CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

50 SANATORUM ROAD POMONA, NY 10970

BID DOCUMENTS: SEPTEMBER 09, 2024

SPECIFICATIONS TABLE OF CONTENTS

DIVISION	SECTION TITLE	PAGES
DIVISION	22 – PLUMBING	
220500	COMMON WORK RESULTS FOR PLUMBING	11
220500	COMMON WORK RESULTS FOR FLUMBING COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT	2
220523.12	BALL VALVES FOR PLUMBING PIPING	4
220523.13	BUTTERFLY VALVES FOR PLUMBING PIPING	4 7
220523.14	CHECK VALVES FOR PLUMBING PIPING	
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT	11
220553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT	6
220593	TESTING, ADJUSTING, AND BALANCING FOR PLUMBING	10
220719	PLUMBING PIPING INSULATION	14
221116	DOMESTIC WATER PIPING	9
221119	DOMESTIC WATER PIPING SPECIALTIES	3
221123.13	DOMESTIC WATER PACKAGED BOOSTER PUMPS	9
DIVISION	26 – ELECTRICAL	
260500	COMMON WORK RESULTS FOR ELECTRICAL INSTALLATIONS	11
260519	LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	5
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS	6
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	11
26054816	SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS	8
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	13
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	6

END OF TABLE OF CONTENTS

SECTION 22 05 00 COMMON WORK RESULTS FOR PLUMBING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. These basic requirements apply to all Division 22000 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>Plumbing and related work</u> for this project, as required by the contract documents.

1.02 RELATED SECTIONS

A. Refer to Division 1 Specification.

1.03 REFERENCES

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. ASPE American Society of Plumbing Engineers.
- C. UL Underwriters Laboratory.
- D. NFPA National Fire Protection Association.

1.04 REGULATORY REQUIREMENTS

- A. Conform to New York State Building Code.
- B. Plumbing: Conform to New York State Plumbing Code
- C. Obtain permits, and request inspections from authority having jurisdiction.

1.05 QUALITY ASSURANCE

- A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field, which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the Contract, or otherwise performing work required by the Contract.
- B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm

licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.06 PROJECT/SITE CONDITIONS

- A. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.07 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all plumbing work and related work including but not limited to the following:
 - Demolition of existing systems
 - Domestic Water Booster Pump
 - Hangers and Supports.
 - Pipe valve and fittings
 - Pipe Insulation
 - Identification
 - Coordination
 - Phasing
 - Shop Drawings
 - As-Built Drawings and Maintenance Manuals
 - Warrantees

PART 2 PRODUCTS – NOT USED

PART 3 - EXECUTION

3.01 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Where corrosion can occur, appropriate corrosion resistant materials and assembly methods must be used including isolation of dissimilar metals against galvanic interaction. Resistance to corrosion must be achieved by the use of the appropriate base materials. Coatings shall be restored to only when specifically permitted by the Specification.
- C. Construct all equipment in accordance with requirements of all applicable codes. All pressure vessels and safety devices that fall within the scope of the ASME Code shall conform to the Code and bear the ASME label or stamp.

- D. Match and balance all system components to achieve compatibility of equipment or satisfactory operation and performance throughout the entire operating temperature and control ranges. All installations shall be in accordance with manufacturer's recommendations.
- E. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of year from the date of acceptance by the owner, in writing. Certain equipment, such as underground fuel tanks, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.02 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

- A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of the all items listed in the following paragraph.
- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all equipment noted and scheduled on plans including but not limited to the following:
 - Piping, Valves and fittings and specialties for Domestic systems
 - Hangers and Supports.
 - Domestic Water Booster Pump, controls and accessories
 - Pipe Insulation
 - Hangers and Inserts
 - Piping Layout (3/8 scale)
 - Coordinated plumbing plan indicating all other trades existing and new in the area of work
- D. The contractor shall, upon award, submit a schedule for the engineer's review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manor as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.
- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- E. Coordination shop drawings shall indicate all new lights, walls, piping, ductwork, structural elements, existing work, etc. and dimension locations of plumbing piping including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have

been reviewed, said review does not mean that drawings have been checked in detail; said review does not substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications.

H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.

J Approval of shop drawings

- 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
- 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
- 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
- 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.
- K. The contractor shall submit a composite shop drawing layout plan. This shall include all trades including plumbing mechanical and electrical trades. It shall indicate all equipment, piping conduit. It shall include an accurate architectural background. The composite drawing is for contractors and subcontractors to coordinate their work with the work of other trades prior to submitting to the engineer for review and approval. Identify equipment clearances as required for service and maintenance by the manufacture. Indicate conflicts for resolution.

3.03 CHARTS AND TAGS

- A. The Contractor shall provide three sets of charts and diagrams of all piping systems indicating the number and location of valves, etc.
- B. All valves shall be designated with brass tags.
- C. Comply with Supplemental and General Conditions

3.04 CODES AND STANDARDS

- A. All equipment and installation methods shall conform to the applicable standards and/or recommendations set forth in but not limited to the following;
 - The New York State Building, Plumbing, and Energy Conservation Code
- B. As well as all applicable referenced standards.

3.05 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required for his work.

3.06 PAINTING

A. All piping and equipment shall be painted in colors conforming with OSHA Standards.

3.07 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- B. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- C. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- D. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.08 CUTTING AND PATCHING

- B. All cutting and patching required for conduits, etc., passing through walls, floors, and roof shall be provided by this Contractor under this contract unless otherwise noted.
- C. Patching materials and application shall match existing construction. It also includes patch to match any voids left behind by removals. Hire a skilled tradesman (mason, carpenter, etc.) to perform this work.
- D. Where applicable, new holes for piping installation shall be core drilled.
- E. Pipe Sleeves & Fire-stopping:
 - 1. Provide for all pipes, conduits ducts, and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe. When pipe, conduit ducts or other such element penetrates other than fire rated assembly and is

- insulated, insulation shall pass continuously through sleeves with 1/2 inch clearance between insulation and sleeve.
- 2. Where pipes, conduits and other such elements penetrate fire rated assemblies, or where holes or voids are created to extend mechanical systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- F. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.
- G. Submit location drawings and sizes for review prior to installation.

3.09 PROTECTION-COORDINATE WITH DIVISION 1

- A. Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with in-so-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.
- F. All openings cut in walls, floors, roof or ceilings of the building, for pipe, etc., shall be closed off with box-type temporary protective enclosures of ½" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and watertight.
- F. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of ½" hardboard, "Masonite", laid with joints taped together. Roofs shall be protected with ½" plywood.

3.10 EQUIPMENT SUPPORTS

A. Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.

3.11 WELDING

A. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.

- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- C. Provide all temporary ventilation, and ventilation air systems required during welding operations as required by OSHA.

3.12 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing the actual installation and locations of all piping and roof drains.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1.

3.13 CONDITIONS

- A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.
- C. Discrepancies: In the event of a discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.14 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.15 CLOSING-IN OF UNINSPECTED WORK

A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.

B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.16 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction to suit conditions. Provide all labor and material to facilitate installation.

3.17 COOPERATION WITH OTHER TRADES / PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- B. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.
- C. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipments, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, roof drains, etc.
- D. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the PLUNBING contractor shall submit a schedule in writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner. The contractor shall include in his bid all costs associated with providing temporarily piping, pumps, hot water heaters, to maintain operations outside the area of work while work is being performed. It shall also be noted that piping will have to be extended through the other areas in order to reach the area(s) under construction as part of this work. The contractor shall include in his bid all provisions to perform such phasing work. This note is typical for phases.

3.18 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.19 COMPLETENESS

A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer.

3.20 FIRE PREVENTION DURING HOT WORK

- H. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. The contractor shall furnish a suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- I. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- J. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings, and roofs from the operations.

3.21 SAFETY MEASURES

- A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to ensure that each area is safe. The Contractor is responsible for arranging and paying for each test.
- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper, and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.
- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings, and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.
 - G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect

for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.

- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. A suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor from performing his work within the Contract period for the Contract price.

3.22 USE OF OWNERS EQUIPMENT

A. The contractor shall not use any of the owner's HVAC system or equipment, new or existing, for any purpose. The contractor shall provide temporary HVAC equipment, ductwork, power, and controls for use during construction for the purpose of ventilation, or heating during the construction process. All such equipment, ductwork, power, and controls shall be removed and the completion of work.

3.23 CLOSEOUT PROCEDURES

- A. General Operating and Maintenance Instructions: Arrange for each installer of operating equipment and other work that requires regular or continuing maintenance, to meet at the site with the Owner's personnel to provide necessary basic instructions in the proper operation and maintenance of the entire Work. Where installers are not experts in the required procedures, include instruction by the manufacturer's representatives.
- B. Where applicable, provide instruction and training, including application of special coatings systems, at the manufacturer's recommendation.
- C. Provide a detailed review of the following items:
 - 1. Maintenance manuals
 - 2. Record documents and catalog cuts for each piece of equipment.
 - 3. Spare parts and materials
 - 4. Tools
 - 5. Lubricants
 - 6. Fuels
 - 7. Identification systems
 - 8. Control sequences
 - 9. Hazards
 - 10. Cleaning

- D. Warranties, bonds, maintenance agreements, and similar continuing commitments.
- E. Demonstrate the following procedures:
 - 1. Start-up
 - 2. Shut-down
 - 3. Emergency operations
 - 4. Noise and vibration adjustments
 - 5. Safety procedures
 - 6. Economy and efficiency adjustments
 - 7. Periodic maintenance
- F. Prepare a written agenda for the session and submit it for review and approval. Include date, location, purpose, specific scope, proposed attendance, and session duration.
- G. Record training sessions in digital format, format as selected by the Owner. Turn over digital files to the Owner after training has been completed.

END OF SECTION

SECTION 22 05 13 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Division 24 Equipment Wiring Systems: Electrical characteristics and wiring connections.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

1.4 REFERENCES

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AFBMA 11 Load Ratings and Fatigue Life for Roller Bearings.
- C. NEMA MG 1 Motors and Generators.
- D. NFPA 70 National Electrical Code.

1.5 REGULATORY REQUIREMENTS

- A. Conform to UL Component Recognition for appropriate sizes.
- B. Conform to NFPA 70 applicable electrical code, Underwriters Laboratories, Inc., and NEMA

C. Conform to New York State energy code.

1.6 DELIVERY, STORAGE, AND PROTECTION

A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weatherproof covering. For extended outdoor storage, remove motors from equipment and store separately.

1.7 WARRANTY

A. Provide five year manufacturer warranty for all motors larger than ½ horsepower.

PART 2 - PRODUCTS

MANUFACTURERS

- A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Gould.
 - 2. Century.
 - 3. General Electric.
 - 4. Square D

2.2 GENERAL MOTOR REOUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.
- C. All electric motors of sizes and types as specified for driving mechanical equipment shall be provided under this section.
- D. Electrical Service: All motors shall be 60 Hertz unless otherwise noted. Refer to Electrical Specifications for required electrical characteristics.
- E. Motors: Design for continuous operation in 40° C environment, and for temperature rise in accordance with ANSI/NEMA MG limits for insulation class, Service Factor, and motor enclosure type. Motors shall be of sufficient size for duty to be performed.
- F. Visible Nameplate: Indicating manufacturer's name and model number, motor horsepower, RPM, frame size, voltage, phase, cycles, full load amps, insulation system class, service factor,

maximum ambient temperature, temperature rise at rated horsepower, minimum efficiency, power factor.

