SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 -

1.1 RELATED DOCUMENTS

- A. These basic Mechanical Requirements apply to all Division 23 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>HVAC and related work</u> for this project, as required by the contract documents.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.3 PRODUCTS FURNISHED BUT NOT INSTALLED UNDER RESPECTIVE SECTIONS OF THIS DIVISION
 - A. Motor starters shall be furnished under this Division. Refer to Specification Section 230513 Common motor requirements for HVAC equipment" for technical information.

1.4 REFERENCES

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. SMACNA Sheet Metal and Air Conditioning Contractors National Association.
- C. ASME American Society of Mechanical Engineers.
- D. UL Underwriters Laboratory.
- E. NFPA National Fire Protection Association.

1.5 REGULATORY REQUIREMENTS

- A. Conform to 2015 International Building Codes and Energy Code as well as all local codes.
- B. Mechanical: Conform to 2015 International mechanical code
- C. Obtain permits, and request inspections from authority having jurisdiction.

1.6 QUALITY ASSURANCE

- A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field, which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the Contract.
- B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.7 PROJECT/SITE CONDITIONS

- A. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.8 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all mechanical work and related work including but not limited to the following:
 - 1. Ceiling fans
 - 2. Gas fired unit heaters
 - 3. Gas fired make up air handling units
 - 4. Ceiling and wall propeller Fans.
 - 5. Ductwork and specialties.
 - 6. Equipment Supports
 - 7. Automatic temperature controls.
 - 8. Grilles, registers, louvers, and diffusers.
 - 9. Vibration isolation.
 - 10. Equipment supports.
 - 11. Motor starters and disconnects.
 - 12. Protection.
 - 13. Identification.
 - 14. Coordination.
 - 15. Phasing.
 - 16. Rigging.
 - 17. Testing and Balancing Reports Air and Water.
 - 18. Shop Drawings.
 - 19. As-Built Drawings and Maintenance Manuals.

20. Warrantees.

PART 2 - PRODUCTS – NOT USED

PART 3 - EXECUTION

3.1 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Where corrosion can occur, appropriate corrosion resistant materials and assembly methods must be used including isolation of dissimilar metals against galvanic interaction. Resistance to corrosion must be achieved by the use of the appropriate base materials. Coatings shall be restored to only when specifically permitted by the Specification.
- C. Construct all equipment in accordance with requirements of all applicable codes. All pressure vessels and safety devices that fall within the scope of the ASME Code shall conform to the Code and bear the ASME label or stamp.
- D. Match and balance all system components to achieve compatibility of equipment or satisfactory operation and performance throughout the entire operating temperature and control ranges. All installations shall be in accordance with manufacturer's recommendations.
- E. Provide all controls, wiring, piping, valves, accessories and other components necessary to make all systems complete and operable.
- F. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of year from the date of acceptance by the owner, in writing. Certain equipment, such as underground fuel tanks, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.2 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

- A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of the all items listed in the following paragraphs.
- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all Mechanical equipment noted and scheduled on plans including but not limited to the following:
 - 1. Automatic Temperature Controls, Operation Sequences & Wiring Diagrams, and Control Diagrams hardware and software

- 2. Motor Starters and Controllers
- 3. Ceiling fans
- 4. Gas fired unit heaters
- 5. Gas fired make up air handling units
- 6. Ceiling and wall propeller Fans.
- 7. Vibration isolation
- 8. Hangers and Inserts
- 9. Equipment Supports and Vibration Eliminators
- 10. Sheet Metal Construction Standards
- 11. Ductwork Layout (1/4 scale)
- 12. Insulation (ductwork)
- 13. Filters
- 14. Fan Curves and Sound Rating
- 15. Coils
- 16. Fire dampers, Motorized Dampers, Smoke dampers
- 17. Diffusers Registers and Grilles
- 18. Balancing Reports, Air and Water
- 19. Coordinated Composite Drawings on Mylar with Piping, Ductwork, Conduits, Lights, registers Grilles and Smoke Detectors, etc.
- D. The contractor shall, upon award, submit a schedule for the engineers review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manor as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.
- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- F. Sheet metal shop drawings shall indicate all existing and/or new lights, walls, piping, structural elements, existing work, etc. and dimension locations of ductwork including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have been reviewed, said review does not mean that drawings have been checked in detail; said review does not substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications. It does not relieve the contractor of the responsibility to perform all work to accepted industry standards and in a code compliant manor. Approval of shop drawings containing errors does not relieve the contractor from making corrections at his expense.
- H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.

- I. Approval of shop drawings
 - 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
 - 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
 - 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
 - 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.

3.3 CHARTS AND TAGS

- A. The Contractor shall provide three sets of charts and diagrams of all piping systems indicating the number and location of valves, controls, etc.
- B. All valves, dampers, and controls shall be designated with brass tags. Refer to section 23 05 23 Identification for HVAC Piping and equipment.
- 3.4 General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section

3.5 CODES AND STANDARDS

A. All equipment and installation methods shall conform to the applicable standards and/or recommendations set forth in the New York State Building Code, Local Codes as well as all Codes and Standards listed in the general requirements sections of the specification.

3.6 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required related to this scope of work

3.7 PAINTING

A. All motors, fans and all other factory manufactured and assembled apparatus shall be factory coated with one coat of primer and one coat of machinery enamel standard color at the factory and after installation, all finishes shall be cleaned and touched up to repair any damage incurred during construction.

- B. All piping shall be painted in colors conforming with OSHA Standards. All new and existing exposed iron and supplementary dunnage steel shall be finished according to specifications.
- C. All supports, nuts, bolts and hanger fasteners located outside shall be galvanized or nickel plated.

3.8 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- B. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- C. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- D. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.9 CUTTING AND PATCHING

- A. All cutting and patching required for piping, ductwork, control conduits, etc., passing through walls, floors, and roof shall be provided by the this Contractor under this contract unless otherwise noted. This Contractor shall be responsible for any damage done to the structure due to his negligence.
- B. Patching materials and application shall match existing construction.
- C. Where applicable, new holes for piping installation shall be core drilled.
- D. Pipe Sleeves & Fire-stopping:
 - 1. Provide for all pipes, conduits ducts, and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe. When pipe, conduit ducts or other such element penetrates other than fire rated assembly and is insulated, insulation shall pass continuously through sleeves with 1/2 inch clearance between insulation and sleeve.
 - 2. Where pipes, conduits and other such elements penetrate fire rated assemblies, or where holes or voids are created to extend mechanical systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- E. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.

F. Submit location drawings and sizes for review prior to installation.

3.10 PROTECTION-COORDINATE WITH DIVISION 1

- A. Special protection is required for installation of a Derrick or other device for rigging purposes. This Contractor shall coordinate with the rigger to facilitate rigging work.
- B. B.Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with in-so-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.
- F. All openings cut in walls, floors, roof or ceilings of the building, for conduit, pipe, ductwork, etc., shall be closed off with box-type temporary protective enclosures of ¹/₄" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and water tight.
- G. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of ¹/₄" hardboard, "Masonite", laid with joints taped together

3.11 EQUIPMENT SUPPORTS

A. A.Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.

3.12 WELDING

- A. A.Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.

C. Provide all temporary ventilation , and ventilation air systems required during welding operations as required by OSHA.

3.13 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing actual installation and locations of all new and existing equipment, piping, and ductwork in the entire building. Schedules shall be revised to indicate actual equipment installed.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1 and shall be submitted in paper format for review. Accepted as builts shall then be submitted in AutoCAD format on hard disc.

3.14 CONDITIONS

- A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.
- B. Discrepancies: In the event of discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.15 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.16 CLOSING-IN OF UNINSPECTED WORK

- A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.
- B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.17 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction and/or knock-down of equipment to suit conditions. Special attention should be given to equipment installation. Provide all labor and material to facilitate installation.

3.18 COOPERATION WITH OTHER TRADES PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- B. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.
- C. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipment, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, ductwork, equipment, diffusers and grilles.
- D. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the HVAC contractor shall submit a schedule in writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner. The contractor shall include in his bid all costs associated with providing temporarily piping controls, ductwork and fans and air conditioning units to maintain operations in the phase II area while work is being performed on the Phase I area. It shall also be noted that ductwork, piping and controls will have to be extended through the phase II work areas in order to reach the area(s) under construction in phase I as part of this work. The contractor shall include in his bid all provisions to perform such phasing work

3.19 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.20 COMPLETENESS

A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer and in accordance with generally accepted industry good practice.

B. Upon completion of all phases of work or before there is any danger from freezing the contractor fill the heating and cooling systems with a 35% glycol solution. Furnish 15 extra gallons in a steel drum for storage on site and future use by the owner. The contractor shall also fill the 10,000 gallon oil thank with #2 oil

3.21 FIRE PREVENTION DURING HOT WORK

- A. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. Contractor shall furnish suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- B. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- C. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings and roofs from the operations.

3.22 SAFETY MEASURES

- A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to assure that each area is safe. The Contractor is responsible for arranging and paying for each test.
- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.
- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.
- G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.

- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. Suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor form performing his work within the Contract period for the Contract price.

3.23 USE OF OWNERS EQUIPMENT

A. The contractor shall not use any the owner's HVAC system or equipment, new or existing, for any purpose. The contractor shall provide temporary hvac equipment, ductwork, power, and controls for use during construction for the purpose of ventilation, or heating during the construction process. All such equipment, ductwork, power, and controls shall be removed and the completion of work.

END OF SECTION

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Division 24 Equipment Wiring Systems: Electrical characteristics and wiring connections.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

1.4 REFERENCES

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AFBMA 11 Load Ratings and Fatigue Life for Roller Bearings.
- C. NEMA MG 1 Motors and Generators.
- D. NFPA 70 National Electrical Code.

1.5 REGULATORY REQUIREMENTS

- A. Conform to UL Component Recognition for appropriate sizes.
- B. Conform to NFPA 70 applicable electrical code, Underwriters Laboratories, Inc., and NEMA

C. Conform to New York State energy code.

1.6 DELIVERY, STORAGE, AND PROTECTION

A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weatherproof covering. For extended outdoor storage, remove motors from equipment and store separately.

1.7 WARRANTY

A. Provide five year manufacturer warranty for all motors larger than $\frac{1}{2}$ horsepower.

PART 2 - PRODUCTS

MANUFACTURERS

- A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Gould.
 - 2. Century.
 - 3. General Electric.
 - 4. Square D

2.2 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.
- C. All electric motors of sizes and types as specified for driving mechanical equipment shall be provided under this section.
- D. Electrical Service: All motors shall be 60 Hertz unless otherwise noted. Refer to Electrical Specifications for required electrical characteristics.
- E. Motors: Design for continuous operation in 40° C environment, and for temperature rise in accordance with ANSI/NEMA MG limits for insulation class, Service Factor, and motor enclosure type. Motors shall be of sufficient size for duty to be performed.
- F. Visible Nameplate: Indicating manufacturer's name and model number, motor horsepower, RPM, frame size, voltage, phase, cycles, full load amps, insulation system class, service factor, maximum ambient temperature, temperature rise at rated horsepower, minimum efficiency, power factor.

- G. Electrical Connection: Conduit connection boxes, threaded for conduit. For fractional horsepower motors where connection is made directly, provide screwed conduit connection in end frame. Size motor boxes to receive motor feeders and ground cable indicated on electrical drawing schedules.
- H. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- I. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 MOTOR EFFICIENCY

- A. Electric motors shall meet the minimum efficiency requirement of the following tables in accordance with International Energy conservation code when tested in accordance with DOE CFR 431. Performance data shall be certified by approved testing agency.
- B. Subtype I motors NEMA premium efficiency as per table NEMA MG 1 table 12-12 and International Energy Conservation code table 405.8(1). This shall apply to general purpose, Tframe, single speed, squirrel cage, induction type; 230/460-V, NEMA Designs A or B, continuous rated, 60 Hz, from 1 to 200 hp, 2-, 4- and 6-pole (3600-, 1800- and 1200-rpm), open and enclosed. Subtype I motors 250 hp to 500 hp motor efficiency shall be able NEMA MG 1 table 12-11 and International Energy Conservation Code table 405.8(1).
- C. Subtype II motors NEMA efficiency as per table NEMA MG 1 table 12-11 and International Energy Conservation code table 405.8(2). This shall apply to general purpose motors but can configured as U-frame motors; NEMA Design C motors; close-coupled pump motors; footless motors; vertical solid shaft normal thrust motors (as tested in a horizontal position); eight-pole (900 rpm) motors, and polyphase motors with a voltage of not more than 600 V (other than 230 or 460 V).
- D. Minimum average full load efficiency of polyphase small electric motors up to 3 hp shall be in accordance with Table C405.8(3) of the International Energy Conservation Code
- E. Minimum average full load efficiency for capacitor-start, capacitor-run and capacitor-start induction-run small electric motors up to 3 hp shall be in accordance with Table C405.8(4) of the International Energy Conservation Code.

2.4 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Service Factor: 1.15.
- C. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

- D. Multispeed Motors: Separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum AFBMA 9, L-10 life of 200,000 hours. Calculate bearing load with NEMA minimum V-belt pulley with belt centre line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
- G. Thermistor System (Motor Frame Sizes 254T and Larger): Three PTC thermistors embedded in motor windings and epoxy encapsulated solid state control relay with wiring to terminal box.
- H. Sound Power Levels: To NEMA MG 1.
- I. Temperature Rise: Match insulation rating.
- J. Insulation: Class B or better.
- K. Code Letter Designation:
 - 1. Motors [15] HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- L. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.5 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Use part winding Start above 254T Frame Size: Use part of winding to reduce locked rotor starting current to approximately 60 percent of full winding locked rotor current while providing approximately 50 percent of full winding locked rotor torque.
- C. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- D. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.6 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.
- F. Drip-proof Enclosure: Class A (50 degrees C temperature rise) insulation, NEMA Service Factor, pre-lubricated sleeve ball bearings.

2.7 POWER FACTOR CORRECTION

- A. Provide a capacitor for each three phase, single speed motor rated 3 HP or larger shall be provided to correct the full load power factor to 95%. The capacitor shall be mounted at the motor for connection across the motor terminals by Electrical Contractor
- B. Capacitors;
 - 1. Capacitors shall be totally enclosed, fused and with discharge resistors.
 - 2. Capacitors based on nominal motor RPM shall be provided in accordance with the following table to correct power factor to 95% and verify sizes with motor manufacturer.

Motor HP	Capacitor KVAR	Capacitor KVAR
	3600 RPM Motor	1800 RPM Motor
3	1.5	1.5
5	2	2
7.5	2.5	2.5
10	3	3
15	4	4
20	5	5
25	6	6
30	7	7
40	9	9
50	12	12
60	14	14

2.8 STARTERS

6.

A. GENERAL

- 1. See specification Section 16485 and Division 1 for additional information.
- 2. Starters for motors operating at 120 volts shall be manual starters unless otherwise indicated. Starters for motors operating at other than 120 volts shall be magnetic starters.
- 3. All starters shall be enclosed. Enclosures shall be surface mounted NEMA 1 unless otherwise indicated.
- 4. Where weatherproof starters are required, the enclosure shall be NEMA 4.
- 5. It shall be verified that the correct overload heaters have been installed in the starter before energizing any motor. Sizing shall be based on motor nameplate current and taking into account any reduction in current due to power factor correction.
 - Alternate Manufacturers
 - a. Allen-Bradley
 - b. Crouse-Hinds Co.
 - c. Cutler-Hammer, Inc.
 - d. General Electric Co.
 - e. Square D Co.
 - f. Westinghouse Electric Corp.

B. MANUAL STARTERS

- 1. Two-pole, toggle operated, thermal overload device in each phase leg, handle guard for padlocking toggle handle and with indicated control and signal devices.
- 2. Where a motor is controlled automatically by an interlock or pilot device, a "HAND-OFF-AUTO" switch shall be provided in the starter cover. Where the rating of the interlock or pilot device is inadequate to control the motor currents directly, a properly rated contactor shall be provided between the controlling device and the motor.
- 3. An "ON" pilot light shall be provided in the starter cover.

C. MAGNETIC STARTERS

1. Starters shall be sized in accordance with NEMA standards and the following table except that starters shall not be smaller than NEMA size 0. Starters shall be provided with one N.O. electrical holding interlock, under voltage protection and two additional auxiliary contacts within the same enclosure. NEMA size starters shall be provided as follows

STARTER	MAX HP
SIZE	AT 460 VOLTS
0	5
1	10
2	25

- 2. All starters shall be combination type with the starter and disconnect in the same enclosure. All starters shall be Type 2 coordination protected. Fuses shall be Bussman "Low Peak" type or equal sized at 125% of motor nameplate rating. Verify and coordinate requirements for fused disconnect switches with the Electrical Contractor prior to ordering starters.
- 3. Provide S.S.P.B. or H-O-A switches and pilot light in covers as required to facilitate control operation sequences.

D. CRITICAL FAULT

1. Where starters are not integral to equipment and are furnished and installed separately from equipment by the contractor, provide a 3 phase line voltage monitor by ICM Controls model 450 or approved equal. Unit shall be installed in the motor starter or in a separate enclosure with the same rating as the starter. It shall be arranged to monitor critical faults including phase loss or reversal, and when detected, de-energize the load. It shall monitor non-critical faults including high/low voltage, voltage unbalance and when detected, after a time delay de-energize the load.

PART 3 - EXECUTION

- A. Suitable starting and controlling equipment and devices shall be furnished and installed as specified hereinafter and as shown on the Drawings. The starting equipment shall be arranged, generally, in control groups, or in certain cases, as isolated combination starters as specified or indicated. The Heating Ventilating and Air Conditioning Sequences of Operation, drawings and specifications shall be referred to for the manner of control, operation and monitoring of motors and the electrically operated equipment.
- B. A starter and disconnect switch or combination motor starter disconnect shall be provided for every motor and each and every electrically operated piece of equipment by this contractor

except where complete starters and controls are furnished by the manufacturer of the motor or piece of equipment. Starters shall be internally wired to provide the required control operation and monitoring. All control devices such as push buttons, break-glass stations, alternators, relays, pilot lights, etc., shall be provided as required for operation of mechanical equipment. All roof top and remotely located equipment shall have remote starters as located on plan and shall have local disconnect switches. All equipment located in equipment rooms can use combination starters/disconnects located with in line of site of controlled equipment. All starters and disconnect switches shall be in enclosures suitable for the environment in which they are installed. Starters and disconnect switches located outdoors shall use NEMA 4x. Starters and disconnect switches located outdoors shall use NEMA 4x. Starters and disconnect switches located in machine rooms shall use NEMA 2

- C. Starting equipment and devices specified in this section (and section 23 29 13 Variable Frequency Controllers), shall be furnished by the mechanical subcontractor and shall be installed by the Electrical subcontractor. In general the mechanical subcontractor shall furnish all motor starters and disconnect switches except where they are an integral part of a motor control center, in this case starters and disconnects shall be provided, (furnished and installed), by the electrical contractor. The Electrical subcontractor shall also provide all wiring necessary to supply power to the electric motors specified under this section, including connections from the starters to the motors. Starters and disconnects shall also include variable frequency drives.
- D. The mechanical Contractor shall furnish and install all wiring between control devices and controlled equipment furnished under this Section, including interlock control wiring between motor starters, and all automatic temperature control wiring. All wiring shall be installed in conformance with applicable codes and the requirements of the Electrical Division of the Specifications.
- E. The Electrical Contractor shall furnish a 120 volt power source to temperature control panels and equipment requiring a separate 120 volt control power source. Power for control circuits for all devices connecting to motor starters shall be obtained from 120-volt control transformers provided in each starter operating at other than 120 volts. Provide transformers for all low voltage control systems as required.
- F. Furnish detailed composite wiring diagrams and such other information necessary to assure the proper connection, operation and control of motorized equipment, including interlocks, automatic controls, safety controls and all auxiliary circuits.
- G. All control units shall be furnished with a nameplate indicating which device or equipment it controls, the voltage. Additional nameplates on each push button, selector switch and pilot light indicating their functions shall be provided. Nameplates shall be laminated phenolic with white letters on black background, minimum 2" high.
- H. All motors supplied either with equipment or installed separately that are to be used in conjunction with variable frequency drive shall be inverter duty motors.

END OF SECTION 230513

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Fiberglass pipe hangers.
 - 4. Metal framing systems.
 - 5. Fiberglass strut systems.
 - 6. Thermal-hanger shield inserts.
 - 7. Fastener systems.
 - 8. Pipe stands.
 - 9. Equipment supports.
- B. Related Sections:
 - 1. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 2. Section 230548.13 "Vibration Controls for HVAC" for vibration isolation devices.
 - 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

- 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- 3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

Metal framing systems in this article require calculating and detailing at each use. Framing systems in first paragraph below are made by MFMA members.

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>B-line, an Eaton business</u>.
 - b. <u>Flex-Strut Inc</u>.
 - c. <u>Thomas & Betts Corporation; A Member of the ABB Group</u>.
 - d. <u>Unistrut; Part of Atkore International</u>.
 - e. <u>Wesanco, Inc</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
 - 7. Metallic Coating: Electroplated zinc, Hot-dipped galvanized, Mill galvanized, In-line, hot galvanized, or Mechanically-deposited zinc.
 - 8. Paint Coating: Epoxy or Alkyd.
 - 9. Plastic Coating: PVC or Polyurethane.

10. Combination Coating: .

Framing systems in paragraph below should be equal to or able to exceed MFMA-4 requirements.

- B. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Anvil International</u>.
 - b. <u>ERICO International Corporation</u>.
 - c. <u>PHD Manufacturing, Inc</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
 - 7. Coating: Zinc, Paint or PVC.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Clement Support Services</u>.
 - 2. ERICO International Corporation.
 - 3. <u>National Pipe Hanger Corporation</u>.
 - 4. <u>Pipe Shields Inc</u>.
 - 5. <u>Piping Technology & Products, Inc</u>.
 - 6. <u>Rilco Manufacturing Co., Inc</u>.
- B. Insulation-Insert Material for Hot and cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless- steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structuralsteel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE AND EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

- B. Hangers shall consist of rigid steel frames containing minimum 1-1/4" thick neoprene elements at the top and a steel spring with seated in a steel washer reinforced neoprene cup on the bottom. Pipe hanger vibration isolators. Hangers shall be type 30 N or PC30N as manufactured by Mason Industries, Inc
- C. Hangers shall be pre-compressed and locked at the rated deflection by means of a resilient upstop to keep the piping or equipment at a fixed elevation during installation. The hangers shall be designed with a release mechanism to free the spring after the installation is complete and the hanger is subjected to its full load.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

C. Flashing;

Metal Flashing: 26gage galvanized steel.

