ABBREVIA	ATIONS:			
"	INCH		RM	FRAMED, FRAMING
# &	NUMBER, POUND AND		RT T	FIRE RETARDANT TREATED FOOT, FEET
(E)	FEET EXISTING		TG UT	FOOTING FUTURE
(N)	NEW		- y	YIELD STRESS
@	AT		ΘA	GAUGE
A=	AXIAL FORCE		GALV	GALVANIZED
AB ABV	ANCHOR BOLT ABOVE		GB GC	GRADE BEAM GENERAL CONTRACTOR
ACI ADD	AMERICAN CONCRETE INSTITUTE ADDENDUM, ADDITION		GEN GL	GENERAL GLU-LAMINATED
ADJ	ADJUST, ADJUSTABLE		GLB	GLU-LAMINATED BEAM
AESS AFF	ARCHITECTURALLY EXPOSED STRUCTURAL STEEL ABOVE FINISHED FLOOR		GND GR	GROUND GRADE
ALT	ALTERNATE		GYP	GYPSUM
ALUM APPROX	ALUMINUM APPROXIMATE		GYP BD	GYPSUM BOARD
ARCH ASTM	ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS		HAS HC	HEADED ANCHOR STUD HOLLOW CORE
AVG	AVERAGE	H	HCP	HOLLOW CORE PLANK
AWS	AMERICAN WELDING SOCIETY		HDR HEX	HEADER HEXAGONAL
B/W	BOTTOM OF BETWEEN		H HM	HIGH HOLLOW METAL
BALC	BALCONY	H	HORIZ	HORIZONTAL
BD BEV	BOARD BEVEL		HSS HT	HOLLOW STRUCTURAL SECTION HEIGHT
BKR BLDG	BACKER BUILDING	F	HVAC	HEATING - VENTILATION - AIR CONDITIONING
BLK	BLOCK		вс	INTERNATIONAL BUILDING CODE
BLKG BM	BLOCKING BEAM		CF D	INSULATED CONCRETE FORMS INSIDE DIAMETER
вос	BOTTOM OF CURB	l.	J	ISOLATION JOINT
BOT/BTM BOW	BOTTOM OF WALL		N NFO	INCH, INCHES INFORMATION
BP BRDG	BASEPLATE BRIDGE, BRIDGING		NSP NSUL	INSPECTION INSULATION
BRG	BEARING		NT	INTERIOR
BRK BSMT	BRICK BASEMENT		NV	INVERT
BU	BUILT-UP	J	IT	JOINT, JOINTS
С	CHANNEL	k		KILOPOUND (1000 POUNDS)
C= CEM	COMPRESSION FORCE CEMENT, CEMENTITIOUS		K-FT KIP	KIP-FOOT (1000 POUND - FEET) KILOPOUND (1000 POUNDS)
CGS	CENTER OF GRAVITY OF STRAND			•
CIP CJ	CAST IN PLACE CONTROL JOINT	L	- -AM	ANGLE, LEFT, LENGTH LAMINATE, LAMINATED
CJP CL	COMPLETE JOINT PENETRATION CENTER LINE		.AT .B	LATERAL POUND
CLG	CEILING	L	.F	LINEAL FEET, LINEAR FOOTAGE
CLR CMU	CLEAR CONCRETE MASONRY UNIT		.G .IN	LONG LINEAR
COL	COLUMN	L	IN FT	LINEAL FEET, LINEAR FOOTAGE
COMP	COMPOSITE, COMPENSATION CONCRETE		.L .LH	LIVE LOAD LONG LEG HORIZONTAL
COND	CONDITION CONNECTION		.LV .NTL	LONG LEG VERTICAL LINTEL
CONSTR	CONSTRUCTION	L	ONG	LONGITUDINAL
CONT	CONTINUOUS COORDINATE		.S .SH	LONG SLOTTED LONG SIDE HORIZONTAL
CORR	CORRIDOR	L	SL	LAMINATED STRAND LUMBER
CTR CTRL	CENTER CONTROL		.SV .T WT	LONG SIDE VERTICAL LIGHT WEIGHT
CTSK CU	COUNTERSINK CUBIC	L	.VL	LAMINATED VENEER LUMBER
CUST	CUSTOM		ЛАX	MAXIMUM
CY	CUBIC YARD		ИВ ИС	MACHINE BOLT MISCELLANEOUS CHANNEL
DBA	DEFORMED BAR ANCHOR	N	ИСJ	MASONRY CONTROL JOINT
DBL DEFL	DOUBLE DEFLECTION		ИЕСН ИЕМВ	MECHANICAL MEMBRANE
DEG DEMO	DEGREE DEMOLITION		MEP MEZZ	MECHANICAL, ELECTRICAL, PLUMBING MEZZANINE
DEPT	DEPARTMENT	l l	ИFR	MANUFACTURER
DET DIA - Ø	DETAIL DIAMETER		ЛIN ЛISC	MINIMUM MISCELLANEOUS
DIAG	DIAGONAL		MO ATI	MASONRY OPENING
DIM DKG	DIMENSION DECKING		ИTL ИTL	METAL METAL
DL DWG	DEAD LOAD DRAWING	N	ИUL	MULLION
DWGS	DRAWINGS		1	NORTH CONTRACT
DWL	DOWEL		10 11C	NOT IN CONTRACT NUMBER
EA EF	EACH EACH FACE		NOM NTS	NOMINAL NOT TO SCALE
EIFS	EXTERIOR INSULATED FINISH SYSTEM		NW	NORMAL WEIGHT
EJ EL	EXPANSION JOINT ELEVATION		OC .	ON CENTER
ELEC	ELECTRICAL		DD DPNG	OUTSIDE DIAMETER
ELEV ENGR	ELEVATOR ENGINEER		OPP	OPENING OPPOSITE
EOD EOP	EDGE OF DECK EDGE OF PLATE		OSB OWSJ	ORIENTED STRAND BOARD OPEN WEB STEEL JOIST
EOR	ENGINEER OF RECORD			
EOS EQ	EDGE OF SLAB EQUAL		P/L PAF	PROPERTY LINE POWDER ACTUATED FASTENER
EQPT ES	EQUIP EACH SIDE	F	PC PCF	PRECAST POUNDS PER CUBIC FOOT
EW	EACH WAY	F	Pd	DRIFTED SNOW LOAD
EXIST EXP	EXISTING EXPANSION		PE PEMB	PROFESSIONAL ENGINEER PRE ENGINEERED METAL BUILDING
EXT	EXTERIOR	F	PERF	PERFORATE, PERFORATED, PERFORMANCE
F TO F	FACE TO FACE		PERIM PERP	PERIMETER PERPENDICULAR
F'c FAB	CONCRETE COMPRESSIVE STRENGTH	F	Pf PJP	FLAT ROOF SNOW LOAD PARTIAL JOINT PENETRATION
FB	FABRICATIONS/FABRICATED FLAT BAR	F	PL	PLATE
FD FF	FLOOR DRAIN FINISH FLOOR		PLF PLWD	POUNDS PER LINIER FOOT PLYWOOD
FFE	FINISH FLOOR ELEVATION	F	PMEJ	PREMOLDED EXPANSION JOINT
FIN FLR	FINISH FLOOR		PMF PNL	PREMOLDED FILLER PANEL
FNDN FOC	FOUNDATION FACE OF CONCRETE	F	PREFAB PREFIN	PREFABRICATED PREFINISHED
FOF	FACE OF FINISH	F	Ps	SLOPED ROOF SNOW LOAD
FOM FOS	FACE OF MASONRY FACE OF STUD		PSF PSI	POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH
FR	FIRE RATED, FIRE RESISTIVE		PSL	PARALLEL STRAND LUMBER