- G. Electrical Connection: Conduit connection boxes, threaded for conduit. For fractional horsepower motors where connection is made directly, provide screwed conduit connection in end frame. Size motor boxes to receive motor feeders and ground cable indicated on electrical drawing schedules.
- H. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- I. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 MOTOR EFFICIENCY

- A. Electric motors shall meet the minimum efficiency requirement of the following tables in accordance with the International Energy Conservation Code when tested in accordance with DOE CFR 431. Performance data shall be certified by an approved testing agency.
- B. Subtype I motors NEMA premium efficiency as per table NEMA MG 1 table 12-12 and International Energy Conservation code table 405.8(1). This shall apply to general purpose, T-frame, single speed, squirrel cage, induction type; 230/460-V, NEMA Designs A or B, continuously rated, 60 Hz, from 1 to 200 hp, 2-, 4- and 6-pole (3600-, 1800- and 1200-rpm), open and enclosed. Subtype I motors 250 hp to 500 hp motor efficiency shall be able NEMA MG 1 table 12-11 and International Energy Conservation Code table 405.8(1).
- C. Subtype II motors NEMA efficiency as per table NEMA MG 1 table 12-11 and International Energy Conservation code table 405.8(2). This shall apply to general-purpose motors but can configured as U-frame motors; NEMA Design C motors; close-coupled pump motors; footless motors; vertical solid shaft normal thrust motors (as tested in a horizontal position); eight-pole (900 rpm) motors, and polyphase motors with a voltage of not more than 600 V (other than 230 or 460 V).
- D. Minimum average full load efficiency of polyphase small electric motors up to 3 hp shall be in accordance with Table C405.8(3) of the International Energy Conservation Code
- E. Minimum average full load efficiency for capacitor-start, capacitor-run and capacitor-start induction-run small electric motors up to 3 hp shall be in accordance with Table C405.8(4) of the International Energy Conservation Code.

2.4 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Service Factor: 1.15.

- C. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- D. Multispeed Motors: Separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading. Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum AFBMA 9, L-10 life of 200,000 hours. Calculate bearing load with NEMA minimum V-belt pulley with belt centre line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
- G. Thermistor System (Motor Frame Sizes 254T and Larger): Three PTC thermistors embedded in motor windings and epoxy encapsulated solid state control relay with wiring to terminal box.
- H. Sound Power Levels: To NEMA MG 1.
- I. Temperature Rise: Match insulation rating.
- J. Insulation: Class B or better.
- K. Code Letter Designation:
 - 1. Motors [15] HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- L. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.5 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Use part winding Start above 254T Frame Size: Use part of winding to reduce locked rotor starting current to approximately 60 percent of full winding locked rotor current while providing approximately 50 percent of full winding locked rotor torque.
- C. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.

- 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
- 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- D. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.6 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.
- F. Drip-proof Enclosure: Class A (50 degrees C temperature rise) insulation, NEMA Service Factor, pre-lubricated sleeve ball bearings.

2.7 POWER FACTOR CORRECTION

- A. Provide a capacitor for each three phase, single speed motor rated 3 HP or larger shall be provided to correct the full load power factor to 95%. The capacitor shall be mounted at the motor for connection across the motor terminals by Electrical Contractor
- B. Capacitors;
 - 1. Capacitors shall be totally enclosed, fused and with discharge resistors.
 - 2. Capacitors based on nominal motor RPM shall be provided in accordance with the following table to correct power factor to 95% and verify sizes with motor manufacturer.

Motor HP	Capacitor KVAR	Capacitor KVAR
	3600 RPM Motor	1800 RPM Motor
3	1.5	1.5
5	2	2
7.5	2.5	2.5
10	3	3
15	4	4
20	5	5
25	6	6
30	7	7
40	9	9
50	12	12
60	14	14

2.8 STARTERS

A. GENERAL

- 1. See specification Section 16485 and Division 1 for additional information.
- 2. Starters for motors operating at 120 volts shall be manual starters unless otherwise indicated. Starters for motors operating at other than 120 volts shall be magnetic starters.
- 3. All starters shall be enclosed. Enclosures shall be surface mounted NEMA 1 unless otherwise indicated.
- 4. Where weatherproof starters are required, the enclosure shall be NEMA 4.
- 5. It shall be verified that the correct overload heaters have been installed in the starter before energizing any motor. Sizing shall be based on motor nameplate current and taking into account any reduction in current due to power factor correction.
- 6. Alternate Manufacturers
 - a. Allen-Bradley
 - b. Crouse-Hinds Co.
 - c. Cutler-Hammer, Inc.
 - d. General Electric Co.
 - e. Square D Co.
 - f. Westinghouse Electric Corp.

B. MANUAL STARTERS

- 1. Two-pole, toggle operated, thermal overload device in each phase leg, handle guard for padlocking toggle handle and with indicated control and signal devices.
- 2. Where a motor is controlled automatically by an interlock or pilot device, a "HAND-OFF-AUTO" switch shall be provided in the starter cover. Where the rating of the interlock or pilot device is inadequate to control the motor currents directly, a properly rated contactor shall be provided between the controlling device and the motor.

3. An "ON" pilot light shall be provided in the starter cover.

C. MAGNETIC STARTERS

1. Starters shall be sized in accordance with NEMA standards and the following table except that starters shall not be smaller than NEMA size 0. Starters shall be provided with one N.O. electrical holding interlock, under voltage protection and two additional auxiliary contacts within the same enclosure. NEMA size starters shall be provided as follows

STARTER	MAX HP	
SIZE	AT 460 VOLTS	
0	5	
1	10	
2	25	

- 2. All starters shall be combination type with the starter and disconnect in the same enclosure. All starters shall be Type 2 coordination protected. Fuses shall be Bussman "Low Peak" type or equal sized at 125% of motor nameplate rating. Verify and coordinate requirements for fused disconnect switches with the Electrical Contractor prior to ordering starters.
- 3. Provide S.S.P.B. or H-O-A switches and pilot light in covers as required to facilitate control operation sequences.

PART 3 - EXECUTION

- A. Suitable starting and controlling equipment and devices shall be furnished and installed as specified hereinafter and as shown on the Drawings. The starting equipment shall be arranged, generally, in control groups, or in certain cases, as isolated combination starters as specified or indicated. The Sequences of Operation, drawings, and specifications shall be referred to for the manner of control, operation, and monitoring of motors and the electrically operated equipment.
- B. A starter and disconnect switch or combination motor starter disconnect shall be provided for every motor and each and every electrically operated piece of equipment by this contractor except where complete starters and controls are furnished by the manufacturer of the motor or piece of equipment. Starters shall be internally wired to provide the required control operation and monitoring. All control devices such as push buttons, break-glass stations, alternators, relays, pilot lights, etc., shall be provided as required for the operation of PLUMBING equipment. All remotely located equipment shall have remote starters as located on plan and shall have local disconnect switches. All equipment located in equipment rooms can use combination starters/disconnects located with in line of sight of controlled equipment. All starters and disconnect switches shall be in enclosures suitable for the environment in which they are installed. Starters and disconnect switches located outdoors shall use NEMA 1. Starters and disconnect switches located outdoors shall use NEMA 4x. Starters and

disconnect switches located in machine rooms which are subject to potential water damage shall use NEMA 2

- C. Starting equipment and devices specified in this section (and section 22 29 13 Variable Frequency Controllers), shall be furnished by the PLUMBING subcontractor and shall be installed by the Electrical subcontractor. In general the PLUMBING subcontractor shall furnish all motor starters and disconnect switches except where they are an integral part of a motor control center, in this case starters and disconnects shall be provided, (furnished and installed), by the electrical contractor. The Electrical subcontractor shall also provide all wiring necessary to supply power to the electric motors specified under this section, including connections from the starters to the motors. Starters and disconnects shall also include variable frequency drives.
- D. The PLUMBING Contractor shall furnish and install all wiring between control devices and controlled equipment furnished under this Section, including interlock control wiring between motor starters, and all automatic temperature control wiring. All wiring shall be installed in conformance with applicable codes and the requirements of the Electrical Division of the Specifications.
- E. The Electrical Contractor shall furnish a 120 volt power source to control panels and equipment requiring a separate 120-volt control power source. Power for control circuits for all devices connecting to motor starters shall be obtained from 120-volt control transformers provided in each starter operating at other than 120 volts. Provide transformers for all low-voltage control systems as required.
- F. Furnish detailed composite wiring diagrams and such other information necessary to assure the proper connection, operation, and control of motorized equipment, including interlocks, automatic controls, safety controls, and all auxiliary circuits.
- G. All control units shall be furnished with a nameplate indicating which device or equipment it controls, and the voltage. Additional nameplates on each push button, selector switch and pilot light indicating their functions shall be provided. Nameplates shall be laminated phenolic with white letters on a black background, a minimum 2" high.
- H. All motors supplied either with equipment or installed separately that are to be used in conjunction with variable frequency drive shall be inverter duty motors.

MOTOR ENCLOSURE TYPES

SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Brass ball valves.

1.2 DEFINITIONS

A. CWP: Cold working pressure.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain each type of valve from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Standards:

1. Domestic water valves intended to convey or dispense water for human consumption must comply with the SDWA, requirements of authorities having jurisdiction, and NSF 61 and NSF 372, or must be certified to be in compliance with NSF 61 and NSF 372 (by an ANSI-accredited third-party certification body) that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

B. ASME Compliance:

- 1. ASME B1.20.1 for threads for threaded end valves.
- 2. ASME B16.18 for cast copper solder-joint connections.
- 3. ASME B16.22 for wrought copper and copper alloy solder-joint connections.
- 4. ASME B16.34 for flanged and threaded end connections
- 5. ASME B31.9 for building services piping valves.
- C. Provide bronze valves made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valve Actuator Type:
 - 1. Hand Lever: For quarter-turn valves smaller than NPS 4
- G. Valves in Insulated Piping:
 - 1. Provide 2-inch (50-mm) extended neck stems.
 - 2. Extended operating handles with nonthermal-conductive covering material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.3 BRASS BALL VALVES

- A. Brass Ball Valves, Two Piece with Full Port and Brass Trim, Threaded or Soldered Ends:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Jenkins Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. NIBCO INC.
 - d. Milwaukee Valve Company.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

- 2. Standard: MSS SP-110; MSS SP-145.
- 3. CWP Rating: 600 psig
- 4. Body Design: Two piece.
- 5. Body Material: Forged brass.
- 6. Ends: Threaded or soldered.
- 7. Seats: PTFE.
- 8. Stem: Brass.
- 9. Ball: Chrome-plated brass.
- 10. Port: Full.
- B. Brass Ball Valves, Two Piece with Regular Port and Brass Trim, Threaded or Soldered Ends:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Jenkins Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. NIBCO INC.
 - d. Milwaukee Valve Company.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Standard: MSS SP-110; MSS SP-145.
 - 3. CWP Rating: 600 psig
 - 4. Body Design: Two piece.
 - 5. Body Material: Forged brass.
 - 6. Ends: Threaded or soldered.
 - 7. Seats: PTFE.
 - 8. Stem: Brass.
 - 9. Ball: Chrome-plated brass.
 - 10. Port: Regular.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves. Remove defective valves from site.

3.2 INSTALLATION OF VALVES

- A. Install valves with unions or flanges at each piece of equipment arranged to allow space for service, maintenance, and equipment removal without system shutdown.
- B. Provide support to piping adjacent to valves such that no force is imposed upon valves.
- C. Locate valves for easy access.
- D. For valves in horizontal piping, install valves with stem at or above center of pipe.
- E. Install valves in position to allow full valve actuation movement.
- F. Valve Tags: Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
- G. Adhere to manufacturer's written installation instructions. When soldering or brazing valves, do not heat valves above maximum permitted temperature. Do not use solder with melting point temperature above valve manufacturer's recommended maximum.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves exhibiting leakage.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, provide the same types of valves with higher CWP ratings.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.

3.5 DOMESTIC COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Brass ball valves, two-piece with full & regular port, and brass trim. Provide with threaded or solder joint ends.

END OF SECTION 220523.12

SECTION 220523.13 - BUTTERFLY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Iron, single-flange (lug-type) butterfly valves.

