SECTION 230100 - GENERAL CONDITIONS

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section.

1.1 GENERAL CONDITIONS

- A. Before submitting a proposal, Bidders shall examine all related to this work and shall become fully informed as to the extent and character of the work required and its relation to the other work in the building.
- B. Before commencing work, the Contractor will examine all conditions of the project upon which his work is in any way dependent for perfect workmanship according to the intent of this Specification. No "waiver of responsibility" for incomplete, inadequate or defective adjoining work will be considered unless notice has been filed by this Contractor and acceded to by the Owner's representative in writing before the Contractor begins any part of the work.
- C. The Contractor will pay for all licenses, permits and inspection fees required by civil authorities having jurisdiction. Comply with all laws, ordinances, regulations, and fire underwriter's requirements applicable to work herein specified without additional expense to the Owner.
- D. Small scale drilling through walls and floors or cutting of piping insulation which may contain asbestos shall be performed by a person with a "restricted asbestos handler allied trades certificate" and shall have a copy of it in his possession at all times while working of the project. This shall also apply to removal of piping, ductwork or equipment insulation.
- E. It is specifically intended that anything (whether material or labor), which is usually furnished as a part of such equipment, as is hereinafter called for (and which is necessary for the completion and proper operation) shall be furnished as part of this Contract without additional cost the Owner, whether or not shown in detail or described in the Specifications.
- F. When Drawings and Specifications conflict or there is a question as to the proper intent of this Contract, the Contractor shall assume the greater quantity, the higher quality and/or the more expensive method in his pricing. All questions shall be directed to the Architect/Engineer in writing only and only up to ten (10) days prior to bidding.
- G. The Drawings indicate the general runs of the piping, ductwork, etc. systems and the location of equipment and apparatus, however it shall be understood that the right is reserved by the Architect/Engineer to change the location of piping work, ductwork, equipment and apparatus to a reasonable extent as building conditions may dictate, prior to their installation without extra cost to the Owner.
- H. All components supplied by this Contractor shall be UL listed and/or ETL labeled and shall conform to ASHRAE Standard 15.
- I. Any changes from the Drawings and Specifications and any interpretation thereof shall have the prior approval of the Architect/Engineer. The Contractor shall submit in writing, at the time of signing the Contract, any items of necessary labor and materials, which, in his opinion, are lacking in requirements of the Drawings and Specifications to insure a complete job in all respects. No consideration will be granted to alleged misunderstanding of materials to be furnished, work to be done, or conditions to be complied with, it being understood that the tender of a proposal carries with it the agreement to all items and conditions referred to herein, or indicated on the accompanying Drawings.

SECTION 230110 - SCOPE OF WORK

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section.

- 1.1 SCOPE OF WORK
 - A. The work under this section includes all labor, materials, equipment, tools, transportation, and the performance of all work necessary and required for the furnishing and installation complete of all work as shown on the Contract Documents, including but not necessarily limited to the following:

PPS Offices

- 1. Exhaust fans and related appurtenances.
- 2. Grade mounted Outdoor VRF units and related appurtenances
- 3. Duct mounted coils, and related appurtenances.
- 4. Indoor Energy Recovery Air Handler unit and related appurtenances.
- 5. VRF type indoor cooling/heating cassette units.
- 6. Sheetmetal ductwork and related accessories.
- 7. Duct and pipe insulation.
- 8. All required piping, valves, and related specialties.
- 9. Convector, and Cabinet heater.
- 10. Registers, Diffusers, and Dampers.

General

- 1. Rigging of equipment.
- 2. Furnish all combination motor starter/disconnects for equipment (with the exception of starters and electric items already mounted on equipment or equipment not requiring same). Fan motor starter/disconnects shall have contacts for ATC connection and a terminal block connection for Fire Alarm fan shutdown. Starters per manufacturers recommendations. Underwriters inspection and certificate required. Coordinate with Electrical Contractor.
- 3. Air and Water Balancing.
- 4. Automatic temperature controls with complete wiring (regardless of voltage).
- 5. Testing, adjusting and start-up of equipment.
- 6. Painting and identification of all equipment and piping.
- 7. Firestopping per NFPA requirements (UL approved systems).
- 8. Operating and maintenance instructions.

- 9. As-Built Drawings Refer to Division 1.
- 10. Cutting and Patching Refer to Division 1.
- 11. Excavation and Backfill Refer to Division 2.
- B. Coordination Drawings (if applicable): Attention is directed to Division 1 for coordination drawing requirements for this project. These drawings are critical to the proper execution of the work and failure to honor these requirements may become the basis for denial of any and all claims for either or both "time" and "money".
- 1.2 REMOVALS
 - A. Removals should be coordinated with other trades affected.
 - B. Piping which penetrates the construction may be cut and capped provided capping is done beneath the finished surfaces so that construction over it can be achieved.
 - C. Soot Removal: In connection with the dismantling of boilers, Contractor shall gather together with a vacuum-cleaning machine all accumulations of soot. He shall remove al soot from the base of the chimney.
 - D. All removals shall be removed from the site.

1.3 ALTERATION WORK

- A. All equipment, piping, control components, etc. to be removed, shall be disposed of or salvaged as directed by the Owner. They shall not be removed from the premises without the Owner's approval.
- B. All piping to be removed shall be properly plugged or capped so that upon completion of all new work, all abandoned piping shall be concealed in finished areas.
- C. No dead ends shall be left on any piping upon completion of job. The existing system shall be left in perfect working order upon completion of new work.
- D. Location and sizes of existing piping, ductwork, equipment, etc. are approximate. Exact sizes and locations of all existing work shall be verified on the job.

SECTION 230200 - HYDRONIC SPECIALTIES

PART 1 - GENERAL

Applicable provisions of the Conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 AIR VENTS

- A. Install at all high points automatic air vents to eliminate air binding. All automatic air vents shall be approved heavy duty type equipped with petcocks and tubing for manual venting. All vents installed in coils, etc. shall be of manual key operated type.
- B. All vents concealed from view shall be accessible through access doors. Vents shall be by Hoffman, Anderson or ITT Bell & Gossett, 125 psig rated.

2.2 PRESSURE GAUGES

A. Furnish and install pressure gauges on suction and discharge sides of each pump and as required to check operation of equipment; pressure gauges shall have 4-1/2"diameter dials, Ashton, Ashcroft or approved equal.

2.3 THERMOMETERS

- A. Install thermometers at all locations in piping system as noted on Drawings and as required to check system performance. Thermometers shall be installed at the supply and return of coils and 3-way diverting valves as manufactured by Trerice, Weksler or Moeller, with 4-1/2 inch face, cast aluminum case, chrome plated steel ring, white background with black embossed markings, glass window, stainless steel pointer, brass movement, 316 stainless steel bulb. Provide separable, universal angle sockets for all thermometers.
- 2.4 COMBINATION BALANCING / SHUT-OFF VALVES (Circuit Sensors /Setters and Flow Meters)
- A. Provide Circuit Sensor/Setter balance valves as manufactured by Bell & Gossett or approved equal.
- B. Circuit Sensors: Furnish and install as shown on Drawings, a cast iron wafer-type flow meter designed for low pressure drop operation.
 - 1. The flow meter will be equipped with brass readout valves (with integral check valve) for taking differential pressure readings across the orifice of the flow meter.
 - 2. The flow meter shall be designed to operate at a maximum working pressure of 300 psig at 250 degrees F.
 - 3. The flow meter must be furnished with a calibrated nameplate for determining an accurate system flow rate.
 - 4. Each flow meter shall be ITT Bell & Gossett Circuit Sensor Flow Meter model no. OP.
- C. Circuit Setters: (1/2"-3") Furnish and install as shown on Drawings and with manufacturer's recommendations Bell & Gossett® Circuit Setter® Plus calibrated balance valve Model CB or Model MC as manufactured by Xylem.
 - 1. Valves to be designed to allow installing Contractor to pre-set balance points for proportional system balance prior to system start-up.

- 2. Valve body shall be constructed out of lead-free brass.
- 3. Valve shall include a ball valve constructed in 304 Stainless Steel.
- 4. Valve shall be AB1953 and CSA certified and compliant with Vermont 152S, Maryland House Bill HB372, Senate Bill S.3874, and NSF/ANSI-372.
- 5. Valve body shall include two pressure/temperature ports.
- 6. Valve body shall include an optional drain valve port.
- 7. Valve shall utilize a calibrated nameplate with a memory stop.
- 8. Valve shall utilize a reduced port design that provides velocity head recovery.
- 9. Valve temperature range shall be from -4°F (-20°C) to 250°F (121°C).
- 10. <u>Model CB:</u> Valve shall have either NPTF thread or SWTF end connections.
- 11. <u>Model CB:</u> Valves with NPT end connections shall be rated for 400 PSIG working pressure.
- 12. <u>Model CB:</u> Valves with SWTF end connections shall be rated for a maximum of 300 PSIG working pressure.
- 13. <u>Model MC:</u> Valve shall be rated for 300 PSIG working pressure.
- 14. <u>Model MC:</u> Valve shall include a SWTF or NPTF fixed end connection on the discharge end and a union tailpiece adapter with choice of SWTF, NPTF thread, or NPTM thread tailpiece connection on the supply end. The union tailpiece end should include a union nut that can secure the tailpiece to the body of the valve to create a water-tight seal.
- 15. Valves to have memory stop feature to allow valve to be closed for service and then reopened to set point without disturbing balance position. All valves to have calibrated nameplate to assure specific valve settings. Valves to be leak-tight at full rated working pressure. Valves 4-inch pipe size to be of cast iron body/brass vane construction with differential pressure read-out ports fitted with internal EPT insert and check valve.
- 16. Provide Extended Pressure/Temperature Ports and Drain Valve/Extended Drain Valve
- D. Circuit Setters: (4"-12") Furnish and install as shown on Drawings and with manufacturer's recommendations Bell & Gossett® Circuit Setter® Plus calibrated balance valve Model CB as manufactured by Xylem.
 - 1. Valves to be designed to allow installing Contractor to pre-set balance points for proportional system balance prior to system start-up.
 - 2. Valve body shall be constructed out of cast iron and rated for 175 PSIG working pressure (if flanged) or constructed out of ductile iron and rated for 300 PSIG working pressure (if grooved).
 - 3. Valve shall be a multi-turn globe style valve.
 - 4. Valve shall include a brass disc.
 - 5. Valve disc shall have a soft seat design made of EPDM.

- 6. (If Flanged) Valves shall include ANSI Class 125# flanged connections.
- 7. (If Grooved) Valves shall include grooved end connections.
- 8. Valve body shall include two pressure/temperature ports.
- 9. Valve shall utilize a calibrated nameplate with position indicator from 0 to 100% open.
- 10. Valve shall include a memory button to allow for positioning the valve to the appropriate set position after closing.
- 11. Valve temperature range shall be from -4°F (-20°C) to 250°F (121°C).
- 12. Valves to have memory stop feature to allow valve to be closed for service and then reopened to set point without disturbing balance position. All valves to have calibrated nameplate to assure specific valve settings. Valves to be leak-tight at full rated working pressure. Valves 4-inch pipe size to be of cast iron body/brass vane construction with differential pressure read-out ports fitted with internal EPT insert and check valve.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements
- 3.3 CLEANING
 - A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230235 - FIXED PLATE ENERGY RECOVERY UNIT

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

1.1 SUMMARY

A. This section includes Energy Recovery Ventilators for indoor installation.

1.2 SUBMITTALS

- A. Product Data: For each type or model include the following:
 - 1. Complete fan performance curves for both Supply Air and Exhaust Air, with system operating conditions indicated, as tested in an AMCA Certified Chamber.
 - 2. Energy core performance data for both summer and winter operation.
 - 3. Motor ratings, electrical characteristics and motor and fan accessories.
 - 4. Material types and gauges of all component pieces and assemblies.
 - 5. Dimensioned drawings for each type of installation, showing isometric and plan views, to include location of attached ductwork and service clearance requirements.
 - 6. Estimated gross weight of each installed unit.
 - 7. Installation, Operating and Maintenance manual (IOM) for each model.
 - 8. Remote Control Panel description to include all functions.
 - 9. Color chart including a palette of available standard paint finishes.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain unit with all appurtenant components or accessories from a single manufacturer.
- B. For the actual fabrication, installation and testing of work under this section use only thoroughly trained and experienced workers completely familiar with the items required and with the manufacturer's current recommended methods of installation.
- C. Product Options: Drawings must indicate size, profiles and dimensional requirements of Energy Recovery Units and are to be based on the specific system indicated. Refer to Division 1 Section "Product Requirements".
- D. Certifications:
 - 1. Entire unit shall be ETL Certified per U.L. 1812 and bear an ETL sticker.
 - 2. Energy Core shall be AHRI Certified, per Standard 1060.

1.4 COORDINATION

- A. Coordinate size and location of all building penetrations required for installation of each unit and associated plumbing and electrical systems.
- B. Coordinate sequencing of construction of associated HVAC, electrical supply.

1.5 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Filters: Provide 2 sets of MERV 13 disposable filters for each unit.
- 2. One set of fan belts (when applicable)

PART 2 – PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with specifications contained within this document, manufacturers offering products that may be incorporated into the work include, but are not limited to:
 - 1. Greentek Fan Corporation, Energy Wall or approved equal.

2.2 MANUFACTURED UNITS

A. Unit shall be fully assembled at the factory and consist of an insulated metal cabinet, energy core, gravity dampers, speed control, motion detector, frost control, filter assembly for intake and exhaust air, supply air blower assembly, exhaust air blower assembly and an electrical control center. All specified components and internal accessories factory installed and tested and prepared for single-point high voltage connection.

2.3 CABINET

- A. Materials: Formed single wall insulated metal cabinet, fabricated to permit access to internal components for maintenance.
- В.
- 1. Outside casing: 18 gauge, galvanized (G90) steel meeting ASTM A653 for components that do not receive a painted finish. Pre-painted components as supplied by the factory shall have polyester urethane paint on 18 gauge G60 galvanized steel. Components that receive a painted finish per A/E specification shall be of 18 gauge type A60 galvanneal steel and shall be painted with a baked industrial enamel finish. Components that receive a painted finish per A/E specification shall be polyester urethane powder coat.
- 2. Internal assemblies: 24 gauge, galvanized (G90) steel. Direct drive motor provided with a fabricated belly band for motor support.
- C. Access doors shall be hinged.
- D. Shall have factory-installed duct flanges on all duct openings.
- E. Cabinet Insulation: Comply with NFPA 90A and NFPA 90B and erosion requirements of UL 181.
 - 1. Materials: Fiberglass insulation. If insulation other than fiberglass is used, it must also meet the Fire Hazard Classification shown below.
 - a. Thickness: 0.5 inch
 - b. Fire Hazard Classification: Maximum flame spread of 25 and smoke developed of 50, when tested in accordance with ASTM C 411.
 - c. Location and application: Full coverage of entire cabinet exterior to include walls, roof and floor of unit. Insulation shall be of semi-rigid type and installed between inner and outer shells of all cabinet exterior components.
- F. Fixed plate core: The heat recovery section must be of the fixed plate air-to-air type. The heat recovery section must recover sensible heat only. The heat recovery fixed plated core must be made of polypropylene or aluminum per specifications in the project schedule. The fixed plate air-to-air heat recovery core must be easily cleanable. Energy transfer ratings must be ARI Certified to Standard 1060

and bear the ARI certification symbol for ARI Air-to-Air Energy Recovery Ventilation Equipment Certification Program based on ARI 1060. Ratings "in accordance with 1060" without certification are not acceptable. Energy recovery device shall transfer moisture entirely in the vapor phase. The energy cassette is to have a two-year warranty. Performance criteria are to be as specified in AHRI Standard 1060.

- G. Supply Air and Exhaust Air blower assemblies: Blower assemblies consist of an electric motor as specified by A/E and a direct driven blower. Assembly shall be mounted on heavy gauge galvanized rails and further mounted on 1.125-inch-thick neoprene vibration isolators.
- H. Control panel / connections: Energy Core Ventilator shall have an electrical control center where all high and low voltage connections are made. Control center shall be constructed to permit single-point high voltage power supply connections.
- I. Frost control: Proportional defrost sequences.
- J. Economizer Control: None
- K. Gravity dampers / Exhaust Air, Intake Air: Dampers of low leakage type shall be factory installed.
- L. Variable speed control is considered to be part of various optional operational modes or device controllers and are to be factory supplied and installed as specified by the A/E.
- 2.4 BLOWER
 - A. Blower section construction, Supply Air and Exhaust Air: Motor and blower shall be assembled onto a 14gauge galvanized steel platform and must have neoprene vibration isolation.
 - B. Blower assemblies: Shall be statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and horsepower.
 - C. Centrifugal blower housing: Formed and reinforced steel panels to make curved scroll housing with shaped cutoff.
 - D. Forward curved blower (fan) wheels: Galvanized or aluminum construction with inlet flange and shallow blades curved forward in direction of airflow. Mechanically attached to shaft with set screws.
 - E. Blower performance shall be factory tested for flow rate, pressure, power, air density, rotation speed and efficiency. Ratings are to be established in accordance with AMCA 210, "Laboratory Methods of Testing Fans for Rating".

2.5 MOTORS

- A. General: Blower motors greater than ³⁄₄ horsepower shall be "NEMA Premium[™]" unless otherwise indicated. Minimum compliance with EP Act minimum energy-efficiency standards for single speed ODP and TE enclosures is not acceptable. Motors shall be heavy-duty, permanently lubricated type to match the fan load and furnished at the specified voltage, phase and enclosure. Drives shall be sized for a minimum of 150% of driven horsepower and pulleys shall be fully machined cast-type, keyed and fully secured to the fan wheel and motor shafts. Electric motors of ten horsepower or less shall be supplied with an adjustable drive pulley. Comply with requirements in Division 23 05 13, matched with fan load.
- B. Motors shall be 60 cycle, 1 phase 115 volts.

2.6 UNIT CONTROLS:

- A. The unit shall be constructed so that it can be controlled by field installed standalone controllers, thermostats, and sensors. Provide a remote-control panel. with control switches in the remote panel to run the unit based on an occupied / un-occupied schedule.
- B. Sensors
 - 1. Room Temperature Sensor
 - 2. Dirty Filter Sensor
 - 3. Unit Temperature Sensors- OAI, OAD

2.7 FILTERS

A. Unit shall have field installed filter box with MERV 8 disposable pleated filters 1" thick located in the outdoor air intake and return air intake and shall be accessible from the exterior of the unit.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Prior to start of installation, examine area and conditions to verify correct location for compliance with installation tolerances and other conditions affecting unit performance. See unit IOM.
- B. Examine roughing-in of electrical and HVAC services to verify actual location and compliance with unit requirements. See unit IOM.
- C. Proceed with installation only after all unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installation shall be accomplished in accordance with these written specifications, project drawings, manufacturer's installation instructions as documented in manufacturer's IOM, Best Practices and all applicable building codes.

3.3 CONNECTIONS

- A. In all cases, industry Best Practices shall be incorporated. Connections are to be made subject to the installation requirements shown above.
 - 1. Duct installation and connection requirements are specified in Division 23 of this document.
 - 2. Electrical installation requirements are specified in Division 26 of this document.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory authorized service representative to inspect field assembled components and equipment installation, to include electrical and piping connections. Report results to A/E in writing. Inspection must include a complete startup checklist to include (as a minimum) the following: Completed Start-Up Checklists as found in manufacturer's IOM.

3.5 START-UP SERVICE

- A. Engage a factory authorized service representative to perform startup service. Clean entire unit and install clean filters. Measure and record electrical values for voltage and amperage. Refer to Division 23 "Testing, Adjusting and Balancing" and comply with provisions therein.
- 3.6 DEMONSTRATION AND TRAINING:
 - A. Engage a factory authorized service representative to train owner's maintenance personnel to adjust, operate and maintain the entire unit. Refer to Division 01 Section Closeout Procedures and Demonstration and Training.

SECTION 230255 - VARIABLE REFRIGERANT FLOW OUTDOOR UNITS

PART 1 - GENERAL

Applicable provisions of the conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

- 1.1 SYSTEM DESCRIPTION
 - A. Indoor units or outdoor air handling units are matched with heat pump or heat recovery VRF (variable refrigerant flow) outdoor unit.
- 1.2 DELIVERY, STORAGE AND HANDLING
 - A. Unit shall be ETL listed and certified to UL 1995 4th edition standard.

PART 2 - PRODUCTS

- 2.1 HEAT RECOVERY AND HEAT PUMP SYSTEMS
 - A. Product Design
 - 1. LG Multi V heating and cooling system shall be an air cooled system allowing user to configure in the field a heat pump or a heat recovery system consisting of one to three outdoor unit modules, conjoined to make a 2-5 ton single refrigerant circuit for the Multi V S system, and 6-42 single refrigerant circuit for the Multi V S system.
 - a. Heat recovery systems, employing three pipes, shall be connected to Heat recovery (heat recovery) unit(s) and indoor unit(s). Multi-port heat recovery units shall allow simultaneous heating and cooling of individual zone(s) at various capacities as required to satisfy their zone requirements.
 - b. Heat pump systems shall require two pipes, simultaneous heating and cooling shall not be supported. The heat recovery system shall consist of three pipes, liquid, suction and hot gas pipes. Heat recovery systems operating at 0°F that cannot deliver single phase superheated refrigerant vapor at a minimum of 162°F while operating in the heating mode shall not be acceptable.
 - All three-phase VRF heat pump and heat recovery outdoor units shall be from the same product development generation. Mixing of outdoor units from different development generations is not acceptable.
 - B. Operating Conditions
 - 1. Outdoor Unit shall be capable of continuous compressor operation between the following operating ambient air conditions, operation outside of these conditions are possible and may involve non-continuous operations.
 - 2. Operating Ambient Air Conditions
 - a. Cooling: 5°F DB to 122°F DB (With optional low ambient kit from -9.9°F DB to 122°F DB)
 - b. Heating: -22°F WB to 61°F WB
 - c. Cooling Based (ODU reversing valve in cooling position) Synchronous: 14°F DB to 81°F DB (Heat Recovery Operation Only)

d. Heating Based (ODU reversing valve in heating position) Synchronous: 14°F WB to 61°F WB (Heat Recovery Operation Only)

C. Electrical

D.

- 1. All air source heat pump and heat recovery frame(s) shall be designed and electrically protected to maintain stable continuous compressor operation when provided with 460/60/3 or 208-230/60/3 power with the following specifications:
 - a. 460/60/3
 - i. Voltage tolerance 414V
 - a. 208-230/60/3 power and can withstand a voltage fluctuation of $\pm 10\%$
 - ii. Voltage tolerance between 187V to 253V
 - Voltage imbalance of up to two percent;
 - d. Power surge of up to 5kA RMS Symmetrical.
 - General Features

C.

- 1. The air-conditioning system shall use R410A refrigerant.
- 2. Each system shall consist of one, two or three air source outdoor unit modules conjoined together in the field to result in the capacity specified elsewhere in these documents.
- Dual and triple frame configurations shall be field piped together using manufacturer's designed and supplied Y-branch kits and field provided interconnecting pipe to form a common refrigerant circuit.
- 4. System shall have following frame configurations vs. capacity.
 - 2 to 20 ton units shall be a single frame only.
 - 22 to 34 ton units shall be dual frame only.
 - 36 to 42 ton heat recovery units shall be triple frame only
- 5. System shall employ self-diagnostics function to identify any malfunctions and provide type and location of malfunctions via fault alarms.
- 6. All outdoor units, regardless of the Heat Pump or Heat Recovery models, shall be the same generation and provide with most up to date firmware version at the time of delivery. Manufacturers commissioning agents shall assure the owner in the commissioning report that the latest software version.
- 7. If the specifications include both heat pump and heat recovery outdoor models, the manufacturer shall provide the most recent generation equipment only. Old stock or obsolete models will not be accepted. Products purchased over the internet and not from the manufacturer's authorized local mechanical representative or authorized distributer will not be accepted.
- 8. Field Provided Refrigerant Piping:
 - a. The refrigerant circuit shall be constructed using field provided ACR copper, de-hydrated, refrigerant rated copper pipe, piped together with manufacturer supplied Heat recovery unit(s) and Y- branches, as may be required, connected to multiple (ducted, non-ducted or mixed combination) indoor units to effectively and efficiently control the heat pump operation or simultaneous heating and cooling operation of the heat recovery VRF system. Other pipe materials, if used, shall perform, at a minimum, as well as that specified above, shall not have any adverse reactions, for example galvanic corrosion, to any other components or materials also in use in the system and shall be installed per manufacturer's instructions.
 - b. The unit shall be shipped from the factory fully assembled including internal refrigerant piping, inverter driven compressor(s), controls, temperature sensor, humidity sensor, contacts, relay(s), fans, power and communications wiring as necessary to perform both Heat Pump and Heat recovery operations.

- c. Each outdoor unit refrigeration circuit shall include, but not limited to, the following components:
 - i. Refrigerant strainer(s)
 - ii. Check valve(s)
 - iii. Inverter driven, medium pressure vapor injection, high pressure shell compressors.
 - iv. Liquid refrigerant cooled inverter PCB
 - v. Oil separator(s)
 - vi. Accumulator /controlled volume receiver(s)
 - vii. 4-way reversing valve(s)
 - viii. Vapor injection valve(s)
 - ix. Variable path heat exchanger control valve(s)
 - x. Oil balancing control
 - xi. Oil Level sensor(s)
 - xii. Electronic expansion valve(s)
 - xiii. Double spiral tube sub-cooler (s) and EEV
 - xiv. Vapor Injection Valve(s)
 - xv. High and low side Schrader valve service ports with caps
 - xvi. High/low Service valves
 - xvii. Threaded fusible plug
 - xviii. High pressure switch
- 9. Field Insulation:
 - a. All refrigerant pipe, y-branches, elbows and valves shall be individually insulated with no air gaps. Insulation R-value (thickness) shall not be less than the minimum called for by the local building code, local energy code or as a minimum per manufacture installation requirements. In no case shall the insulation be allowed to be compressed at any point in the system.
 - i. All joints shall be glued and sealed per insulation manufactures instructions to make an air-tight assembly.
- 10. Microprocessor:
 - a. Factory installed microprocessor controls in the outdoor unit(s), heat recovery unit(s), and indoor unit(s) shall perform functions to optimize the operation of the VRF system and communicate in a daisy chain configuration between outdoor unit and heat recovery unit(s) and indoor unit(s) via RS485 network. Controls shall also be available to control other building systems as required from the VRF control system. DIO/AIO capabilities shall be available as well as a central controller to perform operation changes, schedules and other duties as required by this specification. Addition of separate building control system shall not be required. Other control devices and sequences shall be as specified in other sections of this project specification
- 11. Inverter PCB Cooling:
 - a. Cooling of the inverter PCB shall be conducted by way of high pressure, sub-cooled liquid refrigerant via heat exchanger attached to the inverter PCB. The full capacity flow of refrigerant shall pass though the heat exchangers to maximize the cooling effect of the PCBs and to aid in the evaporation process and capacity of the outdoor coil during the heating mode. The recovered heat of the PCBs must be used to enhance the overall heating process, other uses or dissipation of heat to ambient shall not be permitted.
- 12. Compressor Control:
 - a. Fuzzy control logic shall establish and maintain target evaporating temperature (Te) to be constant on cooling mode and condensing temperature (Tc) constant on heating mode by Fuzzy control logic to ensure the stable system performance.

- 13. Initial Test Run (ITR) (Heating or Cooling) / Fault Detection Diagnosis (FDD) Code:
 - a. This control mode shall monitor and display positive or negative results of system initial startup and commissioning. Heating or Cooling ITR mode will be automatically selected. It shall monitor and provide performance metrics for the following, but not be limited to, refrigerant quantity charge, auto-charge, stable operations, connection ratios, indoor unit status, error status, and number of indoor units connected. This control mode shall not replace the system error monitoring control system.
- 14. BMS Integration:
 - a. The VRF system shall be able to integrate with Building Management Systems via BACnet[™] IP gateway. This gateway converts between BACnet[™] IP or Modbus TCP protocol, and RS-485 LGAP (LG Aircon protocol) allowing third party control and monitoring of the LG A/C system, or LonWorks[™] gateways. See controls specification for points list.
- 15. Wi-Fi Communication:
 - a. The outdoor unit shall be Wi-Fi enabled and capable. Wi-Fi shall allow service or maintenance personal access to the complete operating system, via LGMV mobile, without need of tools other than smart phone or tablet. Active live system review, collection of all system data for a field determined duration presented in a .csv file format or collection of all operating conditions, including all indoor units, valves, sensors, compressor speeds, refrigerant pressures, etc., by snapshot of conditions and placing that snapshot into a power point slide to be reviewed at another time. Systems that require computers, hard wire only connection or other devices to collect, review or record operating conditions shall not be allowed.
- 16. Indoor Unit Connectivity:
 - a. The system shall be designed to accept connection up to 64 indoor units of various configuration and capacity, depending on the capacity of the system.
- 17. Power and Communication Interruption:
 - a. The system shall be capable of performing continuous operation when an individual or several indoor units are being serviced; communication wire cut or power to indoor unit is disconnected. Systems that alarm and/or shut down because of a lack of power to any number of indoor units shall not be acceptable.
- 18. Connection Ratios:
 - a. The maximum allowable system combination ratio for all VRF systems shall be 130% and the minimum combination ratio shall be 50%.
- 19. Comfort Cooling Mode:
 - a. Comfort cooling shall be initiated via a field setting at the outdoor unit during commissioning or anytime thereafter. Comfort cooling shall allow user to select all or some of the zones on a system to adjust automatically their evaporator temperatures, independent of other zones, based on the impending total loads of that zone determined by using the zone controller temperature sensor.
- 20. The outdoor unit refrigerant circuit shall employ for safety a threaded fusible plug.
- 21. Refrigerant Flow Control
 - a. An active refrigerant control and multi section accumulator-receiver that dynamically changes the volume of refrigerant circulating in the system based on operating mode and operating conditions to ensure maximum system performance and efficiency.
 - b. Subcooler: The VRF outdoor unit shall include a factory provided and mounted subcooler assembly consisting of a shell and tube-type sub-cooling heat exchanger and EEV providing refrigerant sub-cooling modulation control by fuzzy logic of EEV and by mode of operation to provide capacity and efficiency as required. Brazed plate heat exchangers shall not be allowed for this function.