PT PTD	PRESSURE TREATED PAINTED
QTY	QUANTITY
R	RISER
R=	BEAM END SHEAR REACTION
RAD	RADIUS
RCP	REFLECTED CEILING PLAN
RD	ROOF DRAIN
REF	REFER - REFERENCE
REINF	REINFORCING
REQ'D	REQUIRED
REV	REVISION
RO	ROUGH OPENING
SCHED	SCHEDULE
SCL	STRUCTURAL COMPOSITE LUMBER
SE	STRUCTURAL ENGINEER
SECT	SECTION
SF	SQUARE FEET
SGL	SINGLE
SHT	SHEET
SHTG	SHEATHING
SIM	SIMILAR
SIMP	SIMPSON STRONG TIE
SL	SNOIW LOAD
SOG	SLAB ON GRADE
SPEC	SPECIFICATIONS
SQ	SQUARE
SS	STAINLESS STEEL
STD	STANDARD
STL	STEEL
	STRUCTURAL
	SUSPENDED
SYS	SYSTEM
T Top	TREAD
	TOP AND BOTTOM
T&G	TONGUE AND GROOVE
T/	TOP OF
T=	TENSION FORCE
TAN	TANGENT
THK	THICK
THRD	
TOB	TOP OF BEAM
TOC	,
TOF	
TOJ	TOP OF JOIST
TOL	TOP OF LINTEL, LANDING
TOL	TOLERANCE
TOP	
TOPV	•
TOS	TOP OF STEEL, TOP OF SLAB
	·
TOW	TOP OF WALL
TRANS	TRANSVERSE
TRANSL	
TYP	TYPICAL
UNO UTIL	UNLESS NOTED OTHERWISE UTILITY
VERT	VERTICAL
VFY VIF	VERIFY VERIFY IN FIELD
W	SNOW DRIFT WIDTH
W/	WITH
W/O	WITHOUT
WCJ	WALL CONTRACTION JOINT
WD	WOOD