1.2 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene-diene terpolymer rubber.
- C. NBR: ABS, Buna-N, or nitrile butadiene rubber.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set butterfly valves closed or slightly open.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain each type of valve from a single source from a single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Standards:

1. Domestic water piping specialties intended to convey or dispense water for human consumption must comply with the SDWA, requirements of authorities having jurisdiction, and NSF 61 and NSF 372, or must be certified to be in compliance with NSF 61 and NSF 372 (by an ANSI-accredited third-party certification body) that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

B. ASME Compliance:

- 1. ASME B16.1 for flanges on iron valves.
- 2. ASME B16.5 for flanges on steel valves.
- 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 4. ASME B31.9 for building services valves.
- C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valve Actuator Types:
 - 1. Gear Actuator: For valves NPS 8 and larger.
 - 2. Hand lever: For valves NPS 6 and smaller.
 - 3. Chainwheel: Device for attachment to gear, hand lever, or stem; of size and with chain for mounting height, according to "Installation of Valves" Article.
- G. Valves in Insulated Piping: Provide 2-inch extended neck stems.

2.3 IRON, SINGLE-FLANGE (LUG-TYPE) BUTTERFLY VALVES

- A. Iron, Single-Flange (Lug-Type) Butterfly Valves with Aluminum-Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Bray Commercial.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- c. NIBCO INC.
- d. WATTS; A Watts Water Technologies Company.
- e. Zurn Industries, LLC.
- 2. Standard: MSS SP-67, Type I.
- 3. CWP Rating: 200 psig.
- 4. Body Design: Single flange (lug type), suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- 5. Body Material: ASTM A126, cast iron or ASTM A536, ductile iron.
- 6. Seat: EPDM.
- 7. Stem: One- or two-piece stainless steel.
- 8. Disc: Aluminum bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine mating flange faces for damage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- D. Do not attempt to repair defective valves; replace with new valves. Remove defective valves from site.

3.2 INSTALLATION OF VALVES

- A. Install valves with unions or flanges at each piece of equipment arranged to allow space for service, maintenance, and equipment removal without system shutdown.
- B. Provide support to piping adjacent to valves such that no force is imposed upon valves.
- C. Locate valves for easy access.
- D. Install valves in horizontal piping with the stem at or above the center of the pipe.
- E. Install valves in position to allow full valve actuation movement.
- F. Valve Tags: Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. If leakage cannot be repaired, replace valves.

3.4 DOMESTIC COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2-1/2 and Larger:
 - 1. Iron, Single-Flange (Lug-Type) Butterfly Valves: 200 CWP, EPDM seat, and aluminum-bronze disc.

END OF SECTION 220523.13

SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Bronze, lift check valves.
- 2. Bronze, swing check valves.
- 3. Iron, swing check valves.
- 4. Iron, swing check valves with closure control.

1.2 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene-diene terpolymer.
- C. NBR: Nitrile butadiene rubber (also known as Buna-N).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, press connections, and weld ends.
 - 3. Set check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use stems or other components as lifting or rigging points unless specifically indicated for this purpose in manufacturer's instructions.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain each type of valve from a single source from a single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Standards:

1. Domestic water piping check valves intended to convey or dispense water for human consumption are to comply with the U.S. Safe Drinking Water Act (SDWA), requirements of authorities having jurisdiction, and NSF 61/NSF 372, or to be certified in compliance with NSF 61/NSF 372 by an American National Standards Institute (ANSI)-accredited third-party certification body that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

B. ASME Compliance:

- 1. ASME B1.20.1 for threads for threaded end valves.
- 2. ASME B16.1 for flanges on iron valves.
- 3. ASME B16.5 for flanges for metric standard piping.
- 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 5. ASME B16.18 for cast-copper solder joint.
- 6. ASME B16.22 for wrought copper solder joint.
- 7. ASME B16.51 for press joint.
- 8. ASME B31.9 for building services piping valves.
- C. AWWA Compliance: Comply with AWWA C606 for groove-end connections.
- D. Provide bronze valves made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are unacceptable.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.3 BRONZE, LIFT CHECK VALVES

- A. Bronze, Lift Check Valves with Bronze Disc, Class 175:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.

- b. Crane Fluid Systems; Crane Co.
- c. Jenkins Valves: a Crane Co. brand.
- d. NIBCO INC.
- e. Stockham; a Crane Co. brand.
- f. WATTS; A Watts Water Technologies Company.

2. Description:

- a. Standard: MSS SP-80, Type 1.
- b. CWP Rating: 200 psig
- c. Body Design: Vertical flow.
- d. Body Material: ASTM B61 or ASTM B62, bronze.
- e. Ends: Threaded or soldered. See valve schedule articles.
- f. Disc: Bronze.

2.4 BRONZE SWING CHECK VALVES

- A. Bronze, Swing Check Valves with Bronze Disc, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Crane Fluid Systems; Crane Co.
 - c. Jenkins Valves; a Crane Co. brand.
 - d. NIBCO INC.

2. Description:

- a. Standard: MSS SP-80, Type 3.
- b. CWP Rating: 200 psig (1380 kPa).
- c. Body Design: Horizontal flow.
- d. Body Material: ASTM B62, bronze.
- e. Ends: Threaded or soldered. See valve schedule articles.
- f. Disc: Bronze.
- g. Disc: PTFE.

2.5 IRON, SWING CHECK VALVES

- A. Iron, Swing Check Valves with Metal Seats, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Bray Commercial.
 - c. Crane Fluid Systems; Crane Co.
 - d. Jenkins Valves; a Crane Co. brand.

2. Description:

- a. Standard: MSS SP-71, Type I.
- b. CWP Rating: 200 psig (1380 kPa).
- c. Body Design: Clear or full waterway.
- d. Body Material: ASTM A126, gray iron with bolted bonnet.
- e. Ends: Flange or threaded. See valve schedule articles.
- f. Trim: Bronze.
- g. Gasket: Asbestos free.
- B. Iron, Swing Check Valves with Nonmetallic-to-Metal Seats, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bray Commercial.
 - b. Cooper Valves.
 - c. Crane Fluid Systems; Crane Co.
 - d. Kennedy Valve Company; a division of McWane, Inc.

2. Description:

- a. Standard: MSS SP-71, Type I.
- b. CWP Rating: 200 psig
- c. Body Design: Clear or full waterway.
- d. Body Material: ASTM A126, gray iron with bolted bonnet.
- e. Ends: Flange or threaded. See valve schedule articles.
- f. Trim: Composition.
- g. Seat Ring: Bronze.
- h. Disc Holder: Bronze.
- i. Disc: PTFE.
- j. Gasket: Asbestos-free.

2.6 IRON, SWING CHECK VALVES WITH CLOSURE CONTROL

- A. Iron, Swing Check Valves with Lever- and Spring-Closure Control, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Bray Commercial.
 - c. Clow Valve Company; a subsidiary of McWane, Inc.
 - d. Kennedy Valve Company; a division of McWane, Inc.

2. Description:

- a. Standard: MSS SP-71, Type I.
- b. CWP Rating: 200 psig

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- c. Body Design: Clear or full waterway.
- d. Body Material: ASTM A126, gray iron with bolted bonnet.
- e. Ends: Flange or threaded. See valve schedule articles.
- f. Trim: Bronze.
- g. Gasket: Asbestos-free.
- h. Closure Control: Factory-installed exterior lever and weight.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on the valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that the gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace them with new valves.

3.2 INSTALLATION OF VALVES

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Provide support of piping adjacent to valves such that no force is imposed upon valves.
- C. Locate valves for easy access and where not blocked by equipment, other piping, or building components.
- D. Install valves so that stems are horizontal or slope upward from the centerline of pipe.
- E. Install valves in position that does not project into aisles or block access to other equipment.
- F. Install valves in position to allow full stem and manual operator movement.
- G. Verify that the joints of each valve have been properly installed and sealed to ensure there is no leakage or damage.
- H. Check Valves: Install check valves for proper direction of flow.
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

- I. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
- J. Adhere to manufacturer's installation instructions. When soldering or brazing valves, do not heat valves above maximum permitted temperature. Do not use solder with melting point temperature above valve manufacturer's recommended maximum.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze, swing check valves with bronze or nonmetallic disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron, swing check valves with lever and weight or spring; or iron, center-guided, metal-seat or resilient-seat check valves.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. End Connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Soldered.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4 Flange or threaded.
 - 3. For Copper Tubing, NPS 5 and Larger: Flange.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze, swing check valves with bronze disc, Class 125, with soldered end connections.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron, swing check valves with metal seats, Class 125, with threaded or flange end connections.
 - 2. Iron, swing check valves with closure control lever and spring weight, Class 125, with threaded or flange end connections.

END OF SECTION 220523.14

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Thermal hanger-shield inserts.
- 5. Fastener systems.
- 6. Pipe stands.
- 7. Pipe-positioning systems.
- 8. Equipment supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. B-line, an Eaton business.
 - b. Flex-Strut Inc.
 - c. Thomas & Betts Corporation; A Member of ABB Group.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- d. Unistrut: Part of Atkore International.
- e. Wesanco, Inc.
- 2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
- 3. Standard: MFMA-4, factory-fabricated components for field assembly.
- 4. Channels: Continuous slotted carbon-steel or stainless steel, Type 304 or 316, channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel
- 7. Paint Coating: Green epoxy, acrylic, or urethane.

B. Non-MFMA Manufacturer Metal Framing Systems:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International.
 - b. ERICO International Corporation.
 - c. PHD Manufacturing, Inc.
- 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
- 3. Standard: Comply with MFMA-4, factory-fabricated components for field assembly.
- 4. Channels: Continuous slotted carbon-steel or stainless steel, Type 304 or 316, channel with inturned lips.
- 5. Channel Width: Select for applicable load criteria.
- 6. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 7. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
- 8. Paint Coating: Green epoxy, acrylic, or urethane.

2.5 THERMAL HANGER-SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by on of the following:
 - 1. Clement Support Services.
 - 2. ERICO International Corporation.
 - 3. National Pipe Hanger Corporation.
 - 4. Pipe Shields Inc.
 - 5. Piping Technology & Products, Inc.
 - 6. Rilco Manufacturing Co., Inc.

- B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. For Trapeze of Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Hilti, Inc.
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Hilti, Inc.
 - 2. Indoor Applications: Zinc-coated or stainless steel.
 - 3. Outdoor Applications: Stainless steel.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.

4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal hanger-shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
- 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction occurs.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24
- 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 220529

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

1.1 GENERAL

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.3 SUMMARY

- A. Section Includes:
 - 1. Equipment labels
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Stencils.
 - 5. Valve tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to be included in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustic ceilings and similar concealment.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Acceptable manufacturers offering equivalent products
 - 1. Atlantic Engraving Company.
 - 2. Seton Name Plate Co.
 - 3. MSI Services
- B. Substitutions as per Contract Requirements

2.2 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass 0.032-inch, stainless steel 0.025-inch, aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, with predrilled holes.
- 2. Letter Color: Black
- 3. Background Color: White
- 4. Minimum Label Size: Length and width vary for required label content, but not less than 3"x3"
- 5. Minimum Letter Size: 1" inch for equipment mounted on the floor or on a stand. 2" for hanging equipment.
- 6. Fasteners: Stainless steel rivets or self-tapping screws.
- 7. Adhesive: not allowed.

B. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes.
- 2. Letter Color: Black
- 3. Background Color: White
- 4. Minimum Label Size: Length and width vary for required label content, but not less than 3"x3"
- 5. Minimum Letter Size: 1" inch for equipment mounted on the floor or on stands. 2" for hanging equipment..
- 6. Fasteners: Stainless steel rivets or self-tapping screws.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include the equipment's drawing designation or unique equipment number based on (plans, details, and schedules). is specified.

