e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
 - f. Verify that manual transfer warnings are attached and visible.
 - g. Verify tightness of all control connections.
 - h. Inspect bolted electrical connections for high resistance using one of the following methods, or both:
 - 1) Use of low-resistance ohmmeter.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.
 - i. Perform manual transfer operation.
 - j. Verify positive mechanical interlocking between normal and alternate sources.
 - k. Perform visual and mechanical inspection of surge arresters.
 - 1. Inspect control power transformers.
 - 1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
 - 2) Verify that primary and secondary fuse or circuit-breaker ratings match Drawings.
 - 3) Verify correct functioning of drawout disconnecting contacts, grounding contacts, and interlocks.
- 3. Electrical Tests:
 - a. Perform insulation-resistance tests on all control wiring with respect to ground.
 - b. Perform a contact/pole-resistance test. Compare measured values with manufacturer's acceptable values.
 - c. Verify settings and operation of control devices.
 - d. Calibrate and set all relays and timers.
 - e. Verify phase rotation, phasing, and synchronized operation.
 - f. Perform automatic transfer tests.
 - g. Verify correct operation and timing of the following functions:
 - 1) Normal source voltage-sensing and frequency-sensing relays.
 - 2) Engine start sequence.
 - 3) Time delay on transfer.
 - 4) Alternative source voltage-sensing and frequency-sensing relays.
 - 5) Automatic transfer operation.
 - 6) Interlocks and limit switch function.
 - 7) Time delay and retransfer on normal power restoration.

- 8) Engine cool-down and shutdown feature.
- 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
- 5. After energizing circuits, perform each electrical test for transfer switches stated in NETA ATS and demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and retransfer from emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for one pole deviating by more than 50 percent from other poles.
 - f. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
- 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- B. Coordinate tests with tests of generator and run them concurrently.
- C. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- D. Transfer switches will be considered defective if they do not pass tests and inspections.
- E. Remove and replace malfunctioning units and retest as specified above.
- F. Prepare test and inspection reports.

- G. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.
 - 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 2. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.
- B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.
- C. Coordinate this training with that for generator equipment.

END OF SECTION 263600

SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:
 - 1. Type 2 surge protective devices.
 - 2. Enclosures.
 - 3. Conductors and cables.
- B. Related Requirements:
 - 1. Section 262413 "Switchboards" for integral SPDs installed by switchboard manufacturer.

1.3 DEFINITIONS

- A. Inominal: Nominal discharge current.
- B. MCOV: Maximum continuous operating voltage.
- C. Mode(s), also Modes of Protection: air of electrical connections where the VPR applies.
- D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
- E. NRTL: Nationally recognized testing laboratory.
- F. OCPD: Overcurrent protective device.
- G. SCCR: Short-circuit current rating.
- H. SPD: Surge protective device.
- I. Type 1 SPDs: Permanently connected SPDs intended for installation between the secondary of the service transformer and the line side of the service disconnect overcurrent device.

- J. Type 2 SPDs: Permanently connected SPDs intended for installation on the load side of the service disconnect overcurrent device, including SPDs located at the branch panel.
- K. Type 3 SPDs: Point of utilization SPDs.
- L. Type 4 SPDs: Component SPDs, including discrete components, as well as assemblies.
- M. Type 5 SPDs: Discrete component surge suppressors, such as MOVs that may be mounted on a printed wiring board, connected by its leads or provided within an enclosure with mounting means and wiring terminations.
- N. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include electrical characteristics, specialties, and accessories for SPDs.
 - 2. NRTL certification of compliance with UL 1449.
 - a. Tested values for VPRs.
 - b. Inominal ratings.
 - c. MCOV, type designations.
 - d. OCPD requirements.
 - e. Manufacturer's model number.
 - f. System voltage.
 - g. Modes of protection.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TYPE 2 SURGE PROTECTIVE DEVICES (SPDs)