- 1. Metal Counter-flashing: 22 gage thick galvanized steel.
- 2. Flexible Flashing: 47 mil thick sheet butyl or other material compatible with roofing. Verify with roofing manufacturer.
- 3. Caps: Steel, 22-gage minimum; 16 gage at fire resistant elements.
- D. Sleeves:
 - 1. Ductwork Sleeve 18 gauge Installation and Closure for Fire Rated Walls and Floors: Fire damper assembly with continuous angles on all sides as per NFPA-90A requirements.
 - 2. Provide and install sleeves for all penetrations in accordance with Division 1.
- E. Escutcheons;
 - 1. Chrome plated cast brass escutcheons with set screws on all exposed piping at wall penetrations in finished spaces.
- F. Hanger Rods:
 - 1. Hanger Rods: Hot rolled steel threaded both ends, threaded one end, or continuous threaded. In accordance with the following schedule.

HANGER ROD SIZE SCHEDULE				
Pipe Size (in)	Min Rod Dia (in)			
³ / ₄ " to 2"	3/8"			
$\frac{1}{2}$ " to 3-1/2"	1/2"			
4" to 5"	5/8"			

6"	3/4''
8" to 12"	7/8"
14"	1"
16" to 18"	1-1/8"
20"	1-1/4"
24"	1-1/2"
30"	1-7/8"

2. Hanger spacing shall be in accordance with the following schedule for maximum allowable distance. Provide hanger all changes in direction.

PIPE SUPPORT SPACING SCHEDULE				
Pipe Material/ Size (in)	Maximum	Maximum Vertical		
	Horizontal	Spacing (ft)		
	Spacing (ft)			
Steel				
Up to $1 \frac{1}{4}$ "	8	15		
1 ¹ / ₂ " to 2 ¹ / ₂ "	10	15		
3" and over	12	15		
Copper Pipe	8	10		
Copper Tubing				
Up to 1 1/4"	6	10		
$1\frac{1}{2}$ " and over	8	10		
PVC / HDPE				
Up to 1"	3	10		
1 1/4" and over	4	10		

3. Fiberglass piping supports spacing shall be in accordance with the manufactures guidelines.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

Trapeze pipe hanger in first paragraph below requires calculating and detailing at each use.

- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.

- 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

Metal framing system in first paragraph below requires calculating and detailing at each use.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

Fiberglass strut system in first paragraph below requires calculating and detailing at each use. delete if no fiberglass pipe.

- E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.
- F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- G. Fastener System Installation:

Verify suitability of fasteners in two subparagraphs below for use in lightweight concrete or concrete slabs less than 4 inches thick.

- 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

Pipe stand in first paragraph below requires calculating and detailing at each use.

- H. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.
- I. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- J. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- K. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- L. Install lateral bracing with pipe hangers and supports to prevent swaying.

- M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- N. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- P. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles on all piping with roller hangers installed outside of insulation. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier not on roller hangers. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.
- Q. Piping connected to motor driven equipment, including pumps, chillers, air and refrigerant compressors shall be hung with vibration isolation type hangers. Furnish hangers on the first four pipe hangers.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply cold galvanizing-repair paint to comply with ASTM A 780. ZRC cold galvanizing compound

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports or metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.

Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.

4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.

Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.

5. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

6. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.

7. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.

U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

- 8. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 9. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 10. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 11. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 12. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 13. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 14. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 15. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
- 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.

Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.

- 8. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 9. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 10. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 11. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 12. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 13. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.

- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.7 MISCELLANEOUS:

- A. Equipment bases and supports.
 - 1. Provide housekeeping pads of concrete, minimum 4 inches thick and extending 6 inches beyond supported equipment. Champers edges all four side. Provide dowels into concrete floor for equipment that is seismically braced.
 - 2. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment. Provide for all equipment, pumps, air handling units, etc.
 - 3. Refer to 23 0548 Vibration controls for HVAC piping and piping and equipment for vibration inertia bases.
 - 4. Construct supports of steel members. Brace and fasten with flanges bolted to structure. Provide rigid anchors for pipes after vibration isolation components are installed.
- B. Flashing;
 - 1. Provide flexible flashing and metal counter-flashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.
 - 2. Flash piping projecting above finished roof surface with prefabricated steel reinforced boot and counter flashing sleeve.
- C. Sleeves;
 - 1. Sleeves are required for all piping passing through walls and/or slabs. Sleeve diameter to be large enough to accommodate insulated piping.
 - 2. Sleeves through interior non-fire rated walls are to have annular space between pipe and sleeve filled with materials specified in Division 1.

- 3. Sleeves thru fire rated walls to have annular space filled with fire stopping wrapping strips and expanding caulking applied with a caulking gun for a minimum depth of 3" or in another manner suitable for the application as recommended by the manufacturer. See Division 1.
- D. Escutcheons:
 - 1. Provide escutcheons on all wall pipe penetrations that are visible outside MER spaces. All escutcheons shall be chrome plated.

END OF SECTION 230529

SECTION 23 05 53 IDENTIFICATION FOR HVAC PIPING EQUIPMENT

- PART 1 GENERAL
- 1.1 WORK INCLUDED
 - A. Identification of mechanical products installed under Division 23.

1.2 REFERENCES

A. ASME A13.1 – Scheme for the Identification of Piping Systems

1.3 SUBMITTALS

- A. Submittals as per contract requirements.
- B. See Division 1 list of wording, symbols, letter size, and color coding for mechanical identification.
- C. Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.
- D. Manufacturer's Instructions: Indicate installation instructions, special procedures, and installation.
- E. Project Record Documents: Record actual locations of tagged valves; include valve tag numbers.
- F. Valve Tag chart.
- PART 2 PRODUCTS
- 2.1 NAMEPLATES, TAGS, MARKERS, ETC
 - A. Manufacturer: W.H. Brady Co., Signmark Div
 - B. Acceptable manufacturers offering equivalent products
 - 1. Atlantic Engraving Company.
 - 2. Seton Name Plate Co.
 - 3. MSI Services
 - 4. Substitutions as per Contract Requirements.
 - C. Description: Nameplates should be as specified in Division 1.

PART 3 EXECUTION

3.1 PREPARATION

- A. Degrease and clean surfaces to receive adhesive for identification materials
- B. Prepare surfaces in accordance with contract requirements.

3.2 INSTALLATION

- A. Install tags, markers, etc. in conformance with Division 1.
- B. Unless otherwise specified, color shall conform with ANSI/ASME A13.1
- C. Install identifying devices after completion of coverings and painting.
- D. Install plastic nameplates with corrosive-resistant mechanical fasteners, or adhesive.
- E. Install labels with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer. For unfinished cloth covering, apply paint primer before applying labels.
- F. Install tags using corrosion resistant chain. Number tags consecutively by location.
- G. Apply stencil painting in accordance with contract requirements.
- H. Identify all equipment, including pumps, air handlers, air cooled condensers, boilers, chillers, pumps, packaged AC units, and hot water heater with nameplates. Small devices, such as in-line pumps, may be identified with metal tags. Identify service of all air handling units, ac units split and packaged units. I.E. Ground floor offices.
- I. Identify control panels and major control components outside panels with nameplates.
- J. Identify valves in main and branch piping with brass tags. Main shutoff valves for boiler shall be furnished with special wording as required by ASME IV HG 710.5 "Supply or Return Valve No. X - Do Not Close Without Also Closing Supply or Return Valve No. Y". <u>Tags shall be provided for all new HVAC and related systems valves</u>. Including; heating water, refrigerant, CW make up, and drain.
- K. Tag automatic controls, instruments, and relays. Key to control schematic.
- L. Identify piping, concealed or exposed, with markers. Use tags on piping 3/4 inch diameter and smaller. Identify <u>service</u>, <u>flow direction</u>, and <u>pressure</u>. Install in clear view and align with axis of piping. Locate identification not to exceed 20 feet on straight runs including risers and drops, adjacent to each valve and tee, at each side of penetration of structure or enclosure, and at each obstruction. Labeling shall be in conformance with OSHA and ANSI A13.1.
- M. Identify all ductwork every 20' with flow arrows and unit or air handler served as well as service, such as SUPPLY AIR, RETURN AIR, EXHAUST AIR. Etc
- N. All smoke purge system components (including supply and exhaust ductwork) shall be clearly identified as such by stenciling the function and zone on the components, e.g. Smoke Purge Supply Zone 2; Smoke Purge Exhaust Zone 3; Smoke Damper No. 5; etc. Stenciling shall be 6" high red letters located (every 10 feet along duct).
- O. Identify all Smoke Dampers and Fire Dampers. All dampers shall be sequentially numbered by floor. For example fire damper FD-1-1 (Fire damper #1, floor 1) Tag shall be 1" high red letters located on damper. Provide red dot stencil on ceiling below damper.
- P. Provide permanent labels for all controls and limits which state function of each control and control set-points.

END OF SECTION

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - 2. Testing, Adjusting, and Balancing Equipment:
 - a. coils.
 - b. Motors.
 - c. Heat-transfer coils.
 - 3. Duct leakage tests.
 - 4. Control system verification.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. BAS: Building automation systems.
- C. NEBB: National Environmental Balancing Bureau.
- D. TAB: Testing, adjusting, and balancing.
- E. TABB: Testing, Adjusting, and Balancing Bureau.
- F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the engineer, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

- 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.5 ACTION SUBMITTALS

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Certified TAB reports.
- D. Sample report forms.
- E. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.7 QUALITY ASSURANCE

- A. TAB Specialists Qualifications: Certified by AABC NEBB or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC or NEBB as a TAB technician.
- B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

1.8 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

- K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.
- L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - b. Duct systems are complete with terminals installed.
 - c. Volume, smoke, and fire dampers are open and functional.
 - d. Clean filters are installed.
 - e. Fans are operating, free of vibration, and rotating in correct direction.
 - f. Variable-frequency controllers' startup is complete and safeties are verified.
 - g. Automatic temperature-control systems are operational.
 - h. Ceilings are installed.
 - i. Windows and doors are installed.
 - j. Suitable access to balancing devices and equipment is provided.
 - 2. Hydronics:
 - a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 - b. Piping is complete with terminals installed.
 - c. Water treatment is complete.
 - d. Systems are flushed, filled, and air purged.
 - e. Strainers are pulled and cleaned.

- f. Control valves are functioning per the sequence of operation.
- g. Shutoff and balance valves have been verified to be 100 percent open.
- h. Pumps are started and proper rotation is verified.
- i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
- j. Variable-frequency controllers' startup is complete and safeties are verified.
- k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR ALL SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.

- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."
- M. Code requirements;

Each supply air outlet and zone terminal device shall be equipped with means for air balancing in accordance with the requirements of Chapter 6 of the International Mechanical Code. Discharge dampers used for air-system balancing are prohibited on constant-volume fans and variable volume fans with motors 10 hp and larger. Air systems shall be balanced in a manner to <u>first</u> minimize throttling losses then, for fans with system power greater than 1 hp, fan speed shall be adjusted to meet design flow conditions.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 4. Obtain approval from engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor

amperage to ensure that no overload occurs. Measure amperage in full-cooling, fullheating, economizer, and any other operating mode to determine the maximum required brake horsepower.

- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.6 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.7 DUCT LEAKAGE TESTS (NOT REQUIRED)

A. Ducts designed to operate at static pressures equal to or in excess of 1.5 inches w.g. shall be sealed and tested in accordance with specifications Section 23 31 13 Metal Ducts. In

addition, ducts and plenums shall be leak tested in accordance with the procedures given SMACNA *HVAC Air Duct Leakage Test Manual*. Air leakage rates must *(CL)* less than or equal to 4.0 as determined in accordance with Equations below

- 1. $CL = F/P^{0.65}$ where:
- 2. *F*-The measured leakage rate in cfm per 100 square feet of duct surface.
- 3. *P*-The static pressure of the test.
- B. Documentation shall be furnished by the test and balancing contractor demonstrating that representative sections totaling at least 25 percent of the duct area have been tested and that all tested sections meet the requirements of this section.
- C. Perform duct pressure testing in coordination with Installer.
- D. Verify that proper test methods are used and that leakage rates are within specified tolerances.
- E. Report; submit a report indicating which ductwork sections were tested. Provide single line or double line duct submittal drawing. The drawing shall indicate all systems in their entirety to 3/8' = 1'-0'' scale. Sections that air leakage tested shall be clearly indicated.
- F. The report shall include full test procedure including how the ductwork was isolated for pressure testing, the pressure of the test and the duration of the test.
- G. Submit duct pressure test procedures used for this project.
- H. Submit summary of test results on a section by section basis, to include all CL, F,P and time.
- I. Witness the duct pressure testing performed by Installer.
- J. Verify that proper test methods are used and that leakage rates are within specified tolerances.
- K. Report deficiencies observed.

3.8 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.9 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.10 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.11 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.

- 4. Project location.
- 5. Architect's name and address.
- 6. Engineer's name and address.
- 7. Contractor's name and address.
- 8. Report date.
- 9. Signature of TAB supervisor who certifies the report.
- 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Gas- Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.

- g. Output capacity in Btu/h.
- h. Ignition type.
- i. Burner-control types.
- j. Motor horsepower and rpm.
- k. Motor volts, phase, and hertz.
- 1. Motor full-load amperage and service factor.
- m. Sheave make, size in inches, and bore.
- n. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h.
 - i. High-fire fuel input in Btu/h.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - 1. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h.
- F. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):

- a. Total airflow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Suction static pressure in inches wg.
- G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated airflow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual airflow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- H. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.12 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.
- B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

- E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
- F. Prepare test and inspection reports.

3.13 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 23 07 13 HVAC DUCTWORK INSULATION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Ductwork insulation.
- B. Duct Liner.
- C. Insulation jackets.

1.02 RELATED SECTIONS

- A. Section 23 05 53 Identification for HVAC Piping and Equipment.
- B. Section 23 31 13 Ductwork.

1.03 REFERENCES

- A. ASTM C553 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.
- B. ASTM C612 Standard Specification for Mineral Fiber Block and Board Thermal Insulation.
- C. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials.
- D. NAIMA National Insulation Standards.
- E. NFPA 255 Standard Method of Test of Surface Burning Characteristics of Building Materials.
- F. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- G. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials.
- H. ASHRAE 90-75 Insulation Standards

1.04 SUBMITTALS

- A. Division 1 Submittals: Procedures for submittals.
- B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.
- C. Submit manufacturers' insulation instructions under provisions of Division 1.
- 1.05 QUALITY ASSURANCE

HVAC DUCTWORK INSULATION

A. Applicator Qualifications: Company specializing in performing the work of this section with minimum three years experience approved by manufacturer.

1.06 REGULATORY REQUIREMENTS

- A. Materials: Flame spread/fuel contributed/smoke developed rating of 25/50/50 in accordance with NFPA 255.
- B. Insulation thickness shall comply with all applicable energy conservation codes.

1.07 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.
- B. Maintain temperature during and after installation for minimum period of 24 hours.

PART 2 PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS - INSULATION

- A. Owen Corning Fiberglass Corp.
- B. Manville Industrial Products
- C. Certain Teed Corporation
- D. 3M Corporation "Firemaster" for Kitchen Exhaust
- E. Substitutions: Under provisions of Division 1.

2.02 GLASS FIBER, RIGID

- A. Type A: Flexible glass fiber duct insulation; ANSI/ASTM C612; commercial grade; "K" value of 0.25 at 75° F; minimum density of 1-1/2 pounds per cu. ft.; factory applied vapor barrier jacket of 0.7 mil minimum aluminum foil laminated to glass fiber reinforced Kraft paper. Similar to Owens-Corning type FRK-25-ED Type 150 commercial grade.
- B. Type B: Rigid glass fiber board insulation with resin binder; ANSI/ASTM C612, Class 1; "K" value of 0.23 at 75° F minimum density of 6 pounds per cu. ft; factory applied white Kraft faced flame retardant vapor barrier jacket of aluminum laminated to heavy Kraft paper with a flame retardant snuffer type adhesive and reinforced with glass fibers; permeability of 0.2. Similar to Owens-Corning type 705 with AST jacket.
- C. Type C: Molded block or board insulation made of asbestos free hydrous calcium silicate; "K" value of 0.42 at 200° F; minimum density of 14 pounds per cubic foot; temperature range up to 1200° F.
- D. Type D1: Flexible Glass Duct Liner: (For standard applications)

ANSI/ASTM C553; "K" value of 0.23 at 75° F; minimum density of 1.5 pounds per cu. ft.; surface finish of black pigmented fire resistant resilient mastic coated on air side for maximum velocity of 4000 feet per minute.

- a. Maximum Thermal Conductivity
- 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- 2) Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- b. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- c. Solvent Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

E Type D2: Flexible Elastomeric Duct Liner: (Wet Or Damp Applications Including Natatorium And Saunas).

Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

- 1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- 2. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- F. Type "E" Fire resistant duct wrap consisting of light weight, non-asbestos high temperature non-organic ceramic fiber blanket encapsulated in foil/scrim having a service temperature rating of 2300° F. Wrap shall be applied in two temperature layers to provide a two-hour rated enclosure assembly. Bonding material shall be 304 stainless steel, ³/₄" wide and .015" thick.
- G Adhesives: Waterproof fire-retardant type. Smoke and flame spread rating less then 50.
- H. Indoor Jacket: Pre-sized glass cloth, minimum 7.8 oz/sq. yd unless otherwise specified above.
- I. Outdoor Jackets: Insulate as per the specification and jacket with Polyguard Insul-wrap 50W Membrane. For watertight insulation jacket install as per manufacturers recommendations. Furnish all mastics and adhesives as per manufacture system.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Install insulation materials only after ductwork has been sealed, tested and approved.
- B. All insulated surfaces are to be cleaned and dried of any foreign material. This includes but is not limited to oil, water, dirt, rust and scale. Completely cover the entire surface to present a tight, smooth appearance.

3.02 INSTALLATION

- A. Division 1 Quality Control: Install materials in accordance with manufacturer's instructions, specification requirements and in compliance with local code
- B. Install in accordance with NAIMA National Insulation Standards.
- C. Apply insulation in such a way as to permit expansion and/or contraction of metal without causing damage to insulation, joints, seams or finish.
- D. Do not apply additional coats of mastic, adhesive, or sealers until previous coats have thoroughly dried.
- E. Fill in all surface imperfections such as chipped edges, small joints, cracks, holes and small voids with materials o match insulation. Make smooth with a skim coat of insulation cement. Extend surface finish to protect all surfaces and leave no exposed edges.
- F. Provide flashing for insulation installed outdoors to enclose all exposed edges or ends.
- G. Repair existing insulation where damaged by new work. Use materials to match existing.
- H. Cut, score or miter insulation to fit the slope and contour of surface to be covered. Insulation up to 3 inches thick to be applied in single layer. Over 3 inches apply in multiple layers, with joints staggered.

Service	Type	Insulation Thickness
² Interior H&V, AC systems SA,RA & EA, ductwork that is exposed in equip rooms.	В	1-1/2"
Interior H&V, AC systems SA, RA & EA Including flexible run outs & all concealed, not internally insulated ductwork.	А	2"
³ Outside air intake ductwork All	В	1 1/2"
¹ Exterior A.C. and H&V Supply and Return Ductwork Exposed on outdoors	В	2"
Acoustic Lining (For ductwork with external i	nsulation)	
RA & SA ductwork 20' from any fan inlet or outlet, and 10' downstream of any VAV box.	D1/D2	1/2"

⁵Internally insulted only, ducted work

CONTRACT NO. 17-521

NEW EQUIPMENT STORAGE BUILDING, VALHALLA CAMPUS

Interior H&V, AC systems SA & RA		
(when duct is located in conditioned space)	D1/D2	1 "
(Ducts located in unconditioned space, Plenum or equipment room)	D1/D2	11/2"
⁴ Smoke purge exhaust and supply	Е	2"
All Stair pressure ductwork	Е	2"
Generator exhaust pipe and muffler	С	2"
Kitchen hood grease duct	Е	(2) layers 1" ea

- 1. Insulation Thickness shall be no less than the size indicated or the height of standing seams or angle bracing.
- 2. Reduce external insulation to 1" for internally lined ductwork except for outdoor installations. On outdoor installations insulation thickness shall be as scheduled but not less then the height of standing seams or angle bracing.
- 3. Outside air intake and Kitchen exhaust ducts shall not be internally lined.
- 4. Smoke purge system supply and exhaust ducts passing through a rated Exit-way or within a firerated suspended ceiling assembly and all Kitchen Hood exhaust ducts shall be wrapped with thermal fiber - two (2) hour or encased in a two (2) hour rated enclosure. Trapeze hangers to be outside of thermal wrapping.
- 5. All square or rectangular ductwork that is exposed to view in finished spaces shall be internally insulated.

END OF SECTION

SECTION 23 09 23 – DIRECT DIGITAL CONTROL EQUIPMENT

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. These basic Mechanical Requirements apply to all Division 23 Sections.
- B. 1.2 The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all mechanical for this project, as required by the contract documents.

1.2 Qualifications of Bidder

- A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 5 years.
- B. All bidders must have a service and installation office in the Westchester area.
- C. All bidders must be authorized distributors or branch offices of the manufacturers specified.
- D. All bidders must have a trained staff of application engineers, who have been certified by the manufacturer in the configuration, programming and service of the automation system.
- E. Manufacturers: Subject to compliance with requirements, provide products by the following pre-qualified manufacture:
 - 1. Andover Controls Corporation

1.3 Scope of Work

- A. Except as otherwise noted, the control system shall consist of all Ethernet Network Controllers, Standalone Digital Control Units, software, sensors, transducers, relays, valves, dampers, valve and damper operators, control panels, and other accessory equipment, along with a complete system of electrical interlocking wiring to fill the intent of the specification and provide for a complete and operable system. Unless otherwise specified, provide operators for equipment such as dampers and valves if the equipment manufacturer does not provide these. Coordinate requirements with the mechanical contractors.
- B. The Building Automation System (BAS) contractor shall review and study all HVAC drawings and the entire specification to familiarize himself with the equipment and system operation, and to verify the quantities and types of dampers, operators, alarms, controllers etc. to be provided. ALL NEW TEMPERATURE CONTROLS EQUIPMENT SHALL BE ANDOVER CONTINUUM SERIES VERSION 1.9. OR LATER and fully compatible with the County Andover control system.