2.3 WARNING SIGNS

- A. Material and Thickness: Multilayer, multicolor, plastic signs for mechanical engraving, 1/8 inch thick, with predrilled holes.
- B. Letter Color: White.
- C. Background Color: Red

- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: 6" x 6".
- F. Minimum Letter Size: 1" inch for name plates for equipment mounted on stands or on the floor. 2" for hanging equipment.
- G. Fasteners: Stainless-steel rivets or self-tapping screws or chains
- H. Adhesive: Not applicable
- I. Label Content: Include caution and warning information, plus emergency notification instructions.
 - 1. Example. "BYPASS VALVE NORMALLY CLOSED". "SUMMER WINTER CHANGE OVER VALVE"

2.4 PIPE AND DUCT LABELS

- A. General Requirements for pipe and duct Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Recoiled, semirigid plastic formed to **fully** cover the circumference of the pipe with permanent adhesive backing.
- C. Label Contents: Include identification of piping or duct service using the same designations or abbreviations as used on the drawings. Include flow direction arrows.
- D. Lettering Size: Minimum 1-1/2 inches high.
- E. Color; green or red background, white lettering or as per ANSI requirements.
- 2.5 STENCILS- Not Used.

2.6 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/2-inch letters.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness with predrilled holes.
 - 2. Fasteners: Brass or stainless steel, wire, beaded chain, or S-hook.
 - 3. Indicate service and valve number.
 - 4. Example: **HW-1**

2.7 VALVE SCHEDULES:

- 1. Minimum size 8-1/2" x 11"
- 2. Type written on bond paper and laminated in clear plastic.
- 3. Frame in a metal frame with glass.
- 4. Provide a separate schedule for each service.
- 5. Example:

VALVE TAG SCHEDULE			
No.	size	Service	N.O./N.C.

PART 3 EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair the bond of identification devices, including dirt, oil, grease, release agents, incompatible primers, and paints.

3.2 EQUIPMENT

- A. Install identifying devices after completion of insulation coverings or painting.
- B. Identify all equipment, including pumps, with nameplates. Small devices, such as in-line pumps, may be identified with metal tags. Identify service of all equipment
- C. Identify control panels and major control components outside panels with nameplates
- D. Tag automatic controls, instruments, and relays. Key to control schematic.

3.3 PIPE LABEL INSTALLATION

- A. Install identifying devices after completion of insulation coverings or painting.
- B. Painting of Pipe: all piping that does not receive insulation shall be painted with rust-inhibiting machine enamel. The color shall be in accordance with ANSI requirements for the specific service.
 - 1. Clean piping in accordance with paint manufacturer recommendations. Remove all grease oil and surface rust before painting.
 - 2. All new and existing fuel oil piping shall be painted yellow prior to labeling.
 - 3. All new and existing gas piping shall be painted yellow prior to labeling.
 - 4. Label piping as per ANSI color code
- C. Locate pipe labels where piping is exposed and above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where the flow pattern is not obvious, mark each pipe at the branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.

- 4. At access doors, manholes, and similar access points that permit a view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 25' along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.
- D. Directional Flow Arrows: provide directional flow arrows spaced at maximum intervals of 25' along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.
- E. All piping shall be labeled. The background color and service name shall be in accordance with ANSI and industry standards.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in all piping systems, except check valves, and valves within factory-fabricated equipment units; shutoff valves.
- B. For renovation applications all new mechanical valves shall be tagged in sequence with the existing valve.
- C. Provide a valve tag scheduled as described in section 2.8
- D. Identify valves in main and branch piping. with brass tags. Main shutoff valves for boilers shall be furnished with special wording as required by ASME IV HG 710.5 "Supply or Return Valve No. X Do Not Close Without Also Closing Supply or Return Valve No. Y".

3.5 WARNING-TAG INSTALLATION

A. Write required messages on, and attach warning tags to, equipment and other items where required.

END OF SECTION

SECTION 220593 - TESTING, ADJUSTING, AND BALANCING FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. TAB of domestic water system.
- 2. TAB of plumbing equipment:
 - a. Domestic water booster pumps.
- 3. Pipe-leakage test verification.
- 4. Testing, adjusting, and balancing of existing plumbing systems and equipment.

1.2 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.

1.3 PREINSTALLATION MEETINGS

- A. TAB Conference: Conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan, to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report, as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures, as specified in "Preparation" Article.
- D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists, as specified in "Preparation" Article.
- E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- F. Certified TAB reports.
- G. Sample report forms.
- H. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Specialists Qualifications, Certified by NEBB or TABB:
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB.
- B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- C. ASHRAE 111 Compliance: Requirements in ASHRAE 111 applicable to analogous domestic water system and plumbing equipment balancing.
- D. ASHRAE 188 Compliance: Comply with balancing and report requirements, Section 8.3 "Balancing."
- E. Code and Authorities Having Jurisdiction Compliance: TAB is required to comply with governing codes and requirements of authorities having jurisdiction.

1.6 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gauge cocks, thermometer wells, flow-control devices, and balancing valves and fittings. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine approved submittals for plumbing systems and equipment.
- D. Examine design data, including plumbing system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about plumbing system and equipment controls.
- E. Examine equipment performance data, including pump curves.
 - 1. Relate performance data to Project conditions and requirements, including pump system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate pump system-effect factors to reduce performance ratings of plumbing equipment when installed under conditions different from the conditions used to rate equipment performance. Compare results with the design data and installed conditions.
- F. Examine system and equipment installations, and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- G. Examine test reports specified in individual system and equipment Sections.
- H. Examine plumbing equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- I. Examine temporary and permanent strainers. Verify that temporary strainer screens used during system cleaning and flushing have been removed and permanent strainers are installed and clean.

- J. Examine control valves for proper installation for their intended function of isolating, throttling, diverting, or mixing fluid flows.
- K. Examine system pumps to ensure absence of entrained air in the suction piping.
- L. Examine operating safety interlocks and controls on plumbing equipment.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of plumbing systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Domestic Water System:
 - a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed in accordance with applicable code and authority having jurisdiction.
 - b. Water heaters are installed and functioning.
 - c. Piping is complete and all points of outlet are installed.
 - d. Systems are flushed, filled, and air purged.
 - e. Strainers are clean.
 - f. Control valves are functioning in accordance with the sequence of operation.
 - g. Shutoff and balance valves are 100 percent open.
 - h. Booster- pumps are operational and proper rotation is verified.
 - i. Pump gauge connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 - j. Variable-frequency controllers' startup is complete and safeties are verified.
 - k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system in accordance with the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
- B. Cut insulation, pipes, and equipment casings for installation of test probes to the minimum extent necessary for TAB procedures.

- 1. Where holes for probes are required in piping or equipment, install pressure and temperature test plugs to seal systems.
- 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish in accordance with Section 220716 "Plumbing Equipment Insulation" and Section 220719 "Plumbing Piping Insulation."
- C. Mark equipment and balancing devices, including valve position indicators and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP units.

3.4 GENERAL PROCEDURES FOR PLUMBING EQUIPMENT

- A. Test, adjust, and balance plumbing equipment indicated on Drawings, including, but not limited to, the following:
 - 1. Domestic water booster pumps.

3.5 PROCEDURES FOR DOMESTIC WATER SYSTEMS

- A. Prepare test reports for pumps and other equipment. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required equipment flow rates with system design flow rates.
- B. Prepare schematic diagrams of systems' Record drawings piping layouts.
- C. In addition to requirements in "Preparation" Article, prepare domestic water systems for testing and balancing as follows:
 - 1. Check expansion tank for proper setting.
 - 2. Check remotest point of outlet for adequate pressure.
 - 3. Check flow-control valves for proper position.
 - 4. Locate start-stop and disconnect switches, electrical interlocks, and motor controllers.
 - 5. Verify that motor controllers are equipped with properly sized thermal protection.
 - 6. Check that air has been purged from the system.
- D. Measure and record upstream and downstream pressure of each piece of equipment.
- E. Measure and record upstream and downstream pressure of pressure-reducing valves.
- F. Check settings and operation of automatic temperature-control valves, self-contained control valves, and pressure-reducing valves. Record final settings.
- G. Check settings and operation of each safety valve. Record settings.

3.6 PROCEDURES FOR DOMESTIC WATER SYSTEM BOOSTER PUMPS

- A. Adjust pumps to deliver total design flow.
 - 1. Measure total water flow.
 - a. Position valves for full flow through coils.
 - b. Measure flow by main flow meter, if installed.
 - c. If main flow meter is not installed, determine flow by pump TDH or known equipment pressure drop.
 - 2. Measure pump TDH as follows:
 - a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - c. Convert pressure to head and correct for differences in gauge heights.
 - d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow, and verify that the pump has the intended impeller size.
 - e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved. If excessive throttling is required to achieve desired flow, recommend pump impellers be trimmed to reduce excess throttling.
 - 3. Monitor motor performance during procedures, and do not operate motor in an overloaded condition.
- B. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - 1. Measure flow in main and branch pipes.
 - 2. Adjust main and branch balance valves for design flow.
 - 3. Re-measure each main and branch after all have been adjusted.
- C. Verify final system conditions as follows:
 - 1. Re-measure and confirm that total water flow is within design.
 - 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - 3. Mark final settings.
- D. Verify that memory stops have been set.

3.7 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record flows, temperatures, and pressures of each piece of equipment. Compare the values to design or nameplate information, where information is available.

- 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
- 3. Check the condition of filters.
- 4. Check bearings and other lubricated parts for proper lubrication.
- 5. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. TAB After Construction: Before performing testing and balancing of renovated existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished in accordance with renovation scope indicated by Contract Documents. Verify the following:
 - 1. New filters are installed.
 - 2. Bearings and other parts are properly lubricated.
 - 3. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated system flows of the renovated work to the measured flows, and determine the new pump speed.
 - 2. Verify that the indicated system flows of the renovated work result in velocities and pump speeds that are within the acceptable limits defined by equipment manufacturer.
 - 3. If calculations increase or decrease the system flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.

3.8 TOLERANCES

- A. Set plumbing system's flow rates within the following tolerances:
 - 1. Domestic Water Flow Rate: Plus or minus 5 percent. If design value is less than 10 gpm, within 10 percent.

3.9 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for system-balancing devices. Recommend changes and additions to system-balancing devices, to facilitate proper performance measuring and balancing. Recommend changes and additions to plumbing systems and general construction to allow access for performance-measuring and -balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents, including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 14. Test conditions for pump performance forms, including the following:
 - a. Variable-frequency controller settings for variable-flow hydronic systems.
 - b. Settings for pressure controller(s).
 - c. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of distribution systems. Present each system with single-line diagram and include the following:
 - 1. Flow rates.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- 2. Pipe and valve sizes and locations.
- 3. Balancing stations.
- 4. Position of balancing devices.
- E. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves, and include the following:
 - 1. Unit Data:
 - Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water-pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump speed.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- F. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.11 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner and Construction Manager.
- B. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to the lesser of either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the TAB shall be considered incomplete and shall be rejected.
- E. If recheck measurements find the number of failed measurements noncompliant with requirements indicated, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. All changes shall be tracked to show changes made to previous report.
 - 2. If the second final inspection also fails, Owner may pursue other Contract options to complete TAB work.
- F. Prepare test and inspection reports.

3.12 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION 220593

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation system materials are to be delivered to the Project site in unopened containers. The packaging is to include name of the manufacturer, fabricator, type, description, and size, as well as ASTM standard designation and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials are applied.
- B. Products do not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come into contact with stainless steel have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel are qualified as acceptable in accordance with ASTM C795.
- E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Comply with ASTM C552. Provide protective field-applied PVC jacket.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Owens Corning.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- b. Johns Manville; a Berkshire Hathaway company.
- c. Knauf Insulation.
- d. Manson Insulation Inc
- 2. Preformed Pipe Insulation, Type II, Class 1: Unfaced.
- 3. Preformed Pipe Insulation, Type II, Class 2: With factory-applied ASJ jacket.
- 4. Fabricated shapes in accordance with ASTM C450, ASTM C585, and ASTM C1639.
- 5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- 6. Field-applied jacket requirements are specified in "Field-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Glass-Fiber and Mineral Wool Insulating Cement: Comply with ASTM C195.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ramco Insulation, Inc.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C196.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ramco Insulation, Inc.

2.3 ADHESIVES

- A. Materials are compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Foster Brand; H. B. Fuller.
- C. ASJ Adhesive and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Childers Brand: H. B. Fuller Construction Products.
- b. Foster Brand: H. B. Fuller.
- c. Mon-Eco Industries, Inc.