WR

WS

WT

WWF

WORK POINT

WATERSTOP

WELDED WIRE FABRIC

WEIGHT

WATER RESISTANT, WATER RESISTIVE

PROJECT DESCRIPTION

- TWO STORY FIRE DEPARTMENT A. STEEL TRUSSES
- B. LOAD-BEARING MASONRY WALLS C. COMPOSITE STEEL AND CONCRETE DECK AT MEZZANINE
- D. CONVENTIONAL REINFORCED CONCRETE FOUNDATIONS

- . THE STRUCTURAL DRAWINGS ARE A PORTION OF THE CONTRACT DOCUMENTS AND ARE INTENDED TO BE USED IN CONJUNCTION WITH THE ARCHITECTURAL, CIVIL, MECHANICAL, AND ELECTRICAL DRAWINGS. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING THE REQUIREMENTS FROM THE ENTIRE SET OF CONTRACT DOCUMENTS (INCLUDING THE PROJECT SPECIFICATIONS) INTO THEIR WORK.
- 2. THESE GENERAL NOTES SUPPLEMENT THE PROJECT SPECIFICATIONS. REFER TO THE PROJECT SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS.
- 3. NOTES AND DETAILS ON THE STRUCTURAL DRAWINGS SHALL TAKE PRECEDENCE OVER THE GENERAL STRUCTURAL NOTES AND TYPICAL DETAILS.
- 4. VERIFY ALL DIMENSIONS WITH THE ARCHITECTURAL DRAWINGS.
- 5. DETAILS ON THESE PLANS ARE INTENDED TO DEPICT THE GENERAL CONSTRUCTION METHODS FOR THIS STRUCTURE. CONNECTIONS, DETAILS, AND CONDITIONS NOT SPECIFICALLY SHOWN THAT ARE SIMILAR TO THOSE THAT ARE SPECIFIED SHALL BE ASSUMED ONE AND THE SAME. IF QUESTIONS REGARDING THE APPLICATION OF DETAILS ARE ENCOUNTERED, NOTIFY THE ARCHITECT/ENGINEER FOR CLARIFICATION IN A TIMELY MANNER PRIOR TO BID OPENING.

- CONFORM TO 2018 INTERNATIONAL BUILDING CODE AS ADOPTED W/ AMMENDMENTS BY THE 2020 NYS BUILDING CODE.
- 2. ALL REFERENCE TO OTHER CODES AND STANDARDS (ACI, ASCE, ASTM, ETC.) SHALL BE FOR THE EDITIONS LISTED IN CHAPTER 35 OF THE IBC.

- TEMPORARY CONDITIONS: THE STRUCTURE HAS BEEN DESIGNED TO FUNCTION AS A UNIT UPON COMPLETION. THE CONTRACTOR IS RESPONSIBLE FOR FURNISHING ALL TEMPORARY BRACING AND/OR SUPPORT REQUIRED AS A RESULT OF THE CONTRACTOR'S CONSTRUCTION METHODS AND/OR SEQUENCES.
- 2. CONTRACTOR'S CONSTRUCTION METHODS AND/OR SEQUENCES SHALL RECOGNIZE AND CONSIDER THE EFFECTS OF THERMAL MOVEMENTS OF STRUCTURAL ELEMENTS DURING THE CONSTRUCTION