- C. All interlocking, wiring and installation of control devices associated with the equipment listed below shall be provided under this Contract. When the BAS system is fully installed and operational, the BAS Contractor and representatives of the Owner will review and check out the system. At that time, the BAS contractor shall demonstrate the operation of the system and prove that it complies with the intent of the drawings and specifications.
- D. The Contractor shall furnish and install a complete building automation system including all necessary hardware, network wiring, all operating applications software, and all programming necessary to perform the control sequences of operation as called for in the specifications. The scope of work shall includes control over, and graphic representation of all new mechanical g equipment installed as part of this project on the County Network .
- E. At a minimum, provide controls for the following:
 - 1. Gas fired make up air conditioning units
 - 2. Gas fired unit heater
 - 3. Ceiling and wall fans
 - 4. CO detection system
 - 5. Motorized Dampers
 - 6. Toilet exhaust fan
 - 7. Frequency controllers, HOA's and starters
 - 8. Power wiring to DDC devices, smoke control dampers and BAS panels.
- F. Provide services and manpower necessary for commissioning of system in coordination with the HVAC Contractor, Balancing Contractor and Owner's representative.
- G. All work performed under this section of the specifications will comply with all codes, laws and governing bodies. If this specification and associated drawings exceed governing code requirements, the specification will govern. The Contractor shall obtain and pay for all necessary construction permits and licenses.
- H. Provide all labor and materials to perform all programming necessary at the owners new operator work station to be located in the First floor MER room to GRAPHICALLY REPRESENT AND CONTROL EACH AND EVERY PIECE OF EQUIPMENT IN THE LISTS ABOVE NEW. ALL INPUT AND PUT STATUS POINTS, AND FUNCTIONAL POINTS. THIS SHALL INCLUDE BUT IS NOT LIMITED TO ALL EQUIPMENT LISTED IN SECTION E ABOVE.
- 1.4 System Description
 - A. The Building Automation System (BAS) shall consist of PC-based workstation and microcomputer controllers of modular design providing distributed processing capability, and allowing future expansion of both input/output points and processing/control functions. For this project the system shall consist of the following components:
 - B. Operator Workstations.

The BAS Contractor shall furnish (1) Operator Workstation Computer and (1) printer as described in Part 2 of the specification. This workstation must be running the standard workstation software developed and tested by the manufacturer of the network controllers and the standalone controllers. No third party front-end workstation software will be acceptable.

This work station shall have the same functionality in terms of controlling and monitoring equipment and making set-point adjustments. Provide all necessary software and licensing as required

- C. Ethernet-based Network Controllers.
 - 1. The BAS Contractor shall furnish Ethernet-based network controllers as described in Part 2 of the specification. These controllers will connect directly to the Operator Workstation over Ethernet, provide communication to the Standalone Digital Control Units and/or other Input/Output Modules and serve as a gateway to equipment furnished by others (if applicable).
- D. Standalone Digital Control Units (SDCUs).
 - 1. Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment.
- E. Service Tool.
 - 1. Provide a portable service tool for monitoring and commissioning of the network and Standalone Digital Control Units. The tool shall have all the appropriate software for system access and have the same functionality as the main work station.
- F. Modem.
 - 1. A modem shall be furnished for remote interrogation of the system. The modem shall operate at a minimum of 28.8 KBaud and allow for access to the entire network of controllers.
- 1.5 Work by Others
 - A. The BAS Contractor shall cooperate with other contractors performing work on this project necessary to achieve a complete and neat installation. To that end, each contractor shall consult the drawings and specifications for all trades to determine the nature and extent of others' work.
 - B. The BAS Contractor shall furnish all control valves, sensor wells, flow meters and other similar equipment for installation by the Mechanical Contractor.
 - C. The BAS Contractor shall provide field supervision to the designated contractor for the installation of the following as required:
 - 1. Automatic control dampers
 - 2. Fire/smoke dampers
 - 3. Sheet metal baffle plates to eliminate stratification.
 - D. The Electrical Contractor shall provide:
 - 1. All power wiring to motors, heat trace, junction boxes for power to BAS panels.

- 2. Furnish smoke detectors and wire to the building fire alarm system. HVAC Contractor to mount devices. BAS Contractor to hardwire to fan shut down. BAS contractor to coordinate this with the electrical contractor.
- E. The BAS Contractor shall provide:
 - 1. All power wiring to all smoke damper actuators for smoke control sequence.
- F. The facility IT system shall provide a network connection
- 1.6 Code Compliance
 - A. Provide BAS components and ancillary equipment, which are UL-916 listed and labeled.
 - B. All equipment or piping used in conditioned air streams, spaces or return air plenums shall comply with NFPA 90A Flame/Smoke/Fuel contribution rating of 25/50/0 and all applicable building codes or requirements.
 - C. All wiring shall conform to the National Electrical Code.
 - D. All smoke dampers shall be rated in accordance with UL 555S.
 - E. Comply with FCC rules, Part 15 regarding Class A radiation for computing devices and low power communication equipment operating in commercial environments.
 - F. Comply with FCC, Part 68 rules for telephone modems and data sets.

1.7 Submittals

- A. All shop drawings shall be prepared in Visio Professional or AutoCAD software. In addition to the drawings, the Contractor shall furnish a diskette containing the identical information. Drawings shall be B size or larger.
- B. Shop drawings shall include a riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typical will be allowed where appropriate.
- C. Submittal data shall contain manufacturer's data on all hardware and software products required by the specification. Valve, damper and air flow station schedules shall indicate size, configuration, capacity and location of all equipment.
- D. Software submittals shall contain narrative descriptions of sequences of operation, program listings, point lists, and a complete description of the graphics, reports, alarms and configuration to be furnished with the workstation software. Information shall be bound or in a three ring binder with an index and tabs. All literature, descriptions, equipment spec sheets, sequences etc shall be on 8 1/2 x 11 or larger sized sheets. All details diagrams and schematics shall be on 11X17 sized sheets or larger.

- E. Submit five (5) copies of submittal data and shop drawings to the Engineer for review prior to ordering or fabrication of the equipment. The Contractor prior to submitting shall check all documents for accuracy.
- F. The Engineer will make corrections, if required, and return to the Contractor. The Contractor will then resubmit with the corrected or additional data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully approved.
- G. Submit a training class syllabus and training manual for review with the temperature controls submittal. The training manual shall be custom made for this project. Manufactures brochures, and installation manuals will not be acceptable for this purpose. Submit a type written overview and a written summary of each topic to be covered. The document shall be suitable for a system operator to use as a quick reference guide to basic system operation as applicable for this project. Refer to section 1.9 paragraph B, for the minimum requirement of training to be included.

1.8 System Startup & Commissioning

- A. Each point in the system shall be tested for both hardware and software functionality. In addition, each mechanical and electrical system under control of the BAS will be tested against the appropriate sequence of operation specified herein. Successful completion of the system test shall constitute the beginning of the warranty period. A written report will be submitted to the owner indicating that the installed system functions in accordance with the plans and specifications.
- B. The BAS contractor shall commission and set in operating condition all major equipment and systems, such as the chilled water, hot water and all air handling systems, in the presence of the equipment manufacturer's representatives, as applicable, and the Owner and Architect's representatives.
- C. The BAS Contractor shall provide all manpower and engineering services required to assist the HVAC Contractor and Balancing Contractor in testing, adjusting, and balancing all systems in the building. The BAS Contractor shall have a trained technician available on request during the balancing of the systems. The BAS Contractor shall coordinate all requirements to provide a complete air balance with the Balancing Contractor and shall include all labor and materials in his contract.

1.9 Training

- A. The BAS Contractor shall provide both on-site training to the Owner's representative and maintenance personnel per the following description:
- B. On-site training shall consist of a minimum of (3) separate 4 hour sessions of hands-on instruction geared at the operation and maintenance of the systems. The sessions shall be scheduled at the beginning of substantial completion and spaced out over the first year of owner use. The first session curriculum shall include
 - 1. System Overview

- 2. System Software and Operation
 - a. System access
 - b. Software features overview
 - c. Changing set-points and other attributes
 - d. Scheduling
 - e. Editing programmed variables
 - f. Displaying color graphics
 - g. Running reports
 - h. Workstation maintenance
 - i. Application programming
- 3. Operational sequences including start-up, shutdown, adjusting and changing system variables. These items shall be reviewed for all equipment installed under this project and or connected to the BMS under this project.
- 4. Equipment and hardware overview and maintenance. This shall include:
 - a. Review of all hardware installed under this project
 - b. Review of a system schematic.
 - c. Review of where each controller is located in the building and what its function is. This shall include a walking, hands-on tour and demonstration of each and every controller.
- 1.10 Operating and Maintenance Manuals
 - A. The operation and maintenance manuals shall contain all information necessary for the operation, maintenance, replacement, installation, and parts procurement for the entire BAS. This documentation shall include specific part numbers and software versions and dates. A complete list of recommended spare parts shall be included with the lead-time and expected frequency of use of each part clearly identified.
 - B. Following project completion and testing, the BAS contractor will submit as-built drawings reflecting the exact installation of the system. The as-built documentation shall also include a copy of all application software both in written form and on diskette.

1.11 Warranty

- A. The BAS contractor shall warrant the system for 12 months after system acceptance and beneficial use by the owner. During the warranty period, the BAS contractor shall be responsible for all necessary revisions to the software as required to provide a complete and workable system consistent with the letter and intent of the Sequence of Operation section of the specification.
- B. Updates to the manufacturer's software shall be provided at no charge during the warranty period.

- 1.12 Programming
 - A. Sequence of operations: The controls contractor shall review the sequences of operation given in section 23 09 93 of this specification. "Canned", preprogrammed, or typical sequences by the manufacture may not be acceptable and shall only be used if accepted by the engineer. Otherwise the controls contractor shall be capable of and responsible for providing custom programming, hardware, software, and labor as required to achieve the sequences of operation as specified.
- 1.13 System Architecture
 - A. General
 - B. The Building Automation System (BAS) shall consist of all new Network Control Units (NCUs), a family of Standalone Digital Control Units (SDCUs), Input/Output Unit Modules (IOU Modules), Operator Workstations (OWs), and one File Server to support system configurations where more than one operator workstation is required. The BAS shall provide control, alarm detection, scheduling, reporting and information management for the entire class room building and all new and existing equipment in the building, and Wide Area Network (WAN) if applicable, from a single ODBC-compliant database
 - C. Level 1 Network Description
 - D. Level 1, the main backbone of the system, shall be an Ethernet LAN/WAN. Network Control Units, Operator Workstations, and the Central File Server shall connect directly to this network without the need for Gateway devices. The contractor shall visit the site and review the existing Andover temperature controls equipment installed in the building and in the physical plant. Certain of these controllers may be suitable for reuse. The network shall be an extension of the existing in the building as required to achieve a complete system,
 - E. Level 2 Network Description
 - F. Level 2 of the system shall consist of one or more field buses managed by the Network Control Units. The Level 2 field buses may consist of one or both of the following types:
 - G. An RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC equipment and lighting, or
 - H. An RS485 field bus that supports up to 32 devices from a family of plug-in, IOU modules.
 - I. These IOU modules may be mounted within the NCU enclosure or remotely mounted via a single, twisted, shielded pair of wires.
 - J. The BAS shall be capable of being segmented, through software, into multiple local area networks (LANs) distributed over a wide area network (WAN), sharing a single file server. This enables workstations to manage a single LAN (or building), and/or the entire system with all devices being assured of being updated by and sharing the most current database. In the case of a single workstation system, the workstation shall contain the entire database with no need for a separate file server.

- K. Standard Network Support
- L. All NCUs, Workstation(s) and File Server shall be capable of residing directly on the owner's Ethernet TCP/IP LAN/WAN with no required gateways. Furthermore, the NCU's, Workstation(s) and File Server shall be capable of using standard, commercially available, off-the-shelf Ethernet infrastructure components such as routers, switches and hubs. With this design the owner may utilize the investment of an existing or new enterprise network or structured cabling system. This also allows the option of the maintenance of the LAN/WAN to be performed by the owner's Information Systems Department as all devices utilize standard TCP/IP components.
- M. Remote Communications
- N. In addition to the above LAN/WAN architecture support, the same workstation software (front end) must be capable of managing remote systems via standard dial-up phone lines as a standard component of the software. Front-end "add-on" software modules to perform remote site communication shall not be acceptable.
- O. The remote system architecture shall consist of two levels providing control, alarm detection, reporting and information management for the remote facility. Level 1 shall contain the Remote Site Control Unit, communicating to the remotely located, Operator Workstation(s) through the use of a modem and a standard dial-up phone line. Level 2 shall consist of one or more field buses controlled by the RSCU. The field buses may consist of one or both of two types:
- P. 1) An RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC equipment and lighting, or
- Q. 2) An RS485 field bus that supports up to 32 devices from a family of plug-in, IOU modules that may be mounted within the RSCU enclosure or remotely mounted on a single, twisted, shielded pair of wires.
- R. System Expansion
- S. The BAS system shall be scalable and expandable at all levels of the system using the same software interface, and the same Level 1 and Level 2 controllers. Systems that require replacement of either the workstation software or field controllers in order to expand the system shall not be acceptable.
- T. The BAS shall be expandable to include Security and Access Control functions at any time in the future with no additional workstations, front-end software or Level 1 controllers required. Standalone Digital Control Units or IOU modules shall be able to be added to the existing Level 1 controller's field bus(es), to perform security and card access applications. In this way, an owner's existing investment in wiring infrastructure may be leveraged and the cost and inconvenience of adding new field bus wiring will be minimized.
- U. Additionally, an integrated video badging option must be able to be included with no additional workstations required. This photo ID option must share the same database as the BAS in order to eliminate the need for updating multiple databases.
- V. The system shall use the same application programming language for all levels: Operator Workstation, Network Control Unit, Remote Site Control Unit and Standalone Digital Control

Unit. Furthermore, this single programming language shall be used for all applications: environmental control, card access control, intrusion detection and security, lighting control, leak detection / underground storage tank monitoring, and digital data communication interfaces to third party microprocessor-based devices.

W. Support For Open Systems Protocols

The BAS design must include solutions for the integration of the following "open systems" protocols: BACnet, LonTalk[™], and digital data communication to third party microprocessors such as chiller controllers, fire panels and variable frequency drives (VFDs).

X. The system shall also provide the ability to program custom ASCII communication drivers, that will reside in the NCU, for communication to third party systems and devices. These drivers will provide real time monitoring and control of the third party systems.

1.14 Network Control Units (NCUs)

- A. Network Control Units shall be microprocessor based, multi-tasking, multi-user, and employ a real time operating system. Each NCU control panel shall consist of modular hardware including power supply, CPU board, and input/output modules. A sufficient number of NCUs shall be supplied to fully meet the requirements of this specification and the attached point list.NCUs for telephone dialup sites shall be of the same design as the Ethernet control units but without the plug-in Ethernet network interface card (NIC), i.e., NCUs, which include a NIC, shall be interchangeable whether used on a LAN/WAN or a dialup site.
- B. Webserver Functionality

All NCUs on the Ethernet TCP/IP LAN/WAN shall be capable, out-of-the box, to be set up as a Web Server. The NCU shall have the ability to store HTML code and "serve" pages to a web browser. This provides the ability for any computing device utilizing a TCP/IP Ethernet connection and capable of running a standard Internet browser (Microsoft Internet ExplorerTM, Netscape NavigatorTM, etc.) to access real-time data from the entire BAS via any NCUs.

Graphics and text-based web pages shall be constructed using standard HTML code. The interface shall allow the user to choose any of the standard text or graphics-based HTML editors for page creation. It shall also allow the operator to generate custom graphical pages and forms.

The WEB server interface shall be capable of password security, including validation of the requesting PC's IP address. The WEB server interface shall allow the sharing of data or information between any controller, or process or network interface (BACnet, LonTalk and TCP/IP) that the BMS has knowledge of, regardless of where the point is connected on the BAS network or where it is acquired from.

The BAS network controller must act directly as the WEB server. It must directly generate the HTML code to the requesting user (i.e. WEB browser), eliminating the need for and reliance on any PC-based WEB server hardware or software. To simplify graphic image space allocation, HTML graphic images, if desired, shall be stored on any shared network device. The BAS WEB server shall have the ability to acquire any necessary graphics using standard pathing syntax within the HTML code mounted within the BAS WEB server. External WEB server hardware and software are not acceptable.

- C. Hardware Specifications
 - 1. Memory:

A minimum of 64MB of RAM shall be provided for NCUs with expansion up to 128 MB. The 64 MB versions shall include a floating-point math co-processor.

2. Communication Ports:

Each NCU shall provide communication to both the Workstation(s) and the field buses. In addition, each NCU must have at least 3 other communications ports that support a telephone modem, portable service tool, serial printer and connection to third party controllers such as a chiller control panel. On a LAN/WAN system the NCU shall be provided with a 10Mbps plug-in Ethernet TCP/IP network interface card (NIC).

3. Input/Output (I/O):

Each NCU shall support the addition of the following types of inputs and outputs:

- Digital Inputs for status/alarm contacts
- Counter Inputs for summing pulses from meters.
- Thermistor inputs for measuring temperatures in space, ducts and thermowells.
- Analog inputs for pressure, humidity, flow and position measurements.
- Digital Outputs for on/off equipment control.
- Analog Outputs for valve and damper position control, and capacity control of primary equipment including all air handler and fan coil control valves
- 4. Modular Expandability:

The system shall employ a modular I/O design to allow easy expansion. Input and output capacity is to be provided through plug-in modules of various types or DIN-mountable IOU modules. It shall be possible to combine I/O modules as desired to meet the I/O requirements for individual control applications.

5. Hardware Override Switches:

All digital output units shall include three position manual override switches to allow selection of the ON, OFF, or AUTO output state. These switches shall be built into the unit and shall provide feedback to the controller so that the position of the override switch can be obtained through software. In addition each analog output shall be equipped with an override potentiometer to allow manual adjustment of the analog output signal over its full range, when the 3 position manual override switch is placed in the ON position.

6. Local Status Indicator Lamps:

Provide as a minimum LED indication of CPU status, Ethernet LAN status, and field bus status. For each output, provide LED indication of the value of the output (On/Off). For each output module provide an LED which gives a visual indication of whether any outputs on the module are manually overridden.

7. Real Time Clock (RTC):

Each NCU shall include a battery-backed, real time clock, accurate to 10 seconds per day. The RTC shall provide the following: time of day, day, month, year, and day of week. In normal operation the system clock will be based on the frequency of the AC power. The system shall automatically correct for daylight savings time and leap years and be Year 2000 compliant.

8. Power Supply:

The power supply for the NCUs shall be auto sensing, 120-220VAC, 60/50 Hz power, with a tolerance of +/-20%. Line voltage below the operating range of the system shall be considered outages. The controller shall contain over voltage surge protection, and

require no additional AC power signal conditioning. Optionally, if indicated on the drawings, the power supply shall accept an input voltage of (-48 VDC).

9. Automatic Restart After Power Failure:

Upon restoration of power after an outage, the ECU shall automatically and without human intervention: update all monitored functions; resume operation based on current, synchronized time and status, and implement special start-up strategies as required.

10. Battery backup:

Each NCU with the standard 120-220VAC power supply shall include a programmable DC power backup system rated for a minimum of 72 hours of battery backup to maintain all volatile memory or, a minimum of 2 hours of full UPS including modem power. This power backup system shall be configurable such that at the end of a settable timeframe (such as 1 hour) of running on full UPS, the unit will shut off full UPS and switch to memory retention-only mode for the remainder of the battery power. The system shall allow the simple addition of more batteries to extend the above minimum battery backup times.

- D. Software Specifications
 - 1. General.

The NCU shall contain flash ROM as the resident operating system. Application software will be RAM resident. Application software will only be limited by the amount of RAM memory. There will be no restrictions placed on the type of application programs in the system. Each NCU shall be capable of parallel processing, executing all control programs simultaneously. Any program may affect the operation of any other program. Each program shall have the full access of all I/O facilities of the processor. This execution of control function shall not be interrupted due to normal user communications including interrogation, program entry, printout of the program for storage, etc.

2. User Programming Language:

The application software shall be user programmable. This includes all strategies, sequences of operation, control algorithms, parameters, and setpoints. The source program shall be English language-based and programmable by the user. The language shall be structured to allow for the easy configuration of control programs, schedules, alarms, reports, telecommunications, local displays, mathematical calculations, passwords, and histories. The language shall be self-documenting. Users shall be able to place comments anywhere in the body of a program. Program listings shall be configurable by the user in logical groupings.

- E. Control Software:
 - 1. The NCU shall have the ability to perform the following pre-tested control algorithms:
 - a. Proportional, Integral plus Derivative Control (PID)
 - b. Self Tuning PID
 - c. Two Position Control
 - d. Digital Filter
 - e. Ratio Calculator
 - f. Equipment Cycling Protection

- 2. Mathematical Functions:
 - a. Each controller shall be capable of performing basic mathematical functions (+, -, *, /), squares, square roots, exponential, logarithms, Boolean logic statements, or combinations of both. The controllers shall be capable of performing complex logical statements including operators such as >, <, =, and, or, exclusive or, etc. These must be able to be used in the same equations with the mathematical operators and nested up to five parentheses deep.
- 3. Energy Management Applications:
 - a. NCUs shall have the ability to perform any or all of the following energy management routines:
 - b. Time of Day Scheduling
 - c. Calendar Based Scheduling
 - d. Holiday Scheduling
 - e. Temporary Schedule Overrides
 - f. Optimal Start
 - g. Optimal Stop
 - h. Night Setback Control
 - i. Enthalpy Switchover (Economizer)
 - j. Peak Demand Limiting
 - k. Temperature Compensated Duty Cycling
 - 1. CFM Tracking
 - m. Heating/Cooling Interlock
 - n. Free Cooling
 - o. Hot Water Reset
 - p. Chilled Water / HW water Reset
 - q. Chiller / boiler Sequencing
- 4. History Logging:
 - a. Each controller shall be capable of logging any system variable over user defined time intervals ranging from 1 second to 1440 minutes. Any system variables (inputs, outputs, math calculations, flags, etc.) can be logged in history. A maximum of 32767 values can be stored in each log. Each log can record either the instantaneous, average, minimum or maximum value of the point. Logs can be automatic or manual. Logged data shall be downloadable to the Operator Workstation for long term archiving based upon user-defined time intervals, or manual command.
- 5. Alarm Management:
 - a. For each system point, alarms can be created based on high/low limits or conditional expressions. All alarms will be tested each scan of the NCU and can result in the display of one or more alarm messages or reports. Up to 8 alarms can be configured for each point in the controller. Messages and reports can be sent to a local terminal, to the front-end workstation(s), or via modem to a remote-computing device. Alarms will be generated based on their priority. A minimum of 255 priority levels shall be provided. If communication with the Operator Workstation is temporarily interrupted, the alarm will be buffered in the NCU.

When communications return, the alarm will be transmitted to the Operator Workstation if the point is still in the alarm condition.