- c. Smart Load Control: The air source unit shall be provided with Smart Load Control (SLC) enhanced energy saving algorithm that reduces compressor lift during off peak operation. Smart load control operation shall enhance energy savings and increase indoor comfort by monitoring the real time ambient temperature, real time weighted mean average building load, and the outdoor relativity humidity (if enabled).
 - i. The SLC algorithm shall be monitoring in real time, the rate of change of the outdoor ambient air temperature, either the outdoor ambient air relative humidity or the indoor air relative humidity [field selectable], and the rate of change of the building load.
 - ii. The SLC algorithm shall foresee pending changes in the building load, outdoor temperature and humidity (or indoor humidity) and proactively reset head and/or suction pressure targets in anticipation of the reduction/increase in building load.
 - iii. The SLC algorithm shall provide no fewer than 3 field selection options to maximize the control of the VRF system operation during morning warm-up or cool-down following night-setback reset. The selection shall be set by the commissioning agent (or at any other time thereafter). Selectable algorithm choices include:
 - 1. Maximize energy savings
 - 2. Balance the rate of temperature change with energy consumed.
 - 3. Quickly cool/heat the building.
- 22. Refrigerant Volume Management
 - a. Active Refrigerant Charge
 - i. The VRF system shall be able to operate at any and all published conditions year round in cooling or heating mode without the need of adding or removing refrigerant from the system.
 - ii. The air source unit shall be provided with an isolated vessel to store spare refrigerant and actively pass refrigerant to (or from) the accumulator in real time as necessary to maintain stable refrigeration cycle operation.
 - iii. The air source unit microprocessor shall be provided with an algorithm that monitors the VRF system head pressure, suction pressure, subcooling, superheat, compressor speed, high and low side temperatures and the load on the system to adjust the volume of refrigerant actively circulating.
 - b. Manual Seasonal Refrigerant Charge Adjustments

(Applicable for VRF systems without Active Refrigerant Charge)

- Alternates: Systems that CANNOT passively and automatically modify the active refrigerant charge using the method(s) stated to maintain stable cycle operation shall clearly state so in bold capital letters in the proposal. VRF systems that cannot perform active refrigerant control may submit a proposal as an Alternate and must include as part of the equipment price the cost of to provide bi-annual refrigerant charging services for 15 years. Service shall be performed by the factory authorized agent only. Service shall include refrigerant, parts, labor, and fees necessary to analyze the current state of the system and perform the refrigerant charge adjustment. Service must occur one month before the winter season and one month before the summer season.
- ii. If the VRF system requires a charge adjustment more frequently to maintain stable operation, the VRF manufacturer shall provide additional services at no additional charge.
- iii. The 15 year period shall begin on the date the equipment is commissioned or the date the building occupancy permit was issued for the area(s) served by the system whichever date is later.

- iv. This service shall be underwritten, warranted, and administered by the VRF equipment manufacturer not the local distributor or applied representative.
- v. The selected service provider shall be mutually agreeable between the building owner (or owners agent) and must be licensed, insured, and trained to work on the VRF system. No third party service (subcontracted service) providers will be acceptable.
- vi. If the service provider is not an employee of the VRF manufacturer, the service provider shall be reimbursed for services rendered directly from the manufacturer. Labor rate for services shall be paid at the prevailing wage rate in place at the time of service.
- 23. VRF Systems with Onboard Alternate Operating Mode Selection Capability
 - a. All VRF systems which provide field selectable Alternate Operating Modes, for example, High Heat or High Ambient Cooling, published data tables must be available to the public for all modes offered.
 - b. Acceptable Alternate Operating Modes must ship with all models of the VRF product offering and must be factory embedded. Custom factory or field modifications to factory provided algorithms created to meet scheduled requirements are not acceptable.
 - c. Provide a copy of instructions required to set the Alternate Operation Mode with the initial submittal.
 - d. For systems that provide field selectable Alternate Operating Modes, ALL technical data provided in the submittal data sheets showing product rated condition performance data, must also provide separate data sheets that show product performance data at each of the field selectable Alternate Operating Modes available. Capacity, <u>power input</u>, and acoustic performance data for each mode offered shall be reported separately. Mixing of ODU, IDU, or VRF system performance capability operating in one mode with for example the power consumption, sound power rating, or electrical requirements of the same system operating in another mode is not acceptable.
- E. Field Supplied Refrigerant Piping Design Parameters
 - 1. The outdoor unit shall be capable of operating at an elevation difference of up to 360 feet above or below the lowest or highest indoor unit respectively without the requirement of field installed subcooler or other forms of performance enhancing booster devices for the Multi V 5 Series, and 164 feet above or 131 feet below for Multi V S Series.
 - 2. The outdoor unit shall be capable of operating with up to 3280 for the Multi V 5 Series and 984 for the Multi V S Series equivalent length feet of interconnecting liquid line refrigerant pipe in the network.
 - 3. The outdoor unit shall be capable of operating with up to 656 actual feet for the Multi V 5 Series and 592 actual feet for the Multi V S Series or 738 equivalent length feet for the Multi V 5 Series and 574 equivalent length feet for the Multi V S Series of liquid line refrigerant pipe spanning between outdoor unit and farthest indoor unit.
 - 4. The piping system shall be designed with pipe expansion and contraction possibilities in mind. Required expansion devices shall be field designed, supplied and installed based on proper evaluation of the proposed piping design. In addition to these requirements, the piping system installation must conform to the VRF equipment manufacturer's published guidelines.
 - 5. The installation of pipe hangers, supports, insulation, and in general the methods chosen to attach the pipe system to the structure must allow for expansion and contraction of the piping system and shall not interfere with that movement.
 - 6. The elevation difference between indoor units on heat pump systems shall be 131 feet for the Multi V 5 Series and 49 feet for the Multi V S Series.

- 7. The elevation differences for heat pump systems shall be:
 - a. Heat recovery unit to connected indoor unit shall be 49 feet
 - b. Heat recovery unit to heat recovery unit shall be 98 feet
 - c. Indoor unit to indoor unit connected to same heat recovery unit shall be 49 feet
 - d. Indoor unit to indoor unit connected to separate parallel piped heat recovery units shall be 131 feet.
- 8. The acceptable elevation difference between two series connected heat recovery units shall be 16 feet.
- F. Defrost Operations
 - 1. The outdoor unit(s) shall be provided with a minimum of 4 independent field adjustable defrost cycle algorithms to maximize the effectiveness of the defrost cycle to the local weather conditions. Intelligent Defrost shall melt accumulated frost, snow and ice from the outdoor unit heat exchanger. The defrost cycle length and sequence shall be based on outdoor ambient temperatures, outdoor unit heat exchanger temperature, and various differential pressure variables. Intelligent Heating Mode, when outdoor unit humidistat is engaged, shall extend the normal heating sequences by adjusting the outdoor unit coil target temperature to be above the ambient dew point temperature delaying the need for defrost operations, so long as heating demand is being met.
 - 2. Smart Heating: This feature shall be capable of eliminating several defrost actions per day based on outdoor air temperature and humidity conditions. Smart heating shall extend the heating operation cycle by delaying the frost formation on the outdoor coil by adjusting the surface temperature to keep it above the current outdoor ambient dew point. The algorithm shall delay while maintaining indoor space temperature.
 - 3. Defrost Mode Selection: The outdoor unit shall be provided with a minimum of three field selectable defrost operation modes: Normal, Fast, or Forced.
 - a. Normal Defrost: Operation intended for use in areas of the country that experience adverse winter weather with periods of heavy winter precipitation and extremely low temperatures. This strategy shall maximize the systems heating performance and maintain operational efficiency. When the ambient temperature is either: a) above 32°F or b) below 32°F with the humidity level below 60% RH, Intelligent Defrost shall continue heating regardless of ice build-up on the coil until the quality of the heated air (i.e., discharge air temperature) decreases. At temperatures below 4°F, a defrost cycle shall occur every two hours to optimize system heating efficiency.
 - b. Fast Defrost: Operation intended for use in areas of the country with mild winter temperatures and light to moderate humidity levels. The strategy minimizes defrost cycle frequency allowing frozen precipitation to build longer in between cycles. Minimum time between defrost cycles shall be 20 minutes. Intelligent Defrost shall choose between split coil/frame and full system methods based on current weather conditions to minimize energy consumption and maximize heating cycle time.
 - c. Forced Defrost: Operation shall be available for the service provider to test defrost operations at any weather condition and to manually clear frozen water from the outdoor coil surfaces.
 - 4. Defrost Method Selection: The outdoor unit shall be provided with two field selectable defrost operation methods: Split Coil/Frame and Full System. Split Coil/Frame option provides continuous heating of the occupied space during defrost operation.
 - a. Split Coil/Frame method shall be available when Normal Defrost mode is selected. Split Coil method shall be available on all Heat Pump and Heat recovery single-frame VRF systems. Split Frame defrost shall be available on all Heat Pump and Heat recovery multi-frame outdoor units.

- b. Split Coil method shall remove ice from the bottom half of the outdoor unit coil first for a maximum time of six minutes, then the top half for a maximum of six minutes. Next the bottom coil shall be heated again for an additional three minutes to remove any frozen water that may have dripped onto the lower coil during the top coil defrost operation.
- c. When Split Coil/Frame method is selected, a Full System defrost shall occur every 1-9 (field selectable) defrost cycles to assure 100% of the frozen precipitation has been removed to maintain efficient performance.
- d. Full System method shall be available as a field selectable option. All outdoor units located in areas of the country where large volumes of frozen precipitation are common, the commissioning agent shall be able to select the Full System only defrost method.
- 5. Indoor Unit Fan Operation During Defrost
 - a. During partial defrost operation indoor units operating in cooling or dry mode shall continue normal operation.
 - b. During partial defrost operation, indoor units that are commissioned with fans set for continuous operation shall maintain normal fan speed unless the leaving air temperature drops, then the fan speed will be reduced to low speed for the remainder of the defrost cycle.
 - c. During full system defrost operation indoor unit fans will cycle off and remain off during the remainder of the defrost cycle.
- G. Oil Management
 - 1. The system shall utilize a high pressure oil return system to ensure a consistent film of oil on all moving compressor parts at all points of operation. Oil is returned to compressor through a separate high pressure oil injection pipe directly into the oil sump. Oil returned to the compressor via the suction port of the compressor shall not be allowed.
 - 2. Each compressor shall be provided with a high efficiency independent centrifugal cyclone type oil separator, designed to extract oil from the oil/refrigerant gas stream leaving the compressor.
 - 3. The system shall have an oil level sensor in the compressor to provide direct oil level sensing data to the main controller. The sensor shall provide data to main outdoor unit PCB to start oil return mode and balance oil levels between multiple compressors.
 - 4. The system shall only initiate an oil return cycle if the sensed oil level is below oil level target values as determined by the microprocessor. The system shall display an error if the oil sensor signals low oil level for a period of 130 minutes or longer.
 - 5. A default oil return algorithm shall automatically initiate the oil return mode if the system detects a failure of the oil sump sensor. A fault code shall be reported by the system.
 - 6. Timed oil return operations or systems that do not directly monitor compressor oil level shall not be permitted.
 - 7. Indoor Unit Fan Operation during Oil Return Cycle
 - a. During oil return cycle indoor units operating in cooling or dry mode shall continue normal operation.
 - b. During oil return, indoor units that are commissioned with fans set for continuous operation shall maintain normal fan speed unless the leaving air temperature drops, then the fan speed will be reduced to low speed for the remainder of the oil return cycle.
 - c. During oil return cycle indoor unit fans will cycle off and remain off during oil return cycle while operating in all modes.
- H. Fan and Motor Assembly
 - 1. 6 ton frames shall be equipped with one direct drive variable speed propeller fan with Brushless Digitally Controlled (BLDC) motor with a vertical air discharge Heat Pump ARUN024GSS4 unit shall be equipped with one direct drive, variable speed, and axial flow fan with a horizontal air

discharge. The motors shall be Brushless Digitally Controlled (BLDC), variable speed, inverter driven motors.

- 2. 8 to 20 ton frames shall be equipped with two direct drive variable speed propeller fan(s) with BLDC motor(s) with a vertical air discharge. Heat Pump ARUN038GSS4~ARUN060GSS4 and Heat Recovery unit ARUB060GSS4 shall be equipped with two direct drive variable speed axial flow fan(s) with a horizontal air discharge. Each fan shall be provided with an independent dedicated Brushless Digitally Controlled (BLDC), variable speed, inverter driven motors.
- 3. The fan(s) blades shall be made of Acrylonitrile Butadiene Styrene (ABS) material and incorporate biomimetic technology to enhance fan performance and reduce fan generated noise.
- 4. The fan(s) motor shall be equipped with permanently lubricated bearings.
- 5. The fan motor shall be variable speed with an operating speed range of 0-1150 RPM cooling mode and 0-1150 RPM heating mode. The fan assembly(s) shall have a minimum operating speed range from 0 RPM to 850 RPM in cooling mode and heating mode.
- 6. The fan shall have a guard to help prevent contact with moving parts.
- 7. The cabinet shall have option to redirect the discharge air direction from vertical to
- 8. The fan controller shall have a DIP switch setting to raise external static pressure of the fan up to 0.32 inch of W.C. to accommodate ducted installations.
- 9. The fan control shall have a function setting to remove excess snow automatically.
- 10. The fan control shall have a function setting to remove access dust and light debris from the outdoor unit and coil.
- I. Cabinet
 - 1. Outdoor unit cabinet shall be made of 20 gauge galvanized steel with a weather and corrosion resistant enamel finish. Outdoor unit cabinet finish shall be tested in accordance with ASTM B-117 salt spray surface scratch test (SST) procedure for a minimum of 1000 hours.
 - 2. Cabinet weights and foot prints shall vary between 430 lbs., 7.61 sq. ft. (1.27 sq. ft. per ton), for 6 ton cabinet to 666 lbs., 10.14 sq. ft. (.51 sq. ft. per ton), for 20 ton cabinet for single cabinet configurations. The front panels of the outdoor units shall be removable type for access to internal components.
 - 3. A smaller service access panel, not larger than 7" x 7" and secured by a maximum of (2) screws, shall be provided to access the following
 - a. Service tool connection
 - b. DIP switches
 - c. Auto addressing
 - d. Error codes
 - e. Main microprocessor
 - f. Inverter PCB
 - 4. The cabinet shall have piping knockouts to allow refrigerant piping to be connected at the front, right side, or through the bottom of the unit.
 - 5. The cabinet shall have a factory installed coil guard and shall have a baked enamel finish.
- J. Outdoor Unit Coil
 - 1. Outdoor unit coil shall be designed, built and provided by the VRF outdoor unit manufacturer.
 - 2. The outdoor unit coil for each cabinet shall have lanced aluminum fins with a maximum fin spacing of no more than 17 Fins per Inch (FPI). All the outdoor unit coils shall be a 2 or 3 rows consisting of staggered tubes for efficient air flow across the heat exchanger.
 - 3. Outdoor unit coil shall be comprised of aluminum fins mechanically bonded to copper tubing with inner surfaces having a riffling treatment to expand the total surface of the tube interior.

- 4. The aluminum fin heat transfer surfaces shall have factory applied corrosion resistant Black Fin coating. The copper tubes shall have inner riffling to expand the total surface of the tube interior.
 - a. ISO 21207 Salt Spray Test Method B 1500 hours
 - b. ASTM B-117 Acid Salt Test 900 hours
 - c. The Black Fin coating shall be certified by Underwriters Laboratories and per ISO 21207. The above conditions shall establish the minimum allowable performance which all alternates must comply.
- 5. Variable Path Heat Exchanger: System shall have a variable flow and path outdoor heat exchanger function to vary the refrigerant flow and volume and path. Control of the variable path circuits shall be based on system operating mode and operating conditions as targeted to manage the efficiency and minimize or maximize the circulating volume of the operating fluids of the system. This feature allows MV 5 to maintain system head pressure that delivers "gas-furnace leaving air temperature" from the indoor unit at moderate and low ambient outdoor air temperatures. The outdoor unit coil, all indoor units and pipe network shall be field tested to a minimum pressure of 550 psig.
- K. Compressor(s)
 - 1. Compressor shall be designed and assembled by the VRF manufacturer specifically for use in the air source VRF product line. Third party manufactured, branded, or designed to the VRF system's OEM specifications by a third party manufacturer shall not be acceptable.
 - 2. Compressor shall be a hermetic, high-side shell (HSS), commercial grade, compliant scroll directdrive design.
 - a. Compressor Design: The compressor design shall be of the high pressure shell scroll type where the internal pressure below the suction valves of the compressor shall be at the same high pressure and high temperature. The motor shall be cooled by high pressure gas at temperatures above saturation conditions and minimize the mixing of refrigerant liquid with oil in the sump. The system shall employ a high pressure oil return method returning recovered oil from the oil separator directly into the oil sump of the compressor; oil shall not be allowed to return via the suction line. Bearing surfaces are continually coated with oil. The compressor shall employ an Aero-bearing constructed with high lubricity materials increasing operation time in case of low sump oil level. Compressor shall have a nominal operating range from 12Hz to 150 Hz.
 - 3. The fixed and oscillating compressor scroll components shall be made of high grade (GC25) or denser steel material. All scrolls shall be heat treated and tempered.
 - 4. The oscillating scroll shall be finely machined and polished. PVE refrigerant oil shall be used as the sole liquid used to maintain a seal between the high and low sides of the compression chamber. Compressors that require the use of any type of mechanical or wearable sealant material between the moving surfaces of the compression chamber is NOT ACCEPTABLE.
 - 5. Vapor Injection: System shall have a medium pressure gas vapor injection function employed in the heating and cooling modes to increase system capacity when the outdoor ambient temperatures are low and lower compressor lift when temperatures are high. The compressor vapor injection flow amount shall be controlled by the vapor injection sub-cooling algorithm reset by discharge gas temperatures of the compressor.
 - 6. Bearing surfaces shall be coated with Teflon® equal. Bearings shall be lubricated using a constant flow of PVE refrigerant oil to the bearing surfaces the film of oil separating the crankshaft journals and bearing surfaces shall be consistent at all times the crankshaft is in motion and shall be maintained irrelevant of crankshaft rotational speed.
 - 7. An internal, integrated, mechanically driven gear pump shall draw oil from the compressor sump reservoir, pressurize the oil and inject the oil directly to the crankshaft journals maintaining a consistent film of oil between all moving parts. Auxiliary, indirect, or electronically driven pumps are not acceptable.

- 8. The viscosity property of the PVE oil in the compressor sump shall be maintained irrelevant or compressor operation and the surrounding ambient temperature.
 - a. The compressor shall be equipped with an external thermally protected electric crankcase heater that is automatically activated only when the ambient temperature is below freezing, and the compressor is not running to maintain the temperature of the oil in the sump above the refrigerant boiling point.
 - b. During stable operation, irrelevant of ambient air temperature outside the water source unit, the temperature of refrigerant vapor in contact with the surface of the oil in the compressor sump shall be maintained above 140°F to prevent foaming and to eliminate refrigerant from mixing with the oil degrading the viscosity of the oil in the sump.
 - c. Low side shell (LSS) type compressors that use suction vapor to cool the compressor motor shall not be acceptable.
- 9. The compressor motor shall be designed to operate at high temperatures.
 - a. The motor winding insulation shall be designed to operate continuously at a minimum temperature of 180°F without deterioration.
 - b. The motor cooling system shall be designed to maintain acceptable operational temperature at all times and in all conditions using high pressure, hot refrigerant vapor as motor coolant.
 - c. Low side shell and compressors that use low pressure, low temperature refrigerant gas to cool the motor are not acceptable.
- 10. Inverter Compressor Controller(s)
 - a. Each compressor shall be equipped with a dedicated inverter compressor drive. The control of multiple compressors using a single drive is not acceptable.
 - b. The inverter drive shall vary the speed of the compressor crankshaft between zero (0) Hz and 140 Hz.
 - c. The inverter driver controller shall be matched with the physical properties of the compressor. The drive shall be manufactured by the VRF air source unit manufacturer. The inverter drive and matching compressor shall have been thoroughly tested as a matched pair. The inverter drive shall be programmed to avoid operating the compressor at any speed that results in harmonic vibration, nuisance noise, or mechanical damage to either the driver or the compressor with power provided that is within the tolerance specification.
 - d. The compressor inverter drive assembly and software must be designed, manufactured, and supplied by the VRF product manufacturer. Third party branded inverter driver hardware and/or driver software or inverter driver hardware and/or software provided by a third party manufacturer to meet OEM specifications of the VRF water source manufacturer will not acceptable.
 - e. All inverter drive hardware or software manufactured in, is a product of, or sourced from China, or using a broker or third party provider as an intermediary that obtains the product from CHINA shall not be acceptable.
- 11. Compressor(s)
 - a. Each 6, 8, 10 ton frames shall be equipped with a single hermetically sealed, inverter driven, High Side Shell (HSS) scroll compressor.
 - b. 12, 14, 16, 18 and 20 ton frames shall be equipped with dual hermetically sealed, inverter driven, High Side Shell (HSS) scroll compressors.
 - c. Each inverter driven, HSS scroll compressor shall be capable of operating from 12 Hz up to 150 Hz in any and all modes (cooling, heating or simultaneous modes).
 - d. The compressor shall be designed for a separate port for oil to be directly returned to the compressor oil sump.

- e. The compressor bearing(s) shall have Teflon[™] coating and shall be an aero type design using High lubricity materials.
- f. The compressor(s) shall be protected with:
 - i. High Pressure switch
 - ii. Over-current /under current protection
 - iii. Oil sump sensor
 - iv. Phase failure
 - v. Phase reversal
 - vi. Compressor shall be capable of receiving injection of medium pressure gas at a point in the compression cycle where such injection shall allow a greater mass flow of refrigerant at lower outdoor ambient and achieving a higher heating capability. The VRF outdoor unit shall have published performance data for heating mode operation down to -13°F on both heat pump and heat recovery systems.
- g. Standard, non-inverter driven compressors shall not be permitted nor shall a compressor without vapor injection or direct sump oil return capabilities.
- 12. Heat Pump models:
 - a. The compressor shall be a high efficiency high-side shell rotary hermetic design. Bearing shall be manufactured using high lubricity material. Compressor shall be factory charged with Polyvinyl Ether (PVE) oil. Single or dual speed compressors charged with oil (POE) shall not be acceptable. Compressor inverter drive shall Polyolester allow modulation from 20Hz to 90Hz with control in 1.0 Hz increments depending on the nominal capacity. (ARUN060GSS4) The compressor shall be a high-side shell hermetic scroll design. Oil sump area and chamber housing the motor shall be operated at the same temperature and pressure of the gas leaving the compressor chamber to ensure that the low temperature low pressure refrigerant returning to the compressor does not mix with the oil in the sump. Bearing shall be manufactured using high lubricity material. Compressor shall be factory charged with Polyvinyl Ether (PVE) oil. Single or dual speed compressors charged with Polyolester oil (POE) oil shall not be acceptable. Compressor motor shall be designed to operate at a frequency range of 0Hz to 160Hz. Compressor inverter drive shall allow modulation from 12Hz to 110Hz.
- 13. Heat Recovery models:
 - a. The compressor design shall be of the high pressure shell scroll type where the internal pressure below the suction valves of the compressor shall be at the same high pressure and high temperature. The motor shall be cooled by high pressure gas at temperatures above saturation conditions and minimize the mixing of refrigerant liquid with oil in the sump. The system shall employ a high pressure oil return method returning recovered oil from the oil separator directly into the oil sump of the compressor; oil shall not be allowed to return via the suction line. Bearing surfaces are continually coated with oil. The compressor shall employ an Aero-bearing constructed with high lubricity materials increasing operation time in case of low sump oil level. Compressor shall have a nominal operating range from 12Hz to 110 Hz.
- L. Operational Sound Levels
 - 1. Each single frame outdoor unit shall be rated with an operational sound pressure level not to exceed as listed on below chart when tested in an anechoic chamber under ISO 3745 standard at the highest field selectable heating operating modes available. Such documentation shall be presented in all submittals, manufactures who elect to rate their equipment at other than tested in an anechoic chamber under ISO 3745 standard at the highest field selectable heating operating modes available and the highest field selectable conditions shall not be allowed.

- 2. A field setting shall be available to program the outdoor unit to reduce sound levels at night, when desired, to a selectable level while still able to meet building load requirement. This mode is available in both cooling and heating modes.
- M. Sensors
 - 1. Each outdoor unit module shall have:
 - a. Suction temperature sensor
 - b. Discharge temperature sensor
 - c. Oil level sensor
 - d. High Pressure sensor
 - e. Low Pressure sensor
 - f. Outdoor temperature sensor
 - g. Outdoor humidity sensor
 - h. Outdoor unit heat exchanger temperature sensors
- N. Wind Load Installations for Outdoor Units
 - 1. LG FL Wind load Installation Drawings meet the requirements of the 2017 Florida Building Code, 6th Edition and ASCE Standard 7-2010.
- O. Seismic Installations
 - Provide OSHPD Special Seismic Certification Preapproval (OSP) documents for certified product list of VRF equipment to be installed in high seismic risk areas. Provide LG supplemental installation documents in conformance with CBC 2013, 2016 and 2019 California Building Code and IBC 2012, 2015 and 2018 International Building Code.
- P. Warranty
 - 1. Limited Warranty Period
 - a. STANDARD ONE-YEAR PARTS WARRANTY FOR A QUALIFIED SYSTEM The Part(s) of a qualified System, including the compressor, are warranted for a period (the "Standard Parts Warranty Period") ending on the earlier to occur of one (1) year after the date of original installation, or eighteen (18) months from the date of manufacture.
 - b. ADDITIONAL SIX (6) YEAR COMPRESSOR PART WARRANTY The Compressor is warranted for an additional six (6) year period after the end of the applicable Standard Part Warranty Period (the "Compressor Warranty Period").
 - 2. Extended Warranty
 - a. The Standard Warranty Period and the Compressor Warranty Period are extended to a total of ten (10) years (the "Extended Warranty Period") for qualified Systems that have been (a) commissioned by a party that has completed the current Training Requirements, (b) such commissioning is pursuant to LG's current published instructions, and (c) the System commissioning results and supporting documents are entered correctly into LG's online commissioning system. Commissioning of a System requires one (1) hour of LG Monitoring View (LGMV) data. Commissioning results must be entered into LG's online commissioning system within sixty (60) days of System startup.

2.2 EEV KIT

- A. General
 - 1. Unit shall be manufactured by LG.

- 2. Unit shall be factory assembled and wired unit shall be designed to be installed indoors only, when installed outdoors provide NEMA weatherproof enclosure.
- 3. Unit shall be capable to be installed with heat pump or heat recovery VRF system.
- 4. Unit requires one communication kit to provide power and control signals.
- 5. Connects liquid line piping from outdoor unit to any AHU coil.

B. Electrical

- 1. Six conductor, 18 GA shielded and stranded field supplied wiring for 12 volt (low voltage) power and control signal from communication kit.
- 2.3 AHU COMMUNICATION KIT PAHCMR00 (RETURN AIR CONTROL)

A. General

- 1. Unit shall be manufactured by LG.
- 2. Unit shall be factory assembled and wired.
- 3. Unit shall be designed to be installed for indoor or outdoor.
- 4. Unit shall be capable to be installed with heat pump or heat recovery VRF system.
- 5. Allows communication between third party air handling unit (AHU) and LG Multi V air-source or water-source outdoor units with combination ratio between 50% to 100%.
- 6. Requires one EEV kit to control the flow of refrigerant from Multi V outdoor unit to AHU coil.
- B. Electrical:
 - 1. The unit electrical power shall be 208-230/1/60 (V/Ph/Hz).

PART 3 - EXECUTION

3.1 INSPECTION

A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
- B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230265 - VARIABLE REFRIGERANT FLOW INDOOR UNITS

PART 1 - GENERAL

Applicable provisions of the conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

1.1 SYSTEM DESCRIPTION

A. Indoor units are matched with heat pump or heat recovery VRF (variable refrigerant flow) outdoor unit.

1.2 DELIVERY, STORAGE AND HANDLING

A. Units shall be stored and handled per unit manufacturer's recommendations.

PART 2 - PRODUCTS

2.1 CEILING CASSETTE – 4 WAY

- A. General
 - 1. Unit shall be manufactured by LG.
 - 2. Unit shall be designed to be installed for indoor application.
 - 3. Unit shall be designed to mount recessed in the ceiling and has a surface mounted grille on the bottom of the unit.
 - 4. The unit shall be available in both nominal 2' x 2' and 3' x 3' chassis.
- B. Casing/Panel
 - 1. Unit case shall be manufactured using galvanized steel plate.
 - 2. The unit panel shall be provided with an off-white or black Acrylonitrile Butadiene Styrene (ABS) polymeric resin grille.
 - 3. The grille shall have a tapered trim edge, and a hinged, spring clip (screw-less) return air filtergrille door.
 - 4. Unit shall be provided with metal ears designed to support the unit weight on four
 - 5. Ears shall have pre-punched holes designed to accept field supplied all thread rod hangers.
 - 6. Unit shall be supplied with snap off access panels to facilitate leveling of unit without removing the grille.
- C. Cabinet Assembly
 - 1. Unit shall have four supply air outlets and one return air inlet.
 - 2. The supply air outlet shall be through four directional slot diffusers each equipped with independent oscillating motorized guide vanes designed to change the airflow direction.
 - 3. The grille shall have a discharge range of motion of 40° in an up/down direction with capabilities of locking the vanes.
 - 4. The unit shall have a guide vane algorithm designed to sequentially change the predominant discharge airflow direction in counterclockwise pattern.
 - 5. Guide vanes shall provide airflow in all directions.
 - 6. Unit shall be equipped with factory installed temperature thermistors for:

- a. Return air
- b. Refrigerant entering coil
- c. Refrigerant leaving coil
- 7. Unit shall have a factory assembled, piped and wired electronic expansion valve (EEV) for refrigerant control.
- 8. Unit shall have a built-in control panel to communicate with other indoor units and to the outdoor unit.
- 9. The unit shall have factory designated branch duct knockouts on the unit case.
- 10. The unit shall have provision of fresh air ventilation through a knock-out on the cabinet.
- 11. The branch duct knockouts shall have the ability to duct up to 1/2 the unit airflow capacity.
- 12. The branch duct cannot be ducted to another room.
- 13. Unit shall have the following functions as standard:
 - a. Self-diagnostic function
 - b. Auto addressing
 - c. Auto restart function
 - d. Auto changeover function (Heat Recovery system only)
 - e. Auto operation function
 - f. Child lock function
 - g. Forced operation
 - h. Dual thermistor control
 - i. Sleep mode
 - j. Dual set point control
 - k. Multiple aux heater applications
 - I. Filter life timer
 - m. External on/off input
 - n. Wi-Fi compatible
 - o. Auto fan operation
 - p. Leak detection logic
- D. Fan Assembly
 - 1. The unit shall have a single, direct-drive turbo fan made of high strength ABS HT-700 polymeric resin.
 - 2. The fan impeller shall be statically and dynamically balanced.
 - 3. The fan motor is Brushless Digitally commutated (BLDC) with permanently lubricated and sealed ball bearings.
 - 4. The fan motor shall include thermal, overcurrent and low RPM protection.
 - 5. The fan/motor assembly shall be mounted on vibration attenuating rubber grommets.
 - 6. The fan speed shall be controlled using microprocessor based direct digitally controlled algorithm that provides a minimum of four pre-programed fan speeds in the heating mode and fan only mode and five speeds in the cooling mode. The fan speed algorithm provides a field selectable fixed speed.
 - 7. A field setting shall be provided to vary air throw pattern to compensate for high ceiling installations.
 - 8. In cooling mode, the indoor fan shall have the following settings: Low, Med, High, Super high, Power Cool, and Auto.
 - 9. In heating mode, the indoor fan shall have the following settings: Low, Med, High, Super high and auto.
 - 10. Unit shall have factory installed motorized louver to provide flow of air in up and down direction for uniform airflow.