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. ABB Electrification Products.
 - 2. Advanced Protection Technologies Inc. (APT).
 - 3. <u>Eaton</u>.
 - 4. <u>Leviton Manufacturing Co., Inc</u>.
 - 5. <u>Liebert; a brand of Vertiv</u>.
 - 6. <u>Mersen USA</u>.
 - 7. <u>Schneider Electric USA, Inc</u>.
 - 8. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Source Limitations: Obtain devices from single source from single manufacturer.
- C. Standards:
 - 1. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 2.
 - 2. Comply with UL 1283.
- D. Product Options:
 - 1. Include LED indicator lights for power and protection status.
 - 2. Include internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Include NEMA ICS 5, dry Form C contacts rated at 2 A and 24 V ac for remote monitoring of protection status.
 - 4. Include surge counter.
- E. Performance Criteria:
 - 1. MCOV: Not less than 125 percent of nominal system voltage for 208Y/120 V and 120/240 V power systems, and not less than 115 percent of nominal system voltage for 480Y/277 V power systems.
 - 2. Peak Surge Current Rating: Minimum single-pulse surge current withstand rating per phase must not be less than 150 Insert value kA. Peak surge current rating must be arithmetic sum of the ratings of individual MOVs in a given mode.
 - 3. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits must not exceed the following:
 - a. Line to Neutral: 1200 V for 480Y/277 V.
 - b. Line to Ground: 1200 V for 480Y/277 V.
 - c. Neutral to Ground: 1200 V for 480Y/277 V.
 - d. Line to Line: 2000 V for 480Y/277 V.

- 4. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, threephase, four-wire circuits must not exceed the following:
 - a. Line to Neutral: 700 V for 208Y/120 V.
 - b. Line to Ground: 700 V for 208Y/120 V.
 - c. Neutral to Ground: 700 V for 208Y/120 V.
 - d. Line to Line: 1200 V for 208Y/120 V.
- 5. SCCR: Equal or exceed 100 kA.
- 6. Inominal Rating: 20 kA.

2.2 TYPE 3, TYPE 4, AND TYPE 5 SURGE PROTECTIVE DEVICES (SPDs)

A. Type 3, Type 4, and Type 5 SPDs are not approved for field installation.

2.3 ENCLOSURES

- A. Indoor Enclosures: NEMA 250, Type 1.
- B. Outdoor Enclosures: NEMA 250, Type 3R.

2.4 CONDUCTORS AND CABLES

A. Power Wiring: Same size as SPD leads, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Comply with NECA 1.
 - B. Provide OCPD and disconnect for installation of SPD in accordance with UL 1449 and manufacturer's written instructions.
 - C. Install leads between disconnects and SPDs short, straight, twisted, and in accordance with manufacturer's written instructions. Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Do not splice and extend SPD leads unless specifically permitted by manufacturer.
 - 2. Do not exceed manufacturer's recommended lead length.
 - 3. Do not bond neutral and ground.
 - D. Use crimped connectors and splices only. Wire nuts are unacceptable.

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Compare equipment nameplate data for compliance with Drawings and the Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. SPDs that do not pass tests and inspections will be considered defective.
- C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

- A. Complete startup checks in accordance with manufacturer's written instructions.
- B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests; reconnect them immediately after the testing is over.
- C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior solid-state luminaires that use LED technology.
 - 2. Lighting fixture supports.
- B. Related Requirements:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.

LED INTERIOR LIGHTING

- 3. Include physical description and dimensions of luminaires.
- 4. Include emergency lighting units, including batteries and chargers.
- 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
- 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Product Certificates: For each type of luminaire.
- C. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
- D. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. Recessed Fixtures: Comply with NEMA LE 4.
- D. Bulb shape complying with ANSI C79.1.
- E. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- F. Rated lamp life of 35,000 hours.
- G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- H. Internal driver.
- I. Nominal Operating Voltage: As indicated on Plans.

- 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- J. Housings:
 - 1. Extruded-aluminum housing and heat sink.
 - 2. powder-coat finish.

2.2 DOWNLIGHT

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 1,000 lumens. Minimum allowable efficacy of 80 lumens per watt.
- C. Universal mounting bracket.
- D. Integral junction box with conduit fittings.

2.3 LINEAR INDUSTRIAL

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 5,000 lumens. Minimum allowable efficacy of 80 lumens per watt.
- C. Housing and heat sink rated to the following:
 - 1. NEMA 4X.
 - 2. IP 54.
 - 3. IP 66.
 - 4. Marine and wet locations.
 - 5. CSA C22.2 No 137.

2.4 RECESSED LINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 2,000 lumens. Minimum allowable efficacy of 85 lumens per watt.
- C. Integral junction box with conduit fittings.

2.5 STRIP LIGHT

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.6 SURFACE MOUNT, LINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.7 SURFACE MOUNT, NONLINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
- C. Integral junction box with conduit fittings.

2.8 SUSPENDED, LINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 2,000 lumens. Minimum allowable efficacy of 85 lumens per watt.