2.4 SEALANTS

A. Materials are as recommended by the insulation manufacturer and are compatible with insulation materials, jackets, and substrates.

B. Joint Sealants:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller.
 - c. Mon-Eco Industries, Inc.
 - d. Owens Corning.
- 2. Permanently flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 58 to plus 176 deg F.
- 4. Color: White or gray.

C. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller.
- 2. Fire- and water-resistant, flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 40 to plus 250 deg F.
- 4. Color: White.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets comply with ASTM C1136, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White.
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Mesh: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
- B. Woven Polyester Mesh: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. 3M Industrial Adhesives and Tapes Division.
 - b. Aeroflex USA.
 - c. Avery Dennison Corporation, Specialty Tapes Division.
 - d. Knauf Insulation.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.9 SECUREMENTS

A. Bands:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. RPR Products, Inc.
- 2. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with Contract Documents, unless otherwise approved by the engineer-of-record.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches o.c.

- a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece is butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement.

- Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation conforms to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as that of pipe insulation. Where voids are difficult to fill with block insulation, fill the voids with a fibrous insulation material suitable for the specific operating temperature.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered or routed sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install prefabricated sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
- 2. When prefabricated insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
- 2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF FIELD-APPLIED JACKETS

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

- 1. Draw jacket material smooth and tight.
- 2. Install lap or joint strips with same material as jacket.
- 3. Secure jacket to insulation with manufacturer's recommended adhesive.
- 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

- 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless steel jackets.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections with the assistance of a factory-authorized service representative.
- B. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection is limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.12 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 1 and Smaller: Insulation is the following:
 - a. Cellular Glass: 0.5" thick.
 - 2. NPS 1-1/4 and Larger: Insulation is the following:
 - a. Cellular Glass: 1" thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

END OF SECTION 220719

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Copper tube and fittings.
- 2. Piping joining materials.
- 3. Transition fittings.
- 4. Dielectric fittings.

1.2 ACTION SUBMITTALS

A. Product Data:

- 1. Pipe and tube.
- 2. Fittings.
- 3. Joining materials.
- 4. Transition fittings.

1.3 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

1.4 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Engineer and Owner no fewer than five days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Owner's written permission.

1.5 WARRANTY

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tube: ASTM B88, Type L.
- B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- D. Cast Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B32, lead-free alloys.
- D. Flux: ASTM B813, water flushable.
- E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - d. Zurn Plumbing Products Group; Wilkins Water Control Products.
- 2. Standard: ASSE 1079.
- 3. Pressure Rating: 150 psig.
- 4. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company
 - c. EPCO Sales, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Standard: ASSE 1079.
- 3. Factory-fabricated, bolted, companion-flange assembly.
- 4. Pressure Rating: 150 psig.
- 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company
 - d. Pipeline Seal and Insulator, Inc.
- 2. Nonconducting materials for field assembly of companion flanges.
- 3. Pressure Rating: 150 psig.
- 4. Gasket: Neoprene or phenolic.

- 5. Bolt Sleeves: Phenolic or polyethylene.
- 6. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:

- 1. Standard: IAPMO PS 66.
- 2. Electroplated steel nipple complying with ASTM F1545.
- 3. Pressure Rating and Temperature: 300 psig at 225 deg F.
- 4. End Connections: Male threaded or grooved.
- 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Drawn-temper copper tube, ASTM B88, Type L cast-copper, solder-joint fittings; and soldered joints.
- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 - 1. Drawn-temper copper tube, ASTM B88, Type L cast-copper, solder-joint fittings; and soldered joints.
- F. Aboveground domestic water piping, NPS 5 to NPS 8, shall be one of the following:
 - 1. Drawn-temper copper tube, ASTM B88, Type L cast-copper, solder-joint fittings; and soldered joints.

3.2 INSTALLATION OF PIPING

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install valves according to the following:

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- 1. Section 220523.13 "Butterfly Valves for Plumbing Piping."
- 2. Section 220523.14 "Check Valves for Plumbing Piping."
- 3. Section 220523.15 "Gate Valves for Plumbing Piping."
- D. Install domestic water piping level without pitch and plumb.
- E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- H. Install piping to permit valve servicing.
- I. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- J. Install piping free of sags and bends.
- K. Install fittings for changes in direction and branch connections.
- L. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- M. Install pressure gauges on suction and discharge piping for each plumbing pump and packaged booster pump.

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Soldered Joints for Copper Tubing: Apply ASTM B813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B828 or CDA's "Copper Tube Handbook."
- D. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- E. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 INSTALLATION OF TRANSITION FITTINGS

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 INSTALLATION OF DIELECTRIC FITTINGS

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples or unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- C. Install hangers for copper tubing, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- D. Support horizontal piping within 12 inches of each fitting.
- E. Support vertical runs of copper tubing to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Hydrostatic testing and documentation of test results for polypropylene piping to be in accordance with the manufacturer's instructions and submitted to the manufacturer upon successful completion per warranty requirements.
- f. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- g. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate the system according to either of the following:
 - 1) Fill the system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill the system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush the system with clean, potable water until no chlorine is in water coming from the system after the standing time.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- C. Clean the interior of the domestic water piping system. Remove dirt and debris as work progresses.

END OF SECTION 221116

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Flexible connectors.

1.2 DEFINITIONS

A. FKM: A family of fluroelastomer materials defined by ASTM D1418.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For domestic water piping specialties.

1.4 INFORMATIONAL SUBMITTALS

- A. Test and inspection reports.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Domestic water piping specialties intended to convey or dispense water for human consumption are to comply with the SDWA, requirements of authorities having jurisdiction, and NSF 61 and NSF 372, or to be certified in compliance with NSF 61 and NSF 372 by an American National Standards Institute (ANSI)-accredited third-party certification body that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Mason Industries, Inc.
 - 3. Metraflex Company (The).
- B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.
- C. Stainless Steel-Hose Flexible Connectors: Corrugated-stainless steel tubing with stainless steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 PIPING CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.

3.2 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections.
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

- D. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 221119

SECTION 221123.13 - DOMESTIC-WATER PACKAGED BOOSTER PUMPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Multiplex, variable-speed booster pumps.

1.2 DEFINITIONS

- A. PID: Proportional Integral Derivative.
- B. VFC: Variable-frequency controller.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, and dimensions of individual components and profiles.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For booster pumps.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For domestic-water packaged booster pumps.
 - 1. Include design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for booster pumps, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For booster pumps to include in emergency, operation, and maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Retain protective coatings and flange's protective covers during storage.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.
- B. Seismic Performance: Booster pumps shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the booster pump will remain in place without separation of any parts from the booster pump when subjected to the seismic forces specified and the booster pump will be fully operational after the seismic event."

2.2 MULTIPLEX, VARIABLE-SPEED BOOSTER PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Canariis Corporation
 - 2. VC Systems & Controls, Inc.
- B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pumps, piping, valves, specialties, and controls, and mounted on base.
- C. Pumps:

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- 1. Type: Vertical, multistage as defined in HI 1.1-1.2 and HI 1.3 for in-line, multistage, separately coupled, overhung-impeller, centrifugal pump.
- 2. Casing: Cast-iron or steel base and stainless-steel chamber.
- 3. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
- 4. Shaft: Stainless steel.
- 5. Seal: Mechanical.
- 6. Bearing: Water-lubricated sleeve type.
- D. Motors: Single speed, with grease-lubricated or pre-greased, permanently shielded, ball-bearings. Select motors that will not overload through full range of pump performance curve.
- E. Piping: Stainless-steel pipe and fittings.
- F. Valves:
 - 1. Shutoff Valves NPS 2 and Smaller: Gate valve or two-piece, full-port ball valve, in each pump's suction and discharge piping.
 - 2. Shutoff Valves NPS 2-1/2 and Larger: Gate valve or lug-type butterfly valve, in each pump's suction and discharge piping and in inlet and outlet headers.
 - 3. Check Valves NPS 2 and Smaller: Silent or swing type in each pump's discharge piping.
 - 4. Check Valves NPS 2-1/2 and Larger: Silent type in each pump's discharge piping.
 - 5. Thermal-Relief Valve: Temperature-and-pressure relief type in pump's discharge header piping.
- G. Dielectric Fittings: With insulating material to isolate joined dissimilar metals.
- H. VFC: Serving each pump in pump array.
 - 1. Manufactured Units: Pulse-width modulated; constant torque and variable torque for Design A and Design B or inverter-duty motors.
 - 2. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
 - 3. Unit Operating Requirements:
 - a. Internal Adjustability:
 - 1) Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2) Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3) Acceleration: 0.1 to 999.9 seconds.
 - 4) Deceleration: 0.1 to 999.9 seconds.
 - 5) Current Limit: 30 to minimum of 150 percent of maximum rating.
 - b. Self-Protection and Reliability Features:
 - 1) Surge suppression.
 - 2) Loss of input signal protection.
 - 3) Under- and overvoltage trips.
 - 4) VFC and motor overload/overtemperature protection.
 - 5) Critical frequency rejection.
 - 6) Loss-of-phase protection.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- 7) Reverse-phase protection.
- 8) Motor-overtemperature fault.
- c. Bidirectional autospeed search.
- d. Torque boost.
- e. Motor temperature compensation at slow speeds.
 - 1) Panel-mounted operator station.
 - 2) Historical logging information and displays.
 - 3) Digital indicating devices.
- f. Control Signal Interface: Electric.
- g. Proportional Integral Derivative (PID) control interface.
- h. DDC System for HVAC Protocols for Network Communications: ASHRAE 135.

4. Line Conditioning:

- a. Input line conditioning.
- b. Output filtering.
- c. EMI/RFI filtering.

5. Bypass Systems:

- a. Bypass Mode: Field-selectable automatic or manual.
- b. Bypass Controller: Two-contactor style, with bypass and output isolating contactors and isolating switch.
- c. Bypass Contactor Configuration: Full-voltage (across the line) type.
- 6. Instrumentation: Suction and discharge pressure gauges.
- 7. Lights: Running light for each pump.
- 8. Alarm Signal Device: Sounds alarm when backup pumps are operating.
 - a. Time Delay: Controls alarm operation; adjustable from 1 to 300 seconds, with automatic reset.
- 9. Thermal-bleed cutoff.
- 10. Low-suction-pressure cutout.
- 11. High-suction-pressure cutout.
- 12. Low-discharge-pressure cutout.
- 13. High-discharge-pressure cutout.
- 14. Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to BACnet DDC system. DDC systems are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of each pump.
 - b. Alarm status.
- I. Base: Structural steel.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in NFPA 70.

2.4 SOURCE QUALITY CONTROL

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. ASME Compliance: Comply with ASME B31.9 for piping.
- C. UL Compliance for Packaged Pumping Systems:
 - 1. UL 508, "Industrial Control Equipment."
 - 2. UL 508A, "Industrial Control Panels."
 - 3. UL 778, "Motor-Operated Water Pumps."
 - 4. UL 1995, "Heating and Cooling Equipment."
- D. Booster pumps shall be listed and labeled as packaged pumping systems by testing agency acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for booster pumps to verify actual locations of piping connections before booster-pump installation.

3.2 INSTALLATION

- A. Booster-Pump Mounting:
 - 1. Install booster pumps on cast-in-place concrete equipment base(s).
- B. Support connected domestic-water piping so weight of piping is not supported by booster pumps.

3.3 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Booster-Pump Piping Connections: Connect domestic-water piping to booster pumps. Install suction and discharge pipe equal to or greater than size of system suction and discharge headers.
 - 1. Install shutoff valves on piping connections to booster-pump suction and discharge piping. Install ball, butterfly, or gate valves same size as suction and discharge piping. Comply with requirements for general-duty valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," and Section 220523.13 "Butterfly Valves for Plumbing Piping,"
 - 2. Install union, flanged, or grooved-joint connections on suction and discharge headers at connection to domestic-water piping. Comply with requirements for unions and flanges specified in Section 221116 "Domestic Water Piping."
 - 3. Install valved bypass, same size as and between piping, at connections to booster-pump suction and discharge piping. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."
 - 4. Install flexible connectors, same size as piping, on piping connections to booster-pump suction and discharge piping. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."
 - 5. Where installing piping adjacent to booster pumps, allow space for service and maintenance.