E. Filter Assembly

- 1. The return air inlet shall have a factory supplied removable, washable filter.
- 2. The unit shall have the capability to accept a field provided MERV 1 to MERV 10 filter.
- 3. The filter access shall be from the bottom of the unit without the need for tools.
- 4. The nominal 3'x3' cabinet unit shall have provision for an optional auto-elevating grille kit designed to provide motorized ascent/descent of the return air grille/pre filter assembly.
 - a. The ascent/descent of the return air grille shall be up to a distance of 14-3/4 feet allowing access to remove and clean the filter.
 - b. The auto-elevating grille shall have a control algorithm to accept up, down and stop control commands from the controller.
 - c. The auto-elevating grille shall have a control to stop the descent automatically if a contact is made with any obstacle.
- F. Coil Assembly
 - 1. Unit shall have a factory built coil comprised of aluminum fins mechanically bonded on copper tubing.
 - 2. The copper tubing shall have inner grooves to expand the refrigerant contact surface for high efficiency heat exchanger operation.
 - 3. Unit shall have a minimum one or two row coil 18-19 fins per inch.
 - 4. Unit shall have a factory supplied condensate drain pan below the coil constructed of EPS (expandable polystyrene resin).
 - 5. Unit shall include an installed and wired condensate drain lift pump capable of providing minimum 27.5 inch lift from bottom surface of the unit.
 - 6. The drain pump shall have a safety switch to shut off the unit if condensate rises too high in the drain pan.
 - 7. Unit shall have provision of 45° flare refrigerant pipe connections.
 - 8. The coil shall be factory pressure tested at a minimum of 550 psig.
 - 9. All refrigerant piping from outdoor unit to indoor unit shall be field insulated. Each pipe should be insulated separately. Thickness and heat transfer characteristics shall be determined by the design engineer and shall meet all code requirements
 - 10. Safeties The following safety devices shall be part of the condensing unit:
 - a. High pressure switch
 - b. Fuses
 - c. Crankcase heater
 - d. Fusible plug
 - e. Over current relay for the compressor
 - f. Thermal protectors for compressor and fan motor
 - g. Compressor time delay
 - h. Oil Recovery system
 - i. Oil level sensor
 - j. Over-current sensor
 - k. Compressor suction and discharge temperature sensor
 - I. Compressor suction and discharge pressure sensor

- G. Microprocessor Control
 - 1. The unit shall have a factory installed microprocessor controller capable of performing functions necessary to operate the system with or without the use of a wall mounted controller. The unit shall have a factory mounted return air thermistor for use as a space temperature control device. All operating parameters except scheduling shall be stored in non-volatile memory resident on the microprocessor. The microprocessor shall provide the following functions, self-diagnostics, auto re-start after a power failure and a test run mode.
 - 2. The unit shall be able to communicate with other indoor units and the outdoor unit using a field supplied minimum of 18 AWG, two core, stranded, twisted and shielded communication cable.
 - 3. The unit controls shall operate the indoor unit using one of the five operating modes:
 - a. Auto changeover (Heat Recovery System only)
 - b. Heating
 - c. Cooling
 - d. Dry
 - e. Fan only
 - 4. The unit shall be able to operate in either cooling or heating mode for testing and/or commissioning.
 - 5. The unit shall be able to operate with the fan turned off during system cooling thermal off.
 - 6. The unit shall have adjustable, multi-step cooling and heating mode thermal on/off temperature range settings.
 - 7. The system shall include a product check function to access and display indoor unit type and capacity from a wired programmable thermostat controller.
 - 8. Unit shall have a field settable method to choose auto fan speed change operation based on mode of operation, on/off fan operation based on mode of operation, or continuous minimum set fan speed operation.
- H. Electrical
 - 1. The unit electrical power shall be 208-230/1/60 (V/Ph/Hz).
 - 2. The unit shall be capable of operating within voltage limits of +/- 10% of the rated voltage.
- I. Controls: Unit shall use controls provided by the manufacturer to perform all functions necessary to operate the system effectively and efficiently and communicate with the outdoor unit over an RS-485 daisy chain.
- J. Seismic Installations: Provide OSHPD Special Seismic Certification Preapproval (OSP) documents for certified product list of VRF equipment to be installed in high seismic risk areas. Provide LG supplemental installation documents in conformance with CBC 2013, 2016 and 2019 California Building Code and IBC 2012, 2015 and 2018 International Building Code.
- K. Warranty: Please refer to the respective outdoor unit for applicable warranty.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
- B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230280 - VARIABLE FREQUENCY DRIVES

PART 1 – GENERAL

1.1 CONTRACT REQUIREMENTS Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

1.2 DESCRIPTION

- A. This specification is to cover a complete Variable Frequency motor Drive (VFD) consisting of a pulse width modulated (PWM) inverter designed for use with a standard NEMA Design B induction motor.
- B. The drive manufacturer shall supply the drive and all necessary options as herein specified. The manufacturer shall have been engaged in the production of this type of equipment for a minimum of twenty years. VFD's that are manufactured by a third party and "brand labeled" shall not be acceptable. All VFDs installed on this project shall be from the same manufacturer.

1.3 QUALITY ASSURANCE

- A. Referenced Standards:
 - 1. Institute of Electrical and Electronic Engineers (IEEE)
 - a. Standard 519-1992, IEEE Guide for Harmonic Content and Control.
 - 2. Underwriters laboratories a. UL508C
 - National Electrical Manufacturer's Association (NEMA)
 a. ICS 7.0, AC Adjustable Speed Drives
 - 4. IEC 16800 Parts 1 and 2
 - 5. National Electric Code (NEC) a. NEC 430.120, Adjustable-Speed Drive Systems
 - International Building Code (IBC)
 a. IBC 2006 Seismic referencing ASC 7-05 and ICC AC-156
- B. Qualifications:
 - 1. VFDs and options shall be UL listed as a complete assembly. VFD's that require the customer to supply external fuses for the VFD to be UL listed are not acceptable. VFDs with red label UL stickers, requiring additional branch circuit protection are not acceptable. The base VFD shall be UL listed for 100 KAIC without the need for input fuses.
 - CE Mark The VFD shall conform to the European Union ElectroMagnetic Compatibility directive, a requirement for CE marking. The VFD shall meet product standard EN 61800-3 for the First Environment restricted level.
 - 3. The entire VFD enclosure, including the bypass shall be seismically certified and labeled as such in accordance with the 2006 International Building Code (IBC):
 - a. VFD manufacturer shall provide Seismic Certification and Installation requirements at time of submittal.
 - b. Seismic importance factor of 1.5 rating is required, and shall be based upon actual shake test data as defined by ICC AC-156.

- c. Seismic ratings based upon calculations alone are not acceptable. Certification of Seismic rating must be based on testing done in all three axis of motion.
- 4. Acceptable Manufactures
 - a. ABB ACH Series.
 - b. Alternate manufacturer's requests must be submitted in writing to the Engineer for approval at least 20 working days prior to bid. Approval does not relieve the supplier of specification requirements.
- 5. The VFD manufacturer shall have available a comprehensive, HVAC Drive Computer Based Training (CBT) product. The CBT product shall include detailed, interactive sections covering VFD unpacking, proper mechanical and electrical installation, and programming. The CBT product shall allow the user to provide just-in-time training to new personnel or refresher training for maintenance and repair personnel on the user's site. The CBT product shall be repeatable, precise and shall include record keeping capability. The CBT product shall record answers to simulations and tests by student ID number. The CBT product must be professionally produced and have interactive sections, student tests, and include video clips of proper wiring and installation.

1.4 SUBMITTALS

- A. Submittals shall include the following information:
 - 1. Outline dimensions, conduit entry locations and weight.
 - 2. Customer connection and power wiring diagrams.
 - 3. Complete technical product description includes a complete list of options provided. Any portions of this specification not meet must be clearly indicated or the supplier and contractor shall be liable to provide all additional components required to meet this specification.
 - 4. Compliance to IEEE 519 harmonic analysis for particular jobsite including total harmonic voltage distortion and total harmonic current distortion (TDD).
 - a. The VFD manufacturer shall provide calculations; specific to this installation, showing total harmonic voltage distortion is less than 5%. Input filters shall be sized and provided as required by the VFD manufacturer to ensure compliance with IEEE standard 519. All VFD's shall include a minimum of 5% impedance reactors, no exceptions.

PART 2 – PRODUCTS

2.1 VARIABLE FREQUENCY DRIVES

- A. The VFD package as specified herein shall be enclosed in a UL Listed Type enclosure, exceeding NEMA enclosure design criteria (enclosures with only NEMA ratings are not acceptable), completely assembled and tested by the manufacturer in an ISO9001 facility. The VFD tolerated voltage window shall allow the VFD to operate from a line of +30% nominal, and -35% nominal voltage as a minimum.
 - Environmental operating conditions: VFDs shall be capable of continuous operation at 0 to 50° C (32 to 122° F) ambient temperature as per VFD manufacturers documented/submittal data or VFD must be oversized to meet these temperature requirements. Not acceptable are VFD's that can only operate at 40° C intermittently (average during a 24 hour period) and therefore must be oversized. Altitude 0 to 3300 feet above sea level, less than 95% humidity, non-condensing. All circuit boards shall have conformal coating.
 - Enclosure shall be rated UL Type 1 and shall be UL listed as a plenum rated VFD. VFD's without these ratings are not acceptable. NEMA only type 1 enclosures are not acceptable (must be UL Type 1).
 - 3. Provide NEMA 3R enclosures where exposed to outside weather or wet conditions.

- B. All VFDs shall have the following standard features:
 - 1. All VFDs shall have the same customer interface, including digital display, and keypad, regardless of horsepower rating. The keypad shall be removable, capable of remote mounting and allow for uploading and downloading of parameter settings as an aid for start-up of multiple VFDs.
 - 2. The keypad shall include Hand-Off-Auto selections and manual speed control. The drive shall incorporate "bumpless transfer" of speed reference when switching between "Hand" and "Auto" modes. There shall be fault reset and "Help" buttons on the keypad. The Help button shall include "on-line" assistance for programming and troubleshooting.
 - 3. There shall be a built-in time clock in the VFD keypad. The clock shall have a battery back up with 10 years minimum life span. The clock shall be used to date and time stamp faults and record operating parameters at the time of fault. If the battery fails, the VFD shall automatically revert to hours of operation since initial power up. Capacitor back-up is not acceptable. The clock shall also be programmable to control start/stop functions, constant speeds, PID parameter sets and output Form-C relays. The VFD shall have a digital input that allows an override to the time clock (when in the off mode) for a programmable time frame. There shall be four (4) separate, independent timer functions that have both weekday and weekend settings.
 - 4. The VFD's shall utilize pre-programmed application macro's specifically designed to facilitate start-up. The Application Macros shall provide one command to reprogram all parameters and customer interfaces for a particular application to reduce programming time. The VFD shall have two user macros to allow the end-user to create and save custom settings.
 - 5. The VFD shall have cooling fans that are designed for easy replacement. The fans shall be designed for replacement without requiring removing the VFD from the wall or removal of circuit boards. The VFD cooling fans shall operate only when required. To extend the fan and bearing operating life, the VFD shall cycle the cooling fans on and off as required.
 - 6. The VFD shall be capable of starting into a coasting load (forward or reverse) up to full speed and accelerate or decelerate to set point without tripping or component damage (flying start).
 - 7. The VFD shall have the ability to automatically restart after an over-current, over-voltage, undervoltage, or loss of input signal protective trip. The number of restart attempts, trial time, and time between attempts shall be programmable.
 - 8. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes, 130% overload for 2 seconds. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430.250 for 4-pole motors.
 - 9. The VFD shall have internal 5% impedance reactors to reduce the harmonics to the power line and to add protection from AC line transients. The 5% impedance may be from dual (positive and negative DC bus) reactors, or 5% AC line reactors. VFD's with only one DC reactor shall add an AC line reactor.
 - 10. The input current rating of the VFD shall be no more than 3% greater than the output current rating. VFD's with higher input current ratings require the upstream wiring, protection devices, and source transformers to be oversized per NEC 430.120. Input and output current ratings must be shown on the VFD nameplate.
 - 11. The VFD shall include a coordinated AC transient surge protection system consisting of 4-120 joule rated MOV's (phase to phase and phase to ground), a capacitor clamp, and 5% impedance reactors.

- 12. The VFD shall provide a programmable loss-of-load (broken belt / broken coupling) Form-C relay output. The drive shall be programmable to signal the loss-of-load condition via a keypad warning, Form-C relay output, and / or over the serial communications bus. The loss-of-load condition sensing algorithm shall include a programmable time delay that will allow for motor acceleration from zero speed without signaling a false loss-of-load condition.
- 13. The VFD shall have user programmable underload and overload curve functions to allow user defined indications of broken belt or mechanical failure / jam condition causing motor overload.
- 14. The VFD shall include multiple "two zone" PID algorithms that allow the VFD to maintain PID control from two separate feedback signals (4-20mA, 0-10V, and / or serial communications). The two zone control PID algorithm will control motor speed based on a minimum, maximum, or average of the two feedback signals. All of the VFD PID controllers shall include the ability for "two zone" control.
- 15. If the input reference (4-20mA or 2-10V) is lost, the VFD shall give the user the option of either (1) stopping and displaying a fault, (2) running at a programmable preset speed, (3) hold the VFD speed based on the last good reference received, or (4) cause a warning to be issued, as selected by the user. The drive shall be programmable to signal this condition via a keypad warning, Form-C relay output and / or over the serial communication bus.
- 16. The VFD shall have programmable "Sleep" and "Wake up" functions to allow the drive to be started and stopped from the level of a process feedback signal.
- 17. Provide drive with circuit breaker option and remote panel mounting kit.
- C. All VFDs to have the following adjustments:
 - 1. Three (3) programmable critical frequency lockout ranges to prevent the VFD from operating the load continuously at an unstable speed. The lockout range must be fully adjustable, from 0 to full speed.
 - 2. Two (2) PID Set point controllers shall be standard in the drive, allowing pressure or flow signals to be connected to the VFD, using the microprocessor in the VFD for the closed-loop control. The VFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID set point shall be adjustable from the VFD keypad, analog inputs, or over the communications bus. There shall be two independent parameter sets for the PID controller and the capability to switch between the parameter sets via a digital input, serial communications or from the keypad. The independent parameter sets are typically used for night setback, switching between summer and winter set points, etc.
 - 3. There shall be an independent, second PID loop that can utilize the second analog input and modulate one of the analog outputs to maintain the set point of an independent process (ie. valves, dampers, etc.). All set points, process variables, etc. to be accessible from the serial communication network.
 - 4. Two (2) programmable analog inputs shall accept current or voltage signals.
 - 5. Two (2) programmable analog outputs (0-20ma or 4-20 ma). The outputs may be programmed to output proportional to Frequency, Motor Speed, Output Voltage, Output Current, Motor Torque, Motor Power (kW), DC Bus voltage, Active Reference, Active Feedback, and other data..
 - 6. Six (6) programmable digital inputs for maximum flexibility in interfacing with external devices. All digital inputs shall be programmable to initiate upon an application or removal of 24VDC or 24VAC.

- 7. Three (3) programmable, digital Form-C relay outputs. The relay outputs shall include programmable on and off delay times and adjustable hysteresis. The relays shall be rated for maximum switching current 8 amps at 24 VDC and 0.4 A at 250 VAC; Maximum voltage 300 VDC and 250 VAC; continuous current rating of 2 amps RMS. Outputs shall be true Form-C type contacts; open collector outputs are not acceptable.
- 8. Run permissive circuit There shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad, input contact closure, time-clock control, or serial communications), the VFD shall provide a dry contact closure that will signal the damper to open (VFD motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a VFD digital input and allows VFD motor operation. Two separate safety interlock inputs shall be provided. When either safety is opened, the motor shall be commanded to coast to stop and the damper shall be commanded to close. The keypad shall display "start enable 1 (or 2) missing". The safety input status shall also be transmitted over the serial communications bus.
- 9. The VFD control shall include a programmable time delay for VFD start and a keypad indication that this time delay is active. A Form C relay output provides a contact closure to signal the VAV boxes open. This will allow VAV boxes to be driven open before the motor operates. The time delay shall be field programmable from 0 120 seconds. Start delay shall be active regardless of the start command source (keypad command, input contact closure, time-clock control, or serial communications), and when switching from drive to bypass.
- 10. Seven (7) programmable preset speeds.
- 11. Two independently adjustable accel and decel ramps with 1 1800 seconds adjustable time ramps.
- 12. The VFD shall include a motor flux optimization circuit that will automatically reduce applied motor voltage to the motor to optimize energy consumption and reduce audible motor noise. The VFD shall have selectable software for optimization of motor noise, energy consumption, and motor speed control.
- 13. The VFD shall include a carrier frequency control circuit that reduces the carrier frequency based on actual VFD temperature that allows higher carrier frequency settings without derating the VFD.
- 14. The VFD shall include password protection against parameter changes.
- D. The Keypad shall include a backlit LCD display. The display shall be in complete English words for programming and fault diagnostics (alpha-numeric codes are not acceptable). All VFD faults shall be displayed in English words. The keypad shall include a minimum of 14 assistants including:
 - 1. Start-up assistant
 - 2. Parameter assistants
 - a. PID assistant
 - b. Reference assistant
 - c. I/O assistant
 - d. Serial communications assistant
 - e. Option module assistant
 - f. Panel display assistant
 - g. Low noise set-up assistant
 - 3. Maintenance assistant
 - 4. Troubleshooting assistant
 - 5. Drive optimizer assistants

- E. All applicable operating values shall be capable of being displayed in engineering (user) units. A minimum of three operating values from the list below shall be capable of being displayed at all times. The display shall be in complete English words (alpha-numeric codes are not acceptable):
 - 1. Output Frequency
 - 2. Motor Speed (RPM, %, or Engineering units)
 - 3. Motor Current
 - 4. Motor Torque
 - 5. Motor Power (kW)
 - 6. DC Bus Voltage
 - 7. Output Voltage
- F. The VFD shall include a fireman's override input. Upon receipt of a contact closure from the fire / smoke control station, the VFD shall operate in one of two modes: 1) Operate at a programmed predetermined fixed speed ranging from -500Hz (reverse) to 500Hz (forward). 2) Operate in a specific fireman's override PID algorithm that automatically adjusts motor speed based on override set point and feedback. The mode shall override all other inputs (analog/digital, serial communication, and all keypad commands), except customer defined safety run interlocks, and force the motor to run in one of the two modes above. "Override Mode" shall be displayed on the keypad. Upon removal of the override signal, the VFD shall resume normal operation, without the need to cycle the normal digital input run command.
- G. Serial Communications
 - 1. The VFD shall have an EIA-485 port as standard. The standard protocols shall be Modbus, Johnson Controls N2, Siemens Building Technologies FLN, and BACnet. [Optional protocols for LonWorks, Profibus, EtherNet, BACnet IP, and DeviceNet shall be available.] Each individual drive shall have the protocol in the base VFD. The use of third party gateways and multiplexers is not acceptable. All protocols shall be "certified" by the governing authority (i.e. BTL Listing for BACnet). Use of non-certified protocols is not allowed.
 - 2. The BACnet connection shall be an EIA-485, MS/TP interface operating at 9.6, 19.2, 38.4, or 76.8 Kbps. The connection shall be tested by the BACnet Testing Labs (BTL) and be BTL Listed. The BACnet interface shall conform to the BACnet standard device type of an Applications Specific Controller (B-ASC). The interface shall support all BIBBs defined by the BACnet standard profile for a B-ASC including, but not limited to:
 - a. Data Sharing Read Property B.
 - b. Data Sharing Write Property B.
 - c. Device Management Dynamic Device Binding (Who-Is; I-Am).
 - d. Device Management Dynamic Object Binding (Who-Has; I-Have).
 - e. Device Management Communication Control B.
 - If additional hardware is required to obtain the BACnet interface, the VFD manufacturer shall supply one BACnet gateway per drive. Multiple VFDs sharing one gateway shall not be acceptable.
 - 4. Serial communication capabilities shall include, but not be limited to; run-stop control, speed set adjustment, proportional/integral/derivative PID control adjustments, current limit, accel/decel time adjustments, and lock and unlock the keypad. The drive shall have the capability of allowing the DDC to monitor feedback such as process variable feedback, output speed / frequency, current (in amps), % torque, power (kW), kilowatt hours (resettable), operating hours (resettable), and drive temperature. The DDC shall also be capable of monitoring the VFD relay output status, digital input status, and all analog input and analog output values. All diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote VFD fault reset shall be possible.

- 5. Serial communication in bypass shall include, but not be limited to; bypass run-stop control, the ability to force the unit to bypass, and the ability to lock and unlock the keypad. The bypass shall have the capability of allowing the DDC to monitor feedback such as, current (in amps), kilowatt hours (resettable), operating hours (resettable), and bypass logic board temperature. The DDC shall also be capable of monitoring the bypass relay output status, and all digital input status. All bypass diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote bypass fault reset shall be possible.
- 6. The VFD / bypass shall allow the DDC to control the drive and bypass digital and analog outputs via the serial interface. This control shall be independent of any VFD function. The analog outputs may be used for modulating chilled water valves or cooling tower bypass valves. The drive and bypass' digital (Form-C relay) outputs may be used to actuate a damper, open a valve or control any other device that requires a maintained contact for operation. In addition, all of the drive and bypass' digital inputs shall be capable of being monitored by the DDC system. This allows for remote monitoring of which (of up to 4) safeties are open.
- 7. The VFD shall include an independent PID loop for customer use. The independent PID loop may be used for cooling tower bypass value control, chilled water value / hot water valve control, etc. Both the VFD PID control loop and the independent PID control loop shall continue functioning even if the serial communications connection is lost. As default, the VFD shall keep the last good set point command and last good DO & AO commands in memory in the event the serial communications connection is lost and continue controlling the process.
- H. EMI / RFI filters. All VFD's shall include EMI/RFI filters. The onboard filters shall allow the VFD assembly to be CE Marked and the VFD shall meet product standard EN 61800-3 for the First Environment restricted level with up to 100 feet of motor cable. No Exceptions. Certified test reports shall be provided with the submittals confirming compliance to EN 61800-3, First Environment.
- I. All VFD's through 75HP at 480 V shall be protected from input and output power mis-wiring. The VFD shall sense this condition and display an alarm on the keypad. The VFD shall not sustain damage from this power mis-wiring condition.

PART 3 – EXECUTION

- 3.1 INSTALLATION
- A. Installation shall be the responsibility of the mechanical contractor. The contractor shall install the drive in accordance with the recommendations of the VFD manufacturer as outlined in the VFD installation manual.
- B. Power wiring shall be completed by the electrical contractor, to NEC code 430.122 wiring requirements based on the VFD input current. Caution: VFDs supplied without internal reactors have substantially higher input current ratings, which may require larger input power wiring and branch circuit protection. The contractor shall complete all wiring in accordance with the recommendations of the VFD manufacturer as outlined in the installation manual.
- 3.2 START-UP
 - A. Certified factory start-up shall be provided for each drive by a factory authorized service center. A certified start-up form shall be filled out for each drive with a copy provided to the owner, and a copy kept on file at the manufacturer.

3.3 PRODUCT SUPPORT

- A. Factory trained application engineering and service personnel that are thoroughly familiar with the VFD products offered shall be locally available at both the specifying and installation locations. A toll free 24/365 technical support line shall be available.
- B. A computer based training CD or 8-hour professionally generated video (VCR format) shall be provided to the owner at the time of project closeout. The training shall include installation, programming and operation of the VFD, bypass and serial communication.

3.4 WARRANTY

A. The VFD Product Warranty shall be 24 months from the date of certified start-up, not to exceed 30 months from the date of shipment. The warranty shall include all parts, labor, travel time and expenses. A toll free 24/365 technical support line shall be available.

SECTION 230290 - DUCT MOUNTED COILS

PART 1 - GENERAL

Applicable provisions of the Conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

- 2.1 DUCT MOUNTED COILS
 - A. Coils as manufactured by Carrier shall be with aluminum plate fins, have collars drawn, belled, and firmly bonded to copper tubes by mechanical expansion of tubes. No soldering or tinning used in the bonding process.
 - B. Coils have galvanized steel casing and are mounted pitched in the unit casing. Coils are to be removable in duct flanges. Hot water coils are continuous tube type and proof tested at 300 p.s.i.g. air pressure under water.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.
- 3.3 CLEANING
 - A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230300 - FANS

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 FANS

- A. Furnish and install fans of the type, models, size and capacity indicated on the Drawings. Models indicated are as manufactured by Carnes Company. ACME or Greenheck, with equivalent characteristics will be considered.
- B. Refer to Drawing schedule for required accessories and related appurtenances.
- 2.2 IN LINE FANS
 - A. Construction: Unit exterior shall be constructed of heavy gauge galvanized steel. The fan housing shall be square in shape and readily attachable to building ductwork. Unit side panels shall be removable for easy access for maintenance and service. The power assembly shall be removable as a complete module.
 - B. Wheel: Wheels shall be of the centrifugal backward inclined type. Wheels shall be constructed of aluminum and contain a matching inlet venturi for optimum performance. Wheels shall be statically and dynamically balanced.
 - C. Shaft: Fan shafts shall be precision ground and polished. Shafts shall have a first critical speed of at least 125% of the fan's maximum operating speed.
 - D. Bearings: Bearings shall be of the one piece, cast iron, pillow block type with relubricable zerk fittings. Bearings shall be designed for final system balancing.
 - E. Drive: Drives shall be sized for a minimum of 150% of driven horsepower. Machined, cast iron motor sheaves shall be adjustable for final system balancing.
 - F. Motor: Motor shall be heavy duty ball bearing type, closely matched to the fan load. All motors shall be listed by UL and/or CSA. A disconnect switch shall be factory installed and wired to the fan motors as standard. Motors shall be mounted on the outside of the unit isolated from the airstream. The belt and pillow block ball bearings shall be protected from the airstream by an enclosure.
 - G. Backdraft Damper: When no motorized damper is indicated on Drawings at discharge of fan, provide gravity backdraft damper.
 - H. Fans shall bear the AMCA ratings seal for Sound and Air performance. Fans shall carry the UL and/or CSA listing mark. Fans shall bear a permanently attached nameplate displaying model and serial number of the unit for future identification.

PART 3 - EXECUTION

3.1 INSPECTION

A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
- B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230310 - HOT WATER CABINET HEATERS

PART 1 - GENERAL

Applicable provisions of the Conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 HOT WATER CABINET HEATERS

- A. Furnish and install where indicated on the Drawings hot water cabinet heaters as manufactured by Sterling Co. of model, capacity and performance noted on the Drawing schedule.
- B. The cabinet shall be 16 gauge steel, four side overlap front panels, with M-shaped stiffener running entire panel length as standard. Integral, stamped, inlet and outlet insulated over entire coil section.
- C. Front panel removed with two tamperproof screws, and shall be of finish as selected by Architect. Unit to be equipped with factory mounted fan cycling thermostat. Fans are forwardly curved double-inlet centrifugal of aluminum construction and are modular in design.
- D. The water coil is constructed of copper tubing mechanically expanded into aluminum fins. All joints are brazed with high temperature silver alloy. Water coils have a plugged drain tube and vent tube extended into the unit end compartment. Automatic air vent fittings shall be provided. Coils are field reversible.
- E. Filters are removable by removing front panel. 1" woven glass filters standard to be used.
- F. Provide factory finished trim flange for all semi-recessed applications.

PART 3 - EXECUTION

3.1 INSPECTION

A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 260330 - CONVECTORS

PART 1 - GENERAL

Applicable provisions of the Conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 CONVECTORS

- A. Furnish and install Convectors as manufactured by Sterling Co., Airtherm Co. and American Air Filer Co. considered equal as indicated on the Drawings. Type and size as noted on Drawing. Unit shall be installed in a neat and workmanlike manner in accordance with the Specifications and manufacturer's recommendations.
- B. Convector element shall be constructed of copper tubes expanded and rolled into cast iron headers with contact further strengthened by brass bushings, aluminum fins, ribbed steel side plates and fin tube supports.
- C. Cabinet shall have a one piece 14 gauge steel front panel. Front panel shall be held in place by camlock fasteners.
- D. Dampers shall be factory mounted on the element to reduce heating capacity up to 70% when closed. Key operated damper-tamperproof. Baked enamel finish shall be provided in standard manufacturer's colors as selected by the Architect. Unit shall have (camlock) access doors to provide access to valves.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
- 3.3 CLEANING
 - A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230400 - SHEETMETAL WORK AND RELATED ACCESSORIES

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements shall govern work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 SHEETMETAL DUCTWORK

- A. Contractor shall furnish and install all sheetmetal ducts as shown on the Drawings. While the Drawings shall be adhered to as closely as possible, the Engineer reserves the right to vary the run and size to meet the field conditions. Any duct size not shown shall be sized in proportion to the air carried at the same resistance in similar ductwork, or of size as directed.
- B. All ductwork shall be constructed of galvanized steel gauges in accordance with the latest edition of the ASHRAE/SMACNA Guide. Bracing angles for ductwork shall be hot dipped galvanized for steel ductwork and appropriate gauge for aluminum ductwork. All ducts 18" and over in width shall be cross broken to prevent flutter.
- C. Round ductwork shall be galvanized steel, spiral lock seam construction of gauges in accordance with the latest edition of ASHRAE/SMACNA guide. Fittings shall be constructed in standing seam manner. All seams, joints and collars shall be sealed in accordance with SMACNA guidelines for medium pressure ductwork to minimize noise and streaking. Ductwork and fittings shall be connected with sheetmetal couplings and sealed as to allow no leakage.
- D. Ducts shall be braced as follows:
 - 1. All ducts not exceeding 24" on one side shall be assembled with airtight slip joints.
 - 2. 25" to 40" larger dimension 1" x 1" x 1/8" angles.
 - 3. 41" to 60" larger dimension 1-1/2" x 1-1/2" x 1/8" angles.
 - 4. All bracing angles shall be a minimum of 4' apart along the length of the duct.
 - 5. Furnish and install all angles and frames for all registers, diffusers, grilles, and louvers.
 - 6. Support horizontal ducts with hangers spaced not more than 8' apart. Place hangers at all changes in direction. Use strap hangers for cuts up to 30" wide.
- E. Comply with all State and Local regulations regarding fire stopping and fireproofing. Provide fusible link fire dampers as required by State, local and Underwriter authorities and where indicated on the Drawings. Each fire damper shall be installed in such a manner as to permit ready access for inspection and maintenance purposes.
- F. Provide splitter and butterfly dampers, deflecting vanes for control of air volume and direction and for balancing systems, where indicated, specified, directed and as required for the proper operation of the systems. Dampers shall be of the same material as the duct, at least one gauge heavier that the duct, reinforced where indicating quadrant and locking device for adjusting damper and locking in position.
- G. Where ducts fewer than 100 square inches penetrate a rated wall, steel ductwork system of a minimum 0.0127 inch thickness shall be used.