1. DESIGN WAS BASED ON THE STRENGTH AND DEFLECTION CRITERIA OF THE IBC. IN ADDITION TO THE DEAD LOADS, THE FOLLOWING LOADS AND ALLOWANCES WERE USED FOR DESIGN, WITH LIVE LOADS (L.L.) REDUCED IN ACCORDANCE WITH THE IBC:

A. RISK CATEGORY	IV
B. DEAD LOADS	UNIFORM
1. ROOF	
 ROOFING & INSULATION 	12 PSF
 ROOF DECK 	3 PSF
 FRAMING 	9 PSF
 MEP ALLOWANCE 	7 PSF
 CEILINGS 	3 PSF
TOTAL ROOF DEAD LOAD	34 PSF
2. SECOND FLOOR	
 6" NW COMPOSITE SLAB 	63 PSF
 FRAMING 	8 PSF
 MEP ALLOWANCE 	10 PSF
 CEILINGS 	3 PSF
 MISCELLANEOUS 	3 PSF
 EQUIPMENT 	PER PLAN
TOTAL SECOND FLOOR DEAD LOAD	87 PSF

	• EQUIPMENT		PER PLAN
	 TOTAL SECOND FLOOR DEAD LOAD 		87 PSF
C.	LIVE LOADS	UNIFORM	CONCENTRATED
	1. ELEVATED SLABS	80 PSF	2000 LBS
	A. STORAGE AREAS	125 PSF	
	2. SLAB-ON-GRADE	100 PSF	2000 LBS
	3. STAIRS (DELEGATED SUBMITTAL)	100 PSF	300 LBS
	4. HANDRAILS (DELEGATED SUBMITTAL)	50 PLF	200 LBS
D.	SNOW LOADS		UNIFORM
	1. GROUND SNOW LOAD, Pg		40 PSF
	2 FLAT ROOF SNOW LOAD Pf		37 PSF

D.	SN	OW LOADS	UNIFORM
	1.	GROUND SNOW LOAD, Pg	40 PSF
	2.	FLAT ROOF SNOW LOAD, Pf	37 PSF
	3.	EXPOSURE FACTOR, Ce	1.0
	4.	THERMAL FACTOR, Ct	1.1
	5.	IMPORTANCE FACTOR, Is	1.2
	6.	SLOPE FACTOR, Cs	1.0
	7.	SLOPED ROOF SNOW LOAD, Ps & Pbal	37 PSF
	8.	UNBALANCED SLOPED ROOF SNOW LOAD	
		A. WINDWARD - FROM EAVE TO RIDGE	9.6 PSF
		B. LEEWARD - FROM RIDGE TO 13'-6"	64.2 PSF
		C. LEEWARD - FROM 13'-6" TO EAVE	32 PSF
	9.	SNOW DRIFT	

Wd

LOCATION	Wd	Pd START (PSF)	Pd END (PSF)
COLUMN LINE 7	20'-0"	48	0
COLUMN LINE 1	4'-9"	60	38

A.	A. WIND LOADS				
	1.	WIND VELOCITY, V _{ULT}	125 MPH		
	2.	WIND VELOCITY, V _{ASD}	97 MPH		
	3.	EXPOSURE CATEGORY	С		
	4.	INTERNAL PRESSURE COEFFICIENT, GCpi	+/-0.18		
	5.	COMPONENTS & CLADDING PRESSURES - STRENGTH LEVEL	UNIFORM		
		ZONE 1' - ROOF FIELD	+24.0/-58.0 PSF		
		 ZONE 1 - ROOF INTERIOR PERIMETER 	+24.0/-58.0 PSF		
		- OVERHANG	-76.0 PSF		
		ZONE 2 - ROOF EDGE	+23.5/-93.0 PSF		
		- OVERHANG	-110.0 PSF		
		ZONE 3 - ROOF CORNER	+24.0/-100.0 PSF		
		- OVERHANG	-130.0 PSF		
		ZONE 4 - WALL SURFACE	+41.0/-44.0 PSF		
		ZONE 5 - WALL CORNER	+41.0/-55.0 PSF		