3.4 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."
- C. Provide skid-mounted control panel with BMS connection. Pump status and all alarm conditions shall be connected to the BMS through the pump control panel auxiliary contacts.
 - 1. Logic section
 - a. Provide, mount and wire on the skid a programmable logic controller in an enclosure to interface the signal from the pressure sensor to the VFD's and provide

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

a stabilized response to speed up or slow down the pump or add the lag pump(s) to meet system requirements. The controller shall provide setpoint adjustment, timer adjustment, PID functions and both system and controller self-diagnostics via a 5.7" STN touchscreen display. All user interface setpoints are easily accessible via the password protected display screen. Normal system operation is tuned to eliminate hunting. Controller shall have one RS 485 communication port, real time calendar/clock and EEPROM memory transfer cartridge.

2. Power section

a. Each system shall include a UL listed enclosed industrial control panel in a NEMA 1 enclosure, factory mounted and wired on the steel skid. The panel shall be furnished with individual pump disconnects with through the door handles, pump run lights, h-o-a selector switches and 115 volt fused control transformer.

3. Standard control panel features

- a. UL listed enclosed industrial control panel
- b. Individual fused disconnects with external handle
- c. Programmable logic controller (plc)
- d. Pump running lights
- e. H/o/a selector switches
- f. 115 volt fused control circuit transformer
- g. Pump minimum run timers
- h. Mounted and wired on skid
- i. Pump operating and sequence controls

4. Control panel options

- a. Control power (on-off) switch and light
- b. Low suction pressure shutdown circuit with auto reset, delay timer and light
- c. Low system pressure circuit to start standby pump(s) with manual reset and light
- d. High system pressure shutdown circuit with manual reset and light
- e. Audible alarm with silence push button
- f. Auto alternate (3) equal pumps
- g. Auxiliary relay contacts

5. Factory test

a. The booster system shall be hydrostatically tested and shall undergo a complete electric and hydraulic test from 0 to 100% design flow at the factory. All control devices including transmitters and all safety features shall be factory calibrated and tested. The owner's representative may witness the test.

3.6 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.

1. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections with the assistance of a factory-authorized service representative.
 - 1. Perform visual and mechanical inspection.
 - 2. Leak Test: After installation, charge booster pump and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start booster pumps to confirm proper motor rotation and booster-pump operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Pumps and controls will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.8 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.9 SEQUENCE OF OPERATIONS

A. The lead pump shall run only as necessary to maintain system pressure and will be controlled automatically by means of a pressure sensor/transmitter and programmable logic controller (PLC) programmed to prevent short cycling. If the lead pump is unable to maintain system pressure the lag pump(s) will be called on after a time delay and will operate in parallel with the lead pump in accordance with the PLC program. When one pump can handle the system demand the controls will shut down the lag pump(s). When a low or no flow condition is reached, the controls will accelerate the lead pump to charge the system and hydro-pneumatic tank then shut the lead pump down and alternate.

System capacity shall be 300 GPM, with a system pressure of 87 psig, including a minimum suction pressure of 35 psig. Maximum suction pressure will be 50 psig.

3.10 ADJUSTING

- A. Adjust booster pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust pressure set points.

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting booster pump to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.11 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain booster pumps.

END OF SECTION 221123.13

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL INSTALLATIONS

PART 1 -

1.1 RELATED DOCUMENTS

- A. These basic Electrical Requirements apply to all Division 26000 Sections.
- B. The work of this Section consists of providing of all materials, labor and equipment and the like necessary and/or required for the complete execution of all <u>Electrical Installations and related work</u> for this project, as required by the contract documents.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.3 REFERENCES

- A. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers Guides and Standards, latest editions.
- B. SMACNA Sheet Metal and Air Conditioning Contractors National Association.
- C. ASME American Society of Mechanical Engineers.
- D. UL Underwriters Laboratory.
- E. NFPA National Fire Protection Association.

1.4 REGULATORY REQUIREMENTS

- A. Conform to New York State Building Codes and Energy Code as well as all local codes.
- B. Electrical: Conform to National Electrical Code, NFPA 70 (2017).
- C. Obtain permits, and request inspections from authority having jurisdiction.

1.5 QUALITY ASSURANCE

A. The Contractor shall have the work indicated on the drawings and/or specified in each section performed by vendors or mechanics experienced and skilled in its implantation or by a "Specialist", "Specialty Contractor" or "Specialty Subcontractor" under contractual agreement with the Contractor. These terms mean an individual or firm of established reputation, or, if newly organized, whose personnel have previously established a reputation in the same field,

which is regularly engaged in, and which maintains a regular force of workmen skilled in either manufacturing or fabricating items required by the Contract, installing items required by the

Contract, or otherwise performing work required by the Contract.

B. Where the Contract Specifications require installation by a "Specialist," that term shall also be deemed to mean either the manufacturer of the item, an individual or firm licensed by the manufacturer, or an individual or firm who will perform such work under the manufacturer's direct supervision.

1.6 PROJECT/SITE CONDITIONS

- A. Install Work in approximate locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed arrangement of Work to meet Project conditions, including changes to Work specified in other Sections.

1.7 SCOPE OF WORK

- A. This Contractor shall be responsible for coordinating his work with all other trades.
- B. The Contractor shall provide all materials, labor, equipment, tools, appliances, services, hoisting, scaffolding, supervision and overhead for the furnishing and installing of all electrical work and related work including but not limited to the following:
 - 1. Demolition of existing work including, but not limited to, generator, transformers, switchboards, panelboards, lighting, wiring, electrical accessories/equipment, control panels, miscellaneous equipment.
 - 2. Equipment Supports
 - 3. Vibration isolation.
 - 4. Motor starters and disconnects.
 - 5. Protection.
 - 6. Identification.
 - 7. Coordination.
 - 8. Phasing.
 - 9. Rigging.
 - 10. Shop Drawings.
 - 11. As-Built Drawings and Maintenance Manuals.
 - 12. Warrantees.
 - 13. Commissioning

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL

- A. Construct all apparatus of materials and pressure ratings suitable for the conditions encountered during continuous operation.
- B. Construct all equipment in accordance with requirements of all applicable codes.
- C. Provide all wiring, equipment, accessories and other components necessary to make all systems complete and operable.
- D. The contractor shall warranty all work, including labor and materials, and equipment furnished and installed as part of this contract for a minimum period of year from the date of acceptance by the owner, in writing. Certain equipment, may have longer warranties as indicated in the specifications. In such cases the longer of the two warranties shall prevail.

3.2 SHOP DRAWINGS AND SUBMITTALS (COORDINATE WITH DIVISION 1)

- A. Shop drawings and samples shall be prepared and submitted in accordance with the requirements established in the contract and shall consist of all items listed in the following paragraphs.
- B. Manufacturer's data or shop drawings giving full information as to dimensions, materials, and all information pertinent to the adequacy of the submitted equipment shall be submitted for review. Shop drawings shall include, but not be limited to the following:
- C. Submit all Electrical equipment noted and scheduled on plans including but not limited to the following:
 - 1. Generator
 - 2. Transformers
 - 3. Switchboards
 - 4. MCCs
 - 5. Panelboards
 - 6. Raceways and boxes
 - 7. Lighting and controls
 - 8. Wiring devices
- D. The contractor shall, upon award, submit a schedule for the engineer's review indicating when each of the above shop drawings shall be submitted. Submittals shall be made in a timely manner as the project progresses in accordance with the Construction manager or General contractor's work schedules. The contractor shall allow sufficient time for the engineers to perform his review. A minimum of 10 business days shall be required. Untimely submittals shall be cause for the owner to make a delay against the contractor.

- E. Demolition, purchase and or installation shall not begin until shop drawings pertaining to the equipment associated with any related potion of the work have been submitted.
- F. Coordinated shop drawings shall indicate all existing and/or new sheet metal, lights, walls, piping, structural elements, existing work, conduits, equipment, fire alarm devices etc. and dimension locations of ductwork including elevations in relation to these items.
- G. Where shop drawings have been reviewed by the Engineer, such review shall not be considered as a guarantee of measurements or building conditions. Where drawings have been reviewed, said review does not mean that drawings have been checked in detail; said review does not substantiate any quantities and in any way relieve the Contractor from his responsibility nor the necessity of furnishing materials or performing work required by the Contract Drawings and Specifications. It does not relieve the contractor of the responsibility to perform all work to accepted industry standards and in a code compliant manor. Approval of shop drawings containing errors does not relieve the contractor from making corrections at his expense.
- H. Where substitutions are submitted for approval the review shall be for general performance comparison to the specified product. Products shall not be reviewed for size, clearance or coordination with other trades. Coordination with other trades shall be the responsibility of the contractor. And changes to existing conditions or changes required to the work of other trades such as a result of substituted material or equipment approved or not shall be the responsibility of this contractor.

I. Approval of shop drawings

- 1. The Contractor shall be specifically responsible for checking equipment dimensions and clearances and confirming that equipment will fit into the designated space and connect properly to adjoining equipment and/or materials.
- 2. Submittals marked "Make Corrections Noted" give authority to proceed in accordance with the notes. However, if drawings are also marked "Amend and Resubmit", corrected drawings must be resubmitted for final review.
- 3. Submittals marked "Rejected" do not give authority to proceed with any portion of the work shown there-on. Drawings must be resubmitted.
- 4. Submittals marked "Rejected" or "Amend and Resubmit" shall include a specific written response to the engineer's comments. Resubmission of a submittal without a written response to the engineer's comments will be considered incomplete and shall be returned un-reviewed.
- J. The contractor shall submit a composite shop drawing layout plan. This shall include all trades including plumbing mechanical and electrical trades. It shall indicate all equipment, piping conduit. It shall include an accurate architectural background. The composite drawing is for contractors and subcontractors to coordinate their work with the work of other trades prior to submitting to the engineer for review and approval. Identify equipment clearances as required for service and maintenance by the manufacture. Indicate conflicts for resolution.
- K. Coordination submittals for piping, conduit and equipment within the building shall be made using 3-d software such as Autocad and shall include plan view sections and elevations as

necessary to full illustrate and evaluate and resolve all structural, piping, major conduit and equipment for conflicts with other trades.

3.3 CHARTS AND TAGS

A. Comply with Supplemental and general Conditions

3.4 CODES AND STANDARDS

A. All equipment and installation methods shall conform to the applicable standards and/or recommendations set forth in the New York State Building Code, Local Codes as well as all Codes and Standards listed in the general requirements sections of the specification.

3.5 FEES & PERMITS

A. The Contractor shall obtain all permits and pay all fees required related to this scope of work

3.6 PAINTING

- A. All equipment and all other factory manufactured and assembled apparatus shall be factory coated with one coat of primer and one coat of machinery enamel standard color at the factory and after installation, all finishes shall be cleaned and touched up to repair any damage incurred during construction.
- B. All supports, nuts, bolts and hanger fasteners located outside shall be galvanized or nickel plated.

3.7 RIGGING

- A. Furnish all labor, materials and equipment required to rig equipment and materials.
- B. The rigger shall secure any necessary permits and comply with all applicable Federal, State and local safety regulations. A copy of permits to be kept at both the project site and Engineer's Office.
- C. The rigger shall have a minimum of five (5) years of practical experience and hold a master riggers license if required.
- D. The procedure for rigging shall be submitted to the Engineer for review. All possible precautions should be taken to prevent damage to the structure, streets, sidewalks, curbs, lawns, etc.

3.8 CUTTING AND PATCHING

A. All cutting and patching required for conduits, etc., passing through walls, floors, and roof shall be provided by this Contractor under this contract unless otherwise noted.