- H. All elbows shall have a minimum center line radius of 150% of duct width. If the radius is smaller, turning vanes shall be used: Turning vanes shall be double thickness, fitted into slide strips and screwed or riveted to duct below.
- I. Contractor shall furnish and install all access doors in ducts as required. Access doors shall be of the pan type 1" thick and shall be provided with two galvanized hinges and suitable latched. Access doors insulated with same thickness material as duct and shall be double casing construction.

2.2 REGISTERS AND DIFFUSERS

- A. Registers and diffusers shall be installed where shown on the Drawings and shall be of the sizes specified and the type indicated on the drawing schedule.
- B. All registers and diffusers shall be installed in accordance with manufacturer's recommendations.
- C. Registers and diffusers shall be as manufactured by Carnes, Hart and Cooley or Anemostat Co.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230410 - PIPING, FITTINGS, VALVES AND NOTES (HOT WATER)

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements shall govern work in this section. Submit shop drawings for checking and approval.

- 1.1 PIPING NOTES
- A. The Contractor shall erect all pipe, fittings, valves, hangers, anchors, expansion joints and all accessories specified, indicated on the Drawings or required to assure proper operation of all piping systems installed under this Contract. All piping shall be maintained at a proper level to assure satisfactory operation, venting and drainage. Piping and valves in any locality where possible shall be grouped neatly and shall be run so as to avoid reducing headroom or passage clearance.
- B. All piping shall be new and of the material and weight specified under various services. Steel and wrought iron pipe 2" and larger shall be seamless or lap welded. All piping shall have the maker's name and brand rolled on each length of pipe.
- C. All piping, fittings, valves and strainers shall be cleaned of grease, dirt and scale before installation. All temporary pipe openings shall be kept closed during the performance of the work. The ends of all piping shall be reamed smooth and all burrs removed before installation.
- D. All piping shall be cut accurately to measurements taken on the job. Offset connections shall be installed alignment of vertical to horizontal piping and where required to make a true connection and to provide for expansion. Bent or sprung pipe shall not be installed where shown on Drawings and where necessary to provide for expansion of piping. Cold spring hot lines one-half estimated distance of maximum expansion. Suitable pipe anchors shall be installed where shown or required.
- E. Piping connections shall have unions where necessary for replacement and repair of equipment. Gate valves and controls valves shall be installed where shown and where necessary for proper operation and service.
- F. Vertical piping shall be plumb and horizontal piping shall be parallel to walls and partitions. Piping shall be supported as required to prevent the transmission of noise and vibration.
- G. Work shall include all pipe, fittings, offsets and requirements for the installation of piping of other work including ducts and conduit. Reducing fittings shall be used where pipe changes size. All piping shall be installed with ample clearance to center accurately in sleeves through floors, and walls and partitions.
- H. Piping shall be downgraded to drain connections at low points and upgraded to vent connections at high points unless otherwise noted. Drain connections shall be valved and piped to a floor drain. Vent connections on mains shall be equipped with air vent valves fitted with a copper tube drip line extended to a drain outlet. Vent connections on branches and equipment shall be fitted with key type manual vent cocks.
- I. Drain piping shall be installed from all equipment as required. The Contractor shall extend drain piping and turn down over floor drains.

PART 2 - PRODUCTS

- 2.1 PIPING (ABOVEGROUND)
- A. All piping installed under this Section of the Specifications shall be in accordance with the following schedule.

- All piping, except where indicated differently, (i.e. underground piping) shall be standard weight black steel pipe Schedule 40, Grade A53, black steel. Pipe 2" and smaller, cast iron screwed fittings. Pipe 2-1/2" and larger, steel welding fittings. Pipe and fittings as manufactured by National, Wheeling, Bethlehem or equal, manufactured in accordance with ASTM current edition. All pipes must be <u>reamed</u> before installation.
- 2. Where the Contractor elects to use copper piping, it shall be rigid Type "L" copper, Chase, Anaconda or approved equal. Fittings shall be <u>wrot</u> copper, Nibco, Anaconda, Mueller or approved equal. Where copper piping is used, make all additional provisions for expansion. All condensate piping shall be Type "M" copper, rigid, full size of unit drain tapping, or larger as shown on Drawings.
- 3. All drainage pipe lines, 2" larger except where galvanized screw pipe is shown on the Drawings or specified hereafter, shall be extra heavy cast iron soil pipe and fittings.
- B. Piping installation shall be arranged for draining through accessible valves at low points.
- C. Threaded short and close nipples shall be Schedule 80, extra heavy weight of the same material as pipe in system in which they are installed.
- D. All bare copper pipe, tubing and fittings shall be cleaned with steel wool and all excess solder shall be removed.
- 2.2 UNDERGROUND PRE-INSULATED PIPING SYSTEM
 - A. General: All underground piping shall be the Poly-Therm type, as manufactured by Perma-Pipe or approved equal. All straight sections, fittings, anchors and other accessories shall be factory fabricated to job dimensions and designed to minimize the number of field welds. Each system layout shall be computer analyzed by the piping system manufacturer to determine stress on the carrier pipe, and anticipated thermal movement of the service pipe. The system design shall be in strict conformance with ANSI B31.3, latest edition. Factory trained field supervision shall be provided for critical periods of installation; unloading, field joint instruction and testing.
 - B. Service Piping: Internal piping shall be standard weight carbon steel. All joints shall be butt-welded for 2-1/2 inch and greater, and socket or butt-welded for 2 inch and below. Where possible, straight sections shall be supplied in 40 foot random lengths with piping exposed at each end of field joint fabrication.
 - C. Accessories: End seals, gland seals and anchors shall be designed and factory fabricated to prevent the ingress of moisture into the system.
 - D. Insulation: Service pipe insulation shall be spray applied nominal 2 pound per cubic foot density, polyurethane foam for straight sections and preformed polyurethane foam for all fittings. To ensure no voids are present, all insulation shall be inspected by visually checking prior to application of the jacket. The insulation shall be applied to the minimum thickness specified below. The insulation thickness shall not be less than indicated in these Specifications.

<u>Pipe Size (in.)</u>	Insulation Thickness (in.)
1-3	1
4-6	1.5
8-14	2

E. Protective Jacket: All straight sections of the insulated piping systems shall be filament wound, polyester resin/fiberglass reinforcement composite directly applied on the insulating foam. Thermoplastic casing material, e.g., PVC or PE, shall not be allowed. The minimum thickness for FRP jacket shall be .055 inches. All fittings of the insulated piping system shall be prefabricated to minimize field joints and jacketed in a chopped spray up, polyester resin/fiberglass reinforcement composite, directly applied onto the insulating foam to a thickness related to the filament wound jacket thickness.

- F. Field Joints: After the internal pipe has been hydrostatically hammer tested to 150 psig of 1-1/2 times the operating pressure, which ever is greater. Insulation shall then be poured in place into the field weld area. All field applied insulation shall be placed only in straight sections. Field insulation of fittings shall not be acceptable. The mold for the polyurethane shall be made of clear adhesive backed polyester film. The installer shall seal the field joint area with a heat shrinkable adhesive backed wrap or with wrappings of glass reinforcement full saturated with a catalyzed resin identical in properties to the factory applied resin. Backfilling shall no begin unit the heat shrink wrap has cooled or until the FRP lay-up has cured. All insulation and coating materials for making the field joint shall be furnished by the piping manufacturer.
- G. Backfilling: A 4 inch layer of sand of fine gravel shall be placed and tamped in the trench to provide a uniform bedding for the pipe. The entire trench width shall be evenly backfilled with a similar material as the bedding in 6 inch compacted layers to a minimum of 6 inches above the top of the insulated piping system. The remaining trench shall be evenly and continuously backfilled in uniform layers with suitable excavated soil. Coordinate these requirements with the excavating and backfilling Contractor.

2.3 VALVES

- A. All valves, unless specified or noted otherwise, shall be designed for a working pressure of not less than 200 p.s.i. water or 125 p.s.i. steam with name and pressure rating of valve cast in body. All valves shall be of the same manufacturer, unless specified otherwise. Valves for cut-off shall be gate valves, unless otherwise specified.
- B. All valves of same manufacturer: similar to Jenkins Bros., Walworth, Kennedy or approved equal.
- C. Four inch and larger, flanged; smaller sizes, screwed.
- D. All Gate and Globe valves shall be installed with handle in an upright position.
- E. The Contractor shall furnish and install all valves shown on Drawings and all valves that are necessary for proper operation and maintenance of systems and equipment. All piping connections to each piece of equipment and all branch connections to mains shall have cut-off valves.
- F. The following schedule of valves for steam condensate, hot water, etc. is based on Jenkins Brothers, Inc. catalog numbers (except as noted); equivalent Lukenheimer, Walworth, O-I-C, Crane Fairbanks Company valves will be acceptable.
- G. Ball Valves
 - 1. 1/4" to 2-1/2" rated for 600 p.s.i wog, with brass body, chrome plated brass ball, virgin PTFE seats, and full port with threaded or solder connections.
 - 2. 2-1/2" and larger rated for 200 p.s.i with carbon steel body, stainless steel full port ball, RTFE seats, lever operated to 4" gear operated 6" and above, with flanged end connections.
- H. Gate Valves
 - 1. Up to 2": Bronze gate solid wedge, inside screw traveling stem union bonnet, -Fig. 47U
 - 2. 2-1/2" and 3": Iron body, bronze-mounted gate, solid wedge, OS&Y rising stem, -Fig. 650-A
 - 3. 4" and larger: Iron body, bronze-mounted gate, solid wedge, OS&Y rising stem, -Fig. 651-A
- I. Globe Valves
 - 1. Up to 2": Bronze body, regrinding seat ring and plug, union bonnet, -Fig. 546P

- 2-1/2" and 3": Iron body, bronze-mounted globe and angle, regrinding disc and seat ring, OS&Y -Fig. 613
- 3. All gate valves 6" and larger: Fitted 3/4" by-pass globe valve.
- J. Plug Valves
 - 1. Up to 2": Lubricated, semi-steel short pattern wrench operated, -Fig. 142
 - 2. 2-1/2" and larger: Lubricated, semi-steel short pattern wrench operated, -Fig. 143
 - 3. Similar to Rockwell Mgd. Co., Jenkins, Kennedy or approved equal.
- K. Butterfly Valves used for chilled water, condenser water and hot water shall be the following:
 - 1. 2-1/2" to 12" rated for 175 p.s.i bubble tight close off, 14" and larger for 150 p.s.i close-off.
 - 2. Full lug cast iron body, aluminum bronze disc, stainless steel stem EPDM peroxide cured seat.
 - 3. 2-14" to 6" values to be equipped with 10 position notch plate and lever lock handle. 8" and larger with handwheel gear operator.
 - 4. On installation, valves to be in full open position when flange bolts are tightened and stem in a horizontal position except when equipped with a chainwheel gear operator.
 - 5. Provide chain wheel gear operator on all valves installed 7 feet or higher.
 - 6. Valves to be designed with replaceable seat and parts kits.
 - 7. Valve to be Bray series 31, Dezurik 637 or Demco.
- L. Check Valves
 - 1. 150 p.s.i. WSP class.
 - 2. Up to 2": Bronze, regrinding bronze disc, screw-in cap, -Fig. 762A
 - 3. 2-1/2" and 3": Iron body, bronze mounted regrinding bronze seat ring and disc, -Fig. 623
 - 4. 4" and larger: Iron body, bronze mounted regrinding bronze seat ring and disc, -Fig. 624
- M. Drain Valves: All low points shall have drain valves, with hose ends. Where 1/2" and 3/4" sizes are indicated, "Standard" hose end drain valves shall be used. Provide brass hose end drain caps at each drain valve. Where larger than 3/4" drains are shown, gate valve shall be used. Provide brass nipples and reducer from drain valve size to 3/4" terminating with 3/4" hose end drain valve and cap.

2.4 FITTINGS

- A. Nipples
 - 1. All nipples shall have clean cut threads and shall be made from new pipe, standard weight for all lengths, except that close and shoulder nipples shall be extra heavy.
 - 2. Fittings 2-1/2 and Smaller: All fittings shall be standard weight steam pattern gray cast iron, Grinnell, Stockholm or equal approved.

- 3. Fitting 3" and Larger: The Contractor has the option to use screwed, flanged or welded fittings so long as all ASME requirements are met.
- B. Joints and Unions
 - 1. Threaded joints shall be full and clean cut. The ends of pipe shall be reamed to the full inside diameter, all burrs shall be removed and no more than three threads shall be exposed beyond fittings when made up. Joints shall be made up tight with graphite base pipe joint compound. Exposed threads of ferrous pipe shall be painted with acid-resisting paint after caulking, lampwick or other material will be allowed for correction of defective joints.
 - 2. Flange joints shall be made up perfectly square and tight. Screwed flanges and loose flanges shall be cast iron and welding flanges shall be steel. Flanges shall be faced true and bolted up tight with 1/16" Carlock ring type gasket.
 - 3. Bolts shall be high quality steel with hexagon nuts and heads. The Contractor shall apply grease to threads of bolt.
 - 4. Welded joints in piping shall be by the electric or oxyacetylene process using welding rods if the characteristics similar to pipe material and as recommended by the pipe manufacturer and shall be done in accordance with the ASME Code for pressure piping. Welding shall be done by qualified welders under the requirements of the ASME Boiler and Pressure Vessel Code.
 - 5. The pipe lengths shall be aligned with welding rings and the abutting pipe ends shall be concentric. Prior to welding, the groove and adjacent surfaces shall be thoroughly cleaned of all grease, scale, or rust. During welding, all slag, or flux remaining on the bead shall be removed before laying down the next bead. The welding metal shall be thoroughly fused with the base metal at all sections of the weld. Short lengths of pipe may be beveled on the job with oxyacetylene torch, provided all scale and oxides are removed.
 - 6. Joints shall be butt-welded, single V-type. All fittings shall be steel welding fittings. Elbows and fittings formed with coupling or welded cut pipe sections shall not be acceptable.
 - 7. Bonney Weldolets or welding saddles may be used for branch connections, which are less than one-half the size of the main to which they connect.
 - 8. Ground Joint Unions, Flange Connections, Reaming & Filling Ground joint unions shall be 200 lb. s.w.p. for brass. Flanges shall be 150 lb. s.w.p. for brass, 125 lb. s.w.p. for cast iron.
 - 9. Ground joint unions of flanges shall be used only on exposed accessible piping. Where concealed, right and left nipples and couplings must be used. Where flanged connections are used, full size gaskets must be inserted.
- C. Threads: Shall be standard, clean cut and tapered. All piping shall be reamed free from burrs. All piping shall be kept free of scale and dirt. Caulking of threads will not be permitted. All piping shall be threaded and made up in accordance with the current edition of the ASA Standard Specifications for pipe threads.
- D. Unions
 - 1. Unions for use on ferrous pipe 2" and smaller shall be malleable iron with brass to iron ground joint spherical seat and threaded connections. Unions 2 1/2" and over shall be flanged type with gasket.
 - 2. Unions for copper tubing shall be cast bronze conforming to ASA B16. The Contractor shall furnish adapters where required for copper pipe.

- 3. Where copper pipe connects to ferrous pipe or metals, the Contractor shall furnish EPCO isolating type dielectric unions. Plastic type isolating bushings are not acceptable.
- 4. Unions shall be installed wherever necessary for repair or replacement of equipment, valves, strainers, etc. Final connections to equipment shall be made in a manner that will permit removal without cutting of pipelines.
- E. Solder
 - 1. All sweat joints shall be made up with Lead Free solder.
 - 2. Solder shall be OATEY or approved equal. Flux shall be non-toxic and non-corrosive.
 - 3. All copper tubing ends shall be reamed, filed and cleared of burrs and rough edges. All pipes shall be reamed after cutting and threading.
- F. Expansion
 - 1. The entire piping installation shall be installed with adequate provision for expansion. No rigid connections will be permitted.
 - 2. Branches shall be of sufficient length and have 3 elbow swings to allow for pipe expansion.
 - 3. Provide expansion joints, guides and anchors equal to "Metra-Flex MetraLoops" where indicated on Drawings or where necessary for proper expansion compensation. Submit shop drawing.
 - 4. Any breaks in the piping within the guarantee period due to improper provision for expansion must be replaced at the expense of this Contractor, and the conditions corrected to prevent future recurrence.
 - 5. Any damages to surrounding areas and equipment due to this failure shall also be repaired and paid for at the expense of the Contractor.
 - 6. Joints to have 150 psi rating, ANSI-B16.5 with liner and cover.

2.5 PIPING SLEEVES

- A. Furnish sleeves built into place for all piping passing through walls, floors or building construction. Sleeves, not less than 1/2" larger in diameter than piping and its covering, if any, and extending full depth of construction pierced. Pack sleeves through walls/floors in accordance with Underwriters' Requirements.
- B. Sleeves piercing exterior walls, integral waterproofed walls shall be standard weight steel piping. Furnish welded center flange buried in construction for sleeves through exterior walls below grade. At exterior walls, make pipes watertight in sleeves with oakum packing and caulked lead joints on both sides of wall. All other sleeves: Galvanized sheet steel with lockseam joints, #22 USSG for 3" or under. Sleeves for piping 4" and larger, #18 USSG.
- C. Pipes passing through interior membrane waterproofed floors, cast iron flashing sleeve, with integral flashing flange and clamping ring, similar to Josam Series #1880. Adjust sleeves to floor construction with steel or wrought iron pipe nipples top and bottom, extending 3" above finished floor. Burn & J.R. Smith are equal.

- D. Pipes passing through membrane waterproofed walls, cast iron flashing sleeve with internal flashing flange and clamping ring similar to Josam Series #1870. Make pipes watertight in sleeves with oakum packing and caulked lead joints. Burn & J.R. Smith are equal.
- E. For flashing sleeves specified in Pars. C and D, lead flashing extended at least 10" around flashing sleeves, securely held in place by clamping device.
- 2.6 PIPING ENCLOSURES
 - A. Where concealed piping in ceilings and wall of finished spaces is not possible vertical or horizontal metal piping enclosures equal to "Sterling" model PCH (horizontal) or PCHV (vertical). Provide all required hangers, supports, corners, brackets, etc. color per Architect.

PART 3 - EXECUTION

- 3.1 GENERAL NOTES PIPING NOTES, DRAINING, VENTING AND MISCELLANEOUS WATER SPECIALTIES
 - A. Piping shall be installed as indicated on Drawings. Elevations and dimensions are indicated as a <u>guide</u> <u>only</u> and are subject to change with actual job conditions.
 - B. Except for drainage piping, which shall pitch down with flow, mains shall pitch upward or be installed dead level as indicated. Horizontal runs shall be parallel to walls.
 - C. In general, all branch connections shall be top of bottom 45 degree or 90 degree, pitching up or down from mains.
 - D. Where indicated, flexible connectors shall be installed. All final connections to equipment, pumps, units, etc. shall have companion flanged, flange unions or ground joint unions. (125 lbs.)
 - E. All piping shall be adequately supported with approved type hangers so as to prevent absolutely any sagging of lines, or any undue strain on pipes or fittings. All pipe lines shall be capped during construction to prevent entry of dirt or other foreign material. All piping lines after erection shall be blown or flushed out to render the piping system as clean as possible before system water is added for operation.
 - F. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.
 - G. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
- H. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.2 DRAINING

A. All low points shall have drain valves with hose ends. Where 1/2" and 3/4" sizes are indicated, "Standard" hose end drain valves shall be used. Provide brass hose end drain caps at each drain valve. Where larger than 3/4" drains are shown, gate valve shall be used. Provide brass nipple and reducer from drain valve size to 3/4" terminating with 3/4" hose end drain valve and cap.

3.3 VENTING (For Hot Water)

A. All high points in piping shall be vented automatically with float vents. At all high points of piping, whether specifically indicated or not, provide Maid-o-Mist or B&G No. 7 or 27 Air Eliminators with shut off cock, auxiliary key vent and copper tubing overflow carried to floor along wall as indicated or directed.

3.4 WATER SPECIALTIES

- A. Air Vents: Install at all high points automatic air vents to eliminate air binding. All automatic air vents shall be approved heavy duty type equipped with petcocks and tubing for manual venting. All vents installed in coils, etc. shall be of manual key operated type. All vents concealed from view shall be accessible through access doors. Vents shall be by Hoffman, Anderson or Bell & Gossett, 125 p.s.i.g. rated.
- B. Pressure Gauge: Furnish and install pressure gauges on suction and discharge sides of each pump and as required to check operation of equipment; pressure gauges shall have 4-1/2"diameter dials, Ashton, Ashcroft or approved equal.
- C. Install thermometers at all locations in piping system as noted on Drawings and as required to check system performance. Thermometers shall be installed at the supply and return of coils and 3-way diverting valves as manufactured by Trerice, Weksler or Moeller, with 4-1/2 inch face, cast aluminum case, chrome plated steel ring, white background with black embossed markings, glass window, stainless steel pointer, brass movement, 316 stainless steel bulb. Provide separable, universal angle sockets for all thermometers.

SECTION 230420 - SUPPORTS, SLEEVES AND PLATES

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

1.1 DESCRIPTION OF WORK

- A. This Contractor shall furnish and install all plates, hangers and supports for his equipment including piping, headers, fans expansion tank, ductwork, etc.
- B. All ductwork, piping and equipment shall be hung or supported from structural members only.

PART 2 - PRODUCTS

- 2.1 PIPING, DUCTWORK AND EQUIPMENT
 - A. All piping shall be supported from building structure in a neat and workmanlike manner wherever possible, parallel runs of horizontal piping shall be grouped together on trapeze hangers. Vertical risers shall be supported at each floor line with steel pipe clamps. Use of wire perforated metal to support pipes will not be permitted. Hanging pipes from other pipes will not be permitted.
 - B. Necessary structural members, hangers and supports of approved design to keep piping in proper alignment and prevent transmission of injurious thrusts and vibrations shall be furnished and installed. In all cases where hangers, brackets, etc., are supported from concrete construction, care shall be taken not to weaken concrete or penetrate waterproofing.
 - C. All hangers and supports shall be capable of screw adjustment after piping is erected. Hangers supporting piping expanding into loops, bends and offsets shall be secured to the building structure in such a manner that horizontal adjustment perpendicular to the run of piping supported may be made to accommodate displacement due to expansion. All such hangers shall be finally adjusted, both in the vertical and horizontal direction, when the supported piping is hot.
 - D. Pipe hangers shall be as manufactured by Grinnell, whose catalog numbers are given herein, or equivalent Carpenter and Paterson, or F&S Mfg. Co.
 - E. Piping shall be supported as follows unless otherwise indicated on the Drawings:
 - 1. Heating piping shall be 1-1/2 " and smaller Fig. #260 adjustable clevis hanger. 2" and larger Fig. #174 one-rod swivel roll hanger.
 - 2. Two-rod hangers shall be used for piping close to the ceiling slab or where conditions prohibit use of other hanger types.
 - 3. Anchors for hanger rods shall be Phillips "Red Head" self-drilling type. Anchors shall be placed only in vertical surfaces.
 - 4. Spacing of pipe supports shall not exceed 8 feet for pipes up to 1-1/2" and 10 feet on all other piping.
 - 5. Hangers shall pass around insulation and a 16 gauge steel protective cradle; 12" long shall be inserted between hangers and insulation. Insulation under cradle shall be high density calcium silicate or approved equal to prevent crushing.

- 6. All piping shall be supported to allow free movement where expanding or contracting. Pipe shall be anchored as required or directed.
- 7. All lateral runs of piping shall be securely supported on hangers, rolls, brackets, etc. and in manner to allow for proper expansion and elimination of vibration.
- 8. 2" and smaller pipe, where run on walls, shall be supported on wrought iron "J" hook brackets with anchor bolts.
- 9. All horizontal pipes, where run overhead or on walls, shall be supported as follows unless otherwise indicated:
 - a. On adjustable steel clevis type hangers suspended on hanger rods, pipe sizes up to and including 4".
- F. Space limitations in hung ceilings spaces and conditions in other locations may require use of other type of hangers than those specified above. Suitable and approved pipe hangers shall be provided for such job conditions.
- G. All supports shall be fastened to structural members or additional steel supports furnished by this Contractor.
- H. Hanger rods shall be steel, threaded with nuts and lock nuts sizes in accordance with the following schedule:

<u>Pipe Size</u>	Rod Size
3/4" to 2" inclusive	3/8"
2-1/2" and 3' inclusive	1/2"
4" and 5" inclusive	5/8"
6"	3/4"
8" to 12" inclusive	7/8"

- I. Hangers for copper tubing shall be tacked up with formed lead sheet on which tubing or pipe shall be placed.
- J. Where pipes pass through masonry, concrete walls, foundations, or floors, this Contractor shall set sleeves as are necessary for passage of pipes. These sleeves shall be of sufficient size to permit insulation where required to be provided around pipe passing through. This Contractor shall be responsible for exact location of these sleeves.
- K. Sleeves shall not be used in any portion of building where use of same would impair strength of construction features of the building. Inserts for supporting lateral pipes and equipment shall be placed and secured to form work, and all sleeves inserts locations shall be thoroughly checked with Architect so as not to conflict with other trades.
- L. Where pipes pass through floor or walls, they shall be provided with chromium plated escutcheons.
- M. Anchor horizontal piping where indicated and wherever necessary to localize expansion or prevent undue strain on branches. Anchors: Heavy forged construction entirely separate from supports.
- N. Anchor vertical piping wherever indicated and wherever necessary to prevent undue strain on offsets and branches. Anchors, unless otherwise noted: Heavy steel clamps securely bolted and welded to pipes. Extension ends shall bear on building construction.

- O. Ducts shall be hung with 1" x 1/8" metal straps. When width of duct is less than 48", hangers shall be fastened to side of ducts. Auxiliary steel supports that may be required for all mechanical equipment shall be furnished and installed by this Contractor. All operating equipment including fans, piping, etc. shall be supported so as to produce minimum amount of noise transmission.
- P. Refer to "General Conditions" as well.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.
- 3.3 CLEANING
 - A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230430 - INSULATION AND COVERINGS

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

1.1 DESCRIPTION OF WORK

- A. Furnish insulation for all piping, equipment and sheetmetal work as noted.
- B. Insulate no piping, ducts or equipment until tested and approved for tightness. All piping and ducts shall be dry when covered. Where existing insulation has been damaged, altered of removed during the course of the work, it shall be replaced with new insulation in a neat manner to match the adjacent insulation.
- C. All insulation must be done by an approved Sub-Contractor or by mechanics skilled in this line of work.
- D. Fire hazard classification shall be 2550 per ASTM E-84, NFPA 255 and UL 723. Insulation shall be rated non-combustible type classified flame spread 25, smoke developed 50.

PART 2 - PRODUCTS

2.1 DUCTWORK (INDOOR)

- A. All supply, outside air intake and exhaust (on discharge side of fan) and return (in unconditioned spaces) ductwork shall be covered with fiberglass with aluminum foil vapor barrier. All joints shall be lapped so maximum coverage is achieved.
- B. All insulated ductwork shall be insulated with thick fiberglass board insulation with canvas finish in areas where ductwork is exposed.
- C. Insulation thickness shall be in accordance with the latest edition of the New York State Energy Conservation Construction Code.
- D. Thermal acoustic lining of ductwork where indicated shall be 1" thickness fiberglass unless otherwise noted. The lining shall have a mat facing and shall meet the Life Safety Standards as established by NFPA 90A and 9B and conform to the requirements of ASTMC 1071.

2.2 DUCTWORK (OUTDOOR)

- A. All exposed ductwork shall be internally lined and sealed, externally insulated with 2" thick closed-cell rigid board insulation and covered with fully adhered EPDM and acrylic coating.
- B. Make proper provision with ductwork support(s) so that insulation is not damaged. All exterior ductwork must be designed with adequate slope (watershed) to prevent ponding water.

2.3 PIPING / EQUIPMENT (INDOOR)

A. All new or altered heating and chilled water system supply and return piping shall be covered with Manville Micro-Lok or equal approved fiberglass insulation with all service (factory applied) vapor retardant jacket. Seal with type H mastic.

- B. Fittings shall be insulated with same material and thickness as adjoining pipe insulation and shall be premolded fittings or mitre cut segmental insulation wired on. Over the insulation, apply a wrapper of OCF glass cloth sealed with type H mastic. Apply aluminum bands on pipe covering in addition to self-sealing feature.
- C. Insulation Material: Molded fibrous glass insulation, density not less than 4 lbs. per cubic foot.
- D. Insulation Thickness: Shall be in accordance with the latest edition of the New York State Energy Conservation Construction Code C403.11.
- E. Jacket and Finish: White flame retardant type, meeting all requirements of "Fire Hazard Classification" of NFPA, similar to "Fiberglass" Type FRJ, Insul-Coustic, Johns-Manville or approved equal.
- F. Insulation and Finishes for Fittings, Valves and Flanges
 - 1. Valves, fittings and flanges other than vapor seal insulation: Insulated in same manner and same thickness as piping in which installed.
 - 2. Use pre-molded sectional covering where available; otherwise use mitered segments of pipe covering.
 - 3. Obtain written approval prior to using other than molded sectional covering.
- G. Vapor seal Insulation for Valves, Fittings and Flanges: Same as above, except joints sealed with vapor barrier adhesive and wrapped with glass mesh tape. Each fitting shall be finished with two coats of vapor seal mastic adhesive.
- H. Jacket and Finishes: Exposed fittings 6 oz. canvas jacket adhered with lagging adhesive.
- I. Concealed fittings: Standard weight canvas jacket adhered with lagging adhesive and with bands of 18 gauge copper coated steel 2 bands at elbows, 3 at tee.
- J. Insulation at Pipe Hangers
 - 1. Where shields are specified at hangers on piping with fibrous glass covering, provide load bearing calcium silicate between shields and piping as follows:
 - a. For pipe covering without vapor barrier jacket, furnish at each shield 12" long calcium silicate section with canvas section with canvas jacket continuous between shield and insulation.
 - b. For pipe covering with vapor barrier jacket, furnish at each shield 12" long vapor barrier jacket section with section of fibrous glass replaced with section of calcium silicate. Vapor barrier jacket, continuous between shield and insulation for continuous vapor barrier.
- K. Condensate drain piping shall be insulated with 1/2" Armacell or approved equal closed cell insulation.
- L. Equipment Refrigerant piping shall be insulated with Armacell or approved equal closed cell insulation. Thickness shall be in accordance with the latest edition of the New York State Energy Conservation Code C403.11.
 - 1. Secure fibrous glass block or board insulation in place with wire or galvanized steel bands.
 - a. Small Areas: Secure insulation with 16 gauge wire on maximum 6" centers.
 - b. Large Areas: Secure insulation with 14 gauge wire or .015" thick by 1/2" wide galvanized steel bands on maximum 10" centers. Stagger insulation joints.