2 ZONE 3 - WALL CONNER	+41.0/-33.0 F31
A. SEISMIC LOADS	
1. SITE CLASS	В
2. IMPORTANCE FACTOR, le	1.5
3. SEISMIC DESIGN CATEGORY	Α
4. EARTHQUAKE SPECTRAL RESPONSE, Ss	0.174
 EARTHQUAKE SPECTRAL RESPONSE (1 SECOND), S₁ 	0.064
6. DESIGN SPECTRAL RESPONSE, SDS	0.104
7. DESIGN SPECTRAL RESPONSE (1 SECOND), SD1	0.034
8. SEISMIC RESISTING SYSTEM	
- DEADING WALL SYSTEMS ODDINADY DEINICODGED MA	CONDVICTEAD WALLS

 BEARING WALL SYSTEMS - ORDINARY REINFORCED MASONRY SHEAR WALLS 9. RESPONSE MODIFICATION FACTOR, R 10. DEFLECTION AMPLIFICATION FACTOR, Cd

11. SEISMIC RESPONSE COEFFICIENT, Cs 12. BASE SHEAR, V 13. ANALYSIS PROCEDURE

1.75 64 KIPS (ASD WIND) **EQUIVALENT LATERAL** FORCE PER ASCE 7-16 SECTION 12.8

FOUNDATION DESIGN IS BASED ON THE GEOTECHNICAL REPORT, DATED AUGUST 4, 2022 PREPARED BY KEYSTONE ASSOCIATES REPORT # 1981.30121. SOIL BEARING PRESSURE NOT TO EXCEED 3000 PSF FOR FOOTINGS WITHIN BUILDING FOOTPRINT. REFER TO GEOTECHNICAL REPORT FOR ALL PROJECT REQUIREMENTS PERTAINING TO EARTHWORK, INCLUDING BUT NOT LIMITED TO, EXCAVATION, BACKFILLING, COMPACTION, AND MATERIALS.

- 2. FOUNDATION SYSTEM CONCRETE WALLS, COLUMN PIERS, SLABS-ON-GRADE AND SPREAD AND MAT FOOTINGS.
- 3. ALL FOOTINGS SHALL BE A MINIMUM OF 48" BELOW LOWEST FINAL GRADE (OR FLOOR SLAB) FOR EXTERIOR FOOTINGS AND 12" FOR INTERIOR FOOTINGS FOR BEARING ON MEDIUM PLASTICITY SOILS, OR FROST DEPTH.
- 4. FOUNDATION UNITS SHALL BE CENTERED UNDER SUPPORTED STRUCTURAL MEMBERS, UNLESS NOTED OTHERWISE ON THE DRAWINGS.
- 5. THE CONTRACTOR SHALL REVIEW ALL GEOTECHNICAL ENGINEER RECOMMENDATIONS PRIOR TO THE COMMENCEMENT OF ANY SITE WORK.
- 6. STRUCTURAL FILL MATERIALS, PLACEMENT, AND COMPACTION REQUIREMENTS SHALL BE IN ACCORDANCE WITH
- THE GEOTECHNICAL REPORT. 7. PLACEMENT OF ALL FILL SHALL BE OBSERVED AND TESTED FOR RELATIVE COMPACTION BY A QUALIFIED

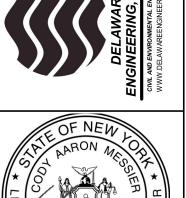
TECHNICIAN UNDER THE GUIDANCE OF THE GEOTECHNICAL ENGINEER. MINIMUM TESTING FREQUENCY SHALL BE