- 6. Reporting.
 - a. The NCU shall be able to generate user-definable reports to a locally connected printer or terminal. The reports shall contain any combination of text and system variables. Report templates shall be able to be created by users in a word processing environment. Reports can be displayed based on any logical condition or through a user command.
- 1.15 Standalone Digital Control Units (SDCUs)
 - A. General:
 - 1. Standalone Digital Control Units shall provide control of HVAC and lighting. Each controller shall have its own control programs and will continue to operate in the event of a failure or communication loss to its associated NCU.
 - B. Memory:
 - 1. Control programs shall be stored in battery backed-up RAM and EPROM. Each controller shall have a minimum of 32K bytes of user RAM memory and 128K bytes of EPROM.
 - C. Communication Ports:
 - 1. SDCUs shall provide a communication port to the field bus. In addition, a port shall be provided for connection of a portable service tool to support local commissioning and parameter changes with or without the NCU online. It shall be possible from a service port on any SDCU to view, enable/disable, and modify values of any point or program on any controller on the local field bus, any NCU or any SDCU on a different field bus.
 - D. Input/Output:
 - 1. Each SDCU shall support the addition of the following types of inputs and outputs:
 - a. Digital Inputs for status/alarm contacts
 - b. Counter Inputs for summing pulses from meters.
 - c. Thermistor Inputs for measuring temperatures in space, ducts and thermowells.
 - d. Analog inputs for pressure, humidity, flow and position measurements.
 - e. Digital Outputs for on/off equipment control.
 - f. Analog Outputs for valve and damper position control, and capacity control of primary equipment.
 - E. Expandability:
 - 1. Input and output capacity shall be expandable through the use of plug-in modules. A minimum of two modules shall be added to the base SDCU before additional power is required.

- F. Networking:
 - 1. Each SDCU will be able to exchange information on a peer to peer basis with other Standalone Digital Control Units during each field bus scan. Each SDCU shall be capable of storing and referencing global variables (on the LAN) with or without any workstations online. Each SDCU shall be able to have its program viewed and/or enabled/disabled either locally through a portable service tool or through a workstation connected to an NCU.
- G. Indicator Lamps:
 - 1. SDCUs will have as a minimum, LED indication of CPU status, and field bus status.
- H. Real Time Clock (RTC):
 - 1. An SDCU shall have a real time clock in either hardware or software. The accuracy shall be within 10 seconds per day. The RTC shall provide the following information: time of day, day, month, year, and day of week. Each SDCU shall receive a signal, every hour, over the network from the NCU which synchronizes all SDCU real time clocks.
- I. Automatic Restart After Power Failure:
 - 1. Upon restoration of power, the SDCU shall automatically and without human intervention, update all monitored functions, resume operation based on current, synchronized time and status, and implement special start-up strategies as required.
- J. Battery Back Up:
 - 1. Each SDCU shall have at least 3 years of battery back up to maintain all volatile memory.
- K. Alarm Management:
 - 1. For each system point, alarms can be created based on high/low limits or conditional expressions. All alarms will be tested each scan of the SDCU and can result in the display of one or more alarm messages or reports. Up to 8 alarms can be configured for each point in the controller enabling the escalation of the alarm priority (urgency) based upon which alarm(s) is/are triggered. Alarm messages can be sent to a local terminal or modem connected to an NCU or to the Operator's Workstation(s). Alarms will be generated based on their priority. A minimum of 255 priority levels shall be provided. If communication with the NCU is temporarily interrupted, the alarm will be buffered in the SDCU. When communications return, the alarm will be transmitted to the NCU if the point is still in the alarm condition.
- L. Air Handler Controllers
 - 1. AHU Controllers shall be capable of meeting the requirements of the sequence of operation found in the Execution portion of this specification and for future expansion.
 - 2. AHU Controllers shall support all the necessary point inputs and outputs as required by the sequence and operate in a standalone fashion.
 - 3. AHU Controllers shall be fully user programmable to allow for modification of the application software.

- 4. An LCD display shall be optionally available for readout of point values and to allow operators to change setpoints and system parameters.
- 5. A manual override switch shall be provided for all digital and analog outputs on the AHU Controller. The position of the switch shall be monitored in software and available for operator displays and alarm notification.
- M. VAV Terminal Unit Controllers (NOT USED)
 - 1. VAV Terminal Unit Controllers shall support, but not be limited to the control of the following configurations of VAV boxes to address current requirements as described in the Execution portion of this specification, and for future expansion:
 - a. Single Duct Cooling Only
 - b. Single Duct Cooling with Reheat (Electric or Hot Water)
 - c. Fan Powered (Parallel or Series)
 - d. Dual Duct (Constant or Variable Volume)
 - e. Supply/Exhaust
 - 2. VAV Controllers for single duct applications will come equipped with a built-in actuator for modulation of the air damper. The actuator shall have a minimum torque rating of 35 in.-lb., and contain an override mechanism for manual positioning of the damper during startup and service. VAV Controllers shall contain an integral velocity sensor accurate to +/- 5% of the full range of the box's CFM rating. Each controller shall perform the sequence of operation described in Part 3 of this specification, and have the capability for time of day scheduling, occupancy mode control, after hours operation, lighting control, alarming, and trending. VAV Controllers shall be able to communicate with any other Standalone Digital Control Unit on the same field bus with or without communication to the NCU managing the field bus. Systems that fail to provide this (true peer-to-peer) capability will be limited to a maximum of 32 VAV controllers per field bus.
 - 3. Unitary Controllers
 - a. Unitary Controllers shall support, but not be limited to, the control of the following systems as described in the Execution portion of this specification, and for future expansion:
 - 1) Cabinet heater and convectors
 - 2) Rooftop top air handling units
 - 3) Fan Coils
 - 4) Unit and cabinet heaters
 - b. The I/O of each Unitary Controller shall contain the sufficient quantity and types as required to meet the sequence of operation found in the Execution portion of this specification. In addition, each controller shall have the capability for time of day scheduling, occupancy mode control, after hour operation, lighting control, alarming, and trending.
- N. Lighting Controllers (NOT USED)
 - 1. Lighting controllers shall provide direct control of 20 Amp, 277 VAC lighting circuits using mechanically held, latching relays. Controllers will contain from 8 to 48 circuits

per enclosure. Each controller shall also contain inputs for direct connection to light switches and motion detectors. Each controller shall have the capability for time of day scheduling, occupancy mode control, after hour operation, alarming, and trending.

- O. Display Controllers
 - 1. Display controllers are standalone, touch screen based operator interfaces. The controller shall be designed for flush mounting in a finished space, with a minimum display size of 9 x 9 inches. Software shall be user programmable allowing for custom graphical images that simulate floor plans, menus, equipment schematics along with associated real time point values coming from any NCU on the network. The touch screen display shall contain a minimum of 64 possible touch cells that permit user interaction for changing screens, modifying set-points or operating equipment. Systems that do not offer a display controller as specified must provide a panel mounted computer with touch screen capability as an alternative. All air handling units shall use display controllers.

1.16 Operator Workstation Requirements

A. General.

The BAS workstation software shall be configurable as a multi-workstation system where the database is located on a central file server in the physical plant. The client software on multi-workstation system shall access the file server database program via an Ethernet TCP/IP network running at either 10MBPS or 100MBPS. All Workstations shall be Pentium II based personal computers operating under the Microsoft NT operating system. The application software shall be capable of communication to all Network Control Units and Standalone Digital Control Units, feature high-resolution color graphics, alarming, reporting, and be user configurable for all data collection and data presentation functions.

For multi-workstation systems, a minimum of 256 workstations shall be allowed on the Ethernet network along with the central file server. In this client/server configuration, any changes or additions made from one workstation will automatically appear on all other workstations without the requirement for manual copying of files. Multi-workstation systems with no central database will not be acceptable. Multi-workstation systems with distributed/tiered file servers and a central (master) database will not be acceptable.

B. Workstation Requirements

The workstation shall consist of the following: 3.6 GHz Intel Core i5 8400 processor with 8 GB of RAM Microsoft Windows operating system (latest version compatible with BMS software) Serial port, parallel port 10/100MBPS Ethernet NIC 500 GB hard disk CD-ROM drive High resolution (minimum 1080 x 1920), 17" flat panel display Mouse Full function keyboard Audio sound card and speakers License agreement for all applicable software.

- C. File Server Hardware Requirements. The file server computer shall contain of the following:
 3.6 GHz Intel Core 2 Duo processor with 64GB of RAM Microsoft Windows operating system (latest version compatible with BMS software) 10/100MBPS Ethernet NIC
 500 GB hard disk
 CD-ROM drive
 Mouse
 Full function keyboard
 License agreement for all applicable software.
 Provide one Windows 2000-compatible 56 Kbaud modem.
- D. Printer

Provide an alarm printer and a separate report/graphics printer. The alarm printer shall be an Epson dot matrix or equivalent and the report printer shall be a HP LaserJet.

- E. Monitor;
 - 1. The monitor shall be flat screen minimum of 22" (16"x20"), LED type, 1920x1080 resolution, 16:9 aspect ratio, VGA.

F. Workstation Software

1. General Description

The software architecture must be object-oriented in design, a true 32-bit application suite utilizing Microsoft's OLE, COM, DCOM and ODBC technologies. These technologies make it easy to fully utilize the power of the operating system to share, among applications (and therefore to the users of those applications), the wealth of data available from the BAS.

The workstation functions shall include monitoring and programming of all DDC controllers. Monitoring consists of alarming, reporting, graphic displays, long term data storage, automatic data collection, and operator-initiated control actions such as schedule and setpoint adjustments.

Programming of controllers shall be capable of being done either off-line or on-line from any operator workstation. All information will be available in graphic or text displays. Graphic displays will feature animation effects to enhance the presentation of the data, to alert operators of problems, and to facilitate location of information throughout the DDC system. All operator functions shall be selectable through a mouse.

2. System Database

The files server database engine must be Microsoft SQL Server, or another ODBCcompliant, relational database program. This ODBC (Open Database Connectivity)compliant database engine allows for an owner to utilize "their" choice of database and due to it's "open" architecture, allows an owner to write custom applications and/or reports which communicate directly with the database avoiding data transfer routines to
update other applications. The system database shall contain all point configurations and programs in each of the controllers that have been assigned to the network. In addition, the database will contain all workstation files including color graphic, alarm reports, text reports, historical data logs, schedules, and polling records.

3. User Interface

The BAS workstation software shall allow the creation of a custom, browser-style interface linked to the user that has logged into the workstation software. This interface shall support the creation of "hot-spots" that the user may link to view/edit any object in the system or run any object editor or configuration tool contained in the software. Furthermore, this interface must be able to be configured to become a user's "PC Desktop" – with all the links that a user needs to run other applications. This, along with the Windows 10 user security capabilities, will enable a system administrator to setup workstation accounts that not only limit the capabilities of the user within the BAS software but may also limit what a user can do on the PC and/or LAN/WAN. This might be used to ensure, for example, that the user of an alarm monitoring workstation is unable to shutdown the active alarm viewer and/or unable to load software onto the PC.

4. User Security

The software shall be designed so that each user of the software can have a unique username and password. This username/password combination shall be linked to a set of capabilities within the software, set by and editable only by, a system administrator. The sets of capabilities shall range from View only, Acknowledge alarms, Enable/disable and change values, Program, and Administer. The system shall allow the above capabilities to be applied independently to each and every class of object in the system. The system must allow a minimum of 256 users to be configured per workstation. There shall be an inactivity timer adjustable in software that automatically logs off the current operator after the timer has expired.

5. Configuration Interface

The workstation software shall use a familiar Windows Explorer[™]-style interface for an operator or programmer to view and/or edit any object (controller, point, alarm, report, schedule, etc.) in the entire system. In addition, this interface shall present a "network map" of all controllers and their associated points, programs, graphics, alarms, and reports in an easy to understand structure. All object names shall be alphanumeric and use Windows long filename conventions. Object names shall not be required to be unique throughout the system. This allows consistency in point naming. For example, each fan coil unit controller can have an input called Space Temperature and a setpoint called CFM Setpoint. The FCU controller name shall be unique such as FCU for LAB101. Systems requiring unique object names throughout the system will not be acceptable.

The configuration interface shall also include support for template objects. These template objects shall be used as building blocks for the creation of the BAS database. The types of template objects supported shall include all data point types (input, output, string variables, setpoints, etc.), alarm algorithms, alarm notification objects, reports, graphics displays, schedules, and programs. Groups of template object types shall be able to be set up as template subsystems and systems. The template system shall prompt for data entry if necessary. The template system shall maintain a link to all "child" objects created by each template. If a user wishes to make a change to a template object, the software shall ask the user if he/she wants to update all of child objects with the change. This template system shall facilitate configuration and programming consistency and afford the user a fast and simple method to make global changes to the BAS.

6. Color Graphic Displays

The system shall allow for the creation of user defined, color graphic displays for the viewing of mechanical and electrical systems, or building schematics. These graphics shall contain point information from the database including any attributes associated with the point (engineering units, etc.). In addition operators shall be able to command equipment or change setpoints from a graphic through the use of the mouse. Requirements of the color graphic subsystem include:

- a. SVGA, bit-mapped displays. The user shall have the ability to import AutoCAD generated picture files as background displays.
- b. A built-in library of animated objects such as dampers, fans, pumps, buttons, knobs, gauges, ad graphs which can be "dropped" on a graphic through the use of a software configuration "wizard". These objects shall enable operators to interact with the graphic displays in a manner that mimics their mechanical equivalents found on field installed control panels. Using the mouse, operators shall be able to adjust setpoints, start or stop equipment, modify PID loop parameters, or change schedules.
- c. Status changes or alarm conditions must be able to be highlighted by objects changing screen location, size, color, text, blinking or changing from one display to another.
- d. Graphic panel objects shall be able to be configured with multiple "tabbed" pages allowing an operator to quickly view individual graphics of equipment, which make up a subsystem or system.
- e. Ability to link graphic displays through user defined objects, alarm testing, or the result of a mathematical expression. Operators must be able to change from one graphic to another by selecting an object with a mouse no menus will be required.
- f. Automatic monitoring

The software shall allow for the automatic collection of data and reports from any controller through either a hardwire or modem communication link. The frequency of data collection shall be completely user-configurable.

g. Alarm Management

The software shall be capable of accepting alarms directly from controllers, or generating alarms based on evaluation of data in controllers and comparing to limits or conditional equations configured through the software. Any alarm (regardless of its origination) will be integrated into the overall alarm management system and will appear in all standard alarm reports, be available for operator acknowledgment, and have the option for displaying graphics, or reports.

Alarm management features shall include:

- 1) A minimum of 255 alarm notification levels. Each notification level will establish a unique set of parameters for controlling alarm display, acknowledgment, keyboard annunciation, alarm printout and record keeping.
- 2) Automatic logging in the database of the alarm message, point name, point value, connected controller, timestamp, username and time of acknowledgement, username and time of alarm silence (soft acknowledgement)
- 3) Automatic printing of the alarm information or alarm report to an alarm printer or report printer.

- 4) Playing an audible beep or audio (wav) file on alarm initiation or return to normal.
- 5) Sending an email or alphanumeric page to anyone listed in a workstation's email account address list on either the initial occurrence of an alarm and/or if the alarm is repeated because an operator has not acknowledged the alarm within a user-configurable timeframe. The ability to utilize email and alphanumeric paging of alarms shall be a standard feature of the software integrated with the operating system's mail application interface (MAPI). No special software interfaces shall be required.
- 6) Individual alarms shall be able to be re-routed to a workstation or workstations at user-specified times and dates. For example, a critical high temp alarm can be configured to be routed to a Facilities Dept. workstation during normal working hours (7am-6pm, Mon-Fri) and to a Central Alarming workstation at all other times.
- 7) An active alarm viewer shall be included which can be customized for each user or user type to hide or display any alarm attributes.
- 8) The font type and color, and background color for each alarm notification level as seen in the active alarm viewer shall be customizable to allow easy identification of certain alarm types or alarm states.
- 9) The active alarm viewer can be configured such that an operator must type in text in an alarm entry and/or pick from a drop-down list of user actions for certain alarms. This ensures accountability (audit trail) for the response to critical alarms.

h. Custom Report Generation

The software will contain a built-in custom report generator, featuring word processing tools for the creation of custom reports. These custom reports shall be able to be set up to automatically run or be generated on demand. Each workstation shall be able to associate reports with any word processing or spreadsheet program loaded on the machine. When the report is displayed, it will automatically spawn the associated report editor such as MS WordTM.

- 1) Reports can be of any length and contain any point attributes from any controller on the network.
- 2) The report generator will have access to the user programming language in order to perform mathematical calculations inside the body of the report, control the display output of the report, or prompt the user for additional information needed by the report.
- 3) It shall be possible to run other executable programs whenever a report is initiated.
- 4) Report Generator activity can be tied to the alarm management system, so that any of the configured reports can be displayed in response to an alarm condition.
- 5) Standard reports shall include:
 - a) Points in each controller.
 - b) Points in alarm
 - c) Disabled points
 - d) Overridden points
 - e) Operator activity report

- f) Alarm history log.
- g) Program listing by controller with status.
- h) Network status of each controller
- i. Spreadsheet-style reports

The software shall allow the simple configuration of row/column (spreadsheet-style) reports on any class of object in the system. These reports shall be user-configurable and shall be able to extract live (controller) data and/or data from the database. The user shall be able to set up each report to display in any text font, color and background color. In addition the report shall be able to be configured to filter data, sort data and highlight data which meets user-defined criteria.

j. HTML Reporting

The above spreadsheet-style reports shall be able to be run to an HTML template file. This feature will create an HTML "results" file in the directory of the HTML template. This directory can be shared with other computer users, which will allow those users with access to the directory to "point" their web browser at the file and view the report.

- k. Scheduling- It shall be possible to configure and download from the workstation schedules for any of the controllers on the network.
 - 1) Time of day schedules shall be in a calendar style and shall be programmable for a minimum of one year in advance. Each standard day of the week and user-defined day types shall be able to be associated with a color so that when the schedule is viewed it is very easy, at-a-glance, to determine the schedule for a particular day even from the yearly view. To change the schedule for a particular day, a user shall simply click on the day and then click on the day type.
 - 2) Each schedule will appear on the screen viewable as the entire year, monthly, week and day. A simple mouse click shall allow switching between views. It shall also be possible to scroll from one month to the next and view or alter any of the schedule times.
 - 3) Schedules will be assigned to specific controllers and stored in their local RAM memory. Any changes made at the workstation will be automatically updated to the corresponding schedule in the controller.

1. Programmer's Environment

The programmer's environment will include access to a superset of the same programming language supported in the controllers. Here the programmer will be able to configure application software off-line (if desired) for custom program development, write global control programs, system reports, wide area networking data collection routines, and custom alarm management software. On the same screen as the program editor, the programming environment shall include dockable debug and watch bars for program debugging and viewing updated values and point attributes during programming. In addition a wizard tool shall be available for loading programs from a library file in the program editor.

m. Saving/Reloading

The workstation software shall have an application to save and restore field controller memory files. This application shall not be limited to saving and reloading an entire controller – it must also be able to save/reload individual objects in the controller. This

allows off-line debugging of control programs, for example, and then reloading of just the modified information.

n. Data Logging

The workstation software shall have the capability to easily configure groups of data points with trend logs and display the trend log data. A group of data points shall be created by drag-and-drop method of the points into a folder. The trend log data shall be displayed through a simply menu selection. This data shall be able to be saved to file and/or printed.

o. Audit Trail

The workstation software shall automatically log and timestamp every operation that a user performs at a workstation, from logging on and off a workstation to changing a point value, modifying a program, enabling/disabling an object, viewing a graphic display, running a report, modifying a schedule, etc.

p. Fault Tolerant File Server Operation

The system shall provide the option to provide fault tolerant operation in the event of the loss of the CPU, disk drives, or other hardware required to maintain the operational integrity of the system. Operational integrity includes all user interfaces, monitoring of alarm points and access points, and executing access control functions.

The switchover mechanism provided shall be automatic. Should the failure be caused by hardware, then the system shall immediately switch to the Backup computer. Should the system failure be caused by software (instruction or data), the system shall not pass the faulted code to the Backup computer, otherwise the Backup shall fail in the same manner of the Primary computer.

Switchover to the Backup computer shall be initiated and effective (complete) in a manner and time frame that precludes the loss of event data, and shall be transparent to the system users, except for an advisory alarm message indicating that the switchover has occurred.

When the system fails-over from the Primary to the Backup computer, no alarm or other event shall be lost, and the Backup computer shall take control of all system functions.

A single component failure in the system shall not cause the entire system to fail. All system users shall be informed of any detectable component failure via an alarm event. System users shall not be logged off as a result of a system failure or switchover.

The Primary computer shall provide continual indication that the Backup computer is unavailable until such time that the fault has been purged.

1.17 Portable Operator's Terminal (NOT USED)

- A. Provide one 15" full screen, laptop portable operator terminal shall communicate directly to all controllers. The laptop software shall enable users to monitor both instantaneous and historical point data, modify control parameters, and enable/disable any point or program in any controller on the network.
 - 1. The laptop computer will be a Intel Core 2 Duo-based portable computer with a minimum of 4GB of RAM memory, and a 160GB hard disk drive, running Windows ver 7 or Windows XP.