- c. Irregular Surfaces: Where application of block or board insulation is not practical insulate with insulating cement built-up to same thickness as adjoining insulation.
- 2. Fill joints, voids and irregular surfaces with insulating cement to a uniform thickness.
- 3. Stretch wire mesh over entire insulated surface and secure to anchors with wire edges laced together.
- 4. Apply finishing cement, total of 1/2" thick, in 1/4" thick coats. Trowel second coat to a smooth hard finish.
- 5. Neatly bevel insulation around handholes, cleanouts, ASME stamp, manufacturer's nametag and catalog number.
- M. Insulated Covers for Pumps: Do not extend pump insulation beyond or interfere with stuffing boxes or interfere with adjustment and servicing of parts regular maintenance or operating attention.
- 2.4 PIPING (OUTDOOR)
 - A. All supply and return piping shall be or approved equal covered with insulation in accordance with the latest edition of the New York Energy Conservation code C403.11.
 - B. Insulation shall be calcium silicate with aluminum jacket.
 - C. Calcium silicate insulation shall conform with ASTM C 533, Type I, and shall be Manville "Thermo-12" or approved equal.
 - D. Insulation jacket shall be 0.016 inch thick aluminum for pipes 2-1/2 inches and larger, and 0.010 inch thick for pipes 2 inches and smaller with a built-in isolation felt. All seams and joints shall be weatherproof.
 - E. Refrigerant piping shall be insulated with 1/2" Armacell or approved equal closed cell insulation.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230440 - DAMPERS AND MISCELLANEOUS

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

PART 2 - PRODUCTS

2.1 DAMPERS AND MISCELLANEOUS

- A. Furnish and install where shown on Drawings ARROW PIN-LOCK Dampers No. OBDPL-507 (Opposed) as manufactured by the Arrow Louver & Damper Corp. of Maspeth, NY 11378, or approved equal. Frames and blades to 1/8" extruded aluminum.
- B. Blades to be single unit PIN-LOCK design 6" wide, with the PIN-LOCK an integral section within the blade center axis. Frames to be a combination of 4" extruded aluminum channel and angle, with reinforcing bosses and groove inserts for vinyl seals.
- C. Pivot rods to be 1/2" diameter extruded aluminum, PIN-LOCK design interlocking into blade section. Bearings to be "Double-Sealed" type with Celcon inner bearing on rod riding in Merlon Polycarbonate outer bearing inserted in frame so that outer bearing cannot rotate.
- D. Blade linkage hardware is to be installed in angle or channel frame section out of air stream. All hardware to be of non-corrosive reinforced material or to be cadmium plated.
- E. Rod bearing to be designed for minimum air leakage by means of overlapping design and by extruded vinyl seals to fit into integral ribbed groove inserts in both frames and blades. All dampers in excess of 10 sq. ft. free area to have reinforced corners by means of gusset plates.
- F. Dampers shall be sized by the Control Manufacturer to properly control the flow of air and ensure minimum air stratification in mixing applications. Sizing shall be submitted for approval with information similar to that submitted on valve when sizing valve.

2.2 FIRE DAMPERS

A. Dampers shall be multi blade construction UL labeled and be installed in accordance with UL 555, with breakaway connections. The units shall have stainless steel actuator springs with locking devices for horizontally mounted type.

2.3 COMBINATION FIRE / SMOKE DAMPERS

- A. Furnish and install at locations shown on Drawings, or as described in schedules, combination fire smoke dampers.
- B. Frame shall be a minimum of 16 gauge galvanized steel formed into a structural hat channel reinforced at corners for added strength. The blades shall be airfoil shaped single-piece hollow construction with 14 gauge equivalent thicknesses. Blade action shall be opposed. Bearings shall be stainless steel sleeve turning in an extruded hole in the frame for long life. Galvanized bearing shall not be acceptable.
- C. Blade edge seals shall be silicone rubber and galvanized steel mechanically locked into blade edge (adhesive or clip fastened seals shall be acceptable) and shall withstand a minimum of 450 degrees F. (232 degrees C.) Jamb seals shall be non-corrosive stainless steel flexible metal compression type to further ensure smoke management.

- D. Each combination fire/smoke damper shall be classified for use for fire resistance ratings of less than 3 hours in accordance with UL Standard 555, and shall further be classified by Underwriters Laboratories as a Leakage Rated Damper for use in smoke control systems in accordance with the latest version of UL555S, and bear a UL label attesting to same. Damper manufacturer shall have tested, and qualified with UL, a complete range of damper sizes covering all dampers, required by this Specification. Testing and UL qualifying a single damper size is not acceptable. The leakage rating under UL555S shall be leakage Class I (4 c.f.m./sq. ft. at 1" w.g. and 8 c.f.m./ft. at 4" w.g.).
- E. As part of UL qualification, dampers shall have demonstrated a capacity to operate (to open and close) under HVAC system operating conditions, with pressures of at least 4" w.g. in the closed position, and 4000 f.p.m. air velocity in the open position.
- F. In addition to the leakage rating already specified herein, the dampers and their actuators shall be qualified under UL555S to an elevated temperature of 350 degrees F. (177 degrees C.). Appropriate electric actuators (equal to Ruskin model MA) shall be installed by the damper manufacturer at time of damper fabrication. Damper and actuator shall be supplied as a single entity, which meets all applicable UL555S qualifications for both dampers and actuators. Damper and actuator assembly shall be factory cycled 10 times to assure operation.
- G. Manufacturer shall provide factory assembled sleeve of 17" minimum length (Contractor to verify requirement). Factory supplied caulked sleeve shall be 20 gauge for dampers through 84" wide and 18 gauge above 84" wide.

PART 3 - EXECUTION

- 3.1 INSPECTION
 - A. Inspect equipment space locations before beginning installation. Verify that the space is correct for entry and access. Do not proceed with installation of the equipment until unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION
 - A. Comply with manufacturer's instructions and recommendations for installation of equipment, accessories and components.
 - B. All heating, ventilating and air conditioning equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces. The Contractor shall be required to rectify or replace at his own expense, any equipment not complying with the foregoing requirements.

3.3 CLEANING

A. Clean interior and exterior surfaces promptly after installation of equipment and components. Take care to avoid damage to protective coatings and finishes. Remove excess sealants, lubrication, dirt and other foreign substances.

SECTION 230460 - AUTOMATIC TEMPERATURE CONTROLS

PART 1 - GENERAL

Applicable provisions of the conditions of the Contract and Division 1 General Requirements govern the work in this section. Submit shop drawings for checking and approval.

1.1 QUALIFICATIONS OF BIDDER

- A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 10 years.
- B. All bidders must have an office in the within 50 miles of jobsite.
- C. All bidders must be authorized distributors or branch offices of the manufacturers specified.
- D. All bidders must have a trained staff of application Engineers, who have been certified by the manufacturer in the configuration, programming and service of the automation system.

1.2 SCOPE OF WORK

- A. Scope: Provide labor, material, equipment, related services, and supervision required, including, but not limited to, manufacturing, fabrication, configuration, and installation for complete building automation system (also identified as BMS, Direct Digital Control System For HVAC) including all necessary hardware and all operating and applications software as required for the complete performance of the Work, as shown on the Drawings, as specified herein. The District has standardized on Andover. The ATC Sub-Contractor shall be Automated Control Logic < (ACL), Thornwood, New York (914) 769-8880, subject to District's approval.</p>
- B. Related Sections: Related sections include, but shall not be limited to, the following:
 - 1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 - 2. Applicable general requirements for electrical Work specified within Divisions 23, 25 Specification Sections apply to this Section.
- C. Network level components of the system workstations, servers, etc. shall communicate using the BACnet protocol, as defined by ASHRAE Standard 135-2004. No gateways shall be used for communication to controllers furnished under this section.
- D. At a minimum, provide controls for the following:
 - 1. Air Handling Units, Indoor
 - 2. VRF Systems
 - 3. Cabinet unit heaters
 - 4. Unit Ventilators
 - 5. Constant Air Volume Terminal Units
 - 6. Exhaust and Supply Fans
- E. Except as otherwise noted, the control system shall consist of all necessary Ethernet Network Controllers, Standalone Digital Control Units, Room Controllers, workstations, software, sensors, transducers, relays, valves, dampers, damper operators, control panels, and other accessory equipment, along with a complete system of electrical interlocking wiring to fill the intent of the specification and provide for a complete and operable system. Except as otherwise specified, provide operators for equipment such as dampers if the equipment manufacturer does not provide these. Coordinate requirements with the various Contractors.

- F. The BAS system supplier shall review and study all HVAC drawings and the entire specification to familiarize themselves with the equipment and system operation and to verify the quantities and types of dampers, operators, alarms, etc. to be provided.
- G. All interlocking wiring, wiring and installation of control devices associated with the equipment listed below shall be provided under this Contract. When the BAS system is fully installed and operational, the BAS system supplier and representatives of the Owner will review and check out the system see System Acceptance and Testing section of this document. At that time, the BAS system supplier shall demonstrate the operation of the system and prove that it complies with the intent of the drawings and specifications.
- H. Provide services and manpower necessary for commissioning of the system in coordination with the HVAC Contractor, Balancing Contractor, and Owner's representative.
- I. All work performed under this section of the specifications will comply with all governing codes, laws and governing bodies. If the drawings and/or specifications are in conflict with governing codes, the Contractor, with guidance from the engineer, shall submit a proposal with appropriate modifications to the project to meet code restrictions. If this specification and associated drawings exceed governing code requirements, the specification will govern. The Contractor shall obtain and pay for all necessary construction permits and licenses.
- J. Related Sections:
 - 1. This Section includes the Building Management System (BMS) control equipment for HVAC systems and components, including open protocol control components for terminal heating and cooling units. Depending on the scope of the project, the complete specification may have numerous sections that interface to this section.

1.3 REFERENCES

- A. General, Code Compliance: The code listed below form a part of this Specification to the extent referenced. The codes are referred to in the text by the basic designation only. The edition/revision of the referenced code shall be the latest date as of the date of the Contract Documents, unless otherwise specified.
 - 1. Provide BAS components and ancillary equipment, which are UL-916 listed and labeled.
 - 2. All equipment or piping used in conditioned air streams, spaces or return air plenums shall comply with NFPA 90A Flame/Smoke/Fuel contribution rating of 25/50/0 and all applicable building codes or requirements.
 - 3. All wiring shall conform to the National Electrical Code.
 - 4. All smoke dampers shall be rated in accordance with UL 555S.
 - 5. Comply with FCC rules, Part 15 regarding Class A radiation for computing devices and low power communication equipment operating in commercial environments.
 - 6. Comply with FCC, Part 68 rules for telephone modems and data sets.

1.4 DEFINITIONS

- A. Unless specifically defined within the Contract Documents, the words or acronyms contained within this specification shall be as defined within, or by the references listed within this specification, the Contract Documents, or, if not listed by either, by common industry practice.
 - 1. Standard
 - a. ASHRAE: American Society Heating, Refrigeration, Air Conditioning Engineers
 - b. AHU: Air Handling Unit
 - c. BACnet: Building Automation Controls Network
 - d. BMS: Building Management System
 - e. DDC: Direct Digital Control

- f. EIA: Electronic Industries Alliance
- g. GUI: Graphical User Interface
- h. HVAC: Heating, Ventilation, and Air Conditioning
- i. IEEE: Institute Electrical Electronic Engineers
- j. MER: Mechanical Equipment Room
- k. PID: Proportional, Integral, Derivative
- I. VAV: Variable Air Volume Box
- 2. Communications and protocols
 - a. ARP: Address Resolution Protocol
 - b. BACnet: Building Automation and Control Networks
 - c. CORBA: Common Object Request Broker Architecture
 - d. CSMA/CD: Carrier Sense Multiple Access/Collision Detect
 - e. DDE: Dynamic Data Exchange
 - f. FTP: File Transfer Protocol
 - g. FTT: Free Topology Transceivers
 - h. HTTP: Hyper Text Transfer Protocol
 - i. IIOP: Internet Inter-ORB Protocol
 - j. IP: Internet Protocol
 - k. LAN: Local Area Network
 - I. LON: Echelon Communication Local Operating Network
 - m. MS/TP: Master Slave Token Passing
 - n. OBIX: Open Building Information Exchange
 - o. ODBC: Open Database Connectivity
 - p. ORB: Object Request Broker
 - q. SNVT: Standard Network Variables Types
 - r. SQL: Structured Query Language
 - s. UDP: User Datagram Protocol
 - t. XML: Extensible Markup Language
- 3. Controllers
 - a. ASD: Application Specific Device
 - b. AAC: Advanced Application Controller
 - c. ASC: Application Specific Controller
 - d. CAC: Custom Application Controller
 - e. DCU: Distributed Control Unit
 - f. HRC: Hotel Room Controller
 - g. LCM: Local Control Module
 - h. MC: MicroControllers
 - i. MPC: Multi-purpose Controller
 - j. NSC: Network Server Controller
 - k. PEM: Package Equipment Module
 - I. PPC: Programmable Process Controller
 - m. RC: Room controller
 - n. RPC: Room Purpose Controller
 - o. SDCU: Standalone Digital Control Units
 - p. SLC: Supervisory Logic Controller
 - q. UEC: Unitary Equipment Controller
 - r. VAVDDC: Variable Air Volume Direct Digital Controller
- 4. Tools and Software
 - a. AFDD: Automated Fault Detection and Diagnostic
 - b. APEO: Automated Predictive Energy Optimization
 - c. DR: Demand Response
 - d. CCDT: Configuration, Commissioning and Diagnostic Tool
 - e. BPES: BACnet Portable Engineering Station

- f. LPES: LON Portable Engineering Station
- g. POT: Portable Operator's Terminal
- h. PEMS: Power and Energy Management Software
- i. MTBF: Mean Time Between Failure

1.5 SYSTEM DESCRIPTION

- A. In accordance with the scope of work, the system shall also provide a graphical, web-based, operator interface that allows for instant access to any system through a standard browser. The contractor must provide PC-based programming workstations, operator workstations and microcomputer controllers of modular design providing distributed processing capability and allowing future expansion of both input/output points and processing/control functions.
- B. For this project, the system shall consist of the following components:
 - Administration and Programming Workstation(s): The BAS system supplier shall include Operation software and architecture as described in Part 2 of the specification. These workstations must be running the standard workstation software developed and tested by the manufacturer of the network server controllers and the standalone controllers. No third party front-end workstation software will be acceptable. Workstations must conform to the B-OWS BACnet device profile.
 - 2. Web-Based Operator Workstations: The BAS system supplier shall furnish licenses for web connection to the BAS system. Web-based users shall have access to all system points and graphics, shall be able to receive and acknowledge alarms, and shall be able to control setpoints and other parameters. All engineering work, such as trends, reports, graphics, etc. that are accomplished from the WorkStation shall be available for viewing through the web browser interface without additional changes. The web-based interface must conform to the B-OWS BACnet device profile. There will be no need for any additional computer based hardware to support the web-based user interface.
 - 3. Ethernet-based Network Router and/or Network Server Controller(s): The BAS system supplier shall furnish needed quantity of Ethernet-based Network Server Controllers as described in Part 2 of the specification. These controllers will connect directly to the Operator Workstation over Ethernet at a minimum of 100mbps and provide communication to the Standalone Digital Control Units and/or other Input/Output Modules. Network Server Controllers shall conform to BACnet device profile B-BC. Network controllers that utilize RS232 serial communications or ARCNET to communicate with the workstations will not be accepted. Network Controllers shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Building Controllers (B-BC).
 - 4. Standalone Digital Control Units (SDCUs): Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, central plant control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment. Each BACnet protocol SDCU shall conform to the BACnet device profile B-AAC. BACnet SDCUs shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Advanced Application Controllers (B-AAC).
- C. The Local Area Network (LAN) shall be either a 10 or 100 Mpbs Ethernet network supporting BACnet, Modbus, XML and HTTP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Server Controllers (NSCs), user workstations and a local host computer system.
- D. The Enterprise Ethernet (IEEE 802.3) LAN shall utilize Carrier Sense Multiple/Access/Collision Detect (CSMA/CD), Address Resolution Protocol (ARP) and User Datagram Protocol (UDP) operating at 10 or 100 Mbps.

- E. The system shall enable an open architecture that utilizes EIA standard 709.1, the LonTalk[™] protocol and/or ANSI / ASHRAE[™] Standard 135-2004, BACnet functionality to assure interoperability between all system components. Native support for the LonTalk[™] protocol and the ANSI / ASHRAE[™] Standard 135-2004, BACnet protocol are required to assure that the project is fully supported by the HVAC open protocols to reduce future building maintenance, upgrade, and expansion costs.
- F. The system shall enable an architecture that utilizes a MS/TP selectable 9.6-76.8 KBaud protocol, as a common communication protocol between controllers and integral ANSI / ASHRAE[™] Standard 135-2004, BACnet functionality to assure interoperability between all system components. The AAC shall be capable of communicating as a MS/TP device or as a BACnet IP device communicating at 10/100 Mbps on a TCP/IP trunk. The ANSI / ASHRAE[™] Standard 135-2004, BACnet protocol is required to assure that the project is fully supported by the leading HVAC open protocol to reduce future building maintenance, upgrade, and expansion costs.
- G. LonTalk[™] packets may be encapsulated into TCP/IP messages to take advantage of existing infrastructure or to increase network bandwidth where necessary or desired.
 - 1. Any such encapsulation of the LonTalk[™] protocol into IP datagrams shall conform to existing LonMark[™] guide functionality lines for such encapsulation and shall be based on industry standard protocols.
 - 2. The products used in constructing the BMS shall be LonMark[™] compliant.
 - 3. In those instances, in which Lon-Mark[™] devices are not available, the BMS system supplier shall provide device resource files and external interface definitions for LonMark devices.
- H. The software tools required for network management of the LonTalk[™] protocol and the ANSI / ASHRAE[™] Standard 135-2004, BACnet protocol must be provided with the system. Drawings are diagrammatic only. Equipment and labor not specifically referred to herein or on the plans and are required to meet the functional intent, shall be provided without additional cost to the Owner. BACnet clients shall comply with the BACnet Operator Workstation (B-OWS) device profile; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet IP or MS/TP. Physical connection of LonWorks devices shall be via Ethernet IP or FTT-10A.
- I. The system shall provide support for Modbus TCP and RTU protocols natively, and not require the use of gateways.
- J. Complete temperature control system to be DDC with electronic sensors and electronic/electric actuation of Mechanical Equipment Room (MER) valves and dampers and electronic actuation of terminal equipment valves and actuators as specified herein. The BMS is intended to seamlessly connect devices throughout the building regardless of subsystem type, i.e. variable frequency drives, low voltage lighting systems, electrical circuit breakers, power metering and card access should easily coexist on the same network channel.
 - 1. The supplied system must incorporate the ability to access all data using HTML5 enabled browsers without requiring proprietary operator interface and configuration programs. The system shall not require JAVA to be enabled in the browser.
 - 2. Data shall reside on a supplier-installed server for all database access.
 - 3. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer's internal Intranet network.
- K. All work described in this section shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work and in the regular employment of the approved manufacturer's local field office. The approved manufacturer's local field office shall have a minimum of 3 years of installation experience with the manufacturer and shall provide documentation in the bid and submittal package verifying longevity of the installing company's relationship with the manufacturer when requested. Supervision, hardware and software engineering, calibration and checkout of the system shall be by the employees of the approved manufacturer's local field office and shall not be subcontracted. The control

contractor shall have an in place support facility within 100 miles of the site with factory certified technicians and engineers, spare parts inventory and all necessary test and diagnostic equipment for the installed system, and the control contractor shall have 24 hours/day, 7 days/week emergency service available.

L. Provide the Commissioning, configuration and diagnostic tool (CCDT), color display personnel computer, software, and interfaces to provide uploading/downloading of High Point Count Controllers (AAC), Unitary Equipment Controllers (UEC) and VAV controllers (VAVDDC), monitoring all BACnet objects, monitoring overrides of all controller physical input/output points, and editing of controller resident time schedules.

1.6 SUBMITTALS

- A. General: Submittals shall be in accordance with the requirements of Division 1, in addition to those specified herein.
 - 1. All shop drawings shall be prepared in Visio Professional or AutoCAD software. In addition to the drawings, the Contractor shall furnish a CD containing the identical information. Drawings shall be B size or larger.
 - 2. Shop drawings shall include a riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typicals will be allowed where appropriate.
 - 3. Submittal data shall contain manufacturer's data on all hardware and software products required by the specification. Valve, damper and air flow station schedules shall indicate size, configuration, capacity and location of all equipment.
 - 4. Software submittals shall contain narrative descriptions of sequences of operation, program listings, point lists, and a complete description of the graphics, reports, alarms and configuration to be furnished with the workstation software. Information shall be bound or in a three ring binder with an index and tabs. Diagrams shall be on 11" by 17" foldouts. If color has been used to differentiate information, the printed copies shall be in color.
 - 5. Submit five (5) copies of submittal data and shop drawings to the Engineer for review prior to ordering or fabrication of the equipment. The Contractor, prior to submitting, shall check all documents for accuracy.
 - 6. The Engineer will make corrections, if required, and return to the Contractor. The Contractor will then resubmit with the corrected or additional data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully approved.
 - 7. The following is a list of post construction submittals that shall be updated to reflect any changes during construction and re-submitted as "As-Built".
 - a. System architecture drawing.
 - b. Layout drawing for each control panel
 - c. Wiring diagram for individual components
 - d. System flow diagram for each controlled system
 - e. Instrumentation list for each controlled system
 - f. Sequence of control
 - g. Binding map
 - h. A matrix sheet detailing all system addresses and communication settings for the following:
 - 1) All IP network addresses & settings.
 - 2) All BMS device addresses & communication settings
 - i. Operation and Maintenance Manuals

- 8. Information common to the entire system shall be provided. This shall include but not be limited to the following.
 - a. Product manuals for the key software tasks.
 - b. Operating the system.
 - c. Administrating the system.
 - d. Engineering the operator workstation.
 - e. Application programming.
 - f. Engineering the network.
 - g. Setting up the web server.
 - h. Report creation.
 - i. Graphics creation.
 - j. All other engineering tasks.
 - k. System Architecture Diagram.
 - I. List of recommended maintenance tasks associated with the system servers, operator workstations, data servers, web servers and web clients.
 - m. Define the task.
 - n. Recommend a frequency for the task.
 - o. Reference the product manual that includes instructions on executing the task.
 - p. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.
 - q. Licenses, guarantees, and warranty documents for equipment and systems.
 - r. Submit one copy for each building, plus two extra copies.
- 9. Information common to the systems in a single building shall be provided.
 - a. System architecture diagram for components within the building annotated with specific location information.
 - b. As-built drawing for each control panel.
 - c. As-built wiring design diagram for all components.
 - d. Installation design details for each I/O device.
 - e. As-built system flow diagram for each system.
 - f. Sequence of control for each system.
 - g. Binding map for the building.
 - h. Product data sheet for each component.
 - i. Installation data sheet for each component.
 - j. Submit two copies for each building and two extra copies.
- 10. Software shall be provided:
 - a. Submit a copy of all software installed on the servers and workstations.
 - b. Submit all licensing information for all software installed on the servers and workstations.
 - c. Submit a copy of all software used to execute the project even if the software was not installed on the servers and workstations.
 - d. Submit all licensing information for all of the software used to execute the project.
 - e. All software revisions shall be as installed at the time of the system acceptance.
 - f. Firmware Files
 - g. Submit a copy of all firmware files that were downloaded to or pre-installed on any devices installed as part of this project.
 - h. This does not apply to firmware that is permanently burned on a chip at the factory and can only be replaced by replacing the chip.
 - i. Submit a copy of all application files that were created during the execution of the project.
 - j. Submit a copy of all graphic page files created during the execution of the project.

1.7 QUALITY ASSURANCE

A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 5 years.

- 1. The Building Management System contractor shall have a full service facility within 100 miles of the project that is staffed with engineers trained and certified by the manufacturer in the configuration, programming and service of the automation system. The contractor's technicians shall be fully capable of providing instructions and routine emergency maintenance service on all system components.
- 2. Any installing contractor, not listed as prequalified in the Approved Manufacturer's section, shall submit credentials as detailed in the Pre-bid Submittal section for the engineer's review 2 weeks prior to bid date. Failure to follow the attached formats shall disqualify potential alternate bidders. Credentials must attest that the contractor meets all requirements of the specification and the Engineers judgment regarding approval to bid as an acceptable installer after reviewing the data will be final.
- B. All bidders must be authorized distributors or branch offices of the manufacturers specified.
- C. The following bidders have been pre-qualified:
 - 1. Schneider Electric by Automated Control Logic Tie into Existing Campus BMS Network
 - 2. Or as approved by owners.
- D. Any installing contractors or manufacturers interested in participating as acceptable bidders for this project that are not pre-qualified shall furnish a detailed technical pre-bid submittal to the consulting engineer. All information must be submitted 2 weeks prior to the published bid date to allow the engineer adequate time to review the bidder's credentials.
- E. The Pre-Bid submittal shall contain the following information as a minimum:
 - 1. A profile of the manufacturer and the local installation and service/organization.
 - 2. Description of how the system meets and achieves all the specified criteria in terms of configuration, operation, and control.
 - 3. System Architecture with single line riser diagram showing all major components (digital controllers, routers, hubs, etc.) that will be required for this project.
 - 4. Procedure for commissioning and time required to startup and commission each of the systems for this project.
 - 5. Contractors approach for the project planning and management.
 - 6. Product Data Sheets for all components, DDC panels, and all accessories listed per the appropriate specification sections herein.
 - 7. Examples of actual graphic screens for other similar projects.
 - 8. Number and types of DDC panels required for this installation.
 - 9. Number and types of spare points provided with the proposed system.
 - 10. Recommended spare parts list for components with list price schedule.
 - 11. List of 2 similar systems in size, point capacity, total installed value, installed and commissioned by the local office with a list of the installers/manufacturers design team members for each project and the owner's contact information.
 - 12. Samples of service offerings and a list of current similar service contracts with contact information.
 - 13. Resumes for the management team and all employees who will be involved with the project design, commissioning, project management, and after installation service. Resumes should include copies of manufacturer's certifications for the proposed product line.
 - 14. Copy of this Control Specification in its entirety with a check mark beside each paragraph to signify that the manufacturer's equipment and software shall fully conform to the specified requirement. If the requirement cannot be met, indicate the reasons/limitations and the alternative proposed.

- 15. An interview may be conducted and the bidder will be requested to make a formal presentation concerning the proposed system and possibly provide an installed project tour prior to a final decision.
- F. Each point in the system shall be tested for both hardware and software functionality. In addition, each mechanical and electrical system under control of the BAS will be tested against the appropriate sequence of operation specified herein. Successful completion of the system test shall constitute the beginning of the warranty period. A written report will be submitted to the owner indicating that the installed system functions in accordance with the plans and specifications.
- G. The BAS system supplier shall commission and set in operating condition all major equipment and systems, such as the chilled water, hot water and all air handling systems, in the presence of the equipment manufacturer's representatives, as applicable, and the Owner and Architect's representatives. If the vendor is providing an AFDD/CC system, use of the analytics shall be used to help commission the system.
- H. Startup Testing shall be performed for each task on the startup test checklist, which shall be initialed by the technician and dated upon test was completion along with any recorded data such as voltages, offsets or tuning parameters. Any deviations from the submitted installation plan shall also be recorded.
- I. Required elements of the startup testing include:
 - 1. Measurement of voltage sources, primary and secondary
 - 2. Verification of proper controller power wiring.
 - 3. Verification of component inventory when compared to the submittals.
 - 4. Verification of labeling on components and wiring.
 - 5. Verification of connection integrity and quality (loose strands and tight connections).
 - 6. Verification of bus topology, grounding of shields and installation of termination devices.
 - 7. Verification of point checkout.
 - 8. Each I/O device is landed per the submittals and functions per the sequence of control.
 - 9. Analog sensors are properly scaled and a value is reported.
 - 10. Binary sensors have the correct normal position and the state is correctly reported.
 - 11. Analog outputs have the correct normal position and move full stroke when so commanded.
 - 12. Binary outputs have the correct normal state and respond appropriately to energize/de-energize commands.
 - 13. Documentation of analog sensor calibration (measured value, reported value and calculated offset).
 - 14. Documentation of Loop tuning (sample rate, gain and integral time constant).
 - J. A performance verification test shall also be completed for the operator interaction with the system. Test elements shall be written to require the verification of all operator interaction tasks including, but not limited to the following.
 - 1. Graphics navigation.
 - 2. Trend data collection and presentation.
 - 3. Alarm handling, acknowledgement, and routing.
 - 4. Time schedule editing.
 - 5. Application parameter adjustment.
 - 6. Manual control.
 - 7. Report execution.
 - 8. Automatic backups.
 - 9. Web Client access.

K. A Startup Testing Report and a Performance Verification Testing Report shall be provided upon test completion.

1.8 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment from other divisions including "Intrusion Detection," "Lighting Controls," "Motor Control Centers," "Panel boards," and "Fire Alarm" to achieve compatibility with equipment that interfaces with those systems.
- C. Coordinate supply of conditioned electrical circuits for control units and operator workstation.
- D. Coordinate location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete".
- E. Coordinate with the Owner's IT department on locations for NSC's, Ethernet communication cabling and TCP/IP addresses.