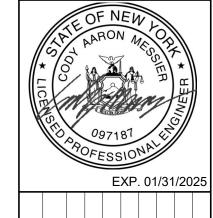
- ESTABLISHED BY THE GEOTECHNICAL ENGINEER. 8. THE CONTRACTOR SHALL NOTIFY THE GEOTECHNICAL ENGINEER PRIOR TO COMMENCEMENT OF FILLING
- 9. ALL GENERAL EXCAVATIONS AND FOOTINGS SHALL BE INSPECTED AND APPROVED PRIOR TO THE PLACEMENT OF
- 10. ALL FILL, BACKFILL AND COMPACTION ACTIVITIES, PARTICULARLY DURING WET WEATHER CONDITIONS, SHALL FOLLOW RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER.
- 11. PLACE BACKFILL AND FILL MATERIALS IN HORIZONTAL LAYERS NOT MORE THAN 8" IN LOOSE DEPTH FOR MATERIAL COMPACTED BY HEAVY COMPACTION EQUIPMENT, AND NOT MORE THAN 6" IN LOOSE DEPTH FOR
- MATERIAL COMPACTED BY HAND-OPERATED TAMPERS. 12. ALL FOUNDATION ELEMENTS ARE TO BE PLACED ON COMPACTED STRUCTURAL FILL. THE BUILDING FOOTPRINT SHALL BE UNDERCUT TO ELEVATION 185.50' AND BACKFILLED WITH APPROVED STRUCTURAL FILL TO TOP OF SUBGRADE ELEVATION. STRUCTURAL FILL SHALL EXTEND 1'-0" MINIMUM BEYOND THE FOUNDATION ELEMENT AND
- THEN DOWNWARD TO NATURAL SOILS AT 185.50' WITH A SLOPE OF 1.5 HORIZ. TO 1 VERT DOWN. 13. BACKFILL AND FILL MATERIALS SHALL BE COMPACTED TO 95% OF MAXIMUM DRY DENSITY ACCORDING TO THE MODIFIED PROCTOR TEST (ASTM D-1557).
- 14. BACKFILL AGAINST FOUNDATION WALLS BELOW GRADE SO THAT THE DIFFERENCE IN THE FILL LEVEL ON OPPOSITE SIDES OF THE WALL DOES NOT EXCEED 1'-0" AT ANY TIME.
- 15. EACH PRIME CONTRACTOR SHALL PROVIDE ALL TRENCHING WORK REQUIRED FOR ITS CONTRACT, INCLUDING TRENCH EXCAVATION, AND BACKFILL (WITH ACCEPTABLE FILL, SEE GEOTECHNICAL REPORT) TO WITHIN 1'-0" OF FINISH GRADE/FLOOR. ALL TRENCHING WORK WITHIN THE BUILDING FOOTPRINT SHALL BE COORDINATED WITH THE GENERAL CONTRACTOR. GENERAL CONTRACTOR MUST ACCEPT, IN WRITING, THE QUALITY OF THE TRENCH BACKFILL OF OTHER PRIME CONTRACTORS BEFORE BEGINNING WORK OVER THE TOP OF THE TRENCH.
- 16. EXCAVATION AND BACKFILL OPERATIONS SHALL BE MAINTAINED IN A DRY CONDITION. SURFACE AND INFILTRATING WATER SHALL BE REMOVED BY SITE GRADING AND PUMPING FROM SUMPS AS REQUIRED.
- 17. NO FOUNDATION CONCRETE SHALL BE PLACED IN WATER OR ON FROZEN SUBGRADE MATERIAL.
- 18. PROTECT IN-PLACE FOUNDATIONS AND SLABS FROM FROST PENETRATION UNTIL THE PROJECT IS COMPLETED.
- 19. THE CONTRACTOR IS RESPONSIBLE FOR EXCAVATION SAFETY. EXCAVATIONS MUST BE PERFORMED IN ACCORDANCE WITH THE CURRENT OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) STANDARDS.
- 20. PROVIDE TEMPORARY OR PERMANENT SUPPORTS WHETHER SHORING. SHEETING OR BRACING SO THAT NO HORIZONTAL MOVEMENT OR VERTICAL SETTLEMENT OCCURS TO EXISTING STRUCTURES, STREETS OR UTILITIES ADJACENT TO THE PROJECT SITE.

OPERATIONS.

ANY SOIL BACKFILL AND/OR CONCRETE.

 ALL CONCRETE WORK SHALL CONFORM TO "ACI 318 - BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE" AND CHAPTER 19 OF THE NEW YORK STATE BUILDING CODE.


2. CONCRETE STRENGTHS SHALL BE VERIFIED BY STANDARD 28-DAY CYLINDER TESTS PER ASTM C39, UNLESS NOTED OTHERWISE, AND SHALL BE AS INDICATED IN SPECIFICATION 03300 & BELOW


	EXPOSURE CLASS	AIR	f'c	MAX W/C
LOCATION	F S W C	CONTENT	psi	RATIO
INT. SLAB-ON-GRADE	F0 S0 W0 C0	1.0% - 3.0%	4000	0.50
INT. SLAB-ON-DECK	F0 S0 W0 C0	1.0% - 3.0%	3500	0.50
EXT. SLAB-ON-GRADE	F3 S0 W0 C2	4.5% - 7.5%	5000	0.40
PIERS/FDN/RETAINING WALLS	F2 S0 W0 C1	4.5% - 7.5%	4500	0.45
FOOTINGS	F0 S1 W0 C1	1.0% - 3.0%	4000	0.50