- 2. The laptop service tool will connect to any Ethernet controller or standalone controller via a dedicated service port. From this single connection, the user shall be able to communicate with any other controller on the LAN.
- 3. The laptop service tool will limit operator access by passwords. The service tool must support, at a minimum, the following password-protected user types: Administrator, Modify Parameters, View Only.
- 4. The laptop software shall include built-in menus for viewing points by controller, enabling, disabling and viewing programs, configuring controllers, and communicating to other controllers on the network.
- 1.18 DDC Sensors and Point Hardware
 - A. Temperature Sensors
 - 1. All temperature devices shall use precision thermistors accurate to +/- 1 degree F over a range of -30 to 230 degrees F. Space temperature sensors shall be accurate to +/- .5 degrees F over a range of 40 to 100 degrees F.
 - 2. Space sensors shall be have off white enclosure and shall be mounted on a standard electrical box. Space sensors shall use surface mounted finished cast electrical box for surface mounting with metal "wire-mold" to conceal wiring for all solid masonry partitions. For space sensors located on gypsum board partitions, wiring shall be concealed inside the walls with recessed flush mounted electrical boxes. In general, control wiring shall run from the ceiling plenum to the box which shall be wall mounted next to the door or as shown on plan. (This shall be the standard for this project)
 - 3. The space sensor housing shall utilize buttons for adjusting the space temperature setpoint, as well as a push button for selecting after hours operation, fan speed and all and other operator selectable parameters. Operators shall be able to adjust set points directly from the sensor. All space sensors, (located in public location, office, class rooms), shall incorporate either an LED or LCD display for viewing the space temperature, set-point and other operator selectable parameters. Space sensors located in store rooms, MER, and unoccupied space are not required have LED or LCD display.
 - 4. Duct temperature sensors shall incorporate a thermistor bead embedded at the tip of a stainless steel tube. Probe style duct sensors are useable in air handling applications where the coil or duct area is less than 14 square feet.
 - 5. Averaging sensors shall be employed in ducts which are larger than 14 square feet. The averaging sensor tube must contain at least one thermistor for every 3 feet, with a minimum tube length of 12 feet.
 - 6. Immersion sensors shall be employed for measurement of temperature in all chilled and hot water applications as well as refrigerant applications. Thermal wells shall be brass or stainless steel for non-corrosive fluids below 250 degrees F and 300 series stainless steel for all other applications.
 - 7. A pneumatic signal shall not be allowed for sensing temperature.
 - B. Humidity Sensors

- 1. Humidity devices shall be accurate to +/- 5% at full scale for space and +/- 3% for duct and outside air applications. Suppliers shall be able to demonstrate that accuracy is NIST traceable.
- 2. Provide a hand held field calibration tool that both reads the output of the sensor and contains a reference sensor for ongoing calibration.
- C. Pressure Sensors
 - 1. Air pressure measurements in the range of 0 to 10" water column will be accurate to +/-1% using a solid-state sensing element. Acceptable manufacturers include Modus Instruments and Mamac.
 - 2. Differential pressure measurements of liquids or gases shall be accurate to =/-0.5% of range. The housing shall be Nema 4 rated.
- D. Current and KW Sensors
 - 1. Current status switches shall be used to monitor fans, pumps, motors and electrical loads. Current switches shall be available in solid and split core models, and offer either a digital or an analog signal to the automation system. Acceptable manufacturer is Veris or approved equal.
 - 2. Measurement of three phase power shall be accomplished with a kW/kWH transducer. This device shall utilize direct current transformer inputs to calculate the instantaneous value (kW) and a pulsed output proportional to the energy usage (kWH). Provide Veris Model 6000 Power Transducer or approved equal.
- E. Flow Sensors
 - 1. Provide an insertion vortex flowmeter for measurement of liquid, gas or steam flows in pipe sizes above 3 inches.
 - 2. Install the flow meter on an isolation valve to permit removal without process shutdown.
 - 3. Sensors shall be manufactured by EMCO or approved equal.
- F. Electric/Pneumatic Transducers
 - 1. Electric to pneumatic transducers shall operate from either a PWM or analog signal. E/P transducers shall be rated for 0 20 psi operation and accurate to 2% of full scale. E/P transducers shall have a maximum air consumption of 100 SCIM.
 - 2. E/P transducers may be installed at the end device (damper or valve), or mounted separately in a field interface panel, or as part of the controller. All transducers will be calibrated. Panel mounted transducers shall be Sensycon or approved equal.
- G. Electric/Pneumatic Solenoid Valves

Electric solenoid operated pneumatic valves (EP's) shall have a three port operation: common, normally open and normally closed. They shall be rated for 50 psig when used for 25 psig or less applications, or rated for 150 psig when used for 100 psig or less applications. The coils shall be equipped with transient suppression devices to limit transients to 150 percent of the rated coil voltage.

1.19 Control Valves

- A. Provide automatic control valves suitable for the specified controlled media (steam, water or glycol). Provide valves which mate and match the material of the connected piping. Equip control valves with the actuators of required input power type and control signal type to accurately position the flow control element and provide sufficient force to achieve required leakage specification.
- B. Control valves shall meet the heating and cooling loads specified, and close off against the differential pressure conditions within the application. Valves should be sized to operate accurately and with stability from 10 to 100% of the maximum design flow.
- C. Trim material shall be stainless steel for steam and high differential pressure applications.
- D. Electric actuation should be provided on all terminal unit reheat applications.

1.20 Dampers

- A. Automatic dampers, furnished by the Building Automation Contractor shall be single or multiple blade as required. Dampers are to be installed by the HVAC Contractor under the supervision of the BAS Contractor. All blank-off plates and conversions necessary to install smaller than duct size dampers are the responsibility of the Sheet Metal Contractor.
- B. Damper frames are to be constructed of 13 gauge galvanized sheet steel mechanically joined with linkage concealed in the side channel to eliminate noise as friction. Compressible spring stainless steel side seals, and acetal or bronze bearings shall also be provided.
- C. Damper blade width shall not exceed eight inches. Seals and 3/8 inch square steel zinc plated pins are required. Blade rotation is to be parallel or opposed as shown on the schedules.
- D. For high performance applications, control dampers will meet or exceed the UL Class I leakage rating.
- E. Control and smoke dampers shall be Ruskin, or approved equal.
- F. Provide opposed blade dampers for modulating applications and parallel blade for two position control.

1.21 Damper Actuators

- A. Electronic Actuators the actuator shall be direct coupled over the shaft, enabling it to be mounted directly to the damper shaft without the need for connecting linkage. The actuator shall have electronic overload circuitry to prevent damage. For power-failure/safety applications, an internal mechanical, spring return mechanism shall be built into the actuator housing. Non-spring return actuators shall have an external manual gear release to allow positioning of the damper when the actuator is not powered.
- B. Pneumatic Actuators shall be of the synthetic elastomer diaphragm piston type and shall be fully proportioning unless otherwise specified. They shall have full metal bodies and utilize replaceable diaphragms. Damper actuators on large sections of modulating dampers (>25 sq.ft.)

or high face velocity applications (such as fan inlet vanes) shall be equipped with pilot positioners to provide repeatability and quick response. Also provide pilot positioners on steam valves requiring 1/3 - 2/3 operation. (Not used)

- 1.22 Smoke Detectors
 - A. Air duct smoke detectors shall be by Air Products & Controls or approved equal. The detectors shall operate at air velocities from 300 feet per minute to 4000 feet per minute.
 - B. The smoke detector shall utilize a photoelectric detector head.
 - C. The housing shall permit mechanical installation without removal of the detector cover.
 - D. The detectors shall be listed by Underwrites Laboratories and meet the requirements of UL 268A.
- 1.23 Airflow Measuring Stations
 - A. Provide a thermal anemometer using instrument grade self heated thermistor sensors with thermistor temperature sensors.
 - B. The flow station shall operate over a range of 0 to 5,000 feet/min with an accuracy of +/- 2% over 500 feet/min and +/- 10 ft/min for reading less than 500 feet/min.
 - C. The output signal shall be linear with field selectable ranges including 0-5 VDC, 0-10VDC and 4-20 mA.
 - D. Furnish Ebtron Series 3000 airflow stations or approved equal.

PART 2 - EXECUTION

- 2.1 Contractor Responsibilities
 - A. General

Installation of the building automation system shall be performed by the Contractor or a subcontractor. However, all installation shall be under the personal supervision of the Contractor. The Contractor shall certify all work as proper and complete. Under no circumstances shall the design, scheduling, coordination, programming, training, and warranty requirements for the project be delegated to a subcontractor.

- B. Demolition
 - 1. Remove controls which do not remain as part of the building automation system, all associated abandoned wiring and conduit, and all associated pneumatic tubing and or wiring. The Owner will inform the Contractor of any equipment which is to be removed that will remain the property of the Owner. All other equipment which is removed will be disposed of by the Contractor.

- C. Access to Site
 - 1. Unless notified otherwise, entrance to building is restricted. No one will be permitted to enter the building unless their names have been cleared with the Owner or the Owner's Representative.
- D. Code Compliance
 - 1. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer's recommendations. Should any discrepancy be found between wiring specifications in Division 17 and Division 16, wiring requirements of Division 17 will prevail for work specified in Division 17.
- E. Cleanup
 - 1. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract.
- 2.2 Wiring, Conduit, and Cable
 - A. All wire will be copper and meet the minimum wire size and insulation class listed below:

Wire Class	Wire Size	Isolation Class
Power	12 Gauge	600 Volt
Class One	14 Gauge Std.	600 Volt
Class Two	18 Gauge Std.	300 Volt
Class Three	18 Gauge Std.	300 volt
Communications	Per Mfr.	Per Mfr.

- B. Power and Class One wiring may be run in the same conduit. Class Two and Three wiring and communications wiring may be run in the same conduit.
- C. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.
- D. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit sealoff fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.
- E. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.
- F. Junction boxes shall be provided at all cable splices, equipment termination, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.
- G. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any

wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.

- H. Coaxial cable shall conform to RG62 or RG59 rating. Provide plenum rated coaxial cable when running in return air plenums.
- I. Fiber optic cable shall include the following sizes; 50/125, 62.5/125 or 100/140.
- J. Only glass fiber is acceptable, no plastic.
- K. Fiber optic cable shall only be installed and terminated by an experienced contractor. The BAS contractor shall submit to the Engineer the name of the intended contractor of the fiber optic cable with his submittal documents.
- L. Hardware Installation
- 2.3 Installation Practices for Wiring
 - A. All controllers are to be mounted vertically and per the manufacturer's installation documentation.
 - B. The 120VAC power wiring to each Ethernet or Remote Site controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.
 - C. A true earth ground must be available in the building. Do not use a corroded or galvanized pipe, or structural steel.
 - D. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
 - E. Conduit in finished areas, will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception; metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.
 - F. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.
 - G. Wires are to be kept a minimum of three (3) inches from hot water, steam, or condensate piping.
 - H. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.
 - I. Wire will not be allowed to run across telephone equipment areas.

- 2.4 Installation Practices for Field Devices
 - A. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.
 - B. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.
 - C. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150% of the rated coil voltage.
 - D. Water line mounted sensors shall be removable without shutting down the system in which they are installed.
 - E. For duct static pressure sensors, the high pressure port shall be connected to a metal static pressure probe inserted into the duct pointing upstream. The low pressure port shall be left open to the plenum area at the point that the high pressure port is tapped into the ductwork.
 - F. For building static pressure sensors, the high pressure port shall be inserted into the space via a metal tube. Pipe the low pressure port to the outside of the building.

2.5 Enclosures

- A. For all I/O requiring field interface devices, these devices where practical will be mounted in a field interface panel (FIP). The Contractor shall provide an enclosure which protects the device(s) from dust, moisture, conceals integral wiring and moving parts.
- B. FIPs shall contain power supplies for sensors, interface relays and contactors, safety circuits, and I/P transducers.
- C. The FIP enclosure shall be of steel construction with baked enamel finish, NEMA 1 rated with a hinged door and keyed lock. The enclosure will be sized for twenty percent spare mounting space. All locks will be keyed identically.
- D. All wiring to and from the FIP will be to screw type terminals. Analog or communications wiring may use the FIP as a raceway without terminating. The use of wire nuts within the FIP is prohibited.
- E. All outside mounted enclosures shall meet the NEMA-4 rating.
- F. The wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.

2.6 Identification

- A. Identify all control wires with labeling tape or sleeves using either words, letters, or numbers that can be exactly cross-referenced with as-built drawings.
- B. All field enclosures, other than controllers, shall be identified with a bakelite nameplate. The lettering shall be in white against a black or blue background.

- C. Junction box covers will be marked to indicate that they are a part of the BAS system.
- D. All I/O field devices (except space sensors) that are not mounted within FIP's shall be identified with name plates.
- E. All I/O field devices inside FIP's shall be labeled.
- 2.7 Existing Controls.
 - A. Existing controls which are to be reused must each be tested and calibrated for proper operation. Existing controls which are to be reused and are found to be defective requiring replacement, will be noted to the Owner. (Not applicable.)
 - B. All existing controllers, thermostats, pneumatic tubing, actuators, panels gauges and any device associated with equipment is to be removed completely. Remove pneumatic lines back to wall or floor and cap air tight
- 2.8 Control System Switch-over (not applicable)
 - A. Demolition of the existing control system will occur after the new temperature control system is in place including new sensors and new field interface devices.
 - B. Switch-over from the existing control system to the new system will be fully coordinated with the Owner. A representative of the Owner will be on site during switch-over.
 - C. The Contractor shall minimize control system downtime during switch-over. Sufficient installation mechanics will be on site so that the entire switch-over can be accomplished in a reasonable time frame.

2.9 Location

- A. The location of sensors is per mechanical and architectural drawings.
- B. Space humidity or temperature sensors will be mounted away from machinery generating heat, direct light and diffuser air streams.
- C. Outdoor air sensors will be mounted on the north building face directly in the outside air. Install these sensors such that the effects of heat radiated from the building or sunlight is minimized.
- D. Field enclosures shall be located immediately adjacent to the controller panel(s) to which it is being interfaced.
- 2.10 Software Installation
 - A. General.

The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.

B. Database Configuration.

The Contractor will provide all labor to configure those portions of the database that are required by the points list and sequence of operation.

C. Color Graphic Slides.

Unless otherwise directed by the owner, the Contractor will provide color graphic displays as depicted in the mechanical drawings for each system and floor plan. For each system or floor plan, the display shall contain the associated points identified in the point list and allow for setpoint changes as required by the owner. Graphically represent each and every piece of equipment in the class room building, new and existing, all input and put status point, and functional points. This shall include the new fans, chillers, and convectors, existing boilers, water, fuel, and ejection pumps, fan coil units, convectors, air handlers and fans.

D. Reports.

The Contractor will configure a minimum of 6 reports for the owner as listed below:

- 1. Boilers
- 2. Hot water pump report
- 3. Domestic HW pump status
- 4. All exhaust fans, including general, toilet and stair ventilators
- 5. Air Handler Status Report
- 6. Make up air unit status
- 7. VAV Status Report
- 8. Space Temperature Report, every zone

E. Documentation

As built software documentation will include the following:

- 1. Descriptive point lists
- 2. Application program listing
- 3. Application programs with comments.
- 4. Printouts of all reports.
- 5. Alarm list.
- 6. Printouts of all graphics
- F. Commissioning and System Startup
- G. Point to Point Checkout.

Each I/O device (both field mounted as well as those located in FIPs) shall be inspected and verified for proper installation and functionality. A checkout sheet itemizing each device shall be filled out, dated and approved by the Project Manager for submission to the owner or owner's representative.

H. Controller and Workstation Checkout.

A field checkout of all controllers and front end equipment (computers, printers, modems, etc.) shall be conducted to verify proper operation of both hardware and software. A checkout sheet

itemizing each device and a description of the associated tests shall be prepared and submitted to the owner or owner's representative by the completion of the project.

I. System Acceptance Testing

All application software will be verified and compared against the sequences of operation. Control loops will be exercised by inducing a setpoint shift of at least 10% and observing whether the system successfully returns the process variable to setpoint. Record all test results and attach to the Test Results Sheet.

- J. Test each alarm in the system and validate that the system generates the appropriate alarm message, that the message appears at all prescribed destinations (workstations or printers), and that any other related actions occur as defined (i.e. graphic panels are invoked, reports are generated, etc.). Submit a Test Results Sheet to the owner.
- K. Perform an operational test of each unique graphic display and report to verify that the item exists, that the appearance and content are correct, and that any special features work as intended. Submit a Test Results Sheet to the owner.
- L. Perform an operational test of each third party interface that has been included as part of the automation system. Verify that all points are properly polled, that alarms have been configured, and that any associated graphics and reports have been completed. If the interface involves a file transfer over Ethernet, test any logic that controls the transmission of the file, and verify the content of the specified information.

END OF SECTION

SECTION 230923.12 - CONTROL DAMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following types of control dampers and actuators for DDC systems:
 - 1. Rectangular control dampers.
 - 2. General control-damper actuator requirements.
 - 3. Pneumatic actuators.
 - 4. Electric and electronic actuators.

1.3 DEFINITIONS

- A. DDC: Direct-digital control.
- B. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation instructions, including factors affecting performance.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

- 3. Include diagrams for power, signal, and control wiring.
- 4. Include diagrams for air and process signal tubing.
- 5. Include diagrams for pneumatic signal and main air tubing.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for control dampers and actuators, including the following.
 - a. Flow at project design and minimum flow conditions.
 - b. Face velocity at project design and minimum airflow conditions.
 - c. Pressure drop across damper at project design and minimum airflow conditions.
 - d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Product installation location shown in relationship to room, duct, and equipment.
 - 2. Size and location of wall access panels for control dampers and actuators installed behind walls.
 - 3. Size and location of ceiling access panels for control dampers and actuators installed above inaccessible ceilings.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For control dampers to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND GENERAL REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
- C. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

- D. Backup Power Source: Systems and equipment served by a backup power source shall have associated control damper actuators served from a backup power source.
- E. All Automatic Control Dampers provided as a part of this Specification shall bear the AMCA Seal as an indication that they comply with all requirements of the AMCA Certified Ratings Programs.
- F. Maximum leakage rate through any 48 inches by 48 inches closed damper in any application shall not exceed 10.0 cfm per sq. ft. of damper face area at 4 inches of water pressure differential and a maximum closing torque of 4 inch-lbs./sq. ft. of damper face area. Damper leakage ratings shall be certified in accordance with AMCA Standard 500-D.
- G. Environmental Conditions:
 - 1. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.
 - a. Hazardous Locations: Explosion-proof rating for condition.
 - b. All outdoor air damper components shall be suitable for applications operating in the temperature range of -40F to 167F.
- H. Selection Criteria:
 - 1. Fail positions unless otherwise indicated:
 - a. Supply Air: Open.
 - b. Return Air: Open.
 - c. Outdoor Air: Close.
 - d. Mixed Air: Open.
 - e. Exhaust Air: Close.
 - 2. Dampers shall have stable operation throughout full range of operation, from design to minimum airflow over varying pressures and temperatures encountered.
 - 3. Select modulating dampers for a pressure drop of 5 percent of fan total static pressure unless otherwise indicated.
 - 4. Two-position dampers shall be full size of duct or equipment connection unless otherwise indicated.
 - 5. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service. Use opposed blade configuration for modulating, mixing and any application of upstream critical components.
 - 6. Pneumatic, two-position control dampers shall provide a smooth opening and closing characteristic slow enough to avoid excessive pressure. Dampers with pneumatic actuators shall have an adjustable opening time (valve full closed to full open) and an adjustable closing time (valve full open to full closed) ranging from zero to 10 seconds. Opening and closing times shall be independently adjustable. (Not Used For This Project)
 - 7. Control-damper, pneumatic-control signal shall not exceed 200 feet. For longer distances, provide an electric/electronic control signal to the damper and an electric solenoid valve or electro-pneumatic transducer at the damper to convert the control signal to pneumatic. (Not Used For This Project)

2.2 RECTANGULAR CONTROL DAMPERS

- A. General Requirements:
 - 1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
 - 2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
- B. Rectangular Dampers with Aluminum Airfoil Blades:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Ruskin Company</u>.
 - b. Arrow louver and Damper co.
 - c. Nailer Hart
 - d. Greenheck
 - 2. Performance:
 - a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1in. wg differential static pressure.
 - b. Pressure Drop: 0.05-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 6000 fpm.
 - d. Temperature: Minus 40 to plus 185 deg F.
 - e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 - f. Damper shall have AMCA seal for both air leakage and air performance.
 - 3. Construction:
 - a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch thick.
 - 2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Hollow, airfoil, extruded aluminum.
 - 2) Parallel or opposed blade configuration as required by application.
 - 3) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.07 inch thick.
 - 4) Width not to exceed 6 inches.
 - 5) Length as required by close-off pressure, not to exceed 48 inches.

- c. Seals:
 - 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
 - 2) Jambs: Stainless steel, compression type.
- d. Axles: 0.5-inch- diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Molded synthetic or stainless-steel sleeve mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and galvanized plated or stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.
- h. Additional Corrosion Protection for Corrosive Environments: (Not Used)
 - 1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch thick.
 - 2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.
- 4. Airflow Measurement:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Ruskin Company</u>.
 - b. Where indicated, provide damper assembly with integral airflow monitoring.
 - c. Zero- to 10-V dc or 4- to 20-mA scaled output signal for remote monitoring of actual airflow.
 - d. Accuracy shall be within 5 percent of the actual flow rate between the range of minimum and design airflow. For applications with a large variation in range between the minimum and design airflow, configure the damper sections and flow measurement assembly as required to comply with the stated accuracy over the entire modulating range.

- e. Provide a straightening device as part of the flow measurement assembly to achieve the specified accuracy with configuration indicated.
- f. Suitable for operation in untreated and unfiltered air.
- g. Provide temperature and altitude compensation and correction to maintain accuracy over temperature range encountered at site altitude.
- h. Provide automatic zeroing feature.
- 5. Airflow Control:
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) <u>Ruskin Company</u>.
 - b. Where indicated, provide damper assembly with integral airflow measurement and control.
 - c. A factory-furnished and -calibrated controller shall be programmed, in nonvolatile EPROM, with application-specific airflow set point and range.
 - d. The controller and actuator shall communicate to control the desired airflow.
 - e. The controller shall receive a zero- to 10-V dc input signal and report a zero- to 20mA output signal that is proportional to the airflow.
 - f. Airflow measurement and control range shall be suitable for operation between 150 to 2000 fpm.
 - g. Ambient Operating Temperature Range: Minus 40 to plus 140 deg F.
 - h. Ambient Operating Humidity Range: 5 to 95 percent relative humidity, noncondensing.
 - i. Provide unit with control transformer rated for not less than 85 VA. Provide transformer with primary and secondary protection and primary disconnecting means. Coordinate requirements with field power connection.
 - j. Provide screw terminals for interface to field wiring.
 - k. Factory mount electronics within a NEMA 250, Type 1 painted steel enclosure.
- C. Industrial-Duty Rectangular Dampers with Steel Airfoil Blades:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Ruskin Company</u>.
 - b. Arrow Louver and Damper Co.
 - c. Nailer Hart
 - d. Greenheck
 - 2. Performance:
 - a. Leakage: Leakage shall not exceed 3 cfm/sq. ft. against 1-in. wg differential static pressure.
 - b. Pressure Drop: 0.06-in. wg at 2000 fpm across a 48-by-48-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 4000 fpm.
 - d. Temperature: Minus 40 to plus 250 deg F.

e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length, minimum 10-in. wg.

3. Construction:

- a. Frame:
 - 1) Material: Galvanized or stainless steel, 0.11 inch thick.
 - 2) C-shaped channel. Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 3 inches.

b. Blades:

- 1) Hollow, airfoil, galvanized or stainless steel.
- 2) Parallel or opposed blade configuration as required by application.
- 3) Material: Galvanized or stainless steel, 0.06 inch thick.
- 4) Width not to exceed 6 inches.
- 5) Length not to exceed 48 inches.

c. Seals:

- 1) Blades: Replaceable, mechanically attached EPDM or extruded silicone.
- 2) Jambs: Stainless steel, double compression type.
- d. Axles: 0.5- or 0.75-inch- diameter stainless steel, mechanically attached to blades and continuous from end to end.
- e. Bearings:
 - 1) Stainless-steel sleeve type mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Face linkage exposed to airstream.
 - 2) Constructed of plated or stainless steel.
 - 3) Hardware: Stainless steel.
- D. Insulated Rectangular Dampers:
 - 1. Performance:
 - a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1in. wg differential static pressure and shall not exceed 4.9 cfm/sq. ft. against 4-in. wg differential static pressure at minus 40 deg F.
 - b. Pressure Drop: 0.1-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 - c. Velocity: Up to 4000 fpm.
 - d. Temperature: Minus 100 to plus 185 deg F.
 - e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 - f. Damper shall have AMCA seal for both air leakage and air performance.