1.9 OWNERSHIP

- A. The Owner shall retain licenses to software for this project.
- B. The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition off this contractor. Such license shall grant use of all programs and application software to the Owner as defined by the manufacturer's license agreement but shall protect the manufacturer's rights to disclosure of Trade Secrets contained within such software.
- C. The licensing agreement shall not preclude the use of the software by individuals under contract to the owner for commissioning, servicing, or altering the system in the future. Use of the software by individuals under contract to the owner shall be restricted to use on the owner's computers and only for the purpose of commissioning, servicing, or altering the installed system.
- D. All project developed software, files and documentation shall become the property of the Owner. These include but are not limited to:
 - 1. Server and workstation software
 - 2. Application programming tools
 - 3. Configuration tools
 - 4. Network diagnostic tools
 - 5. Addressing tools
 - 6. Application files
 - 7. Configuration files
 - 8. Graphic files
 - 9. Report files
 - 10. Graphic symbol libraries
 - 11. All documentation
- 1.10 WORK BY OTHERS
 - A. The BAS system supplier shall cooperate with other contractors performing work on this project necessary to achieve a complete and neat installation. To that end, each contractor shall consult the drawings and specifications for all trades to determine the nature and extent of others' work.
 - B. The BAS system supplier shall furnish all Airflow Stations, Control Dampers, Control Valves, Flow Meters, Flow Switches for installation by the Mechanical Contractor and/or others.

- C. The BAS system supplier shall provide field supervision to the designated contractor for the installation of the following:
 - 1. Automatic control dampers
 - 2. Blank-off plates for dampers that are smaller than duct size.
 - 3. Sheet metal baffles plates to eliminate stratification.
 - 4. The Electrical Contractor shall provide:
 - a. All 120VAC power wiring to motors, heat trace, junction boxes for power to BAS panels.
 - b. Furnish smoke detectors and wire to the building fire alarm system. HVAC Contractor to mount devices. BAS system supplier to hardwire to fan shut down.
 - c. Auxiliary contact (pulse initiator) on the electric meter for central monitoring of kWh and KW. Electrical Contractor shall provide the pulse rate for remote readout to the BAS. BAS system supplier to coordinate this with the electrical contractor.
- D. Prior to delivery to the Project site, ensure that suitable storage space is available to store materials in a well-ventilated area protected from weather, moisture, soiling, extreme temperatures, humidity, and corrosive atmospheres. Materials shall be protected during delivery and storage and shall not exceed the manufacturer stated storage requirements. As a minimum, store indoors in clean, dry space with uniform temperature to prevent condensation. In addition, protect electronics from all forms of electrical and magnetic energy that could reasonably cause damage.
- E. Deliver materials to the Project site in supplier's or manufacturer's original wrappings and containers, labeled with supplier's or manufacturer's name, material or product brand name, and equipment tag number or service name as identified within the Contract Documents.
- F. Inspect and report any concealed damage or violation of delivery storage, and handling requirements to the Engineer.

1.11 WARRANTY

A. All components, system software, and parts furnished and installed by the BMS system supplier shall be guaranteed against defects in materials and workmanship for 2 years of substantial completion. Labor to repair, reprogram, or replace these components shall be furnished by the BMS system supplier at no charge during normal working hours during the warranty period. Materials furnished but not installed by the BMS system supplier shall be covered to the extent of the product only. Installation labor shall be the responsibility of the trade contractor performing the installation. All corrective software modifications made during warranty periods shall be updated on all user documentation and on user and manufacturer archived software disks. The Contractor shall respond to the owner's request for warranty service within 24 standard working hours.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis of Design Product: Subject to compliance with requirements, provide products by one of the following pre-qualified manufacturers:
 - 1. Electric Components
 - a. Schneider-Electric Field Devices
 - 2. Electronic Components
 - a. Schneider-Electric Field Devices
 - 3. Direct Digital Control Systems Field Controller Devices:
 - a. Schneider Electric EcoStruxure Building MPX BACnet series, b3 BACnet series, MNB BACnet installed by approved manufacturer's local field office or authorized distributor.

b. Or approved equal.

2.2 SYSTEM ARCHITECTURE

- A. General
 - 1. The Building Automation System (BAS) shall consist of Network Server/Controllers (NSCs), a family of Standalone Digital Control Units (SDCUs), Administration and Programming Workstations (APWs), and Web-based Operator Workstations (WOWs). The BAS shall provide control, alarm detection, scheduling, reporting and information management for the entire facility, and Wide Area Network (WAN) if applicable.
 - 2. An Enterprise Level BAS shall consist of an Enterprise Server, which enables multiple NSCs (including all graphics, alarms, schedules, trends, programming, and configuration) to be accessible from a single Workstation simultaneously for operations and engineering tasks.
 - 3. The Enterprise Level BAS shall be able to host up to 250 servers, or NSCs, beneath it.
 - 4. For Enterprise reporting capability and robust reporting capability outside of the trend chart and listing ability of the Workstation, a Reports Server shall be installed on a Microsoft Windows SQL based computer. The Reports Server can be installed on the same computer as the Enterprise Server.
 - 5. The system shall be designed with a top-level 10/100bT Ethernet network, using the BACnet/IP, Lon Works IP, and/or Modbus TCP protocol.
- B. Modbus RTU/ASCII (and J-bus), Modbus TCP, BACnet MS/TP, BACnet IP, LonTalk FTT-10A, and WebServices shall be native to the NSCs. There shall not be a need to provide multiple NSCs to support all the network protocols, nor should there be a need to supply additional software to allow all three protocols to be natively supported.
- C. A sub-network of SDCUs using the BACnet IP, BACnet MS/TP protocol shall connect the local, standalone controllers with Ethernet-level Network Server Controllers/IP Routers.
- D. The TCP/IP layer connects all of the buildings on a single Wide Area Network (WAN) isolated behind the campus firewall. Fixed IP addresses for connections to the campus WAN shall be used for each device that connects to the WAN.
- E. The fieldbus layer shall support all of the following types of SDCUs:
 - 1. BACnet IP SDCU requirements: The system shall consist of one or more BACnet/IP field buses managed by the Network Server Controller. The field bus layer shall consist of up to 50 IP SDCUs in daisy chain topology, or 39 if using RSTP, per layer, with a max of 5 sub networks in daisy chain for a total of 250 SDCUs or 6 sub networks in RSTP for a total of 234 SDCUs.
 - 2. BACnet MS/TP SDCU requirements: The system shall consist of one or more BACnet MS/TP field buses managed by the Network Server Controller. Minimum speed shall be 76.8kbps. The field bus layer consists of an RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC and lighting equipment. These devices shall conform to BACnet standard 135-2004. The NSCs shall be capable of at least two BACnet MS/TP field buses for a total capability of 254 SDCUs per NSC.
- F. The BAS shall be capable of being segmented, through software, into multiple local area networks (LANs) distributed over a wide area network (WAN). Workstations can manage a single LAN (or building), and/or the entire system with all portions of that LAN maintaining its own, current database.
- G. All NSCs, Workstation(s) and Servers shall be capable of residing directly on the owner's Ethernet TCP/IP LAN/WAN with no required gateways. Furthermore, the NSC's, Workstation(s), and Server(s) shall be capable of using standard, commercially available, off-the-shelf Ethernet infrastructure components such as routers, switches, and hubs. With this design the owner may utilize the investment of an existing or new enterprise network or structured cabling system. This also allows the option of the

maintenance of the LAN/WAN to be performed by the owner's Information Systems Department as all devices utilize standard TCP/IP components.

- H. System Expansion
 - 1. The BAS system shall be scalable and expandable at all levels of the system using the same software interface, and the same TCP/IP level and fieldbus level controllers. Systems that require replacement of either the workstation software or field controllers in order to expand the system shall not be acceptable.
 - 2. Web-based operation shall be supported directly by the NSCs and require no additional software.
 - 3. The system shall be capable of using graphical and/or line application programming language for the Network Server Controllers.
- I. All Network Server Controllers must natively support the BACnet IP, BACnet MS/TP, LonWorks FTT-10, Modbus TCP, Modbus RTU (RS-485 and RS-232.

2.3 OPERATOR WORKSTATION REQUIREMENTS

- A. General
 - 1. The operator workstation portion of the BAS shall consist of one or more full-powered configuration and programming workstations, and one or more web-based operator workstations. For this project provide a minimum of 5 concurrent operator users and/or 1 concurrent engineering user within the enterprise server.
 - 2. The programming and configuration workstation software shall allow any user with adequate permission to create and/or modify any or all parts of the NSC and/or Enterprise Server database.
 - 3. Web-based workstations (web stations) shall have a minimum of 10 concurrent operator users.
 - 4. All configuration workstations shall be personal computers operating under the Microsoft Windows operating system. The application software shall be capable of communication to all Network Server Controllers and shall feature high-resolution color graphics, alarming, trend charting. It shall be user configurable for all data collection and data presentation functions.
 - 5. A minimum of 0 physical Workstations shall be allowed on the Ethernet network. In this client/server configuration, any changes or additions made from one workstation will automatically appear on all other workstations since the changes are accomplished to the databases within the NSC. Systems with a central database will not be acceptable.
 - B. Administration/Programming Workstation, Enterprise Server, and Enterprise Central Requirements
 - 1. The Enterprise Central shall consist of the following:
 - a. Processor
 - 1) Minimum: Intel Core i5 @ 3.0 GHz or equivalent
 - 2) Recommended: Intel Core i5 @ 4.0 GHz or better
 - b. Memory
 - 1) Minimum: 6GB
 - 2) Recommended: 12GB or higher
 - c. Operating systems:
 - 1) Microsoft Windows 8.1 64-bit
 - 2) Microsoft Windows 10 64-bit
 - 3) Microsoft Windows Server 2008 R2 64-bit
 - 4) Microsoft Windows Server 2012 64-bit
 - 5) Microsoft Windows Server 2012 R2 64-bit
 - 6) Microsoft Windows Server 2016 R2 64-bit
 - d. 10/100MBPS Ethernet NIC
 - e. Storage
 - 1) Minimum: 1TB

- 2) Recommended: 4TB
- 3) Solid State Drive recommended
- f. Required additional software:
 - 1) Microsoft .Net 4.7
- g. License agreement for all applicable software
- 2. The workstation shall consist of the following:
 - a. Processor
 - 1) Minimum: 2.0 GHz
 - 2) Recommended: 3.0 GHz or higher
 - b. Memory
 - 1) Minimum: 4GB
 - 2) Recommended: 8GB or higher
 - c. Operating systems:
 - 1) Microsoft Windows 7 64-bit
 - 2) Microsoft Windows 8.1 64-bit
 - 3) Microsoft Windows 10 64-bit
 - 4) Microsoft Windows Server 2008 R2 64-bit
 - 5) Microsoft Windows Server 2012 64-bit
 - 6) Microsoft Windows Server 2012 R2 64-bit
 - 7) Microsoft Windows Server 2016
 - d. Serial port, parallel port, USB port
 - e. 10/100MBPS Ethernet NIC
 - f. 20 GB hard disk
 - g. DVD drive
 - h. High resolution (minimum 1280 x 1024), 17" flat panel display
 - i. Optical mouse and full function keyboard
 - j. Audio sound card and speakers
 - k. Required additional software:
 - 1) Microsoft .Net 4.7
 - I. License agreement for all applicable software.
- C. Web-Based Operator PC Requirements
 - 1. Any user on the network can access the system, using the following software:
 - a. Minimum:
 - 1) Google Chrome 61 or higher
 - 2) Mozilla Firefox 60 or higher
 - 3) Microsoft Edge (EdgeHTML) 16 or higher
 - 4) Safari 11.1 or higher
 - b. Recommended:
 - 1) Google Chrome 71 or higher
 - 2) Mozilla Firefox 64 or higher
 - 3) Microsoft Edge (EdgeHTML) 17 or higher
 - 4) Safari 11.4 or higher
- D. General Administration and Programming Workstation Software
 - 1. System architecture shall be truly client server in that the Workstation shall operate as the client while the NSCs shall operate as the servers. The client is responsible for the data presentation and validation of inputs while the server is responsible for data gathering and delivery.

- 2. The workstation functions shall include monitoring and programming of all DDC controllers. Monitoring consists of alarming, reporting, graphic displays, long term data storage, automatic data collection, and operator-initiated control actions such as schedule and setpoint adjustments.
- 3. Programming of SDCUs shall be capable of being done either off-line or on-line from any operator workstation. All information will be available in graphic or text displays stored at the NSC. Graphic displays will feature animation effects to enhance the presentation of the data, to alert operators of problems, and to facilitate location of information throughout the DDC system. All operator functions shall be selectable through a mouse.
- E. User Interface:
 - 1. The BAS workstation software shall allow the creation of a custom, browser-style interface linked to the user when logging into any workstation. Additionally, it shall be possible to create customized workspaces that can be assigned to user groups. This interface shall support the creation of "hot-spots" that the user may link to view/edit any object in the system or run any object editor or configuration tool contained in the software. Furthermore, this interface must be able to be configured to become a user's "PC Desktop" with all the links that a user needs to run other applications. This, along with the Windows user security capabilities, will enable a system administrator to setup workstation accounts that not only limit the capabilities of the user within the BAS software, but may also limit what a user can do on the PC and/or LAN/WAN. This might be used to ensure, for example, that the user of an alarm monitoring workstation is unable to shutdown the active alarm viewer and/or unable to load software onto the PC.
 - 2. System shall be able to automatically switch between displayed metric vs. imperial units based on the workstation/webstations localization.
 - 3. The BMS workstation/webstations shall be capable of multiple language display, including English, Spanish, German, French, Japanese, Italian, Finnish, Portuguese, Swedish, Russian, and traditional and simplified Chinese. The multiple languages shall not require additional add on software from the standard workstation installer and shall be selectable within said workstation.
 - 4. Webstations shall have the capability to automatically re-direct to an HTTPS connection to ensure more secure communications.
 - 5. Personalized layouts and panels within workstations shall be extended to webstations to ensure consistent user experiences between the two user interfaces.
 - 6. Webstations shall give the user the same capabilities within the graphics pages as are given within the workstation but shall be mobile responsive for use on smaller devices.
 - 7. Servers and clients shall have the ability to be located in different time zones, which are then synchronized via the NTP server.
 - 8. Workstation shall indicate at all times the communication status between it and the server.
- F. User Security
 - 1. The software shall be designed so that each user of the software can have a unique username and password. This username/password combination shall be linked to a set of capabilities within the software, set by and editable only by, a system administrator. The sets of capabilities shall range from View only, Acknowledge alarms, Enable/disable and change values, Program, and Administer. The system shall allow the above capabilities to be applied independently to each and every class of object in the system. The system must allow a minimum of 256 users to be configured per workstation. Additionally, the software shall enable the ability to add/remove users based upon Microsoft Windows Security Domains that enable the customer IT department to assist in user access.
 - 2. Additional requirements include mandatory change of passwords:
 - a. At first logon with default credentials
 - b. Of admin passwords before deploying
 - 3. No general accounts, one account per user

- 4. Capability to integrate and use Windows Active Directory for user log on credentials.
- 5. Include a timed auto log off feature.
- 6. Use TLS 1.2 encryption or higher.
- 7. Capability to use blacklisted and whitelisted IPs/MAC addresses to gate access.
- 8. All devices and software that support HTTP shall allow disabling the HTTP access and require access via HTTPS.
- 9. All devices that have web portals for the configuration of IP addresses and other configuration attributes shall have the ability, through commands issued, to disable this service upon completion. A direct connection method with ASCII commands shall enable this service again if changes need to be applied. Loss of power or cycling the device shall not reverse this command. Disabling this web portal eliminates the security risk and the need for updating security patches.
- 10. All devices shall support SNMP V3 monitoring of network performance and stack statistics for the purpose of managing denial of service attacks.
- 11. The Integrated Control Platform shall support the feature to alarm on a predetermined period of time until the default password for each device is changed from the default factory setting.
- 12. The Integrated Control Platform shall support encrypted password authentication for all web services whether serving or consuming.
- G. Configuration Interface
 - 1. The workstation software shall use a familiar Windows Explorer style interface for an operator or programmer to view and/or edit any object (controller, point, alarm, report, schedule, etc.) in the entire system. In addition, this interface shall present a "network map" of all controllers and their associated points, programs, graphics, alarms, and reports in an easy to understand structure. All object names shall be alphanumeric and use Windows long filename conventions.
 - 2. The configuration interface shall also include support for user defined object types. These object types shall be used as building blocks for the creation of the BAS database. They shall be created form the base object types within the system input, output, string variables, setpoints, etc., alarm algorithms, alarm notification objects, reports, graphics displays, schedules, and programs. Groups of user defined object types shall be able to be set up as a predefined aggregate of subsystems and systems. The configuration interface shall support copying/pasting and exporting/importing portions of the database for additional efficiency. The system shall also maintain a link to all "child" objects created. If a user wishes to make a change to a parent object, the software shall ask the user if he/she wants to update all of the child objects with the change.
- H. Color Graphic Displays
 - 1. The system shall allow for the creation of user defined, color graphic displays for the viewing of mechanical and electrical systems, or building schematics. These graphics shall contain point information from the database including any attributes associated with the point (engineering units, etc.). In addition, operators shall be able to command equipment or change setpoints from a graphic through the use of the mouse.
 - 2. Requirements of the color graphic subsystem include:
 - a. At a minimum, the user shall have the ability to import .gif, .png, .bmp, .jpeg, .tif, and CAD generated picture files as background displays, and layering shall be possible.
 - b. The system shall support HTML5 enabled graphics.
 - c. It shall be possible for the user to use JavaScript to customize the behavior of each graphic.
 - d. The editor shall use Scalable Vector Graphics (SVG) technology.
 - e. A built-in library of animated objects such as dampers, fans, pumps, buttons, knobs, gauges, ad graphs which can be "dropped" on a graphic through the use of a software configuration "wizard". These objects shall enable operators to interact with the graphic

displays in a manner that mimics their mechanical equivalents found on field installed control panels.

- f. Support for high DPI icons shall be included and automatically chosen if viewing on a high definition display such as Retina or 4K displays.
- g. Using the mouse, operators shall be able to adjust setpoints, start or stop equipment, modify PID loop parameters, or change schedules.
- h. Status changes or alarm conditions must be able to be highlighted by objects changing screen location, size, color, text, blinking or changing from one display to another.
- i. Ability to link graphic displays through user defined objects, alarm testing, or the result of a mathematical expression. Operators must be able to change from one graphic to another by selecting an object with a mouse no menus will be required.
- j. It shall be possible to create and save graphical components and JavaScript code in reusable and transferrable, customized libraries.
- k. Graphics should rescale based on whatever monitor or viewing device is being used.
- I. Be able to create graphics on varying layers that can be moved and repeated.
- m. Be able to create graphics within varying window panes that can be moved and/or rereferenced. For example, creating the graphical menu within a pane and referencing it on every graphics page, therefore not rebuilding thus allowing for a single spot for updates that get pushed to all the pages that reference it.
- n. The ability to create re-usable cascading menus.
- o. The ability to have multiple instances of a graphic and edit one instance to change all.
- 3. Additionally, the Graphics Editor portion of the Engineering Software shall provide the following capabilities:
 - a. Create and save pages.
 - b. Group and ungroup symbols.
 - c. Modify an existing symbol.
 - d. Modify an existing graphic page.
 - e. Rotate and mirror a symbol.
 - f. Place a symbol on a page.
 - g. Place analog dynamic data in decimal format on a page.
 - h. Place binary dynamic data using state descriptors on a page.
 - i. Create motion through the use of animated .gif files or JavaScript.
 - j. Place test mode indication on a page.
 - k. Place manual mode indication on a page.
 - I. Place links using a fixed symbol or flyover on a page.
 - m. Links to other graphics.
 - n. Links to web sites.
 - o. Links to notes.
 - p. Links to time schedules.
 - q. Links to any .exe file on the operator workstation.
 - r. Links to .doc files.
 - s. Assign a background color.
 - t. Assign a foreground color.
 - u. Place alarm indicators on a page.
 - v. Change symbol/text/value color as a function of an analog variable.
 - w. Change a symbol/text/value color as a function of a binary state.
 - x. Change symbol/text/value as a function of a binary state.

- y. All symbols used by Schneider Electric EcoBuilding Business in the creation of graphic pages shall be saved to a library file for use by the owner.
- I. The software shall allow for the automatic collection of data and reporting from any controller or NSC. The frequency of data collection shall be user configurable.
- J. Alarm Management
 - 1. The software shall be capable of accepting alarms directly from NSCs or controllers, or generating alarms based on evaluation of data in controllers and comparing to limits or conditional equations configured through the software. Any alarm (regardless of its origination) will be integrated into the overall alarm management system and will appear in all standard alarm reports, be available for operator acknowledgment, and have the option for displaying graphics, or reports.
 - 2. Alarm management features shall include:
 - a. A minimum of 1000 alarm notification levels at the NSC, workstation, and webstation levels. At the Enterprise level the minimum number of active and viewable alarms shall be 10,000. Each notification level will establish a unique set of parameters for controlling alarm display, distribution, acknowledgment, keyboard annunciation, and record keeping.
 - b. Automatic logging in the database of the alarm message, point name, point value, source device, timestamp of alarm, username and time of acknowledgement, username and time of alarm silence (soft acknowledgement).
 - c. Playing an audible sound on alarm initiation or return to normal.
 - d. Sending an email page to anyone specifically listed on the initial occurrence of an alarm. The ability to utilize email paging of alarms shall be a standard feature of the software using Simple Mail Transfer Protocol (SMTP) with support for secure email using Simple Mail Transfer Protocol Secure (SMTPS) No special software interfaces shall be required and no email client software must be running in order for email to be distributed. The email notification shall be able to be sent to an individual user or a user group.
 - e. Individual alarms shall be able to be re-routed to a user at user-specified times and dates. For example, a critical high temp alarm can be configured to be routed to a Facilities Dept. workstation during normal working hours (7am-6pm, Mon-Fri) and to a Central Alarming workstation at all other times.
 - f. An active alarm viewer shall be included which can be customized for each user or user type to hide or display any alarm attributes.
 - g. The active alarm viewer can be configured such that an operator must type in text in an alarm entry and/or pick from a drop-down list of user actions for certain alarms.
 - h. The active alarm viewer can be configured such that an operator must type in text in an alarm entry and/or pick from a drop-down list of causes for certain alarms. This ensures accountability (audit trail) for the response to critical alarms.
 - i. The active alarm viewer can be configured such that an operator must confirm that all of the steps in a check list have been accomplished prior to acknowledging the alarm.
 - j. The active alarm viewer shall, if filtered, show the quantity of visible and total number of alarms that are not equal to 'normal' and the quantity of disabled and hidden alarms.
 - k. The alarm viewer can be configured to auto hide alarms when triggered.
 - I. An operator shall have the capability to assign an alarm to another user of the system.
 - m. Time schedules shall be able to be used to set control notifications to users.
 - n. An operator shall have the capability to save and apply alarm favorites.
 - o. Alarm notifications must support multiple distribution methods within one notification.

K. Report Generation

- 1. The Reports Server shall be able to process large amounts of data and produce meaningful reports to facilitate analysis and optimization of each installation.
- 2. Reports shall be possible to generate and view from the operator Workstation, and/or Webstation, and/or directly from a reports-only web interface.
- 3. A library of predefined automatically generated reports that prompt users for input prior to generation shall be available. The properties and configurations made to these reports shall be possible to save as Dashboard reports, so that the configurations are saved for future used.
- 4. It shall be possible to create reports standard tools, such as Microsoft Report Builder 2.0 or Visual Studio, shall be used for customized reports.
- 5. Additional reports or sets of reports shall be downloadable, transferrable, and importable.
- 6. All reports shall be able to be set up to automatically run or be generated on demand.
- 7. Each report shall be capable of being automatically emailed to a recipient in Microsoft Word, Excel, and/or Adobe .pdf format.
- 8. Reports can be of any length and contain any point attributes from any controller on the network.
- 9. Image management functionality shall be possible to enable the system administrators to easily upload new logos or images to the system.
- 10. It shall be possible to run other executable programs whenever a report is initiated.
- 11. Report Generator activity can be tied to the alarm management system, so that any of the configured reports can be displayed in response to an alarm condition.
- 12. Minimum supplied reports shall include:
 - a. Activities Per Server Report
 - b. Activities Per User Report
 - c. Alarm Amount by Category Report
 - d. Alarm Amount by Type Report
 - e. Alarms Per Sever Report
 - f. Current Alarm Report
 - g. Most Active Alarm Report
 - h. System Errors Per Server Report
 - i. Top Activities Report
 - j. Top Alarms Report
 - k. Top System Errors Report
 - I. Trend Log Comparison Report
 - m. User Logins Report
 - n. Users and Groups Reports
- 13. Minimum Energy Reports shall include:
 - a. Energy Monitoring Calendar Consumption Report: Shall provide an interactive report that shows the energy usage on one or multiple selected days.
 - b. Energy Monitoring Consumption Breakdown Report: Shall provide a report on energy consumption broken down using sub-metering.
 - c. Energy Monitoring Consumption Report: Shall show the energy consumption against a specified target value.
- 14. Reports Server Hardware Requirements
 - a. Processor
 - 1) Minimum: 2.0 GHz
 - 2) Recommended: 2.0 GHz or higher

- b. Memory
 - 1) Minimum: 6 GB
 - 2) Recommended: 8GB or higher
- c. Hard Disk: 500 GB
- 15. Reports Server Software Requirements
 - a. Operating System:
 - 1) Microsoft Windows 7 32-bit (Professional)
 - 2) Microsoft Windows 7 64-bit (Professional)
 - 3) Microsoft Windows 8.1 32-bit (Pro or Enterprise)
 - 4) Microsoft Windows 8.1 64-bit (Pro or Enterprise)
 - 5) Microsoft Windows 10 64-bit (Pro or Enterprise)
 - 6) Microsoft Windows Server 2008 R2 64-bit (Standard, Enterprise, Datacenter, Web, or Itanium)
 - 7) Microsoft Windows Server 2012 64-bit (Standard)
 - 8) Microsoft Windows Server 2012 R2 64-bit (Standard, Datacenter)
 - b. SQL Versions:
 - 1) Microsoft SQL Server 2008 R2 64-bit SP2 (Standard and Express with Advanced Services)
 - 2) Microsoft SQL Server 2012 64-bit (Standard and Express with Advanced Services)
 - Additional required software"
 - 1) Microsoft .Net 4.5

L. Scheduling

c.

- 1. From the workstation or webstation, it shall be possible to configure and download schedules for any of the controllers on the network.
- 2. Time of day schedules shall be in a calendar style and viewable in both a graphical and tabular view.
- 3. Schedules shall be programmable for a minimum of one year in advance.
- 4. To change the schedule for a particular day, a user shall simply select the day and make the desired modifications.
- 5. Additionally, from the operator webstations, each schedule will appear on the screen viewable as the entire year, monthly, week and day. A simple mouse click shall allow switching between views. It shall also be possible to scroll from one month to the next and view or alter any of the schedule times.
- 6. Schedules will be assigned to specific controllers and stored in their local RAM memory. Any changes made at the workstation will be automatically updated to the corresponding schedule in the controller.
- 7. It shall be possible to assign a lead schedule such that shadow/local schedules are updated based upon changes in the Lead.
- 8. It shall be possible to assign a list(s) of exception event days, dates, date ranges to a schedule.
- 9. It shall be possible to view combined views showing the calendar and all prioritized exemptions on one screen.
- 10. It should accommodate a minimum of 16 priority levels.
- 11. Values should be able to be controlled directly from a schedule, without the need for special program logic.
- M. Programmer's Environment
 - 1. Programming in the NSC shall be either in graphical block format or line-programming format or both.
 - 2. Programming of the NSC shall be available offline from system prior to deployment into the field. All engineering tasks shall be possible, except, of course, the viewing of live tasks or values.

- 3. The programmer's environment will include access to a superset of the same programming language supported in the SDCUs.
- 4. NSC devices will support both script programming language as well as the graphical function block programming language. For both languages, the programmer will be able to configure application software for custom program development and write global control programs. Both languages will have debugging capabilities in their editors.
- 5. It shall be possible to save custom programs as libraries for reuse throughout the system. A wizard tool shall be available for loading programs from a library file in the program editor.
- 6. The system shall be capable of creating " custom types." These types can be created within the programming environment, graphics, or as full controller 'templates' that can be pushed to any other variable pertaining to it to allow for singular reference to multiple objects. This allows easing of updating/changes allowing the use to make a singular change and push to all connected instances.
- 7. It shall be possible to view graphical programming live and real-time from the Workstation.
- 8. The system shall be capable of creating 'binding templates' allowing the user to bind multiple points to multiple objects all at once.
- 9. Key terms should appear when typing (IntelliType).
- 10. Applications should be able to be assigned different priorities and cycle times for a prioritized execution of different function.
- 11. The system shall be able to create objects that allow common objects such as power meters, VFD drives, etc. to be integrated into the system with simple import actions without the need of complicated programming or configuration setups.
- N. Saving/Reloading
 - 1. The workstation software shall have an application to save and restore NSC and field controller memory files.
 - 2. For the NSC, this application shall not be limited to saving and reloading an entire controller it must also be able to save/reload individual objects in the controller. This allows off-line debugging of control programs, for example, and then reloading of just the modified information.
- O. Audit Trail
 - 1. The workstation software shall automatically log and timestamp every operation that a user performs at a workstation, from logging on and off a workstation to changing a point value, modifying a program, enabling/disabling an object, viewing a graphic display, running a report, modifying a schedule, etc.
 - 2. It shall be possible to view a history of alarms, user actions, and commands for any system object individually or at least the last 5000 records of all events for the entire system from Workstation.
 - 3. The Enterprise server shall be able to store up to 5 million events.
 - 4. The event view shall support viewing of up to 100,000 events.
 - 5. It shall be possible to save custom filtered views of event information that are viewable and configurable in Workstation.
 - 6. It shall be capable to search and view all forced values within the system.
- P. Fault Tolerant Enterprise Server Operation (Top level NSC)
 - 1. A single component failure in the system shall not cause the entire system to fail. All system users shall be informed of any detectable component failure via an alarm event. System users shall not be logged off as a result of a system failure or switchover.