2.9 SUSPENDED, NONLINEAR

- A. <u>See Plans for manufacturers</u>.
- B. Minimum 2,000 lumens. Minimum allowable efficacy of 85 lumens per watt.
- C. Integral junction box with conduit fittings.

2.10 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. prismatic acrylic

- 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:

- 1. Extruded-aluminum housing and heat sink.
- 2. powder-coat finish.
- E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI for all luminaires.

2.11 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.12 LUMINAIRE FIXTURE SUPPORT COMPONENTS

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaire Support:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with two 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
 - 2. Ceiling mount with pendant mount with 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
 - 3. Ceiling mount with hook mount.
- H. Suspended Luminaire Support:

- 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
- 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
- 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
- 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- I. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

- 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
- 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
- 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119

SECTION 265219 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Emergency lighting units.
 - 2. Exit signs.
 - 3. Luminaire supports.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
- D. Fixture: See "Luminaire" Paragraph.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 - 1. Include data on features, accessories, and finishes.
 - 2. Include physical description of the unit and dimensions.
 - 3. Battery and charger for light units.
 - 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 - 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.

- a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Product Schedule:
 - 1. For emergency lighting units. Use same designations indicated on Drawings.
 - 2. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of luminaire.
- B. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.
- C. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Luminaire-mounted, emergency battery pack: One for every 20 emergency lighting units. Furnish at least one of each type.
 - 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.
- B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Emergency Power Unit Batteries: 5 years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.
 - 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.
- C. Comply with NFPA 70 and NFPA 101.
- D. Comply with NEMA LE 4 for recessed luminaires.
- E. Comply with UL 1598 for fluorescent luminaires.
- F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

EMERGENCY AND EXIT LIGHTING

- G. Bulb Shape: Complying with ANSI C79.1.
- H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.
 - 1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 - 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
 - b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
 - c. Humidity: More than 95 percent (condensing).
 - d. Altitude: Exceeding 3300 feet.
 - 4. Nightlight Connection: Operate lamp continuously at 40 percent of rated light output.
 - 5. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 6. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 7. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 - 8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

2.2 EMERGENCY LIGHTING

- A. General Requirements for Emergency Lighting Units: Self-contained units.
- B. Emergency Luminaires:
 - 1. <u>See Plans for manufacturers</u>.

- 2. Emergency Luminaires: as indicated on Interior Lighting Fixture Schedule, with the following additional features:
 - a. Operating at nominal voltage of 120 V ac or 277 V ac.
 - b. Internal emergency power unit.
 - c. Rated for installation in damp locations, and for sealed and gasketed luminaires in wet locations.
- C. Emergency Lighting Unit:
 - 1. <u>See Plans for manufacturers</u>.
 - 2. Emergency Lighting Unit: as indicated on Interior Lighting Fixture Schedule.
 - 3. Operating at nominal voltage of 120 V ac or 277 V ac.
 - 4. Wall with universal junction box adaptor.
 - 5. UV stable thermoplastic housing, rated for damp locations.
 - 6. Two LED lamp heads.
 - 7. Internal emergency power unit.
- D. Remote Emergency Lighting Units:
 - 1. <u>See Plans for manufacturers</u>.
 - 2. Emergency Lighting Unit: as indicated on Interior Lighting Fixture Schedule.
 - 3. Operating at nominal voltage of 120 V ac or 277 V ac.
 - 4. Wall with universal junction box adaptor.
 - 5. UV stable thermoplastic housing, rated for damp locations.
 - 6. LED lamp heads.
 - 7. External emergency power unit.

2.3 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. <u>See Plans for manufacturers</u>.
 - 2. Operating at nominal voltage of 120 V ac or 277 V ac.
 - 3. Lamps for AC Operation: Fluorescent, two for each luminaire; 20,000 hours of rated lamp life.
 - 4. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 - 5. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
 - 6. Master/Remote Sign Configurations:
 - a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply and battery for power connection to remote unit.

b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

2.4 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access:
 - 1. Smooth operating, free of light leakage under operating conditions.
 - 2. Designed to permit relamping without use of tools.
 - 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Prismatic acrylic.
 - 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- D. Housings:
 - 1. Extruded aluminum housing and heat sink.
 - 2. powder coat finish.
- E. Conduit: Electrical metallic tubing or Flexible metallic conduit, minimum 3/4 inch in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Support Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire and emergency power unit weight.
 - 2. Able to maintain luminaire position when testing emergency power unit.
 - 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.
- E. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- F. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.

- 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- G. Ceiling Grid Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Perform startup service:
 - 1. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.
 - 2. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING

- A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 - 1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 - a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265219