- 2. Construction:
 - a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.08 inch thick.
 - 2) C-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 4 inches.
 - 4) Entire frame shall be thermally broken by means of polyurethane resin pockets, complete with thermal cuts.
 - 5) Damper frame shall be insulated with polystyrofoam on four sides.
 - b. Blades:
 - 1) Hollow shaped, extruded aluminum.
 - 2) Blades shall be internally insulated with expanded polyurethane foam and shall be thermally broken. Complete blade shall have an insulating factor of R-2.29 and a temperature index of 55.
 - 3) Parallel or opposed blade configuration as required by application.
 - 4) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.08 inch thick.
 - 5) Width not to exceed 6 inches.
 - 6) Length as required by close-off pressure, not to exceed 48 inches.
 - c. Seals: Blade and frame seals shall be of flexible silicone and secured in an integral slot within the aluminum extrusions.
 - d. Axles: 0.44-inch- diameter plated or stainless steel, mechanically attached to blades.
 - e. Bearings:
 - 1) Bearings shall be composed of a Celcon inner bearing fixed to axle, rotating within a polycarbonate outer bearing inserted in the frame, resulting in no metal-to-metal or metal-to-plastic contact.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
 - f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and plated or stainless steel.
 - 3) Hardware: Stainless steel.
 - g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.

- h. Additional Corrosion Protection for Corrosive Environments:
 - 1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch thick.
 - 2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.

2.3 GENERAL, OPERATING LINKAGES AND DAMPER ACCESSORIES

- A. All operating linkages and/or damper accessories required for installation and application in accordance with specification design intent and manufacturer's installation procedures shall be provided
- B. Operating linkages provided external to dampers (crank arms, connecting rods, shaft extensions, &c.) for transmitting motion from the actuator/operator to dampers shall be designed as to functionally operate a load equal to or in excess of 300% of the maximum required operating force for the damper.
- C. Crank arms and connecting rods shall be adjustable. Linkages shall be brass, bronze, zinccoated steel, or stainless steel.
- D. Adjustments of Crank Arms shall control the position of the damper
- E. Use of Operating Linkages external to damper drive shaft shall neither delay nor impede operation of the damper in a manner of performance less than a direct-coupled damper actuator. Operating linkages shall not under any circumstances be permitted to flex, warp, shift &c. under normal operation of connected damper sections.

2.4 GENERAL, CONTROL-DAMPER ACTUATORS REQUIREMENTS

- A. A.Control damper actuators shall be electronic direct-coupled OR pneumatic pilot/positionedtype. Actuators shall have a means for reversing drive direction and a manual override accessible at the front cover
- B. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.
- C. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.
- D. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.
- E. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.
- F. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.

- G. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.
- H. Provide mounting hardware and linkages for connecting actuator to damper. Single bolt or setscrew type fasteners are not acceptable.
- I. Select actuators to fail in desired position in the event of a power failure. For spring return failsafe applications, an internal mechanical spring return mechanism shall be built into the actuator housing. Non-mechanical forms of fail-safe operation are not acceptable.
- J. Actuator Fail Positions: As indicated below refer to sequence of operations for additional information regarding specific equipment:
 - 1. Exhaust Air: Close.
 - 2. Outdoor Air: Close.
 - 3. Supply Air: Open.
 - 4. Return Air: Open.
- K. All non-spring return actuators shall have an external manual clutch/gear release to allow manual positioning of the damper when the actuator is not powered. Spring return actuators with more than 60 in-LB torque capacity shall have a manual crank for this purpose.

2.5 PNEUMATIC ACTUATORS (Not Used This Project)

- A. Where two or more actuators are installed for interrelated operation in unison, such as dampers used for mixing, provide the dampers with a positive positioner.
- B. Equip pneumatic modulating actuators with a positive positioner, having the following performance characteristics:
 - 1. Linearity: Plus or minus 1 percent of output signal span.
 - 2. Hysteresis: 0.5 percent of the span.
- C. Provide each positioner with an integrally mounted air set and pressure gauges for supply, input and output. Positioners shall operate on a 3- to 15-psig input signal unless otherwise required to satisfy the control sequences of operation.
- D. Rate actuators for a pressure of at least 25 psig.
- E. Provide actuators with replaceable diaphragms.
- F. Actuator Construction:
 - 1. Construct the diaphragm casing and plate of cast iron, steel, or cast aluminum.
 - 2. Construct the yoke of cast iron, steel, or cast aluminum.
 - 3. Construct the diaphragm of reinforced synthetic rubber or nitrile.
 - 4. Construct the spring, stem, and spring adjuster of steel or steel alloy.
- G. Provide actuator with adjustable stops for both maximum and minimum positions.Provide a position indicator and graduated scale on each actuator. Indicate open and closed travel limits.

2.6 ELECTRIC AND ELECTRONIC ACTUATORS

- A. Type: Motor operated, with or without gears, electric and electronic.
- B. Voltage:
 - 1. 24 V.
 - 2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 - 3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.
- C. Construction:
 - 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 - 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.
 - 3. Greater Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- D. Field Adjustment:
 - 1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
 - 2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
- E. Two-Position Actuators: Single direction, spring return or reversing type.
- F. Modulating Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc and 4- to 20-mA signals.
 - c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink or source controller.
 - d. Programmable Multi-Function: (Not Used)
 - 1) Control input, position feedback, and running time shall be factory or field programmable.

- 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
- 3) Service data, including at a minimum, number of hours powered and number of hours in motion.
- G. Position Feedback:
 - 1. Equip where indicated, equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
 - 2. Equip where indicated, equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- H. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- I. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- J. Damper Attachment:
 - 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 - 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 - 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- K. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.
- L. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 - 4. Provide actuator enclosure with a heater and controller where required by application.

M. Stroke Time:

- 1. Operate damper from fully closed to fully open within 60 75 90 150
- 2. Operate damper from fully open to fully closed within 60 75 90 150
- 3. Move damper to failed position within 15 30 seconds.
- 4. Select operating speed to be compatible with equipment and system operation.
- 5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

N. Sound:

- 1. Spring Return: 62 dBA.
- 2. Non-Spring Return: 45 dBA.

2.7 POWER SUPPLIES AND LINE FILTERING

- A. Power Supplies & Control Transformers. Control transformers and power supplies shall be UL-Listed. Provide Class 2 current-limiting type or over-current protection in both primary and secondary circuits for Class 2 service not to exceed 100 VA in accordance with the applicable following requirements or as directed by the AHJ.
 - 1. NEC 2011 (NFPA 70) Chapter 7 Article 725 Class 1, Class 2 and Class 3 Remote-Control, Signaling and Power-Limited Circuits.
 - 2. NEC 2011 (NFPA 70) Chapter 9 Table 11(A) and Table 11(B).
 - 3. Canadian Electrical Code, Part 1 (CSA C22.1-12) Rule 16-200.
- B. DC Power Supplies. DC power supply output shall match output current and voltage requirements. Power supply shall be half-wave rectified type with the following minimum specifications:
 - 1. Output ripple: 5.0 mV maximum peak-to-peak.
 - 2. Regulation: 1.0% line and load combined.
 - 3. Response: 100 ms for 50% load changes.
 - 4. Built-in overvoltage and overcurrent protection and able to withstand a 150% current overload for a minimum of three (3) seconds without tripping or failure.
- C. Power Line Filtering. Provide transient voltage and surge suppression for all workstations and controllers either internally or as an external component.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL-DAMPER APPLICATIONS

- A. Control Dampers:
 - a. Use opposed blade type dampers for all modulating damper applications
 - b. Use parallel blade type damper for all open closed applications.
 - c. Damper actuation stroke time shall be adjustable
 - d. Damper position feedback is required for all dampers that are part of a smoke purge or smoke control system.

3.3 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy most stringent requirements indicated.
- B. Properly support dampers and actuators, tubing, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
- C. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- D. Seal penetrations made in fire-rated and acoustically rated assemblies.
- E. Fastening Hardware:
 - 1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- F. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- G. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they will be subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including, but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. Use Type 316 stainless-steel tubing and fittings when in contact with a corrosive environment.

- 4. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
- 5. Where actuators are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.4 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements of the electrical specifications.
- C. Furnish and install power wiring. Comply with requirements of the electrical specifications.
- D. Furnish and install raceways. Comply with requirements of the electrical specifications.
- E. Electrical subcontractor shall provide all required line voltage. The mechanical subcontractor shall provide all low voltage wiring and power supply transformers in coordination with the controls subcontractor and control actuator requirements.

3.5 CONTROL DAMPERS

- A. Install smooth transitions, not exceeding 30 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.
- B. Clearance:
 - 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.
- C. Service Access:
 - 1. Dampers and actuators shall be accessible for visual inspection and service.
 - 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 233300 "Air Duct Accessories."
- D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.
- E. Attach actuator(s) to damper drive shaft.
- F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.

3.6 CONNECTIONS

A. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 230553.
- B. Install engraved phenolic nameplate with damper identification on damper.

3.8 CHECKOUT PROCEDURES

- A. Control-Damper Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check dampers for proper location and accessibility.
 - 3. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
 - 4. For pneumatic products, verify air supply for each product is properly installed.
 - 5. For pneumatic dampers, verify that pressure gages are provided in each airline to damper actuator and positioner.
 - 6. Verify that control dampers are installed correctly for flow direction.
 - 7. Verify that proper blade alignment, either parallel or opposed, has been provided.
 - 8. Verify that damper frame attachment is properly secured and sealed.
 - 9. Verify that damper actuator and linkage attachment are secure.
 - 10. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 11. Verify that damper blade travel is unobstructed.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING:

- A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
- B. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.
- C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- D. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 230923.12

SECTION 230923.16 GAS INSTRUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes the Following Gas Instruments:1. Multipoint carbon-monoxide monitoring system.
- B. Related Requirements:
 - 1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 230923.16.

1.3 DEFINITIONS

A. NDIR: Nondispersive infrared.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 2. Installation instructions, including factor affecting performance.
 - 3. Product description with complete technical data, performance curves, product specification sheets.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include diagrams for power, signal, and control wiring.
 - 3. Number-coded identification system for unique identification of wiring, cable, and tubing ends.

C. Samples: For each exposed product installed in finished space.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which wall-mounted instruments located in finished space are shown and coordinated with each other, showing relationship to light switches, fire alarm devices, and other installed devices using input from installers of the items involved.
- B. Product Test Reports: For each product, for tests performed by a qualified testing agency.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas instruments to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MULTIPOINT CARBON-MONOXIDE MONITORING SYSTEM

A. Manufactures

- 1. Sierra monitoring and controls
- 2. Honeywell analytical
- 3. Armstrong Monitoring

B. Description:

- 1. Each sampling point shall monitor any variation in the carbon-monoxide concentration level.
- 2. Each sampling point shall be individually piped to the monitoring system.
- 3. Provide each sampling point with a 0.3-micron filter.
- 4. Each sampling point shall be an alarm point.
- 5. A dual-head diaphragm pump shall draw an air sample through piping system and through a microprocessor-controlled sequencer feeding an analyzer with a new sample every 15 seconds.
- 6. Sample time shall be adjustable in 1 second increments from zero to 60 minutes.
- 7. Span and zero calibration gas shall be automatically initiated by the microprocessor. System shall also provide manual initiation of span and zero calibration gas.
- 8. Analyzer output shall be corrected by the microprocessor.
- 9. Monitoring system shall have 32 sample points.
- 10. System shall operate on 120-V ac, single-phase, 60-Hz power.
- 11. Final adjustment; calibration, testing, and startup of the system shall be performed by a trained representative of manufacturer.
- C. Analyzer:
 - 1. Analyzer shall operate using principle of nondispersive infrared absorption.
 - 2. Sampling response time shall be within 10 seconds.

- 3. Zero drift and span drift shall be less than 1 percent of full scale within a 24-hour period.
- 4. Repeatability shall be within 1 percent of full scale.
- 5. Accuracy shall be within 1 percent of full scale.
- 6. Calibration range shall be zero to 500 ppm.
- 7. Digital display on analyzer face with scale shall be in ppm.
- 8. Temperature shall be compensated from 30 to 120 deg F ambient temperature.

D. Control and Display:

- 1. Each sample shall send a 4-20 mA output signal proportional to the highest concentration.
- 2. Alphanumeric visual display of current analyzer concentration reading shall be in ppm or another industry-accepted measurement.
- 3. Visual indication for sample analyzing, sample high-concentration alarm, analyzer malfunction, and calibration.
- 4. Any number and configuration of sample points shall be capable of being bypassed.
- 5. Each sample point shall be capable of being manually sampled through an override feature.
- 6. System parameters shall be stored in nonvolatile memory.
- 7. Provide at least an eight-hour battery backup of current alarm status. Battery shall be rechargeable.
- E. Enclosure:
 - 1. NEMA 250, Type 1 or Type 12.
 - 2. Hinged and locking door, full size of face.
 - 3. House all system components. Multiple adjoining enclosures are acceptable if joined to a common support structure.
- F. Calibration Equipment:
 - 1. Provide equipment necessary to automatically and manually calibrate the system, including, but not be limited to, the following:
 - a. Regular assembly.
 - b. Zero cap.
 - c. Calibration cap.
 - d. Two cylinders filled with calibration gas.
 - e. Instruction book.
 - f. Carrying case.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

- B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
- C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION, GENERAL
 - A. Furnish and install products required to satisfy more stringent of all requirements indicated.
 - B. Install products level, plumb, parallel, and perpendicular with building construction.
 - C. Properly support instruments, tubing, piping, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to seismic loads.
 - D. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by using excessive force or oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
 - E. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
 - F. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they are subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 4. Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRICAL POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems."

3.4 INSTRUMENTS, GENERAL INSTALLATION REQUIREMENTS

- A. Mounting Location:
 - 1. Install transmitters for gas associated with individual air-handling units and associated connected ductwork and piping near air-handlings units co-located in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 - 2. Install gas switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 3. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
 - 4. Install instruments in dry gas and non-condensable vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 2 percent.
- B. Mounting Height:
 - 1. Mount instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
 - 2. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code, state, and federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 - a. Make every effort to mount at 60 inches.
- C. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated, using neoprene gaskets or grommets.

3.5 CARBON-MONOXIDE MONITORING SYSTEM

A. Install sample points in monitored area to provide accurate measurement of gas concentration.
- B. Install exposed sampling points with a finished appearance consistent with other materials in space. Submit proposed products to be installed for review and approval.
- C. Individually install each sample point to the carbon-monoxide monitoring system.
- D. Install tubing in a minimum size of NPS 3/8.
- E. Use compression fittings at connections to equipment.
- F. If not indicated on Drawings, locate carbon-monoxide monitoring system in a secured and serviceable location accessible to authorized personnel.
- G. Support carbon-monoxide monitoring system from floor or wall. Support floor-mounted systems using a structural channel frame. Provide mounting brackets.

3.6 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Install engraved phenolic nameplate with instrument identification on face.

3.7 CHECKOUT PROCEDURES

- A. Check out installed products before continuity tests, leak tests, and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that impact performance.
- D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.

3.8 ADJUSTMENT, CALIBRATION, AND TESTING

- A. Description:
 - 1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
 - 2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
 - 3. For each analog instrument, perform a three-point calibration test for both linearity and accuracy.
 - 4. Equipment and procedures used for calibration shall comply with instrument manufacturer's written recommendations.
 - 5. Provide diagnostic and test equipment for calibration and adjustment.

GAS INSTRUMENTS

- 6. Field instruments and equipment used to test and calibrate installed instruments shall have an accuracy of at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
- 7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
- 8. If, after calibration, indicated performance cannot be achieved, replace out-of-tolerance instruments.
- 9. Comply with field-testing requirements and procedures in ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.
- B. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.
- C. Digital Signals:
 - 1. Check digital signals using a jumper wire.
 - 2. Check digital signals using an ohmmeter to test for contact.
- D. Meters: Check sensors at zero, 50, and 100 percent of Project design values.
- E. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- F. Switches: Calibrate switches to make or break contact at set points indicated.
- G. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.9 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of gas system and equipment Installer. Include annual preventive maintenance, repair or replacement of worn or defective components, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.

- B. Coordinate gas instrument demonstration video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- C. Record videos on DVD disks.
- D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 230923.16

SECTION 230993 SEQUENCE OF OPERATION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Sequence of operation:
 - 1. Summer Winter Change Over
 - 2. Boiler Plant
 - 3. Variable Speed Hot Water Pumping System Control
 - 4. Constant volume air Conditioning Units:
 - 5. Demand control ventilation
 - 6. Constant Volume Packaged Rooftop Units.
 - 7. General, Toilet Exhaust Fans
 - 8. Elevator Machine Room And Electric Closet Ductless Split Systems:
 - 9. Unit Heaters:
 - 10. Cabinet Convectors:
 - 11. Kitchen make up air units and exhaust fans
 - 12. Radiant heat
 - 13. Miscellaneous:

1.02 RELATED SECTIONS

- A. Section 23 0901 Digital Control Equipment.
- B. Section 230900 Instruments and Control for HVAC.

1.03 SYSTEM DESCRIPTION

- A. This Section defines the manner and method by which controls function. Requirements for each type of control system operation are specified. Equipment, devices, and system components required for control systems are specified in other Sections.
- B. Provide DDC based electronic controls, panels, wiring and all accessories required to achieve the specified control sequences and establish a complete independent system for all new equipment and existing equipment. In general the equipment shall be controlled through Standalone Digital Control Units (SDCUs).

Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, central plant control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment.

Certain controls are specified to be furnished with the equipment. This contractor shall provide all components to communicate with factory furnished controls and connect them to the building automation control system. The contractor shall also provide all controls, wiring and auxiliaries required to

operate equipment not furnished with factory controls. Work required includes, but is not limited to the following:

- 1. Control wiring between factory mounted unit panels and factory supplied remote panels.
- 2. Installation and wiring for factory supplied devices requiring field installation.
- 3. Panel mounted transformers and control power wiring for all controllers and control devices.
- 4. Control wiring to each remote device (room thermostats, outdoor air sensors, static pressure controllers, control actuators, control panels, etc.).
- 6. All control valves, motorized dampers thermostats, relays, sensors, etc. unless furnished as an integral part of the equipment.
- 7. All interlock control wiring (24 volt and 120 volt) between units, fans, etc.
- C. All control and interlock wiring shall be run in EMT for indoor locations and in galvanized conduit for outdoor locations.

D. All new controllers, hardware and accessories shall be ANDOVER CONTINUUM SERIES VERSION 1.9. OR LATER all new hardware, software and programming shall be compatible with the existing campus system.

1.04 SUBMITTALS FOR REVIEW

- A. Division 1 Submittals: Procedures for submittals.
- B. Shop Drawings: Indicate mechanical system controlled and control system components.
 - 1. Label with settings, adjustable range of control and limits. Include written description of control sequence.
 - 2. Include flow diagrams for each control system, graphically depicting control logic.
 - 3. Include draft copies of graphic displays indicating mechanical system components, control system components, and controlled function status and value.
 - 4. Submit a complete written sequence of operation for each and every controlled piece of equipment.

1.05 SUBMITTALS AT PROJECT CLOSEOUT

- A. Operation and Maintenance Data.
- B. Project Record Documents: Record actual locations of components and set-points of controls, including changes to sequences made after submission of shop drawings.

1.06 QUALITY ASSURANCE

A. Design system under direct supervision of a Professional Engineer experienced in design of this Work and licensed in the State of New York.

PART 2 PRODUCTS - Not Used

PART 3 EXECUTION

Electric heater – Toilet room

Provide a room thermostat to cycle the electric heating element. On a drop in space, temperature below set point the heating element shall be energized. On a rise in space temperature above set point the element shall be de-energized.

Toilet exhaust fan – shall be started manually by a fan switch on the wall in the toilet room. The switch shall have a time delay that allows the fan to run for 5 minutes after the switch is turned off.

Ceiling Propeller Fans – shall be started and stopped manually through wall mounted motor starter. Starters shall be H-O-A switches.

UH-1, UH-2, UH-3, UH-4 – shall be started based through room thermostats. Set point shall be 67° adjustable. Set point shall be 3 - 5 degrees lower than H-V unit set point, and shall supplement the HV units.

HV-1, HV-2, HV-3, HV-4 -

Winter mode - shall be started based through room thermostats. Set point shall be 70° adjustable. Units HV-2, HV-3, HV-4 shall run during the occupied hours and unoccupied hours with OAI dampers closed and return air dampers full open. HV-1 shall run during the occupied and unoccupied hours with the return air damper with the OAI and return air dampers open to the minimum position. Unit furnace shall modulate to maintain space temperature set point.

Summer mode - HV-2, HV-3, HV-4 shall be off. **HV-1** shall run at 100% OA. Furnaces shall be off. Gas valve shall be closed.

CO Detection;

When CO is detected in any one of the four (4) zones the following shall take place. A level 1 alarm shall be annunciated at the BMS and at the CO detection panel. A Level 2 alarm shall initiate the following supply and exhaust air fans.

Zone - 1 or Zone -2; HV-1 and HV-2 starts and runs at 100% OA, furnaces modulate to maintain space set point. EX-2 starts.

Zone - 3 or Zone -4; HV-3 and HV-4 starts and runs at 100% OA, furnaces modulate to maintain space set point. EX-3 starts.

BMS Alarms:

- CO detectoin
- Hi discharge air temperature (temperature sensor) all units
- Low discharge air temperature (temperature sensor) all units
- Low space temperature alarm.

Miscellaneous:

Motor starters shall be supplied for each Air Handler, Fan, pump, etc. When starters are located at the unit, (factory or field installed), or within line of site of the unit combination Starters/disconnects shall be used. All starters shall be equipped with H-O-A switches and pilot lights in cover. For units with remote mounted starters,(i.e. roof-top exhaust fans), furnish disconnects at the unit.

All safety devices shall be interlocked with "hand" and "Automatic" positions in series with motor controller holding coil circuit. Interlocking with other fans and equipment of system shall be through "Automatic" position "Hand" position shall be for maintenance only. Remote starting shall be from through "automatic" position only.

All air handling units 2,000 cfm or greater shall have a duct mounted smoke detector arranged to stop the unit and position all dampers and valves in the "unit off" sequence as described in this section, upon detecting smoke.