B. Patching materials and application shall match existing construction. It also includes patch to match any voids left behind by removals. Hire a skilled tradesman (mason, carpenter, etc.) to perform this work.

- C. Where applicable, new holes for piping installation shall be core drilled.
- D. Pipe Sleeves & Fire-stopping:
 - 1. Provide for all pipes, conduits ducts, and other elements passing through floors, walls, partitions and structural elements, sleeves as specified. Sleeves shall be of adequate diameter to allow for a minimum of 3/4 inches clear all around sleeve and pipe. When pipe, conduit ducts or other such element penetrates other than fire rated assembly and is insulated, insulation shall pass continuously through sleeves with 1/2 inch clearance between insulation and sleeve.
 - 2. Where pipes, conduits and other such elements penetrate fire rated assemblies, or where holes or voids are created to extend mechanical systems through fire rated assemblies (walls, floors, ceilings, structure, etc.); sleeves and fire-stopping systems shall be installed.
- E. Furnish access doors, to the General Contractor for installation where required in finished walls, partitions and the like for access to junction boxes, controls, valves, etc, concealed behind finished construction.
- F. Submit location drawings and sizes for review prior to installation.

3.9 PROTECTION-COORDINATE WITH DIVISION 1

- A. Special protection is required for installation of a Derrick or other device for rigging purposes. This Contractor shall coordinate with the rigger to facilitate rigging work.
- B. Recommendations and Provisions of ANSI Bulletin A10.2 and OSHA shall be complied with inso-far as applicable to the work.
- C. The Contractor shall provide temporary partitions or tarpaulins to protect adjacent spaces and/or equipment. He shall be responsible for any damage or injury to person or property of any character resulting from any act, omission, neglect or misconduct in his manner or method of executing his work.
- D. The Contractor shall restore at his own expense such property to a condition similar or equal to that existing before such damage or injury in an acceptable manner.
- E. The Contractor, furthermore, shall conduct his operations in such a manner as to prevent dust and debris from transferring on to adjoining property or into existing spaces.
- F. All openings cut in walls, floors, roof or ceilings of the building, for conduit, pipe, ductwork, etc., shall be closed off with box-type temporary protective enclosures of ½" tempered hardboard, except when mechanics are actually working at the particular opening. Enclosures shall be constructed of fireproof 2x4 frame, four (4) sides covered and made completely dust and water tight.

DOMESTIC WATER BOOSTER PUMP REPLACEMENT

G. All finished floor areas through which the contractor must pass with materials or equipment shall be protected with a layer of ¼" hardboard, "Masonite", laid with joints taped together. Roofs shall be protected with ½" plywood

3.10 EQUIPMENT SUPPORTS

A. A.Provide supplementary steel dunnage, curbs, angle iron stands, etc., to properly set and install all equipment, including supports necessary to properly pitch piping.

3.11 WELDING

- A. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- B. The handling and storage of all welding materials, acetylene and oxygen tanks, burners, and other equipment required for the execution of welding and cutting work shall be subject at all times to the approval of the Owner and/or Architect. All welding materials and gas tanks shall be promptly removed from the premises upon completion of each day's work or stored in a manner satisfactory to the owner. Welding and equipment shall conform to the American Welding Society's Code for Welding in Building Construction, latest edition as well as state and local laws and ordinances.
- C. Provide all temporary ventilation, and ventilation air systems required during welding operations as required by OSHA.

3.12 AS-BUILT DRAWINGS

- A. The Contractor shall provide a complete set of As-Built drawings showing actual installation and locations of all new and existing equipment, piping, and ductwork in the entire building. Schedules shall be revised to indicate actual equipment installed.
- B. As-Built drawings shall be submitted as per contract requirements in accordance with Division 1 and shall be submitted in paper format for review. Accepted as builts shall then be submitted in AutoCAD format on hard disc.

3.13 CONDITIONS

- A. Inspection: Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence. Verify that the work of this Section may be completed in strict accordance with all pertinent codes and regulations, the approved Shop Drawings, and the Manufacturers' recommendations.
- B. Discrepancies: In the event of discrepancy, immediately notify the Engineer. Do not proceed in areas of discrepancy until all such discrepancies have been fully resolved.

3.14 INSTALLATION OF EQUIPMENT

- A. Locations: Install all equipment in the locations shown on the approved Shop Drawings except where specifically otherwise approved on the job by the Owner and/or Engineer.
- B. Interferences: Avoid interference with structure, and with work of other trades, preserving adequate headroom and clearing all doors and passageways to the approval of the Engineer.
- C. Inspection: Check each piece of equipment in the system for defects, verifying that all parts are properly furnished and installed, and that all items function properly, and that all adjustments have been made.

3.15 CLOSING-IN OF UNINSPECTED WORK

- A. General: Do not allow or cause any of the work to be covered up or enclosed until it has been inspected, tested, and accepted by the Engineer and by all other authorities having jurisdiction.
- B. Uncovering: Should any of the work of this Section be covered up or enclosed before it has been completely inspected, tested, and approved, do all things necessary to uncover all such work. After the work has been completely inspected, tested, and approved, provide all materials and labor necessary and make all repairs necessary to restore the work to its original and proper condition at no additional cost to the owner.

3.16 BUILDING ACCESS

- A. The Contractor shall inform himself fully regarding peculiarities and limitations of space available for the passage and installation of all equipment and materials under the Contract.
- B. Verify and coordinate removal of existing construction and/or knock-down of equipment to suit conditions. Special attention should be given to equipment installation. Provide all labor and material to facilitate installation.

3.17 COOPERATION WITH OTHER TRADES PHASING

- A. Cooperate with other trades in order that all systems in the work may be installed in the best arrangements.
- B. Coordinate as required with all other trades to share space in common areas and to provide the maximum of access to each system.
- C. This Contractor shall submit fully coordinated shop drawings showing all piping, ductwork and equipment, as well as relevant work of all other trades such as light, conduits, structural and steel, which may impact the final size or placement of piping, ductwork, equipment, diffusers and grilles.
- D. The work shall be scheduled and phased in accordance with the requirements of the contract and the client. Prior to the commencement of work the HVAC contractor shall submit a schedule in

writing to the Architect and owner for approval. There shall be no shut downs of any systems without prior written approval from the owner.

3.18 CLEANING

- A. It is the intent of the contract documents that all work, including the inside of equipment be left in a clean condition. All construction dirt shall be removed from material and equipment.
- B. All removed items shall be taken off the premises and discarded in a manner satisfactory to the Owner.

3.19 COMPLETENESS

A. It is the intent of the contract documents to provide complete systems. Completeness shall mean not only that all material and equipment has been installed properly, but that all material and equipment is installed, adjusted, and operating as per the design intent in the opinion of the Engineer and in accordance with generally accepted industry good practice.

3.20 FIRE PREVENTION DURING HOT WORK

- A. Before starting operations, the Contractor shall furnish trained personnel to provide fire watches for locations where hot work is to be performed. One fire watcher may observe several locations in a relatively small contiguous area. Contractor shall furnish suitable type, fully-charged, operable portable fire extinguisher to each fire watcher.
- B. The Contractor shall provide fire watchers who know how to operate the fire extinguisher, how to turn on a fire alarm and how to summon the fire department.
- C. Before starting operations, take suitable precautions to minimize the hazard of a fire communicating to the opposite side of walls, floors, ceilings and roofs from the operations.

3.21 SAFETY MEASURES

- A. Hot work shall not be done in or near rooms or areas where flammable liquids or explosive vapors are present or thought to be present. A combustible gas indicator (explosimeter) test shall be conducted to assure that each area is safe. The Contractor is responsible for arranging and paying for each test.
- B. Insofar as possible, the Contractor shall remove and keep the area free from all combustibles, including rubbish, paper and waste within a radius of 25 feet from hot operations.
- C. If combustible material cannot be removed, the Contractor shall furnish fireproof blankets to cover such materials. At the direction of the owner floors, walls, and ceilings of combustible material shall be wetted thoroughly with water before, during, and after operations sufficiently to afford adequate protection.

- D. Where possible, the Contractor shall furnish and use baffles of metal or gypsum board to prevent the spraying of sparks, hot slag and other hot particles into surrounding combustible material.
- E. The Contractor shall prevent the spread of sparks and particles of hot metal through open windows, doors, and holes and cracks in floors, walls, ceilings and roofs.
- F. Cylinders of gas used in hot work shall be placed a safe distance from the work. The Contractor shall provide hoses and equipment free of deterioration, malfunction and leaks. Suitable supports shall be provided to prevent accidental overturning of cylinders. All cylinder control valves shall be shut off while in use with the gas pressure regulator set at 15 psi or less.
- G. When hot work operations are completed or ended for the day, each location of the days work shall be inspected by the Contractor 30 to 60 minutes after completion of operations to detect for hidden or smoldering fires and to ensure that proper housekeeping is maintained. Contractor shall cleanup the area of work at the end of each shift or workday.
- H. Where sprinkler protection exists, the sprinkler system shall be maintained without interruption while operations are being performed. If operations are performed close to automatic sprinkler heads, gypsum board sheets or damp cloth guards may be used to shield the individual heads temporarily. The heads shall be inspected by the Contractor immediately after hot work operations cease, to ensure all materials have been removed from the heads and that the heads have not been damaged.
- I. Suitable type, fully-charged, operable portable fire extinguisher shall be available at all times during hot work operations.
- J. If any of the above safeguards are not employed, or are violated, the Contracting owners Representative may, by written notice, stop the work until compliance is obtained. Such stoppage shall not relieve the Contractor form performing his work within the Contract period for the Contract price.

3.22 USE OF OWNERS EQUIPMENT

A. The contractor shall only use the owners equipment where agreed prior and with 5 days notice minimum or as agreed.

3.23 CLOSEOUT PROCEDURES

- A. General Operating and Maintenance Instructions: Arrange for each installer of operating equipment and other work that requires regular or continuing maintenance, to meet at the site with the Owner's personnel to provide necessary basic instructions in the proper operation and maintenance of the entire Work. Where installers are not expert in the required procedures, include instruction by the manufacturer's representatives.
- B. Where applicable, provide instruction and training, including application of special coatings systems, at manufacturer's recommendation.
- C. Provide a detailed review of the following items:
 - 1. Maintenance manuals

2. Record documents and catalog cuts for each piece of equipment.

- 3. Spare parts and materials
- 4. Tools
- 5. Lubricants
- 6. Fuels
- 7. Identification systems
- 8. Control sequences
- 9. Hazards
- 10. Cleaning
- D. Warranties, bonds, maintenance agreements, and similar continuing commitments.
- E. Demonstrate the following procedures:
 - 1. Start-up
 - 2. Shut-down
 - 3. Emergency operations
 - 4. Noise and vibration adjustments
 - 5. Safety procedures
 - 6. Economy and efficiency adjustments
 - 7. Effective energy utilization.
 - 8. Periodic maintenance
- F. Prepare instruction periods to consist of classroom and or "hands-on" instruction. Provide all equipment including, but not limited to, the following.
 - 1. Generator
 - 2. Lighting and controls
 - 3. MCC
 - 4. Switchboard and metering
 - 5. Circuit breakers

Consult individual equipment specification sections for additional training requirements.

- G. Prepare a written agenda for each session and submit for review and approval. Include date, location, purpose, specific scope, proposed attendance and session duration.
- H. Record training sessions in digital format, format as selected by the Owner. Turn over digital files to the Owner after training has been completed.

END OF SECTION

SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden Inc.
 - 2. Encore Wire Corporation.
 - 3. General Cable Technologies Corporation.
 - 4. General Cable; General Cable Corporation.

- 5. Senator Wire & Cable Company.
- 6. Southwire Company.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.
- D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI and Type SO with ground wire.
- E. VFC Cable:
 - 1. Type XHHW-2 1000V rated.