- Q. Web-based Operator Software
 - 1. General:
 - a. Day-to-day operation of the system shall be accessible through a standard web browser interface, allowing technicians and operators to view any part of the system from anywhere on the network.
 - b. The system shall be able to be accessed on site via a mobile device environment with, at a minimum, access to overwrite and view system values.
 - 2. Graphic Displays
 - a. The browser-based interface must share the same graphical displays as the Administration and Programming Workstations, presenting dynamic data on site layouts, floor plans, and equipment graphics. The browser's graphics shall support commands to change setpoints, enable/disable equipment and start/stop equipment.
 - b. Through the browser-based interface, operators must be able to navigate through the entire system and change the value or status of any point in any controller. Changes are effective immediately to the controller, with a record of the change stored in the system database.
 - c. System shall have out-of-the-box dashboards that enable customizable views of live data which can be public to all users or capable to make them specific to a user based on log in credentials.
 - d. The user shall have the ability to create custom dashboards.
 - e. The dashboards shall have a kiosk mode which allows for occupant level data display on monitors or tablets throughout the building.
 - 3. Alarm Management
 - a. Systems requiring additional client software to be installed on a PC for viewing the webstation from that PC will not be considered.
 - b. Through the browser interface, a live alarm viewer identical to the alarm viewer on the Administration and Programming workstation shall be presented, if the user's password allows it. Users must be able to receive alarms, silence alarms, and acknowledge alarms through a browser. If desired, specific operator text must be able to be added to the alarm record before acknowledgement, attachments shall be viewable, and alarm checklists shall be available.
- R. Groups and Schedules
 - 1. Through the browser interface, operators must be able to view pre-defined groups of points, with their values updated automatically.
 - 2. Through the browser interface, operators must be able to change schedules change start and stop times, add new times to a schedule, and modify calendars.
- S. User Accounts and Audit Trail
 - 1. The same user accounts shall be used for the browser interface and for the operator workstations. Operators must not be forced to memorize multiple passwords.
 - 2. All commands and user activity through the browser interface shall be recorded in the system's activity log, which can be later searched and retrieved by user, date, or both.
- T. Web Services
 - 1. The installed system shall be able to use web services to "consume" information within the Network Server/Controllers (NSCs) with other products and systems. Inability to perform web services within the NSCs will be unacceptable.
 - a. Shall be able to "consume" data into the system via SOAP and REST web services

2.4 NETWORK SERVER CONTROLLERS (NSC)

- A. Network Server Controllers shall combine both network routing functions, control functions, and server functions into a single unit.
- B. The BACnet NSC shall be classified as a "native" BACnet device, supporting the BACnet Network Server Controller (B-BC) profile. Controllers that support a lesser profile such as B-SA are not acceptable. NSCs shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Network Server Controllers (B-BC).
- C. The Network Server Controller shall provide the interface between the LAN or WAN and the field control devices and provide global supervisory control functions over the control devices connected to the NRS.
- D. The NSCs shall be capable of whitelisting IPs to restrict access to a pre-defined list of hosts or devices.
- E. Whitelisting of file extensions for documents shall be capable.
- F. Encrypted and authenticated communication shall be configurable for non-open protocol communications using TLS 1.2.
- G. The NSCs shall support Simple Network Management Protocol version 3 (SNMPv3) for monitoring of the NSCs using a Network Management Tool.
- H. The NSCs shall support remote system logging for used by System Information and Event Monitoring (SIEM) software.
- I. They shall also be responsible for monitoring and controlling their own HVAC equipment such as an AHU or boiler.
- J. They shall also contain graphics, trends, trend charts, alarm views, and other similar presentation objects that can be served to workstations or web-based interfaces. A sufficient number of NSCs shall be supplied to fully meet the requirements of this specification and the attached point list.
- K. It shall be capable of executing application control programs to provide:
 - 1. Calendar functions
 - 2. Scheduling
 - 3. Trending
 - 4. Alarm monitoring and routing
 - 5. Time synchronization by means of an Internet site including automatic synchronization
 - 6. Native integration of LonWorks controller data and Modbus controller data or BACnet controller data and Modbus controller data
 - 7. Network Management functions for all LonWorks based devices
- L. Hardware Specifications
 - 1. Memory:
 - a. The operating system of the controller, application programs, and all other portions of the configuration database, shall be stored in non-volatile, FLASH memory. Servers/Controllers shall contain enough memory for the current application, plus required history logging, plus a minimum of 20% additional free memory.
 - 2. Each NRC shall provide the following on-board hardware for communication:
 - a. Two 10/100b Ethernet for communication to Workstations, other NRCs, IP field bus controllers, other SDCUs, and onto the internet.

- 1) The two Ethernet ports shall support active switch and BACnet/IP communication protocols.
- 2) Support IPv4 addressing
- 3) Ethernet port 1 shall support static or DHCP client configuration for communication to Workstation or other NSCs
- 4) Ethernet port 2 shall support switch mode or DHCP server to set addressing of DHCP client devices
- 5) It shall be possible to disable Ethernet port 2
- 6) In DHCP server mode, the Ethernet port 2 shall support 50 BACnet/IP field controllers in daisy chain configuration directly from the port
- 7) Each NSC shall be able to support a total of 250 IP SDCUs in daisy chain configuration (5 sub networks via switch)
- 8) If using RSTP (Rapid Spanning Tree Protocol) with a managed switch (with IEEE 802.1W or IEEE 802.1Q-2014 support), Ethernet port 2 shall support up to 39 devices
- 9) Each NSC shall be able to support a total of 234 IP SDCUs in RSTP configuration (6 sub networks via managed switch)
- 10) Where a switch is needed, use a Cisco 9000 Catalyst or IE switch, EtherWAN EX63402-01B, or other equal and approved equivalent.
- b. Two RS-485 ports for communication to BACnet MSTP bus or serial Modbus (software configurable)
- c. One TP/FT port for communication to LonWorks devices.
- d. One device USB port
- e. One host USB port
- 3. The NSC shall conform to a small footprint no larger than 100W x 125H x 75D mm (3.94W x 4.92H x 2.95D in).
- M. Modular Expandability:
 - 1. The system shall employ a modular I/O design to allow expansion. Input and output capacity is to be provided through plug-in modules of various types. It shall be possible to combine I/O modules as desired to meet the I/O requirements for individual control applications.
 - 2. One shall be able to "hot-change" (hot-swap) the I/O modules preserving the system on-line without any intervention on the software; addressing and configuration shall be automatic.
 - 3. If for any reason the backplane of the modular I/O system were to fail, I/O module addresses will be protected.
- N. Hardware Override Switches:
 - 1. All digital outputs shall, optionally, include three position manual override switches to allow selection of the ON, OFF, or AUTO output state. These switches shall be built into the unit and shall provide feedback to the controller so that the position of the override switch can be obtained through software. In addition, each analog output shall be equipped with an override potentiometer to allow manual adjustment of the analog output signal over its full range, when the 3 position manual override switch is placed in the ON position.
- O. Universal Input Temperatures
 - 1. All universal inputs directly connected to the NSC via modular expansion shall be capable of using the following thermistors for use in the system without any external converters needed.
 - a. 10 kohm Type I (Continuum)
 - b. 10 kohm Type II (I/NET)
 - c. 10 kohm Type III (Satchwell)
 - d. 10 kohm Type IV (FD)
 - e. Linearized 10 kohm Type V (FD w/11k shunt)

- f. Linearized 10 kohm (Satchwell)
- g. 1.8 kohm (Xenta)
- h. 1 kohm (Balco)
- i. 20 kohm (Honeywell)
- j. 2.2 kohm (Johnson)
- 2. In addition to the above, the system shall be capable of using the below RTD sensors, however it is not required that all universal inputs be compatible with them.
 - a. PT100 (Siemens)
 - b. PT1000 (Sauter)
 - c. Ni1000 (Danfoss)
- P. Local Status Indicator Lamps:
 - 1. The NSC shall provide as a minimum LED indication of CPU status, Ethernet LAN status, and field bus status. For each input or output, provide LED indication of the value of the point (On/Off). The LED indication shall support software configuration to set whether the illumination of the LED corresponds to On or Off or whether the color when illuminated is Red or Green.
- Q. Real Time Clock (RTC):
 - 1. Each NSC shall include a real time clock, accurate to 10 seconds per day. The RTC shall provide the following: time of day, day, month, year, and day of week. Each NSC will allow for its own UTC offset, depending upon the time zone. When the time zone is set, the NSC will also store the appropriate times for daylight savings time.
 - 2. The RTC date and time shall also be accurate, up to 30 days, when the NSC is powerless.
 - 3. No batteries may be used to for the backup of the RTC.
- R. Power Supply:
 - 1. The 24 VDC power supply for the NSCs shall provide 30 watts of available power for the NSC and associated IO modules. The system shall support the use of more than one power supply if heavily power consuming modules are required.
 - 2. The power supply, NSC, and I/O modules shall connect power wise and communication wise via the separate terminal base allowing for ease of replacement and no separate or loose wiring.
- S. Automatic Restart After Power Failure:
 - 1. Upon restoration of power after an outage, the NSC shall automatically and without human intervention update all monitored functions, resume operation based on current, synchronize time and status, and implement special start-up strategies as required.
- T. Data Retention:
 - 1. During a power failure, the NSC shall retain all programs, configuration data, historical data, and all other data that is configured to be retained. There shall be no time restriction for this retention and it must not use batteries to achieve it.
- U. Software Specifications
 - 1. The operating system of the controller, application programs, and all other portions of the configuration database such as graphics, trends, alarms, views, etc., shall be stored in non-volatile, FLASH memory. There will be no restrictions placed on the type of application programs in the system. Each NSC shall be capable of parallel processing, executing all control programs simultaneously. Any program may affect the operation of any other program. Each program shall have the full access of all I/O facilities of the processor. This execution of control function shall not be interrupted due to normal user communications including interrogation, program entry, printout of the program for storage, etc.

- 2. Each NSC shall have an available capacity of 4 GB of memory. This shall represent 2 GB for application and historical data and 2 GB dedicated for backup storage.
- V. User Programming Language:
 - The application software shall be user programmable. This includes all strategies, sequences of operation, control algorithms, parameters, and setpoints. The source program shall be either a script-based structured text or graphical function block based and fully programmable by the user. The language shall be structured to allow for the configuration of control programs, schedules, alarms, reports, telecommunications, local displays, mathematical calculations, and histories. Users shall be able to place comments anywhere in the body of either script or function block programs.
 - 2. Network Server Controllers that use a "canned" program method will not be accepted.
- W. Control Software:
 - 1. The NSC shall have the ability to perform the following pre-tested control algorithms:
 - a. Proportional, Integral plus Derivative Control (PID)
 - b. Two Position Control
 - c. Digital Filter
 - d. Ratio Calculator
 - e. Equipment Cycling Protection
- X. Mathematical Functions:
 - Each controller shall be capable of performing basic mathematical functions (+, -, *, /), squares, square roots, exponential, logarithms, Boolean logic statements, or combinations of both. The controllers shall be capable of performing complex logical statements including operators such as >, <, =, and, or, exclusive or, etc. These must be able to be used in the same equations with the mathematical operators and nested up to five parentheses deep.
- Y. NSCs shall have the ability to perform any or all of the following energy management routines:
 - 1. Time of Day Scheduling
 - 2. Calendar Based Scheduling
 - 3. Holiday Scheduling
 - 4. Temporary Schedule Overrides
 - 5. Optimal Start
 - 6. Optimal Stop
 - 7. Night Setback Control
 - 8. Enthalpy Switchover (Economizer)
 - 9. Peak Demand Limiting
 - 10. Temperature Compensated Duty Cycling
 - 11. CFM Tracking
 - 12. Heating/Cooling Interlock
 - 13. Hot/Cold Deck Reset
 - 14. Hot Water Reset
 - 15. Chilled Water Reset
 - 16. Condenser Water Reset
 - 17. Chiller Sequencing

- Z. History Logging:
 - 1. Each NSC controller shall be capable of LOCALLY logging any input, output, calculated value or other system variable either over user defined time intervals ranging from 1 second to 1440 minutes or based upon a user configurable change of value. A minimum of 1000 logs, with a minimum of 100,000 records, shall be stored. Each log can record either the instantaneous, average, minimum or maximum value of the point. Logged data shall be downloadable to a higher level NSC long term archiving based upon user-defined time intervals, or manual command.
 - 2. For extended trend logging a minimum of 1500 trends shall be capable, with a minimum number of 600,000 records within.
 - 3. Management of a power meter replacement to ensure meter log data is accurate shall be possible in the NSC.
 - 4. Every hardware input and output point, hosted within the NSC and attached I/O modules, shall be trended automatically without the requirement for manual creation, and each of these logs shall log values based upon a change of value and store at least 500 trend samples before replacing the oldest sample with new data.
 - 5. The presentation of logged data shall be built into the server capabilities of the NSC. Presentation can be in time stamped list formats or in a chart format with fully configurable pen colors, weights, scales, and time spans.
 - 6. Tooltips shall be present, magnetic, and visible based on users preference.
 - 7. Comments shall be visible whenever viewing the trend log list.
 - 8. System shall give indication of memory usage and be able to alert the user if too many logs are allocated.
- AA. Alarm Management:
 - 1. For each system point, alarms can be created based on high/low limits or in comparison to other point values. All alarms will be tested each scan of the NSC and can result in the display of one or more alarm messages or reports.
 - 2. There is no limit to the number of alarms that can be created for any point
 - 3. Alarms can be configured to be generated based upon a single system condition or multiple system conditions.
 - 4. Alarms will be generated based on an evaluation of the alarm conditions and can be presented to the user in a fully configurable order, by priority, by time, by category, etc. These configurable alarm views will be presented to a user upon logging into the system regardless of whether the log in takes place at a WorkStation or a Webstation.
 - 5. The alarm management system shall support the ability to create and select cause and action notes to be selected and associated with an alarm event. Checklists shall also be possible in order to present to an operator a suggested mode of troubleshooting. When acknowledging an alarm, it shall be possible to assign it to a user of the system such that the user is notified of the assignment and is made responsible for the alarm resolution.
 - 6. Alarms must be capable of being routed to any BACnet workstation that conforms to the B-OWS device profile and uses the BACnet/IP protocol.
- BB. Embedded Web Server
 - 1. Each NSC must have the ability to serve out web pages containing the same information that is available from the WorkStation. The development of the screens to accomplish shall not require any additional engineering labor over that required to show them at the WorkStation itself.
 - 2. The NSC shall be configurable to logging all Embedded Web Server access attempts
 - 3. The NSC shall have the option to redirect HTTP based Embedded Web Server connections to secure, HTTPS connections.
 - 4. The NSC shall authenticate and authorize all users connecting to the Embedded Web Server.

5. The NSC shall provide to ability to configure an automatic logoff for Embedded Web Server users that have not had any activity for an adjustable time period.

2.5 BACNET IP FIELDBUS CONTROLLERS

- A. Controllers BACnet/IP Protocol
 - 1. All BACnet/IP Fieldbus controllers shall be BACnet Testing Laboratory listed (v12 or later) as specified BACnet Advanced Application Controller (B-AAC)
 - 2. All BACnet/IP Fieldbus controllers shall use the following communication specifications and achieve performance as specified herein:
 - a. All controllers shall be able to communicate peer-to-peer without the need for a NSC
 - b. Any BACnet/IP Fieldbus controllers on the Ethernet Data Link/Physical layer shall be able to act as a Master to allow for the exchange and sharing of data variables and messages with any other controller connected on the same communication cabling. Slave controllers are not acceptable.
- B. The BACnet/IP Fieldbus controllers shall be equipped with 2x 10/100bT Ethernet communication ports with active switch and will support BACnet/IP communication protocols with the following configurations:
 - 1. Supporting IPv4 addressing
 - 2. Supporting Static IP setting, DHCP client and Auto-IP address acquisition
 - 3. It shall be possible to disable Ethernet port 2
- C. Topologies
 - 1. BACnet/IP Fieldbus controllers shall support daisy chain topology of up to 50 controllers. In case of any disruption to the communication, a system alarm shall notify the NSC/BMS of the point disruption has occurred.
 - 2. BACnet/IP Fieldbus Controllers shall support RSTP loop whereby up to 39 controllers are supported.
 - a. In case of any disruption there shall be no communication interruption
 - b. In case of any disruption there shall be system alarms that will inform the operator of the disruption

D. Performance

- 1. Each BACnet/IP Fieldbus Controllers shall have a 32-bit microprocessor operating at 500 MHz and support a BACnet protocol stack in accordance with the ANSI/ASHRAE Standard 135-2008 and the BACnet Device Profile supported.
- 2. They shall be multi-tasking, real-time digital control processors consisting of communication controllers, controls processing, power supplies with built-in inputs and outputs.
- E. Programmability
 - 1. The BACnet/IP Fieldbus controllers shall support both script programming language and graphical that will be consistent with the NSC.
 - 2. The control program will reside within the same enclosure as the input/output circuitry, that reads inputs and controls outputs
 - 3. All control sequences programmed into the BACnet/IP Fieldbus Controllers shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.
 - 4. BACnet/IP Fieldbus controllers shall communicate with the Network Server Controller (NSC) via a BACnet/IP connection at a baud rate of not less than 100 Mbps
 - 5. BACnet/IP Fieldbus controllers shall support a dedicated communications port for connecting and supplying power to a matching room temperature and/or humidity sensor and/or CO2 and/or presence detector that does not utilize any of the I/O points of the controller.

- 6. BACnet/IP Fieldbus controllers (Excluding VAV) shall support an add-on display to supply and provide access in real-time for monitoring inputs and overriding of outputs
- 7. The override functionality must be supported by a dedicated processor to assure reliable operation (overriding of output)
- 8. Each BACnet/IP Fieldbus controller shall have sufficient memory, to support its own operating system and databases, including:
 - a. Control processes
 - b. Energy management applications
 - c. Alarm management
 - d. Historical/trend data
 - e. Maintenance support applications
 - f. Custom processes
 - g. Manal override monitoring
- 9. Each BACnet/IP Fieldbus controller shall support local trend data up to 2x the built-in I/O and at a minimum be capable of holding 5 days @ 15 min intervals locally.
- 10. The BACnet/IP Fieldbus controller analog or universal input shall use a 16 bit A/D converter.
- 11. The BACnet/IP Fieldbus controller analog or universal output shall use a 10 bit D/A converter.
- 12. Built-in I/O: each BACnet/IP Fieldbus controllers shall support:
 - a. At minimum 8 and up to 20 configurable IO channels to monitor and to control the following types of inputs and outputs without the addition of equipment inside or outside the DDC Controller cabinet.
 - 1) Universal Inputs the following thermistors for use in the system without any external converters needed.
 - a) 10 kohm Type I (Continuum)
 - b) 10 kohm Type II (I/NET)
 - c) 10 kohm Type III (Satchwell)
 - d) 10 kohm Type IV (FD)
 - e) Linearized 10 kohm Type V (FD w/11k shunt)
 - f) Linearized 10 kohm (Satchwell)
 - g) 1.8 kohm (Xenta)
 - h) 1 kohm (Balco)
 - i) 20 kohm (Honeywell)
 - j) 2.2 kohm (Johnson)
 - k) PT100 (Siemens)
 - I) PT1000 (Sauter)
 - m) Ni1000 (Danfoss)
 - 2) Analog inputs
 - a) Current Input 0-20 mA
 - b) Voltage Input 0-10 Vdc
 - 3) Digital inputs from dry contact closure, pulse accumulators, voltage sensing.
 - 4) Digital outputs
 - 5) Analog outputs of 4-20 mA and/or 0-10 Vdc
 - 13. Real Time Clock (RTC):
 - a. Each BACnet/IP Fieldbus controller shall include a real time clock, accurate to +/-1 minute per month. The RTC shall provide the following: time of day, day, month, year, and day of week.
 - b. The RTC date and time shall also be accurate, up to 7 days, when the BACnet/IP Fieldbus controller is powerless.
 - c. No batteries may be used to for the backup of the RTC.

- 14. The BACnet/IP Fieldbus controller for Variable Air Volume (VAV) applications
 - a. The BACnet/IP Fieldbus controller for VAV applications shall include a built-in 'flow thru' differential pressure transducer
 - b. The VAV differential pressure transducer shall have a measurement range of 0 to 1 in. W.C. and measurement accuracy of ±5% at 0.001 to 1 in. W.C. and a minimum resolution of 0.001 in. W.C., ensuring primary air flow conditions shall be controlled and maintained to within ±5% of setpoint at the specified minimum and maximum air flow parameters
 - c. The BACnet/IP Fieldbus controller for VAV applications shall support a dedicated commissioning tool for air flow balancing
 - d. The BACnet/IP Fieldbus controller for VAV applications shall require no programing for air balancing algorithm
 - e. All balancing parameters shall be synchronized in NSC
- 15. The BACnet/IP Fieldbus controller for connected room solutions
 - a. In addition, if applicable, the system shall include a BACnet/IP fieldbus controller that integrates control for HVAC, Lighting, Blind Control, BTL, and Zigbee wireless communication in a singular unit.
 - 1) HVAC IO as described above
 - 2) Lighting bus, with at minimum, DALI capabilities
 - 3) Bus for blind control applications
 - 4) BTL (Bluetooth) wireless capabilities to allow for use of apps, such as commissioning tools and occupant apps for control of space
 - 5) Zigbee wireless for connection to wireless sensors within the room space, such as occ sensors, door contacts, and smart third party devices, such as trash bins, coffee makers, etc.
 - b. The controller shall work with any 3rd party BMS system and can be brought into the host system through the auto discovery mechanism.
- 16. The BACnet/IP Fieldbus controller for remote IO
 - a. The system shall have available a BACnet/IP fieldbus controller to support inclusion of IO that is remote from the controller(s) that may need it.
 - b. As the controller is just an IO 'station' handling data to other controllers it still shall:
 - 1) Support local alarms and local trends
 - 2) No impact firmware update capabilities
 - 3) User defined fallback for outputs in case of network disruption
- 17. The BACnet/IP Fieldbus room controller
 - a. For connected room solutions that do not require integrated lighting and blind busses built into a singular unit, the system shall include a BACnet/IP enabled controller specifically designed for room control.
 - b. The controller shall communicate via BACnet/IP via Wifi.
 - c. The controller shall be capable of controlling fan coil units, cooling VVT zones with reheat, fin-tube radiators, cabinet heaters, radiant panel heaters, electric re-heat zones, terminal reheats, rooftop units (1H1C, 2H2C, 3H2C, MH2C), or heat pumps, if necessary.
 - d. The controller shall house an onboard temperature sensor, and options for onboard humidity and occupancy sensor.
 - e. The controller shall utilize a touch screen interface and have multiple options for casings and fascias. The screen shall be a TFT transmissive LED backlit LCD touchscreen with atleast 5 color options.

- f. Controller will have password protection to prevent unauthorized access to the configuration menu parameters.
- g. The controller will have integrated Zigbee wireless communications with predefined profiles for Zigbee door and window switches, occupancy sensors, water leakage detectors, CO2 sensors, and additional temperature and humidity sensors.
- h. The controller will be capable of hosting at least 10 Zigbee sub devices.
- i. The controller will be capable of being programmed with customizable scripts via the open programming language Lua. It shall be equipped with at least 256KB of SRAM with 80KB configurable/reserved for Lua scripting purposes.
- 18. Each BACnet/IP Fieldbus controller shall have a minimum of 10% spare capacity for each point type represented on the controller for future point connection.
- 19. Power Requirements.: 24VDC (21 to 33 VDC) and 24 VAC +/-20% with local transformer power
- F. Commissioning Tool The BACnet/IP Fieldbus controller shall be supported via a dedicate mobile based commissioning tool for configuration, programming, air balancing and I/O checkout.
 - 1. The Commissioning Tool shall be supported across: iOS, Android and Windows 10 platforms.
 - 2. The Commissioning Tool shall be available for download on App Store, Google Store and Windows Store
 - 3. Commissioning Tool Interface to BACnet/IP Fieldbus controllers shall be via a Bluetooth adapter interface through the Intelligent Space Sensor or via a Wi-Fi access point on the LAN.
 - 4. Functionality
 - a. Device Configuration the Commissioning Tool shall be able to set or edit all Network configurations associated with the BACnet/IP Fieldbus controller.
 - b. Programming The Commissioning Tool shall be able to load offline engineered applications directly into the controller directly.
 - c. Air Balancing
 - 1) The Commissioning Tool shall allow the air balancer to manually control the action of the actuator including the following function: open VAV damper, close VAV damper, open all VAV dampers, and close all VAV dampers.
 - 2) The Commissioning Tool shall be able to generate Air Balancing report.
 - d. IO Checkout
 - 1) The Commissioning Tool shall be able to support overriding of the outputs and reading value of inputs live.
 - 2) The Commissioning Tool shall be able to support generation of I/O checkout report
 - e. There shall be no limit to the number of Commissioning Tools that can be used on a network segment, however, one connection per controller is recommended.
 - G. Intelligent Space Sensors The BACnet/IP Fieldbus controller shall support a dedicated RJ45 communication port to communicate and power up to 4 intelligent wall mount sensors without the use of on board inputs or outputs
 - 1. The Intelligent Space Sensor shall communicate with the BACnet/IP Fieldbus controller through the sensor port and via category 5 or category 6 cable
 - 2. The Intelligent Space Sensor shall provide 2 RJ45 communication ports that will allow communication with parent BACnet/IP Field controller upstream and additional Intelligent Space Sensors downstream
 - 3. The Intelligent Space Sensor shall provide ambient space condition sensing without the use of hardware I/O.
- H. Each Intelligent Space Sensor shall provide a color touch display with:
 - 1. Minimum 61 mm (2.4") by 61 mm (2.4") display

- 2. Backlit
- I. The Intelligent Space Sensor shall be capable of displaying measured space temperature from 0 to 50 °C (32 to 122 °F) with accuracy of ±0.2 °C (±0.4 °F) selectable for 0.1 or 1 degree display resolution of °F or °C
 - 1. Sensing Element: 10k Type 3 Thermistor
 - 2. Accuracy of ±0.2 °C (±0.4 °F)
 - 3. Resolution: 0.1 or 1 degree display resolution
 - 4. Range: 0 to 50 °C (32 to 122 °F)
- J. The Intelligent Space Sensor shall have the option for humidity sensor support sensing humidity from 0 % RH to 100 % RH Digital humidity indication (selectable for 0.1 or 1% RH with selectable display resolution of 0.1 or 1 % RH
 - 1. Accuracy: ±2 % RH
 - 2. Resolution: 0.1 or 1 % RH
 - 3. Range: 0 % RH to 100 % RH
- K. The Intelligent Space Sensor shall have the option for support of CO2 sensor with display resolution with 0 to 2000 ppm resolution
 - 1. Accuracy: ±30 ppm ±2% of measured value
 - 2. Range: 0 to 2,000 ppm
 - 3. Operating elevation: 0 to 16,000 ft.
 - 4. Temperature dependence: 0.11% FS per °F
 - 5. Stability: <2% of FS over life of sensor (15 years)
 - 6. Sensing method: Non-dispersive infrared (NDIR), diffusion sampling
- L. The Intelligent Space Sensor shall have the option for motion sensor
- M. Display options: The Intelligent Space Sensor shall be capable of displaying the following elements:
 - 1. Space temperature
 - 2. Cooling space temperature set point
 - 3. Heating space temperature set point
 - 4. Current heating or cooling mode
 - 5. Current occupancy mode
 - 6. Fan speed
 - 7. Current time

2.6 BACNET FIELDBUS AND BACNET SDCUS

- A. Networking
 - 1. IP Network: All devices that connect to the WAN shall be capable of operating at 10 megabits per second or 100 megabits per second.
 - 2. IP To Field Bus Routing Devices
 - a. A Network Server Controller shall be used to provide this functionality.
 - b. These devices shall be configurable locally with IP crossover cable and configurable via the IP network.
 - c. The routing configuration shall be such that only data packets from the field bus devices that need to travel over the IP level of the architecture are forwarded.

- B. Field Bus Wiring and Termination
 - 1. The wiring of components shall use a bus or daisy chain concept with no tees, stubs, or free topology.
 - 2. Each field bus shall have a termination resistor at both ends of each segment.
 - 3. The field bus shall support the use of wireless communications.
- C. Repeaters
 - 1. Repeaters are required to connect two segments.
 - 2. Repeaters shall be installed in an enclosure. The enclosure may be in an interstitial space.
- D. Field Bus Devices
 - 1. General Requirements
 - a. Devices shall have a light indicating that they are powered.
 - b. Devices shall be locally powered. Link powered devices (power is furnished from a central source over the field bus cable) are not acceptable.
 - c. Application programs shall be stored in a manner such that a loss of power does not result in a loss of the application program or configuration parameter settings. (Battery backup, flash memory, etc.)
- E. Advance Application Controllers (B-AAC)
 - 1. The key characteristics of a B-AAC are:
 - a. They have physical input and output circuits for the connection of analog input devices, binary input devices, pulse input devices, analog output devices, and binary output devices. The number and type of input and output devices supported will vary by model.
 - b. They may or may not provide support for additional input and output devices beyond the number of circuits that are provided on the basic circuit board. Support for additional I/O shall be provided by additional circuit boards that physically connect to the basic controller.
 - c. The application to be executed by a B-AAC is created by an application engineer using the vendor's application programming tool.
 - d. If local time schedules are embedded, the B-AAC shall support the editing of time schedule entries from any BACnet OWS that supports the BACnet service for writing of time schedule parameters.
 - e. If local trend logging is embedded, the B-AAC shall support the exporting of trend log data to any BACnet OWS that supports the read range BACnet service for trending.
 - f. If local alarm message initiation is embedded, the B-AAC shall:
 - Deliver alarm messages to any BACnet OWS that supports the BACnet service for receiving alarm messages and is configured to be a recipient off the alarm message.
 - 2) Support alarm acknowledgement from any BACnet OWS that supports the BACnet service for executing alarm/event acknowledgement.
 - g. Shall support the reading of analog and binary data from any BACnet OWS or Building Controller that supports the BACnet service for the reading of data.
 - h. Shall support the control of the out of service property and assignment of value or state to analog and binary objects from any BACnet OWS that supports writing to the out of service property and the value property of analog and binary objects.
 - i. Shall support the receipt and response to Time Synchronization commands from a BACnet Building Controller.
 - j. Shall support the "Who is" and "I am." BACnet services.
 - k. Shall support the "Who has" and "I have." BACnet services.