All air handling units, unit ventilators, cabinet unit heaters, unit heaters, fans, and fan coil units, shall be interlocked to the building fire alarm system. Upon building fire alarm all units shall shut down and damper and valves shall go to "unit off" positions.

END OF SECTION 230993

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Double-wall rectangular ducts and fittings.
 - 3. Single-wall round and flat-oval ducts and fittings.
 - 4. Double-wall round and flat-oval ducts and fittings.
 - 5. Sheet metal materials.
 - 6. Duct liner.
 - 7. Sealants and gaskets.
 - 8. Hangers and supports.
 - 9. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and ASCE/SEI 7. SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment.
 - 13. Seismic restraints, where applicable
 - 14. Vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints. For seismic bracing only

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.

- 3. Structural members to which duct will be attached.
- 4. Size and location of initial access modules for acoustical tile.
- 5. Penetrations of smoke barriers and fire-rated construction.
- 6. Items penetrating finished ceiling including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel," for hangers and supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- C. Construct ductwork to NFPA 90A and NFPA 90B standards. All work, materials and equipment shall comply with the latest requirements of NFPA 90A, standards and the local authorities having jurisdiction.
- D. All ductwork and fan and apparatus plenums constructed and having supported in accordance with the latest standards of the ASHRAE Guide and the Sheet Metal and Air Conditioning Contractors National Association (SMACNA).
- E. Bracing, gauges, and supports indicated in SMACNA manuals are the minimum acceptable. Additional bracing or supports shall be installed to eliminate any distortion or vibration when the systems are operating or under tests.

PART 2 - PRODUCTS

2.1 General

- A. General: Non-combustible or conforming to requirements for Class 1 air duct materials, or UL 181.
- B. Galvanized Steel Ducts: ASTM A525 and ASTM A527 galvanized steel sheet, lock-forming quality, having zinc coating of 1.25 oz per sq ft for each side in conformance with ASTM A90.

- C. Dissimilar Metals: Separate connections between dissimilar metals with Dielectric Insulation. Joints between dissimilar metal duct sections to be made with Companion flanges separated by a Neoprene gasket.
- D. Fasteners: Rivets, bolts, screens, and other hardware used in the sheet metal construction to be constructed of materials identical or similar to the duct material to prevent galvanic corrosion.
- E. Sealant: Non-hardening, water resistant, fire resistive, compatible with mating materials; liquid used alone or with tape, or heavy mastic as manufactured by 3M Company EC-800.
- F. Hanger Rod: Steel, galvanized; threaded both ends, threaded one end, or continuously threaded.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- B. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard." For standard applications
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- G. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B. For Humid and damp area applications including Natatoriums and Saunas.
- H. Retain subparagraph below to require thermal conductivity exceeding the requirements in ASTM C 1071. Retaining subparagraph may create a restrictive proprietary specification. Verify availability of performance with manufacturers.
 - 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- I. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- J. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- K. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

2.4 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- C. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
- F. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.5 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. Provide products from one of the following manufactures
 - 1. McGill Airflow LLC
 - 2. Zen Industries
 - 3. Lindab
 - 4. Spiral Manufacturing Co. Inc
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard." For standard applications.
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- A. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B. For application in damp or humid environments including natatoriums and Saunas.
- B. Retain subparagraph below to require thermal conductivity exceeding the requirements in ASTM C 1071. Retaining subparagraph may create a restrictive proprietary specification. Verify availability of performance with manufacturers.

1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at75 deg F mean temperature.

2.6 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
 - 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.
- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black OR White.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.7 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - a. Maximum Thermal Conductivity:
 - 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2) Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Solvent Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
- B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- C. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B. For application in damp or humid environments including natatoriums and Saunas.
- D. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel, aluminum, or stainless steel to match ductwork; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- E. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

- 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
- 3. Butt transverse joints without gaps, and coat joint with adhesive.
- 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
- 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
- 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
- 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
- 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
- 9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.8 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.

- 3. Shore A Hardness: Minimum 20.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.
 - 8. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 - 9. Service: Indoor or outdoor.
 - 10. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.9 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
- I. Vibration Isolation Hangers;
 - 1. Hanger springs shall be seated in a steel washer reinforced neoprene cup that has a neoprene bushing projecting through the bottom hole to prevent rod to hanger contact. Spring diameters and the lower hole sizes, shall be large enough to allow the hanger rod to swing through a 30° arc from side to side before contacting the cup bushing.
 - 2. If ducts are suspended by flat strap iron, the hanger assembly shall have an eye on top of the box and on the bottom of the spring hanger rod to allow for bolting to the hanger straps.
 - 3. Hangers for rods shall be Type 30N. Hangers for straps shall be type W30 as manufactured by Mason Industries, Inc.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths and with fewest possible joints
- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections. Increase duct sizes gradually, not exceeding 15 degrees divergence

wherever possible; maximum 0 degrees divergence upstream of equipment and 45 degrees convergence downstream.

- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 2 inch, plus allowance for insulation thickness and with sufficient space around equipment to allow normal operating and maintenance activities. Provide easements where ductwork conflicts with piping and structure. Where easements exceed 10 percent duct area, split into two ducts maintaining original duct area.
- H. Provide standard 45 degree lateral wye takeoffs unless otherwise indicated where 90 degree conical tee connections may be used.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for all installations as well as fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Provide openings in ductwork where required to accommodate thermometers and controllers. Provide pilot tube openings where required for testing of systems, complete with metal can with spring device or screw to ensure against air leakage. Where openings are provided in insulated ductwork, install insulation material inside a metal ring.
- N. Where hanger rods must pierce ducts, provide closure plates around rods and fasten to duct using screws, rivets or welding. Seal with sealing compound.
- O. Construct T's, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible and where rectangular elbows are used, provide airfoil turning vanes. Where acoustical lining is indicated, provide turning vanes of perforated metal with glass fiber insulation.
- P. Where ductwork penetrates roofs or outside walls, seal the space around ductwork air tight with fire rated expanding spray foam sealer similar to 3-M Fire Block Foam. This also applies to duct roof penetrations into roof curbs.

Q. All ductwork shall be inspected and pressure tested prior to enclosing in general construction or concealment above hung ceilings

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. Prime ductwork and paint with one coat enamel base paint. Color as per architectural plans. All ductwork surface finish shall be treated prior to priming by "pickling" in accordance with industry standards and paint manufactures requirements.

3.3 DUCT SEALING

- A. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 - 3. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 - 4. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 5. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.
- F. Duct Vibration Isolation Hangers; All air ducts with a cross section of 2 SF or larger shall be isolated from the building structure by vibration isolation hangers or floor supports with a minimum deflection of 0.75". Isolators shall continue for 25' from the equipment. If air velocity exceeds 1500 fpm, hangers or supports shall continue for an additional 50' or as shown on the drawings.
- G. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- H. Where hanger rods must pierce ducts, provide closure plates around rods and fasten to duct using screws, rivets or welding. Seal with sealing compound

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
- C. Smoke purge supply and exhaust systems and stair pressure systems. Flexible connection shall be permitted at diffusers, a maximum of 3' long, and flexible connections are permitted at air handling equipment for vibration isolation only.
- D. INSULATED FLEXIBLE DUCTS
 - 1. UL 181, Class 0, interlocking spiral of aluminum foil; fiberglass insulation; polyethylene vapor barrier film.
 - 2. Pressure Rating: 8 inches WG positive or negative.
 - 3. Maximum Velocity: 5000 fpm
 - 4. Temperature Range: -20 degrees F to 250 degrees F.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:

- 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." And in accordance with specification section 23 05 93 Testing Adjusting and Balancing. Submit a test report for each test.
- 2. Test the following systems:
 - a. All Ducts with a Pressure Class equal to or higher than 1.5 -Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each system of the designated pressure class.
 - b. All smoke purge system Ducts, including supply exhaust and return air. All stair pressurization ductwork. Test representative duct sections totaling no less than 50 percent of total installed duct area of each system.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. No ductwork shall be insulated, enclosed, buried or concealed until testing is complete, results submitted to the Engineer, and the report has been approved.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 SMOKE AND HEAT DETECTOR INSTALLATION

A. Duct mounted smoke and heat detectors will be supplied under the Electrical Division. This Contractor to coordinate duct sizes and provide labor to install sensing probes into ductwork.

3.10 DUCTWORK PROTECTION

A. Duct work under construction or alteration shall not be left open ended during dust producing construction. All new and existing ductwork systems in the area of alteration or under construction shall be protected during construction. Open ends ducts shall be sealed with sheet metal or as approved.

B. For unenclosed buildings ductwork shall be kept dry and water tight. Seal open ends water tight during construction to prevent water infiltration. Keep all acoustical lining dry during construction. Lining that has become we shall be replaced. all incomplete ductwork being used to condition spaces in phase I or phase II that will be completed under a later phase must be protect from being internally contaminated by construction dust. All returns opening must have filters placed over then to prevent dust from being returned to the unit.

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating on duct exterior, stainless steel, fiberglass

B. Duct Pressure class;

1. All duct systems shall be constructed to have a pressure classification based on the maximum static pressure (positive or negative) developed by the air handling apparatus connected to the ductwork system. Unless otherwise noted below, refer to the equipment schedules and equipment notes for the design operating pressure of each system. Systems with operating pressures between pressure classes shall be constructed to the next higher pressure class.

Pressure Classification Table										
System operating pressure (OP) in wc			OP≤1"	1"≥OP<2"	2"≥OP<3"	3"≥OP<4"	4"≥OP<6"	6"≥OP<10"		
SMACNA Construction classification			1"	2"	3"	4"	6"	10"		

2. All ductwork shall be constructed in accordance with the leakage and seal classification. Note that the leakage and seal classification required by current code is more stringent than SMACNA requirements.

Leakage and Seal Classification Table										
System operating pressure in wc			<2" low	2"≥med<3"	High≥3"					
Seal Class			С	В	А					
Sealing			Transvers e joints	Transverse joints and seams	Transverse joints and seams and all wall penetrations					
Leakage cl	ass CL fact	or	24	12	4					
In addition to the above, any variable air volume system duct of 1" and ½" wg con-struction class that is upstream of the VAV boxes shall meet Seal Class C.										

C. Supply, Return, Make up and Spill Ducts:

- 1. Ducts Connected to Constant-Volume Air-Handling Units and Packaged Roof top units: (supply, return, OA intake)
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 4.
 - d. SMACNA Leakage Class for Round and Flat Oval: 4
- D. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. PVC-Coated Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 4. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.
- E. Liner for sound attenuation:
 - 1. Supply, Return and exhaust air ducts: ¹/₂" inches thick.
 - 2. Supply and return fan Plenums: 1" inches thick.
 - 3. Transfer Ducts: 1 inch thick.
 - 4. Ductwork down stream from VAV boxes for 10'
 - 5. At the inlet and discharge of all fans for a distance of 20'
 - 6.
- F. Double-Wall Duct Interstitial Insulation:
 - 1. Supply, Return, Exhaust Air Ducts: 1" inches thick. (when ducts are exposed in the conditions space)
 - 2. Supply, Return, Exhaust Air Ducts: 1 1/2" inches thick. (when ducts are concealed in plenums or are located in unconditioned spaces)
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.

- 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
- 3) Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with turning vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter:
 - c. Round Elbows, 14 Inches and Larger in Diameter:
- H. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.

- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Barometric relief dampers.
 - 3. Manual volume dampers.
 - 4. Control dampers.
 - 5. Fire dampers.
 - 6. Ceiling radiation dampers.
 - 7. Smoke dampers.
 - 8. Combination fire and smoke dampers.
 - 9. Corridor dampers.
 - 10. Flange connectors.
 - 11. Duct silencers.
 - 12. Turning vanes.
 - 13. Remote damper operators.
 - 14. Duct-mounted access doors.
 - 15. Flexible connectors.
 - 16. Duct security bars.
 - 17. Duct accessory hardware.
- B. Related Requirements:
 - 1. Section 233113 Metal Ducts
 - 2. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.
 - 3. Section 233723 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

- 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Duct security bars.
 - f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
 - 5. Buckley
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 1000 fpm.
- D. Maximum System Pressure: up to 6"wc.
- E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, 0.063-inch-thick extruded aluminum, or 0.03-inch-thick stainless steel with welded corners or mechanically attached and mounting flange.
- F. Blades: Multiple single-piece blades, center pivoted, or off-center pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum or 0.050-inch-thick aluminum sheet noncombustible, tear-resistant, neoprene-coated fiberglass with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:

- 1. Material: Galvanized, steel Stainless steel, or Aluminum.
- 2. Diameter: 0.20 inch min.
- J. Tie Bars and Brackets: Aluminum or Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20 gage minimum.
 - b. Sleeve Length: 6 inches minimum.
 - 6. Screen Mounting: Rear mounted.
 - 7. Screen Material: Galvanized steel or Aluminum.
 - 8. Screen Type: Bird. $\frac{1}{2} \times \frac{1}{2} \max$ opening
 - 9. 90-degree stops.

2.4 BAROMETRIC RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
 - 5. Buckley
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1000 fpm.
- D. Maximum System Pressure: upto 6-inch wg.
- E. Frame: Hat-shaped, 0.05-inch-thick galvanized sheet steel, 0.063-inch-thick extruded aluminum, or 0.03-inch-thick, stainless steel, with welded corners or mechanically attached and mounting flange.
- F. Blades:
 - 1. Multiple, 0.025-inch-thick, roll-formed aluminum or 0.050-inch-thick aluminum sheet.
 - 2. Maximum Width: 6 inches.
 - 3. Action: Parallel.

- 4. Balance: Gravity.
- 5. Eccentrically pivoted or Off-center pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel, aluminum, or Stainless steel.
- I. Tie Bars and Brackets:
 - 1. Material: Aluminum or Galvanized steel.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic, Stainless steel, Bronze.
- L. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Tek Group</u>.
 - b. <u>McGill AirFlow LLC</u>.
 - c. <u>Nailor Industries Inc</u>.
 - d. <u>Pottorff</u>.
 - e. <u>Ruskin Company</u>.
 - f. <u>Vent Products Co., Inc</u>.
 - g. Buckley
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.

- d. Galvanized or Stainless-steel, 0.064 inch thick.
- 6. Blade Axles: Galvanized steel, Stainless or steel Nonferrous metal.
- 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.
 - c. <u>Pottorff</u>.
 - d. <u>Ruskin Company</u>.
 - e. <u>Vent Products Co., Inc</u>.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
 - 6. Blade Axles: Galvanized steel or Stainless steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, or Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Aluminum.
- C. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.

- c. <u>Pottorff</u>.
- d. <u>Ruskin Company</u>.
- e. <u>Vent Products Co., Inc</u>.
- 2. Comply with AMCA 500-D testing for damper rating.
- 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames:
 - a. U or Angle shaped.
 - b. 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized or Stainless, roll-formed steel, 0.064 inch thick.
- 7. Blade Axles: Galvanized steel or Stainless steel.
- 8. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel or aluminum.
- 11. Tie Bars and Brackets: Galvanized steel or Aluminum.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- D. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>McGill AirFlow LLC</u>.
 - b. <u>Nailor Industries Inc</u>.
 - c. <u>Pottorff</u>.
 - d. <u>Ruskin Company</u>.
 - e. <u>Vent Products Co., Inc</u>.
 - 2. Comply with AMCA 500-D testing for damper rating.

- 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames: U or Angle-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
- 7. Blade Axles: Galvanized steel, Stainless steel.
- 8. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Oil-impregnated stainless-steel sleeve, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel, aluminum.
- 11. Tie Bars and Brackets: Galvanized steel, Aluminum.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- E. Jackshaft:
 - 1. Size: 0.5-inch diameter min.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- F. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.6 CONTROL DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arrow United Industries</u>.
 - 2. <u>Greenheck Fan Corporation</u>.
- 3. <u>McGill AirFlow LLC</u>.
- 4. <u>Nailor Industries Inc</u>.
- 5. <u>Pottorff</u>.
- 6. <u>Ruskin Company</u>.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:
 - 1. U or Angle shaped.
 - 2. 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 - 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches.
 - 2. Parallel blade for non modulating application
 - 3. Opposed-blade design for all modulating applications
 - 4. Galvanized-steel, Stainless steel, Aluminum.
 - 5. 0.064 inch thick single skin or 0.0747-inch-thick dual skin.
 - 6. Blade Edging: Closed-cell neoprene.
 - 7. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch-diameter; galvanized steel, or stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
- F. Bearings:
 - 1. Oil-impregnated bronze, Molded synthetic, Oil-impregnated, stainless-steel sleeve, or Stainless-steel sleeve.
 - 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.7 FIRE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arrow United Industries</u>.
 - 2. <u>Greenheck Fan Corporation</u>.
 - 3. <u>Nailor Industries Inc</u>.
 - 4. <u>Pottorff</u>.
 - 5. <u>Ruskin Company</u>.
 - 6. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Curtain type with blades inside airstream for application in duct over 24" in height. Curtain type with blades outside airstream for ducts 24" or less in height. Multiple-blade type; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.138 inch upto 4 SF 0.39 over 4 SF inch thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F [212 deg F] rated, fusible links.

2.8 CEILING RADIATION DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Aire Technologies</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Prefco</u>.
 - 5. <u>Ruskin Company</u>.
- B. General Requirements:
 - 1. Labeled according to UL 555C by an NRTL.
 - 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."
- C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.
- D. Blades: Galvanized sheet steel with refractory insulation.
- E. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.
- F. Fire Rating: 1hr for applications in assemblies up to 1 ½ hr rating. 2hr for application in assemblies of up to 3hr

2.9 SMOKE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Pottorff</u>.
 - 4. <u>Ruskin Company</u>.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection. Except for NYC smoke detector shall be provided by the fire alarm contractor.
- D. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with welded or mechanically attached corners and mounting flange.
- E. Blades: Roll-formed, horizontal, overlapping, 0.063-inch- thick, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.05-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- I. Damper Motors: Modulating or two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

K. Accessories:

- 1. Auxiliary switches for signaling, fan control and position indication.
- 2. Test and reset switches, damper or remote mounted.
- 3. Manual damper testing by physically depressing the low temperature thermal disc from the inside of the damper sleeve and resetting the sensor from the exterior side of the damper sleeve.
- 4. Dual position blade indicator switch package shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- 5. Dual Position Indicator Switch Package: Shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- 6. Duct Smoke Detector: Factory mounted in the damper sleeve with interconnecting wiring from the damper actuator to the smoke detector enabling a single power connection point for easy field wiring.

2.10 COMBINATION FIRE AND SMOKE DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Pottorff</u>.
 - 3. <u>Ruskin Company</u>.
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 for assemblies upto 2 hour and 3 hr rating for assemblies over 1 1/2hours.
- E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Primary heat responsive device set at 285 deg F, resettable.
- G. Secondary heat closure device, set at 350 deg F, resettable.
- H. Smoke Detector: Integral, factory wired for single-point connection.
- I. Blades: Roll-formed, horizontal, interlocking, 0.063-inch- thick, galvanized sheet steel.
- J. Leakage: Class I.
- K. Rated pressure and velocity to exceed design airflow conditions.
- L. Mounting Sleeve: Factory-installed, 0.039-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- M. Master control panel for use in dynamic smoke-management systems.

CONTRACT NO. 17-521

NEW EQUIPMENT STORAGE BUILDING, VALHALLA CAMPUS

- N. Damper Motors: Modulating or two-position action.
- O. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.
- P. Accessories:
- A. DRS-30 Two-Temperature Fire Closure Device:
 - 1. UL classified two-temperature device permits the damper to be re-opened after initial temperature closure allowing the damper to remain operable for smoke management purposes until the high temperature limit is reached.
 - 2. Manual damper testing is permitted by physically depressing the low temperature thermal disc from the inside of the damper sleeve and resetting the sensor from the exterior side of the damper sleeve.
 - 3. Dual position blade indicator switch package shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- B. PI-50 Dual Position Indicator Switch Package: Shall connect directly to the blade axel for positive annunciation (interconnecting arms, wire-forms, or brackets shall not be accepted) and provide full open and full closed blade indication to a remote location.
- C. Duct Smoke Detector: Factory mounted in the damper sleeve with interconnecting wiring from the damper actuator to the smoke detector enabling a single power connection point for easy field wiring.

2.11 FLANGE CONNECTORS

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1. <u>CL WARD & Family Inc</u>.
- 2. Ductmate Industries, Inc.
- 3. <u>Hardcast, Inc</u>.
- 4. <u>Ward Industries; a brand of Hart & Cooley, Inc.</u>
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.12 DUCT SILENCERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Industrial Noise Control, Inc.
 - 2. <u>McGill AirFlow LLC</u>.
 - 3. Ruskin Company.
 - 4. <u>Vibro-Acoustics</u>.
 - 5. Industrial Acoustics
- B. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Shape:
 - 1. Rectangular straight with splitters or baffles.
 - 2. Round straight with center bodies or pods.
 - 3. Rectangular elbow with splitters or baffles.
 - 4. Round elbow with center bodies or pods.
 - 5. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90 , galvanized sheet steel, 0.040 inch thick.
- E. Round Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel.
 - 1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
 - 2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
 - 3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.05 inch thick.
 - 4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.

- F. Inner Casing and Baffles: ASTM A 653/A 653M, G60 galvanized sheet metal, 0.034 inch thick, and with 1/8-inch-diameter perforations.
- G. Special Construction:
 - 1. Suitable for outdoor use.
 - 2. High transmission loss to achieve STC 45.
- H. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- I. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative or Film-lined type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 15 percent compression and Moisture-proof nonfibrous material.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
 - 3. Lining: Fiberglas cloth.
- J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Joints: Lock formed and sealed or continuously welded or flanged connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 - 3. Reinforcement: Cross or trapeze angles for rigid suspension.
- K. Accessories:
 - 1. Integral 1-1/2 3-hour fire damper with access door. Access door to be high transmission loss to match silencer.
 - 2. Factory-installed end caps to prevent contamination during shipping.
 - 3. Removable splitters.
 - 4. Airflow measuring devices.
- L. Source Quality Control: Test according to ASTM E 477.
 - 1. Testingto be witnessed by Engineer.
 - 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm face velocity.
 - 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6inch wg static pressure, whichever is greater.
- M. Capacities and Characteristics:
 - 1. Configuration: Straight or 90-degree elbow as indicated on plan
 - 2. Shape: Rectangular or Round as indicated on plan
 - 3. Attenuation Mechanism: Acoustical glass fiber with protective film liner.

- 4. Maximum Pressure Drop: 0.25-inch wg.
- 5. Casing:
 - a. Attenuation: Standard.
 - b. Outer Material: Galvanized steel.
 - c. Inner Material: Galvanized steel.
- 6. Velocity Range: 500 fpm max.
- 7. End Connection: 1-inch slip joint or Flange.
- 8. Length: as per plan
- 9. Face Dimension:
 - a. Width: as per plan
 - b. Height: as per plan
- 10. Face Velocity: as per plan
- 11. Dynamic Insertion Loss: as per plan
- 12. Generated Noise: as per plan
- 13. Accessories:
 - a. Access door.
 - b. Birdscreen.