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. AFC Cable Systems, Inc.
 - 3. Hubbell Power Systems, Inc.
 - 4. ILSCO.
 - 5. NSi Industries LLC.
 - 6. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 7. Tyco Electronics Corp.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders: Type XHHW-2, single conductors in raceway or Mineral-insulated, metal-sheathed cable, Type MI.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Feeders Installed Below Raised Flooring: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- F. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- G. Exposed Branch Circuits, Including in Crawlspaces: Type XHHW-2, single conductors in raceway.
- H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
- I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- J. Branch Circuits Installed Below Raised Flooring: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
- K. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
- L. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- M. VFC Output Circuits: Type XHHW-2 1000V.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - b. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519

SECTION 260529

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.
- B. Related Requirements:
 - 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Trapeze hangers.
 - d. Clamps.
 - e. Turnbuckles.
 - f. Sockets.
 - g. Eye nuts.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of trapeze hangers.
 - 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Ouality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
 - 3. See Section 260548.16 "Seismic Controls for Electrical Systems" for requirements for Component Amplification Factor and Component Response Modification Factor.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Allied Tube & Conduit.
- b. Cooper B-Line, Inc.; a division of Cooper Industries.
- c. ERICO International Corporation.
- d. GS Metals Corp.
- e. Thomas & Betts Corporation, A Member of the ABB Group.
- f. Unistrut; an Atkore International company.
- 2. Material: Galvanized steel.
- 3. Channel Width: 1-5/8 inches.
- 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 5. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.

- 2) Empire Tool and Manufacturing Co., Inc.
- 3) Hilti, Inc.
- 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
- 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Boxes, enclosures, and cabinets.
 - 5. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

- A. Source quality-control reports.
- B. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Allied Tube & Conduit.
 - 3. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 4. Republic Conduit.
 - 5. Southwire Company.
 - 6. Thomas & Betts Corporation, A Member of the ABB Group.
 - 7. Western Tube and Conduit Corporation.
 - 8. Wheatland Tube Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. FMC: Comply with UL 1; zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Compression.

- 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- I. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Technologies Company.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman; a brand of Pentair Equipment Protection.
 - 5. Hubbell Incorporated.
 - 6. MonoSystems, Inc.
 - 7. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 - 8. RACO: Hubbell.
 - 9. Thomas & Betts Corporation, A Member of the ABB Group.
 - 10. Wiremold / Legrand.

- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- G. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
 - 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- L. Gangable boxes are allowed.
- M. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- N. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Armoreast Products Company.
 - b. Carson Industries LLC.
 - c. NewBasis.
 - d. Oldcastle Precast, Inc.
 - e. Quazite: Hubbell Power Systems, Inc.
 - f. Synertech Moulded Products.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "ELECTRIC.".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.5 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.

- 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
- 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC.
 - 2. Concealed Conduit, Aboveground: GRC or IMC.
 - 3. Underground Conduit: RNC, Type EPC-80-PVC.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC or IMC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings.

- F. Install surface raceways only where indicated on Drawings.
- G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inchesof enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings
 - 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from RNC, Type EPC-80-PVC to GRC or IMC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- Q. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- R. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- S. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- T. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.

- b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
- c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
- d. Attics: 135 deg F temperature change.
- 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
- 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
- 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- U. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.
- W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- X. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- Y. Locate boxes so that cover or plate will not span different building finishes.
- Z. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- AA. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- BB. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

- 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
- 2. Install backfill as specified in Section 312000 "Earth Moving."
- 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
- 4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
- 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260548.16 - SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Restraint channel bracings.
- 2. Restraint cables.
- 3. Seismic-restraint accessories.
- 4. Mechanical anchor bolts.
- 5. Adhesive anchor bolts.

B. Related Requirements:

1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
- B. Delegated-Design Submittal: For each seismic-restraint device.
 - 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic and wind forces required to select seismic and wind restraints and for designing vibration isolation bases.

a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

3. Seismic- and Wind-Restraint Details:

- a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
- b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
- c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
- d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations.

If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

- 1. Basic Wind Speed: 150 MPH.
- 2. Wind exposure: C.
- 3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

- 1. Site Class as Defined in the IBC: D.
- 2. Assigned Seismic Use Group or Building Category as Defined in ASCE-7: IV.
 - a. Component Importance Factor: 1.5.
 - b. Component Response Modification Factor:
 - 1) Generator: 2.5.
 - 2) Battery/Inverter/UPS: 2.5.
 - 3) Transformers: 2.5.
 - 4) Panelboards: 6.0.
 - 5) Distribution Boards: 6.0.
 - 6) Disconnect Switches: 6.0.
 - 7) Metering Cabinets: 6.0.
 - 8) Instrument Cabinets: 6.0.
 - 9) Fire Alarm Panel: 6.0.
 - 10) Transfer Switches: 6.0.
 - 11) Light Fixtures: 1.5.
 - 12) Misc. Electrical Equipment: 1.5.
 - 13) Conduits: 2.5.
 - 14) Underfloor Cable Trays: 2.5.
 - 15) Suspended Cable Trays: 6.0.

c. Component Amplification Factor:

- 1) Generator: 1.0.
- 2) Battery/Inverter/UPS: 1.0.
- 3) Transformers: 1.0.
- 4) Panelboards: 2.5.
- 5) Distribution Boards: 2.5.
- 6) Disconnect Switches: 2.5.

- 7) Metering Cabinets: 2.5.
- 8) Instrument Cabinets: 2.5.
- 9) Fire Alarm Panel: 2.5.
- 10) Transfer Switches: 2.5.
- 11) Light Fixtures: 1.0.
- 12) Misc. Electrical Equipment: 1.0.
- 13) Conduits: 1.0.
- 14) Underfloor Cable Trays: 1.0.
- 15) Suspended Cable Trays: 2.5.
- 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.281.
- 4. Design Spectral Response Acceleration at 1.0-Second Period: 0.115.

2.2 RESTRAINT CHANNEL BRACINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. B-line, an Eaton business.
 - 2. Hilti, Inc.
 - 3. Mason Industries, Inc.
 - 4. Unistrut; Part of Atkore International.
- B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Kinetics Noise Control, Inc.
 - 2. Loos & Co., Inc.
 - 3. Vibration Mountings & Controls, Inc.
- B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. B-line, an Eaton business.
- 2. Kinetics Noise Control, Inc.
- 3. Mason Industries, Inc.
- 4. TOLCO; a brand of NIBCO INC.
- B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
- E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
- F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. B-line, an Eaton business.
 - 2. Hilti, Inc.
 - 3. Kinetics Noise Control, Inc.
 - 4. Mason Industries, Inc.
- B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.6 ADHESIVE ANCHOR BOLTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Hilti, Inc.
 - 2. Kinetics Noise Control, Inc.
 - 3. Mason Industries, Inc.
- B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless

steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where required to receive them and where required to prevent buckling of hanger rods caused by seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Equipment and Hanger Restraints:
 - 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 2. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
- B. Seismic controls will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548.16

SECTION 260553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Identification for raceways.
- 2. Identification of power and control cables.
- 3. Identification for conductors.
- 4. Underground-line warning tape.
- 5. Warning labels and signs.
- 6. Instruction signs.
- 7. Equipment identification labels.
- 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- C. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. Grafoplast Wire Markers.
 - e. LEM Products Inc.
 - f. Marking Services, Inc.
 - g. Panduit Corp.
 - h. Seton Identification Products.

- B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - c. Panduit Corp.
 - d. Seton Identification Products.

C. Self-Adhesive Labels:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. A'n D Cable Products.
 - b. Brady Corporation.
 - c. Brother International Corporation.
 - d. emedco.
 - e. Grafoplast Wire Markers.
 - f. Ideal Industries, Inc.
 - g. LEM Products Inc.
 - h. Marking Services, Inc.
 - i. Panduit Corp.
 - i. Seton Identification Products.
- 2. Preprinted, 3-mil-thick, polyester or vinyl flexible label with acrylic pressure-sensitive adhesive.
 - a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the cable or raceway diameter, such that the clear shield overlaps the entire printed legend.
- 3. Polyester or Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 - a. Nominal Size: 3.5-by-5-inch.
- 4. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
- 5. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.4 BANDS AND TUBES:

- A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - c. Panduit Corp.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Panduit Corp.

2.5 TAPES AND STENCILS:

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. Ideal Industries, Inc.
 - d. Marking Services, Inc.
 - e. Panduit Corp.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.

- c. emedco.
- d. Marking Services, Inc.
- C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. LEM Products Inc.
 - b. Marking Services, Inc.
 - c. Seton Identification Products.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Seton Identification Products.
- E. Underground-Line Warning Tape
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Ideal Industries, Inc.
 - c. LEM Products Inc.
 - d. Marking Services, Inc.
 - e. Reef Industries, Inc.
 - f. Seton Identification Products.
 - 2. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 3. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.

- b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
- c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Tag:

- a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
- b. Width: 3 inches.
- c. Overall Thickness: 5 mils.
- d. Foil Core Thickness: 0.35 mil.
- e. Weight: 28 lb/1000 sq. ft..
- f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 Tags

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
 - e. Seton Identification Products.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Grafoplast Wire Markers.
 - e. LEM Products Inc.
 - f. Marking Services, Inc.
 - g. Panduit Corp.

h. Seton Identification Products.

C. Write-On Tags:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. LEM Products Inc.
 - c. Seton Identification Products.
- 2. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
- 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 Signs

A. Baked-Enamel Signs:

- 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
- 2. 1/4-inch grommets in corners for mounting.
- 3. Nominal Size: 7 by 10 inches.
- 4. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. emedco.
 - d. Marking Services, Inc.

B. Metal-Backed Butyrate Signs:

- 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing and with colors, legend, and size required for application.
- 2. 1/4-inch grommets in corners for mounting.
- 3. Nominal Size: 10 by 14 inches.
- 4. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. Marking Services, Inc.

- C. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches, minimum 1/16-inch-
 - b. For signs larger than 20 sq. inches, 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
 - 3. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.

2.8 CABLE TIES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ideal Industries, Inc.
 - 2. Marking Services, Inc.
 - 3. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 - 1. Minimum Width: 3/16 inch.

- 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
- 3. UL 94 Flame Rating: 94V-0.
- 4. Temperature Range: Minus 50 to plus 284 deg F.
- 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

- 1. Outdoors: UV-stabilized nylon.
- 2. In Spaces Handling Environmental Air: Plenum rated.
- I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
- J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

- A. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Snap-around labels. Install labels at 10-foot maximum intervals.
- B. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.
- C. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- D. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.

- c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- E. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- F. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive, self-laminating polyester labels with the conductor or cable designation, origin, and destination.
- H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive, self-laminating polyester labels with the conductor designation.
- I. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.
- J. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- K. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.
- L. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Metal-backed, butyrate warning signs.

- 1. Comply with 29 CFR 1910.145.
- 2. Identify system voltage with black letters on an orange background.
- 3. Apply to exterior of door, cover, or other access.
- 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- N. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- O. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- P. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:

- a. Indoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
- c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
- d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:

- a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
- b. Enclosures and electrical cabinets.
- c. Access doors and panels for concealed electrical items.
- d. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
- e. Emergency system boxes and enclosures.
- f. Enclosed switches.
- g. Enclosed circuit breakers.
- h. Enclosed controllers.

ISSUED FOR BID 09/09/2024

CAPITAL PROJECT 2098 HEALTH CENTER BUILDING IMPROVEMENTS BUILDING A DOMESTIC WATER BOOSTER PUMP REPLACEMENT

- i. Variable-speed controllers.
- j. Push-button stations.
- k. Power-transfer equipment.
- 1. Contactors.
- m. Remote-controlled switches, dimmer modules, and control devices.
- n. Battery-inverter units.
- o. Power-generating units.
- p. Monitoring and control equipment.
- q. UPS equipment.

END OF SECTION 260553

SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.

- 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg Fand not exceeding 104 deg F
 - 2. Altitude: Not exceeding 6600 feet

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 5. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 6. Service-Rated Switches: Labeled for use as service equipment.
- 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton Electrical Sector; Eaton Corporation.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Type HD, Heavy Duty, Double Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 5. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 4.
 - 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

- 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
- 2. Test continuity of each circuit.
- C. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816