- 3. MINIMUM CEMENT CONTENT PER CUBIC YARD SHALL BE AS INDICATED IN ACI 301 TABLE 4.2.2.1 & SPECIFICATION
- 4. THE CONTRACTOR SHALL SUBMIT CONCRETE MIX DESIGNS, ALONG WITH TEST DATA COMPLIANT WITH ACI-318 CHAPTER 5, A MINIMUM OF TWO WEEKS PRIOR TO PLACING CONCRETE.
- 5. UNLESS NOTED OTHERWISE, ALL CONCRETE SHALL BE NORMAL WEIGHT CONCRETE (±145 PCF) WITH ALL CEMENT CONFORMING TO ASTM C150, TYPE I / II. MAXIMUM AGGREGATE SIZE SHALL BE 1-1/2" FOR FOOTINGS AND 3/4" FOR WALLS AND SLABS, CONFORMING TO ASTM C33.
- 6. NO WATER MAY BE ADDED TO CONCRETE IN THE FIELD UNLESS IT CONFORMS TO THE APPROVED MIX DESIGN AND IS SPECIFICALLY APPROVED IN WRITING BY THE CONCRETE SUPPLIER.
- 7. A WATER REDUCING ADMIXTURE CONFORMING TO ASTM C494 USED IN STRICT CONFORMANCE WITH THE MANUFACTURER'S RECOMMENDATIONS SHALL BE INCORPORATED INTO CONCRETE MIX DESIGNS. A HIGH RANGE WATER REDUCING ADMIXTURE CONFORMING TO ASTM C494 TYPE "F" OR TYPE "G" MAY BE USED IN CONCRETE MIXES, PROVIDED THAT THE SLUMP DOES NOT EXCEED 10-INCHES.
- 8. CONCRETE SHALL BE PLACED IN ONE CONTINUOUS OPERATION WHEREVER PRACTICAL. CONSTRUCTION JOINTS IN BEAMS, JOISTS, AND SLABS SHALL BE LOCATED AT MID-SPAN WITH REINFORCING CONTINUING THROUGH AS IF THE JOINT DID NOT OCCUR. VERTICAL CONSTRUCTION JOINTS IN WALLS SHALL BE LOCATED MIDWAY BETWEEN COLUMNS OR PILASTERS.
- 9. SLEEVES, OPENING, CONDUITS, AND OTHER EMBEDDED ITEMS NOT SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE APPROVED BY THE STRUCTURAL ENGINEER PRIOR TO PLACING CONCRETE. CONDUITS EMBEDDED IN SLABS SHALL NOT BE LARGER IN OUTSIDE DIMENSION THAN ONE-THIRD THE THICKNESS OF THE SLAB AND SHALL NOT BE SPACED CLOSER THAN THREE DIAMETERS ON-CENTER.
- 10. ALL BOLTS AND/OR ANCHOR RODS EMBEDDED INTO CONCRETE SHALL CONFORM TO ASTM SPECIFICATION F1554 GRADE 36 UNLESS NOTED OTHERWISE ON THE STRUCTURAL DRAWINGS.
- 11. ANCHOR RODS ARE TO BE LOCATED BY MEANS OF TEMPLATE. ANCHOR RODS SHALL NOT BE HAND SET OR WET
- 12. ANCHOR RODS AND EMBEDDED ITEMS SHALL BE SET IN ACCORDANCE WITH THE AISC CODE OF STANDARD PRACTICE SECTION 7.5.
- 13. WHERE NEW CONCRETE IS PLACED AGAINST EXISTING CONCRETE, THE EXISTING CONCRETE SURFACE SHALL BE CLEANED AND ROUGHENED TO A MINIMUM 1/4" AMPLITUDE.
- 14. PROVIDE 3/4" CHAMFERS ON ALL EXPOSED CONCRETE EDGES, UNLESS NOTED OTHERWISE.
- 15. PREPARATION, CONSTRUCTION, AND PROTECTION OF CONCRETE DURING COLD WEATHER OR HOT WEATHER SHALL CONFORM TO ACI 318 26.5.4, 26.5.5, AND ACI 306R AND 305R.

NOT STRUCTURAL

SHEET:

TERING PERSON SHALL COMPLY WITH THE REQUIREMENTS OF NEW YORK EDUCATION LAW, SECTION 7209.2.