2.13 TURNING VANES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Aero-Dyne Sound Control Co</u>.
 - 2. <u>CL WARD & Family Inc</u>.
 - 3. Ductmate Industries, Inc.
 - 4. <u>Duro Dyne Inc</u>.
 - 5. <u>METALAIRE, Inc</u>.
 - 6. <u>Ward Industries; a brand of Hart & Cooley, Inc</u>.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.14 REMOTE DAMPER OPERATORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff.
 - 2. <u>Ventfabrics, Inc</u>.
 - 3. <u>Young Regulator Company</u>.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Copper or Aluminum.
- D. Cable: Steel.
- E. Wall-Box Mounting: Recessed.
- F. Wall-Box Cover-Plate Material: Stainless steel.

2.15 DUCT-MOUNTED ACCESS DOORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>CL WARD & Family Inc</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Greenheck Fan Corporation</u>.
 - 4. McGill AirFlow LLC.
 - 5. Nailor Industries Inc.
 - 6. <u>Pottorff</u>.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles for plenum applications.

- d. Access Doors Larger Than 24 by 48 Inches: Four hinges or Continuous and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 3.0- to 8.0-inch wg.
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.16 DUCT ACCESS PANEL ASSEMBLIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Flame Gard, Inc</u>.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
- D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.17 FLEXIBLE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>CL WARD & Family Inc</u>.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. <u>Duro Dyne Inc</u>.
 - 4. <u>Elgen Manufacturing</u>.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.

- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches or 5-3/4 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- H. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd..
 - 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.18 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
 - 3. Install stainless steel volume dampers in stainless steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Install duct security bars. Construct duct security bars from 0.164-inchsteel sleeve, continuously welded at all joints and 1/2-inch-diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.
- I. Connect ducts to duct silencers rigidly.

- J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot spacing and the bottom of all riser in Laundry exhaust ducts.
 - 8. Upstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- K. Install access doors with swing against duct static pressure.
- L. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- M. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- N. Install flexible connectors to connect ducts to equipment.
- O. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- P. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- Q. Connect diffusers or light troffer boots to ducts with maximum 30-inch lengths of flexible duct clamped or strapped in place.
- R. Connect flexible ducts to metal ducts with draw bands.
- S. Install duct test holes where required for testing and balancing purposes.

T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

Edited from Master spec 2/2/17

SECTION 23 34 23 HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.
 - 2. Centrifugal wall ventilators.
 - 3. Ceiling-mounted ventilators.
 - 4. In-line centrifugal fans.
 - 5. Propeller fans.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on sea level.
- B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

- C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
- D. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension assembly members.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- E. Field quality-control reports.
- F. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.6 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: 2 set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ACME Company.
 - 2. Central Blower Company.
 - 3. Greenheck Fan Corporation.
 - 4. Loren Cook Company.
 - 5. PennBarry.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector (for kitchen hood applications).
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside or outside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 - 4. Barometric Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
 - 6. Kitchen hood exhaust applications
 - a. No back draft discharge damper for kitchen hood exhaust applications
 - b. Minimum curb Height: 8". Coordinate the exact curb height in the field so that the top of the fan is a minimum of 40" above the roof.
 - c. Roof curb shall be vented without insulation.
 - d. Provide grease drain line and cup
 - e. Provide hinged
 - f. NEMA 3R external unit mounted disconnect switch.

- g. Bird screen with heat baffle
- h. Fan shall be hinge mounted to curb for access to the wheel and ductwork
- i. UL 762 rated for continuous operation up to 300 deg F.
- F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Minimum Height: 18 inches. For Kitchen exhaust applications coordinate the curb height in the field so that the top of the fan is a minimum of 40" above the roof.
 - 3. Sound Curb: Curb with sound-absorbing insulation.
 - 4. Pitch Mounting: Manufacture curb for roof slope.
 - 5. Metal Liner: Galvanized steel.
 - 6. Burglar Bars: 1/2-inch- thick steel bars welded in place to form 6-inch squares. (Not required unless scheduled)
 - 7. Mounting Pedestal: Galvanized steel with removable access panel.
 - 8. Vented Curb: Unlined with louvered vents in vertical sides. (for kitchen hood exhaust applications).
 - 9. Roof curbs shall be custom angle curb for pitched roofs.

2.2 CENTRIFUGAL WALL VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes Company.
 - 2. Greenheck Fan Corporation.
 - 3. ACME Fan Incorporated.
 - 4. Loren Cook Company.
 - 5. PennBarry.
- B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
- C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 - 4. Wall Grille: Ring type for flush mounting.

- 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.
- 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

2.3 CEILING-MOUNTED VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes Company.
 - 2. Greenheck Fan Corporation.
 - 3. Loren Cook Company.
 - 4. PennBarry.
- B. Housing: Steel, lined with acoustical insulation. Housing shall be field adaptable for inline installation.
- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Aluminum or Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit. Externally mounted disconnects shall be NEMA 3R
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 - 4. Wall Grille: Ring type for flush mounting.
 - 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.
 - 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

2.4 IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes Company.
 - 2. Greenheck Fan Corporation.
 - 3. ACME Fan Incorporated.
 - 4. Loren Cook Company.
 - 5. PennBarry.

- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent. (where scheduled or indicated on plan)
 - 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 - 3. Companion Flanges: For inlet and outlet duct connections.
 - 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
 - 6. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside or outside fan housing, factory wired through an internal aluminum conduit

2.5 PROPELLER FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes Company.
 - 2. Chicago Blower Corporation.
 - 3. Loren Cook Company.
 - 4. ACME
 - 5. PennBarry.
- B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.
- C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- D. Fan Wheel: Replaceable, **cast or extruded-aluminum**, airfoil blades fastened to castaluminum hub; factory set pitch angle of blades.
- E. Fan Drive: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- F. Fan Drive:
 - 1. Resiliently mounted to housing.
 - 2. Statically and dynamically balanced.
 - 3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.

- 4. Extend grease fitting to accessible location outside of unit.
- 5. Service Factor Based on Fan Motor Size: 1.4.
- 6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
- 7. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
- 8. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
- 9. Motor Pulleys: Adjustable pitch for use with motors through 3 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
- 10. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
- 11. Belt Guards: Fabricate of steel for motors mounted on outside of fan cabinet.

G. Accessories:

- 1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
- 2. Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
- 3. Wall Sleeve: Galvanized steel to match fan and accessory size.
- 4. Weathershield Hood: Galvanized steel to match fan and accessory size.
- 5. Weathershield Front Guard: Galvanized steel with expanded metal screen.
- 6. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 7. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.6 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 15 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.7 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of

Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Support units using spring isolators or restrained spring isolators for projects with seismic requirements having a static deflection of 1 inch. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 - 1. Secure vibration and seismic controls to concrete bases using anchor bolts cast in concrete base.
- C. Install floor-mounted units on concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- D. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. Support suspended units from structure using threaded steel rods and elastomeric hangers or spring hangers with vertical-limit stops having a static deflection of 1 inch.
- F. Install units with clearances for service and maintenance.
- G. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section "Air Duct Accessories."
- B. Kitchen exhaust hood fans shall not have flexible connections or back draft dampers.
- C. Install ducts adjacent to power ventilators to allow service and maintenance.
- D. Prove flexible duct connections for all fans except Kitchen exhaust fans.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Lubricate bearings.
- D. Comply with requirements in "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- E. Mechanical schedules and equipment notes indicate estimated static pressures and resultant RPM. If, during balancing, it is determined that the sheaves supplied with and fan or air handling unit have reached the maximum adjustment and design static pressure and or CFM can not be obtained then it shall be the mechanical contractors responsibility to remove and change the drive as required to reach design conditions. And it shall be the balancers responsibility to rebalance the system as appropriate to achieve design conditions after the drives have been changed.

END OF SECTION

SECTION 235100 - BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Listed chimney liners.
 - 2. Listed building-heating-appliance chimneys.
 - 3. Listed double-wall vents.
 - 4. Listed, refractory-lined breechings and stacks.
 - 5. Field-fabricated metal breechings and chimneys.
 - 6. Guying and bracing materials.
 - 7. Barometric dampers.
 - 8. Vent dampers.
- B. Related Sections include the following:
 - 1. Section 235216 "Condensing Boilers".

1.3 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Chimney liners.
 - 2. Type B and BW vents.
 - 3. Type L vents.
 - 4. Special gas vents.
 - 5. Building-heating-appliance chimneys.
 - 6. Grease ducts.
 - 7. Refractory-lined metal breechings and chimneys.
 - 8. Guy wires and connectors.
- B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.
 - 2. For installed products indicated to comply with design loads, include calculations required for selecting seismic restraints and structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- 3. The inner diameter of the flue system shall be verified by the manufacturer's venting computations. The computations used shall be technically sound, follow ASHRAE calculation methods and shall incorporate the specific flow characteristics of the inner pipe. The contractor shall furnish the exact operating characteristics of all equipment to the factory representative. Flue gas velocity shall not exceed the manufactures maximum requirement or 1000 ft/min. The required draft shall be .1" min at the farthest appliance connected.
- 4. The manufacturer shall provide "to scale" drawings depicting the actual layout. The prefabricated flue system shall be installed as designed by the manufacturer and in accordance with the terms of the manufacturer's warranty and in conjunction with sound engineering practices
- 5. Submit full draft calculations for review and approval this shall include velocity in each section.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Manufacturer Seismic Qualification Certification: Submit certification that factory-fabricated breeching, chimneys, and stacks; accessories; and components will withstand seismic forces defined in Section 230548 "Vibration Controls for HVAC Piping and Equipment." Include the following:
 - 1. Dimensioned Outline Drawings of Breeching, Chimneys, and Stacks: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 2. Detailed description of anchorage devices on which the certification is based and their installation requirements.
 - 3. The inner diameter of the flue system shall be verified by the manufacturer's venting computations. The computations used shall be technically sound, follow ASHRAE calculation methods and shall incorporate the specific flow characteristics of the inner pipe. The contractor shall furnish the exact operating characteristics of all equipment to the factory representative. Flue gas velocity shall not exceed the manufactures maximum requirement or 1000 ft/min. The required draft .1" min at the farthest appliance connected.
 - 4. The manufacturer shall provide "to scale" drawings depicting the actual layout. The prefabricated flue system shall be installed as designed by the manufacturer and in accordance with the terms of the manufacturer's 10-year warranty and in conjunction with sound engineering practices

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain listed system components through one source from a single manufacturer.
- B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code--Steel," for hangers and supports and AWS D9.1/D9.1M, "Sheet Metal Welding Code," for shop and field welding of joints and seams in vents, breechings, and stacks.
- C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.
 - 1. Warranty Period: 25 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LISTED SPECIAL GAS VENTS (for condensing heaters and gas fired air handlers)

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Heat-Fab, Inc.
 - 2. Metal-Fab, Inc.
 - 3. Selkirk Inc.; Selkirk Metalbestos and Air Mate.
 - 4. Security Chimney International
- B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch airspace.
- D. Inner Shell: ASTM A 959, Type AL29-4C stainless steel.
- E. Outer Jacket: Aluminized steel.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
 - 2. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.
 - 3. Termination: Exit cone with drain section incorporated into riser.

2.2 GUYING AND BRACING MATERIALS

A. Cable: Three galvanized, stranded wires of the following thickness:

BREECHINGS, CHIMNEYS, AND STACKS

- 1. Minimum Size: 1/4 inch in diameter.
- 2. For ID Sizes 4 to 15 Inches: 5/16 inch.
- 3. For ID Sizes 18 to 24 Inches: 3/8 inch.
- 4. For ID Sizes 27 to 30 Inches: 7/16 inch.
- 5. For ID Sizes 33 to 36 Inches: 1/2 inch.
- 6. For ID Sizes 39 to 48 Inches: 9/16 inch.
- 7. For ID Sizes 51 to 60 Inches: 5/8 inch.
- B. Pipe: Three galvanized steel, NPS 1-1/4.
- C. Angle Iron: Three galvanized steel, 2 by 2 by 0.25 inch.

2.3 BAROMETRIC DAMPERS (NOT USED)

A. Damper Construction: High-temperature-enamel-painted steel damper and housing with galvanized-steel breeching connection. Adjustable counterweight with lock. Include knife-edge bearings that do not require lubrication.

2.4 VENT DAMPERS (NOT USED)

- A. Damper Construction: Stainless-steel damper blade, shaft, and vent pipe with metal, prelubricated bearings.
 - 1. Electric motor sized to power damper open and closed in approximately 15 seconds in each direction. Power is off when damper is at rest.
 - 2. Comply with ANSI Z21.66.
- B. Controls:
 - 1. Control transformer.
 - 2. Keyed wiring harness.
 - 3. Damper end switch to prove damper is open.
 - 4. Interlock with boiler to permit burner operation when damper is open.
 - 5. Hold-open switch for troubleshooting boiler controls.
- C. MOTORS
 - 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

- A. Listed Chimney Liners: High-efficiency boiler or furnace vents in masonry chimney, dishwasher exhaust, or Type II commercial kitchen hood.
- B. Listed Type B and BW Vents: Vents for certified gas appliances.
- C. Listed Type L Vent: Vents for low-heat appliances.
- D. Listed Special Gas Vent: Condensing gas appliances. Unit heaters and duct furnaces
- E. Listed Chimney Liners: High-efficiency boiler or furnace vents in masonry chimney.
- F. Listed Building-Heating-Appliance Chimneys: Dual-fuel boilers, oven vents, water heaters, and exhaust for engines. Fireplaces and other solid-fuel-burning appliances.
- G. Listed, Refractory-Lined Metal Breechings and Chimneys: Freestanding dual-fuel boiler vents, oven vents, water heaters, exhaust for engines, fireplaces, and other solid-fuel-burning appliances. (NOT USED)
- H. Field-Fabricated Metal Breechings and Chimneys: Dual-fuel boilers, oven vents, water heaters, exhaust for engines, fireplaces, and other solid-fuel-burning appliances.

3.3 INSTALLATION GENERAL:

- A. Installations shall be made in accordance with the Specifications of the Underwriters' Laboratories, Inc. and those of the manufacturer, by the manufacturer of an authorized and experienced installer approved by the manufacturer and the Architect.
- B. Chimney shall be set plumb to within 1 inch in 60 feet. Where applicable, grout base plate with non-shrink grout.
- C. Required welding shall be accomplished by certified welders.
- D. Furnish clean out at the ends of headers and drain at the base of risers. Provide temperature plug at the outlet of each boiler.
- E. Provide patching of existing brick chimney at breeching penetration with new brick and mortar to match existing construction. Seal breeching with high temperature cement at penetration.
- F. All connection from appliances to main breeching shall be made with 45 deg laterals fittings.

3.4 INSTALLATION OF LISTED VENTS AND CHIMNEYS

- A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.
- B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- E. Lap joints in direction of flow.
- F. Connect base section to foundation using anchor lugs of size and number recommended by manufacturer.
- G. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.
- H. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

3.5 INSTALLATION OF UL-LISTED, FIELD-FABRICATED BREECHINGS AND CHIMNEYS

- A. Suspend breechings and chimneys independent of their appliance connections.
- B. Install, support, and restrain according to seismic requirements.
- C. Align breechings at connections, with smooth internal surface and a maximum 1/8-inch misalignment tolerance.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- E. Lap joints in direction of flow.
- F. Support breechings and chimneys from building structure with bolts, concrete inserts, steel expansion anchors, welded studs, C-clamps, or beam clamps according to manufacturer's written instructions.

3.6 BAROMETRIC DAMPER INSTALLATION

- A. Install listed components in a manner complying with the listing.
- B. Secure barometric dampers to breechings with hardware compatible with connected materials.
- C. Locate barometric and motorized vent dampers as close to draft hood collar as possible.
- D. Secure barometric and motorized vent dampers to appliances, breechings, or chimneys with hardware compatible with connected materials.

3.7 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

BREECHINGS, CHIMNEYS, AND STACKS

- B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.
- C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 235100

Copyright 2016 by The American Institute of Architects (AIA)

SECTION 235416.13 - GAS-FIRED FURNACES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Gas-fired, condensing furnaces and accessories complete with controls.
 - 2. Air filters.
 - 3. Air cleaners.
 - 4. UV germicidal lights.
 - 5. Humidifiers.
 - 6. Ventilation heat exchangers.
 - 7. Refrigeration components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each furnace to include in emergency, operation, and maintenance manuals.

- 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Furnace and accessories complete with controls.
 - b. Air filter.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Disposable Air Filters: Furnish two complete sets.

1.7 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. Comply with NFPA 70.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace the following components of furnaces that fail in materials or workmanship within specified warranty period:
 - 1. Warranty Period, Commencing on Date of Substantial Completion:
 - a. Furnace Heat Exchanger: 10 years.
 - b. Integrated Ignition and Blower Control Circuit Board: Five years
 - c. Draft-Inducer Motor: Five years.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a qualified testing agency, and marked for intended location and application.
- B. General Requirements for Noncondensing Gas-Fired Furnaces: Factory assembled, piped, wired, and tested; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.

2.2 GAS-FIRED FURNACES, CONDENSING

A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. <u>Rheem Manufacturing Company; Heating and Cooling Products.</u>
- 2. Ruud Air Conditioning Division.
- 3. <u>YORK; a Johnson Controls company</u>.
- B. Cabinet: Galvanized steel.
 - 1. Cabinet interior around heat exchanger shall be factory-installed insulation.
 - 2. Lift-out panels shall expose burners and all other items requiring access for maintenance.
 - 3. Factory paint external cabinets in manufacturer's standard color.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Fan: Centrifugal, factory balanced, resilient mounted, direct drive.
 - 1. Fan Motors: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Special Motor Features: Single speed, premium efficiency, as defined in Section 230513 "Common Motor Requirements for HVAC Equipment," and with internal thermal protection and permanent lubrication.
 - 3. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 4. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control.
- D. Type of Gas: Natural.
- E. Heat Exchanger:
 - 1. Primary: Stainless steel.
 - 2. Secondary: Stainless steel.
- F. Burner:
 - 1. Gas Valve: 100 percent safety modulating main gas valve, main shutoff valve, pressure regulator, safety pilot with electronic flame sensor, limit control, transformer, and combination ignition/fan timer control board.
 - 2. Ignition: Electric pilot ignition, with hot-surface igniter or electric spark ignition.
- G. Gas-Burner Safety Controls:
 - 1. Electronic Flame Sensor: Prevents gas valve from opening until pilot flame is proven; stops gas flow on ignition failure.
 - 2. Flame Rollout Switch: Installed on burner box; prevents burner operation.
 - 3. Limit Control: Fixed stop at maximum permissible setting; de-energizes burner on excessive bonnet temperature; automatic reset.
- H. Combustion-Air Inducer: Centrifugal fan with thermally protected motor and sleeve bearings prepurges heat exchanger and vents combustion products; pressure switch prevents furnace operation if combustion-air inlet or flue outlet is blocked.

- I. Furnace Controls: Solid-state board integrates ignition, heat, cooling, and fan speeds; adjustable fan-on and fan-off timing; terminals for connection to accessories; diagnostic light with viewport.
- J. Capacities and Characteristics: refer to drawings;

2.3 THERMOSTATS

A. All controls shall comply with requirements in ASHRAE/IES 90.1, "Controls." And specification sections 230901 direct digital controls, 230923 sequence of operations.

2.4 AIR FILTERS

- A. Disposable Filters: 1-inch-thick fiberglass media with ASHRAE 52.2 MERV rating of 6 or higher, in sheet metal frame.
- B. Charged Media Air Filters: Sheet metal housing arranged to be ducted in return-air duct connection to furnace; generates electrostatic charge; MERV 10 rating.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine factory-installed insulation before furnace installation. Reject units that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for gas piping systems to verify actual locations of piping connections before equipment installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install gas-fired furnaces and associated fuel and vent features and systems according to NFPA 54.
- B. Suspended Units: Suspend from structure using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.
 - 1. Install seismic restraints to limit movement of furnace by resisting code-required seismic acceleration.
 - 2. Refer to the equipment hanger specification section for spring vibration isolation requirements.

- C. Base-Mounted Units: Secure units to substrate. Provide optional bottom closure base if required by installation conditions.
 - 1. Anchor furnace to substrate to resist code-required seismic acceleration.
- D. Controls: Install thermostats and humidistats at mounting height of 60 inches above floor.
- E. Wiring Method: Install control wiring in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal control wiring except in unfinished spaces.
- F. Install ground-mounted compressor-condenser components on polyethylene mounting base.
- G. Install roof-mounted compressor-condenser components on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

3.3 CONNECTIONS

- A. Gas piping installation requirements are specified in Section 231123 " Natural-Gas Piping." Drawings indicate general arrangement of piping, fittings, and specialties. Connect gas piping with union or flange and appliance connector valve.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Vent and Outside-Air Connection, Condensing, Gas-Fired Furnaces: Connect special gas vent material to furnace connections and extend outdoors. Terminate vent outdoors with a cap and in an arrangement that will protect against entry of birds, insects, and dirt.
 - 1. Slope pipe vent back to furnace or to outside terminal.
- D. Connect ducts to furnace with flexible connector. Comply with requirements in Section 233300 "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Perform electrical test and visual and mechanical inspection.
 - 2. Leak Test: After installation, charge systems with refrigerant and test for leaks. Repair leaks, replace lost refrigerant, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.
 - 4. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
 - 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
CONTRACT NO. 17-521 NEW EQUIPMENT STORAGE BUILDING, VALHALLA CAMPUS

3.5 STARTUP SERVICE

- A. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for physical damage to unit casings.
 - 2. Verify that access doors move freely and are weathertight.
 - 3. Clean units and inspect for construction debris.
 - 4. Verify that all bolts and screws are tight.
 - 5. Adjust vibration isolation and flexible connections.
 - 6. Verify that controls are connected and operational.
- B. Adjust fan belts to proper alignment and tension.
- C. Start unit according to manufacturer's written instructions and complete manufacturer's operational checklist.
- D. Measure and record airflows.
- E. Verify proper operation of capacity control device.
- F. After startup and performance test, lubricate bearings and adjust belt tension.

3.6 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Set controls, burner, and other adjustments for optimum heating performance and efficiency. Adjust heat-distribution features, including shutters, dampers, and relays, to provide optimum heating performance and system efficiency.

3.7 CLEANING

- A. After completing installation, clean furnaces internally according to manufacturer's written instructions.
- B. Install new filters in each furnace within 14 days after Substantial Completion.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain condensing units. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 235416.13