2. Analog Input Circuits

- a. The resolution of the A/D chip shall not be greater than 0.01 Volts per increment. For an A/D converter that has a measurement range of 0 to 10 VDC and is 10 bit, the resolution is 10/1024 or 0.00976 Volts per increment.
- b. For non-flow sensors, the control logic shall provide support for the use of a calibration offset such that the raw measured value is added to the (+/-) offset to create a calibration value to be used by the control logic and reported to the Operator Workstation (OWS).
- c. For flow sensors, the control logic shall provide support for the use of an adjustable gain and an adjustable offset such that a two point calibration concept can be executed (both a low range value and a high range value are adjusted to match values determined by a calibration instrument).
- d. For non-linear sensors such as thermistors and flow sensors the B-AAC shall provide software support for the linearization of the input signal.
- 3. Binary Input Circuits
 - a. Dry contact sensors shall wire to the controller with two wires.
 - b. An external power supply in the sensor circuit shall not be required.
 - 4. Pulse Input Circuits
 - a. Pulse input sensors shall wire to the controller with two wires.
 - b. An external power supply in the sensor circuit shall not be required.
 - c. The pulse input circuit shall be able to process up to 20 pulses per second.
- 5. True Analog Output Circuits
 - a. The logical commands shall be processed by a digital to analog (D/A) converter chip. The 0% to 100% control signal shall be scalable to the full output range which shall be either 0 to 10 VDC, 4 to 20 milliamps or 0 to 20 milliamps or to ranges within the full output range (Example: 0 to 100% creates 3 to 6 VDC where the full output range is 0 to 10 VDC).
 - b. The resolution of the D/A chip shall not be greater than 0.04 Volts per increment or 0.08 milliamps per increment.
- 6. Binary Output Circuits
 - a. Single pole, single throw or single pole, double throw relays with support for up to 230 VAC and a maximum current of 2 amps.
 - b. Voltage sourcing or externally powered triacs with support for up to 30 VAC and 0.5 amps at 24 VAC.
- 7. Program Execution
 - a. Process control loops shall operate in parallel and not in sequence unless specifically required to operate in sequence by the sequence of control.
 - b. The sample rate for a process control loop shall be adjustable and shall support a minimum sample rate of 1 second.
 - c. The sample rate for process variables shall be adjustable and shall support a minimum sample rate of 1 second.
 - d. The sample rate for algorithm updates shall be adjustable and shall support a minimum sample rate of 1 second.
 - e. The application shall have the ability to determine if a power cycle to the controller has occurred and the application programmer shall be able to use the indication of a power cycle to modify the sequence of controller immediately following a power cycle.
- 8. Local Interface
 - a. The controller shall support the connection of a portable interface device such as a laptop computer or vendor unique hand-held device. The ability to execute any tasks other than

viewing data shall be password protected. Via this local interface, an operator shall be able to:

- 1) Adjust application parameters.
- 2) Execute manual control of input and output points.
- 3) View dynamic data.
- F. Application Specific Devices
 - 1. Application specific devices shall have fixed function configurable applications.
 - 2. If the application can be altered by the vendor's application programmable tool, the device is an advanced application controller and not an application specific device.
 - 3. Application specific devices shall be BTL certified.
- G. Room controllers
 - 1. For connected room solutions that do not require integrated lighting and blind busses built into a singular unit, the system shall include a BACnet MS-TP enabled controller specifically designed for room control.
 - 2. The controller shall communicate via BACnet MS-TP. It should also be capable of MODBUS RTU communication.
 - 3. The controller shall be capable of controlling fan coil units, cooling VVT zones with reheat, fintube radiators, cabinet heaters, radiant panel heaters, electric re-heat zones, terminal reheats, rooftop units (1H1C, 2H2C, 3H2C, MH2C), or heat pumps, if necessary.
 - 4. The controller shall house an onboard temperature sensor, and options for onboard humidity and occupancy sensor.
 - 5. The controller shall utilize a touch screen interface and have multiple options for casings and fascias. The screen shall be a TFT transmissive LED backlit LCD touchscreen with at least 5 color options.
 - 6. Controller will have password protection to prevent unauthorized access to the configuration menu parameters.
 - 7. The controller will have integrated Zigbee wireless communications with predefined profiles for Zigbee door and window switches, occupancy sensors, water leakage detectors, CO2 sensors, and additional temperature and humidity sensors.
 - 8. The controller will be capable of hosting at least 10 Zigbee sub devices.
 - 9. The controller will be capable of being programmed with customizable scripts via the open programming language Lua. It shall be equipped with at least 256KB of SRAM with 80KB configurable/reserved for Lua scripting purposes.

2.7 DDC SENSORS AND POINT HARDWARE

- A. Temperature Sensors
 - 1. Acceptable Manufacturers: Veris Industries
 - All temperature devices shall use precision thermistors accurate to +/- 1 degree F over a range of -30 to 230 degrees F. Space temperature sensors shall be accurate to +/- .5 degrees F over a range of 40 to 100 degrees F.
 - Room Sensor: Standard space sensors shall be available in an [off white][black] enclosure made of high impact ABS plastic for mounting on a standard electrical box. Basis of Design: Veris TW Series
 - a. Where manual overrides are required, the sensor housing shall feature both an optional sliding mechanism for adjusting the space temperature setpoint, as well as a push button for selecting after hours operation.

- b. Where a local display is specified, the sensor shall incorporate an LCD display for viewing the space temperature, setpoint and other operator selectable parameters. Using built in buttons, operators shall be able to adjust setpoints directly from the sensor.
- 4. Duct Probe Sensor: Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Useable in air handling applications where the coil or duct area is less than 14 square feet. Basis of Design: Veris TD Series
- 5. Duct Averaging Sensor: Averaging sensors shall be employed in ducts which are larger than 14 square feet. The averaging sensor tube shall contain at least one thermistor for every 3 feet, with a minimum tube length of 6 feet. The averaging sensor shall be constructed of rigid or flexible copper tubing. Basis of Design: Veris TA Series
- 6. Pipe Immersion Sensor: Immersion sensors shall be employed for measurement of temperature in all chilled and hot water applications as well as refrigerant applications. Provide sensor probe length suitable for application. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel for non-corrosive fluids below 250 degrees F and 300 series stainless steel for all other applications. Basis of Design: Veris TI Series
- 7. Outside Air Sensor: Provide the sensing element on the building's north side. Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Probe shall be encased in PVC solar radiation shield and mounted in a weatherproof enclosure. Operating range -40 to 122 F, Basis of Design: Veris TO Series
- 8. A pneumatic signal shall not be allowed for sensing temperature.
- B. Humidity Wall Transmitter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Transmitters shall be accurate to +/- 2 % at full scale.
 - 3. Transmitter shall have replaceable sensing element.
 - 4. Sensor type shall be thin-film capacitive.
 - 5. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 - 6. Operating range shall be 0 100% RH noncondensing, 50 to 95 F
 - 7. Output shall be field selectable 4-20 mA or 0-5/0-10 VDC.
 - 8. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 - 9. Transmitter shall be available in an off white enclosure made of high impact ABS plastic for mounting on a standard electrical box.
 - 10. Transmitter shall have option of having an LCD display
 - 11. Transmitter shall have option of being NIST certified
 - 12. Transmitter shall have option of an integrated temperature sensor
 - 13. Basis of Design: Veris HWL Series
- C. Humidity Duct Transmitter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Transmitters shall be accurate to +/- 2 % at full scale.
 - 3. Transmitter shall be fully encapsulated in potting material within a stainless steel probe.
 - 4. Transmitter shall have replaceable sensing element.
 - 5. Sensor type shall be thin-film capacitive.
 - 6. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 - 7. Operating range shall be 0 100% RH noncondensing, -40 to 122 F
 - 8. Output shall be 4-20 mA or 0-5/0-10 VDC.
 - 9. Transmitter shall accept 12-30 VDC or 24 VAC supply power.

- 10. Transmitter shall have option of being NIST certified
- 11. Transmitter shall have option of an integrated temperature sensor
- 12. Basis of Design: Veris HD Series
- D. Humidity Outdoor Transmitter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Transmitters shall be accurate to +/- 2% at full scale.
 - 3. Transmitter shall be fully encapsulated in potting material within a stainless steel probe. Probe shall be encased in PVC solar radiation shield and mounted in a weatherproof enclosure.
 - 4. Transmitter shall have replaceable sensing element.
 - 5. Sensor type shall be thin-film capacitive.
 - 6. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 - 7. Operating range shall be 0 100% RH noncondensing, -40 to 122 F
 - 8. Output shall be 4-20 mA or 0-5/0-10 VDC.
 - 9. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 - 10. Transmitter shall have option of being NIST certified
 - 11. Transmitter shall have option of an integrated temperature sensor
 - 12. Basis of Design: Veris HO Series
- E. Carbon Dioxide Wall Transmitter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Sensor type shall be Non-dispersive infrared (NDIR).
 - 3. Accuracy shall be ±30 ppm ±2% of measured value with annual drift of ±10 ppm. Minimum five year recommended calibration interval.
 - 4. Repeatability shall be ±20 ppm ±1% of measured value
 - 5. Response Time shall be <60 seconds for 90% step change
 - 6. Outputs shall be field selectable [Analog: 4-20mA or 0-5/0-10VDC][Protocol: Modbus or BACnet] with [SPDT Relay 1A@30VDC][temperature setpoint slider]
 - 7. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 - 8. Temperature Range: [32° to 122°F (CO2 only)][50° to 95°F (with humidity option)]
 - 9. Output range shall be programmable 0-2000 or 0-5000 ppm
 - 10. Transmitter shall be available in an off white enclosure for mounting on a standard electrical box.
 - 11. Transmitter shall have an option of an LCD display for commissioning and provide additional faceplate to conceal LCD display where occupants may misinterpret CO2 readings.
 - 12. Transmitter shall have option of an integrated temperature sensor and/or humidity sensor
 - 13. Basis of Design: Veris CWL
- F. Carbon Dioxide Duct Transmitter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Sensor type shall be Non-dispersive infrared (NDIR).
 - 3. Accuracy shall be ±30 ppm ±2% of measured value with annual drift of ±10 ppm. Minimum five year recommended calibration interval.
 - 4. Repeatability shall be ±20 ppm ±1% of measured value
 - 5. Response Time shall be <60 seconds for 90% step change
 - 6. Outputs shall be field selectable Analog: 4-20mA or 0-5/0-10VDC with SPDT Relay 1A@30VDC
 - 7. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 - 8. Temperature Range: 32° to 122°F

- 9. Output range shall be programmable 0-2000 or 0-5000 ppm
- 10. Enclosure shall not require remote pickup tubes and make use of integrated H-beam probe to channel air flow to sensor.
- 11. Enclosure lid shall require no screws and make use of snap on features for attachment
- 12. Enclosure shall be made of high impact ABS plastic
- 13. Transmitter shall have option of an LCD display
- 14. Transmitter shall have option of an integrated temperature sensor and/or humidity sensor
- 15. Basis of Design: Veris CDL
- G. Air Pressure Transmitters
 - 1. Acceptable Manufacturers: Veris Industries
 - 2. Sensor shall be microprocessor profiled ceramic capacitive sensing element
 - 3. Transmitter shall have 14 selectable ranges from 0.1 10" WC
 - 4. Transmitter shall be +/- 1% accurate in each selected range including linearity, repeatability, hysteresis, stability, and temperature compensation.
 - 5. Transmitter shall be field configurable to mount on wall or duct with static probe
 - 6. Transmitter shall be field selectable for Unidirectional or Bidirectional
 - 7. Maximum operating pressure shall be 200% of design pressure.
 - 8. Output shall be field selectable 4-20 mA or 0-5/0-10 VDC linear.
 - 9. Transmitter shall accept 12-30 VDC or 24 VAC supply power
 - 10. Response time shall be field selectable T95 in 20 sec or T95 in 2 sec
 - 11. Transmitter shall have an LCD display
 - 12. Units shall be field selectable for WC or PA
 - 13. Transmitter shall have provision for zeroing by pushbutton or digital input.
 - 14. Transmitter shall be available with a certification of NIST calibration
 - 15. Basis of Design: Veris model PXU.
- H. Liquid Differential Pressure Transmitters
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. Transmitter shall be microprocessor based
 - 3. Transmitter shall use two independent gauge pressure sensors to measure and calculate differential pressure
 - 4. Transmitter shall have 4 switch selectable ranges
 - 5. Transmitter shall have test mode to produce full-scale output automatically.
 - 6. Transmitter shall have provision for zeroing by pushbutton or digital input.
 - 7. Transmitter shall have field selectable outputs of 0-5V, 0-10V, and 4-20mA.
 - 8. Transmitter shall have field selectable electronic surge damping
 - 9. Transmitter shall have an electronic port swap feature
 - 10. Transmitter shall accept 12-30 VDC or 24 VAC supply power
 - 11. Sensor shall be 17-4 PH stainless steel where it contacts the working fluid.
 - 12. Performance:
 - a. Accuracy shall be $\pm 1\%$ F.S. and $\pm 2\%$ F.S. for lowest selectable range
 - b. Long term stability shall be ±0.25%
 - c. Sensor temperature operating range shall be -4° to 185°F
 - d. Operating environment shall be 14° to 131°F; 10-90% RH noncondensing
 - e. Proof pressure shall be 2x max. F.S. range

- f. Burst pressure shall be 5x max. F.S. range
- 13. Transmitter shall be encased in a NEMA 4 enclosure
- 14. Enclosure shall be white powder-coated aluminum
- 15. Transmitter shall be available with a certification of NIST calibration
- 16. Transmitter shall be preinstalled on a bypass valve manifold
- 17. Basis of Design: Veris PW
- I. Current Sensors
 - 1. Current status switches shall be used to monitor fans, pumps, motors and electrical loads. Current switches shall be available in split core models, and offer either a digital or an analog signal to the automation system. Acceptable manufacturer is Veris Industries
- J. Current Status Switches for Constant Load Devices
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. General: Factory programmed current sensor to detect motor undercurrent situations such as belt or coupling loss on constant loads. Sensor shall store motor current as operating parameter in non-volatile memory. Push-button to clear memory.
 - 3. Visual LED indicator for status.
 - 4. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 0.5 A to 175 A.
 - 5. Normally open current sensor output. 0.1A at 30 VAC/DC.
 - 6. Basis of Design: Veris Model H608.
- K. Current Status Switches for Constant Load Devices (Auto Calibration)
 - 1. Acceptable Manufacturer: Veris Industries.
 - 2. General: Microprocessor based, self-learning, self-calibrating current switch. Calibration-free status for both under and overcurrent, LCD display, and slide-switch selectable trip point limits. At initial power-up automatically learns average current on the line with no action required by the installer
 - 3. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 2.5 A to 200 A.
 - 4. Display: Backlit LCD; illuminates when monitored current exceeds 4.5A
 - 5. Nominal Trip Point: ±40%, ±60%, or on/off (user selectable)
 - 6. Normally open current sensor output. 0.1A at 30 VAC/DC.
 - 7. Basis of Design: Veris Model H11D.
- L. Current Status Switches for Variable Frequency Drive Application
 - 1. Acceptable Manufacturer: Veris Industries.
 - 2. General: Microprocessor controlled, self-learning, self-calibrating current sensor to detect motor undercurrent and overcurrent situations such as belt loss, coupling shear, and mechanical failure on variable loads. Sensor shall store motor current as operating parameter in non-volatile memory. Push-button to clear memory and relearn.
 - 3. Visual LED indicator for status.
 - 4. Alarm Limits: ±20% of learned current in every 5 Hz freq. band
 - 5. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 1.5 A to 150 A and from 12 to 115 Hz.
 - 6. Normally open current sensor output. 0.1A at 30 VAC/DC.
 - 7. Basis of Design: Veris Model H614.

- M. Liquid Flow, Insertion Type Turbine Flowmeter
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. General: Turbine-type insertion flow meter designed for use in pipe sizes 1 1/2" and greater. Available in hot tap configuration with isolation valves and mounting hardware to install or remove the sensor from pipeline that is difficult to shut down or drain
 - 3. Performance:
 - a. Accuracy ±1% of rate over optimum flow range; ≥10 upstream and ≥5 downstream straight pipe diameters, uninterrupted flow
 - b. Repeatability ±0.5%
 - c. Velocity Range: 0.3 to 20 FPS
 - d. Pressure Drop 0.5 psi or less @ 10 ft/sec for all pipe sizes 1.5" dia and up
 - e. Pressure Rating: 1000 psi @ 70°F
 - 4. Maximum Temperature Rating: 300°F
 - 5. Materials: Stainless Steel or Brass body; Stainless steel impeller
 - 6. Transmitter:
 - a. Power Supply: 12 30VAC or 8 35VDC.
 - 1) Output: [Frequency][4-20 mA][Scaled Pulse]
 - b. Temperature Range: 14° to 150°F
 - c. Display: 8 character 3/8" LCD (Optional)
 - d. Enclosure: NEMA 4, Polypropylene with Viton® sealed acrylic cover
 - 7. Basis of Design: Veris SDI series
- N. Liquid Flow/Energy Transmitter, Non-invasive Ultrasonic (Clamp-on)
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. General: Clamp-on digital correlation transit-time ultrasonic flow meter designed for clean liquids or liquids containing small amounts of suspended solids or aeration. Optional temperature sensors for BTU calculations.
 - 3. Liquid: water, brine, raw sewage, ethylene, glycol, glycerin, others. Contact manufacturer for other fluid compatibility
 - 4. Pipe Surface Temperature: Pipe dia 1/2" to 2":-40-185°F; Pipe dia > 2":-40-250°F
 - 5. Performance:
 - a. Flow Accuracy:
 - 1) Pipe dia 1/2" to 3/4" 1% of full scale
 - 2) Pipe dia 1" to 2" 1% of reading from 4-40 FPS
 - 3) Pipe dia 2" to 100" 1% of reading from 1-40 FPS
 - b. Flow Repeatability ±0.01% of reading
 - c. Velocity Range: (Bidirectional flow)
 - 1) Pipe dia 1/2" to 2" 2 to 40 FPS
 - 2) Pipe dia 2" to 100" 1 to 40 FPS
 - d. Flow Sensitivity 0.001 FPS
 - e. Temperature Accuracy (energy): 32-212°F; Absolute 0.45°F; Difference 0.18°F
 - f. Temperature Sensitivity: 0.05°F
 - g. Temperature Repeatability: ±0.05% of reading
 - 6. Transmitter
 - a. Power Supply: 95 to 264 VAC, 47 to 63 Hz or 10 to 28 VDC.
 - b. Output: [RJ45][Modbus TCP/IP][Ethernet/IP][BACnet/IP][Pulse][4-20mA][RS-485 Modbus RTU}

MOUNT PLEASANT CENTRAL SCHOOL DISTRICT 2024 WLHS PPS PROJECT

- c. Temperature Range: -40 to +185°F
- d. Display: 2 line backlit LCD with keypad
- e. Enclosure: NEMA 4, (IP65), Powder-coated aluminum, polycarbonate
- 7. Agency Rating: UL 1604, EN 60079-0/15, CSA C22.2, CSA Class 1 (Pipe > 2")
- 8. Basis of Design: Veris FST & FSR series
- O. Analog Electric/Pneumatic Transducer
 - 1. Acceptable Manufacturer: Veris Industries
 - 2. General: Micro-controlled poppet valve for high accuracy and with no air loss in the system. Field configurable for pressure sensing in multiple applications.
 - 3. Power Supply: 22-30VDC, 20-30VAC
 - 4. Control Input: 4-20mA, 0-10V, 0-5V; jumper selectable
 - 5. Performance:
 - a. Accuracy: 1% full scale; combined linearity, hysteresis, repeatability
 - b. Compensated Temperature Range: 25° to 140°F
 - c. Temp Coefficient: ±0.05%°C
 - d. Operating Environment: 10-90% RH, non-condensing; 25° to 140°F
 - 6. Supply Pressure: 45 psig max.
 - 7. Manual Override: Jumper selectable mode, digital pushbutton adjust
 - 8. Alarm Contact: 100mA@30VAC/DC (Optional)
 - 9. Control Range 0-20 psig or 3-15 psig; jumper selectable
 - 10. Pressure Differential 0.1 psig (supply to branch)
 - 11. Pressure Indication Electronic, 3-1/2 digit LCD
 - 12. Housing: Mounted on standard SnapTrack; Optional clear dust cover
 - 13. Basis of Design: Veris EP Series
- P. Pressure Independent Control Valves
 - 1. Note: When selecting pressure independent valves the specifier should also revise spec to NOT include balancing valves and also modify to NOT require the individual balancing of each coil/valve combination.
 - 2. NPS 2 and Smaller: PN 16, stainless steel components.
 - 3. NPS 2¹/₂ through 10: Class 125 cast iron body per ASME B16.1-2010, Material class B per ASTM A 126-04 (2014), stainless steel components.
 - 4. Accuracy NPS ³/₄" and Smaller: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 2.32...58 psi for low and standard flow units, 5...58 psi for high flow units within 5% of set flow value.
 - 5. Accuracy NPS 1 through 1¹/₄: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 2.9...58 psi for standard flow units, 5...58 psi for high flow units within 5% of set flow value.
 - 6. Accuracy NPS 1¹/₂ through 4: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 4.35...58 psi within 5% of set flow value.
 - 7. Accuracy NPS 5 through 10: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 5.8...58 psi for standard flow units, 8.7...58 psi for high flow units within 5% of set flow value.
 - 8. Flow Characteristics: Linear Control, selectable to equal percentage at the proportional valve actuator.
 - 9. Field adjustable flow by means of a percentage of rated valve flow.
 - 10. Position feedback output signal integrated into all proportional actuators.

- 11. 100% authority with modulating below 1% regardless of flow settings.
- 12. No cartridges requiring replacement or maintenance.
- 13. Close ratings shall be 232 psi for all valve sizes.
- 14. Basis of Design: Schneider Electric SmartX PICV, or approved equal.
- Q. Control Valve Actuators
 - 1. $\frac{1}{2}$ " to $\frac{3}{4}$ " Ball Valve Actuators
 - a. Size for torque required for valve close-off pressure for system design.
 - b. Coupling: Direct coupled to valve body without use of external devices/tools
 - c. Auxiliary End Switch (optional) to be SPST 24 Vac/Vdc,101 mA to 5 mA maximum on selected two-position models.
 - d. Controller Signal Two-position, Floating or Proportional (0...5 Vdc, 0...10 Vdc, 5...10 Vdc, or 4...20 mA dc). Design allows for change via DIP switches without removal of cover.
 - e. Manual operating lever and position indicator must be standard.
 - f. Power Requirements: 24 Vac for floating, proportional, and 110...230 Vac for two position multi-voltage types
 - g. Actuators must be available with either Spring Return (SR) or Non-Spring Return (NSR) models.
 - h. Operating Temperature Limit Floating is to be 32...140°F (0...60°C) Proportional 32...140°F (0...60°C) Two-Position 32...169°F (0...76°C)
 - i. Wiring (depending on model) Removable Terminal Block, 10 ft. (3.05 m) Plenum Cable, 18 in. (45 cm) Appliance Wire
 - j. Locations must be rated NEMA 2, IEC IP31. (Indoor Use Only.) Actuators with terminal block or plenum cable leads are plenum rated per UL file number E9429.
 - k. Agency Listings: ISO 9001, cULus, and CE.
 - I. Basis of Design: Schneider Electric VBB/VBS, or approved equal.
 - 2. ¹/₂" to 3" 2-way and ¹/₂" to 2" 3-way Ball Valves Actuators
 - a. Size for torque required for valve close-off pressure for system design.
 - b. Actuators are to be available in spring return (SR) and non-spring return (NSR) models. Spring Return (SR) actuators are to provide a choice to return direction.
 - c. Actuators are to be available in models for two-position, floating and proportional control.
 - d. All actuator models are to be equipped with pigtail leads, manual override, and auxiliary switch(es)
 - e. Operating temperatures' Floating Non-Spring Return (NSR) with 33 lb.-in. of torque must be -25 to 130 °F (-32 to 55°C). All other actuators are to -22 to 140 °F (-30 to 60 °C)
 - f. Actuators must be NEMA 2 rated.
 - g. Agency Listings: ISO 9001, cULus, and CE.
 - h. Basis of Design: Schneider Electric VB-2000, or approved equal.
 - 3. ¹/₂" to 2" Bronze, Linear Globe Valve Actuators/67 or 78 lbs. force
 - a. Actuator must have bi-color LED status indication for motion indication, auto calibration and alarm notification.
 - b. When the actuator is properly mounted must have a minimum of a NEMA 2 (IP53) rating.
 - c. Actuators are to be non-spring return.
 - d. Actuators are to be floating (used for two-position) or proportional models.
 - e. Proportional models will have optional models with a position output signal with field selectable 2...10 Vdc and 0...10 Vdc input signals and selectable input signal direct or reverse acting.

- f. Actuator must have auto calibration which provides precise control by scaling the input signal to match the exact travel of the valve stem
- g. Actuators must come in models with Pulse Width Modulated (PWM) with field selectable 0.59 to 2.93 sec and 0.1 to 25.5 sec input signal ranges with a position output signal
- h. Actuators must have manual override with automatic release.
- i. Models with position feedback output signal include field selectable 2...10 Vdc or 0...5 Vdc output signal
- j. Removable wiring screw terminal with ¹/₂" conduit opening.
- k. Actuator operating temperature ranges:
 - When controlling fluid up to 266°F (130°C) = ambient air temperature is to be 23...131°F (-5...55°C)
 - 2) Fluid up to 281°F (138°C) = 23...127°F (-5...53°C)
 - 3) Fluid up to 340°F (171°C) = 23...115°F (-5...46°C)
 - 4) Fluid up to 400°F (204°C) = 23...102°F (-5...39°C)
- I. Actuator agency Listings: cUL-us LISTED mark, NEMA 2, NEC class 2 FCC part-15 class B, Canadian ICES-003, ESA registered, Plenum rated per UL 20430
- m. Basis of Design: Schneider Electric MG350V, or approved equal.
- 4. ¹/₂" to 2" Bronze, Linear Globe Valve Actuators/105 lbs. force
 - a. Actuators must have Two- Position, Floating, and Proportional models.
 - Proportional models will a controller input signal of either a 0...10 Vdc, 2...10 Vdc, 4...20 mAdc, 0...3 Vdc, or 6...9 Vdc. Control function direct/reverse action is switch selectable on most models.
 - c. Actuator force is to be 105 lb. (467 newton) with ½" (13 mm) nominal linear stroke
 - d. Power requirements 24 Vac, 120 Vac or 230 Vac depending on model.
 - e. Actuator housings rated for up to NEMA 2/ IP54.
 - f. Actuator is to have overload protection throughout stroke.
 - g. Actuator Operating temperature -22...140°F (-30...60°C) up to a maximum valve fluid temperature of 366°F (186°C).
 - h. Actuator must automatically set input span to match valve travel.
 - i. Actuator must have manual override to allow positioning of valve and preload.
 - j. Actuator is to be spring return.
 - k. Actuator is to mount directly to valves without separate linkage.
 - I. Actuator agency Listings: UL 873, CUL: UL
 - m. Basis of Design: Schneider Electric SmartX Mx51-7103, or approved equal
- 5. ¹/₂" to 2" Bronze, Linear Globe Valve Actuators/220 lbs. force
 - Actuators must have Two- Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a 0...10 Vdc, 2...10 Vdc, 4...20 mAdc, or 6...9 Vdc. Control function direct/reverse action is jumper selectable
 - b. Actuator is to be spring return.
 - c. Actuator will have 220 lb. force (979 newton) with ½" (13 mm) or 1" (25 mm) nominal linear stroke
 - d. Feedback on proportional model with 2...10 Vdc (max. 0.5 mA) output signal or to operate up to four like additional slave actuators.
 - e. Actuator operating temperature is 0...140°F (-18...60°C) up to a maximum valve fluid temperature of 281°F (138°C), 0...120°F (-18...49°C) up to a maximum valve fluid temperature of 300°F (149°C), 0...100°F (-18...38°C) up to a maximum valve fluid

temperature of 340°F (171°C), 0...90°F (-18...32°C) up to a maximum valve fluid temperature of 366°F (186°C).

- f. Actuator must automatically set input span to match valve travel
- g. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.
- h. Actuator housings rated for up to NEMA 2/ IP54
- i. Actuator must have manual override to allow positioning of valve and preload
- j. Actuator is to mount directly to vales without separate linkage.
- k. Actuator agency Listings: UL 873, CUL: UL
- I. Basis of Design: Schneider Electric SmartX Mx51-720x, or approved equal.
- 6. ¹/₂" to 2" Bronze, Linear Globe Valve Actuators with linkage SR
 - a. Actuators with 35, 60, 133, or 150 lb.-in of force depending on model.
 - b. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb.-in. rated a NEMA 4.
 - c. Actuators are to be spring return.
 - d. Actuators are to have Two-position, Floating and Proportional models.
 - e. Actuators must have overload protection throughout rotation.
 - f. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.
 - g. Actuator agency listings: UL-873, C22-2 No.24-83, CUL0
 - h. Basis of Design: Schneider Electric SmartX, or approved equal.
 - i. ¹/₂" to 2" Bronze Body, Linear Globe Valve Actuators with linkage SR & NSR
 - j. Actuators are to be either floating SPDT control or proportional control 0...10, 2...10 Vdc or 4...20 mA with a 500-ohm resistor included.
 - k. Actuators are to be direct/reverse with selectable DIP switches.
 - I. Actuators are to have 90 lb. (400N), 180 lb. (800N), or 337 lb. (1500N) of force on Non-Spring Return (NSR) 157 lb. of force on the Spring Return model. Note: Not every actuator is for every valve.
 - m. Actuators are to be powered with 24 Vac or 24 Vdc.
 - n. All Non-Spring Return (NSR) actuators are to be NEMA 2, vertical mount only. Spring Return (SR) actuators are to have NEMA 4 models.
 - o. Actuators must have manual override to allow positioning of the valve.
 - p. Actuators must have selectable valve sequencing and flow curves of either equal percentage or linear.
 - q. Actuators must have feedback.
 - r. Actuators must have internal torque protection throughout stroke.
 - s. Actuator operating temperature is 14...122°F (-10...50°C) for chilled water applications, 14...113°F (-10...45°C) up to a maximum valve fluid temperature of 281°F (138°C), 14...107°F (-10...42°C) up to a maximum valve fluid temperature of 300°F (149°C), 14...100°F (-10...38°C) up to a maximum valve fluid temperature of 340°F (171°C), 14...90°F (-10...32°C) up to a maximum valve fluid temperature of 366°F (186°C).
 - t. Actuator agency listings (North America) UL873, cULus, RCM, CE
 - u. Basis of Design: Schneider Electric Forta M400A-VB, M800A-VB, M900A and M1500x-VB screw mounted on Venta VB7000s, or approved equal.
 - 7. 2 ¹/₂" to 6" Cast Iron Flanged Globe Valve Linear Actuators with linkage
 - a. Actuators are to be either floating SPDT control or proportional control 0...10, 2...10 Vdc or 4...20 mA with a 500-ohm resistor included.
 - b. Actuators are to direct/reverse acting with selectable DIP switch.

- c. Actuators are to have 180 lb. (800N) or 337 lb. (1500N) of force.
- d. Actuators will need a 24 Vac or Vdc power supply.
- e. Actuators are to be rated NEMA 2, vertical mount only.
- f. Actuators must have manual override to allow positioning of the valve.
- g. Actuators must have selectable valve sequencing and flow curves of either equal percentage to linear. A 2...10 Vac feedback.
- h. Actuators must have Internal torque protection throughout stroke.
- i. Actuator operating temperature is 14...122°F (-10...50°C) for chilled water applications, 14...113°F (-10...45°C) up to a maximum valve fluid temperature of 281°F (138°C), 14...107°F (-10...42°C) up to a maximum valve fluid temperature of 300°F (149°C).
- j. Actuator agency listings (North America) UL873, cULus, RCM, CE
- k. Basis of Design: Schneider Electric Forta M800A and M1500A, or approved equal.
- 7. 2-1/2" to 6" Cast Iron Flanged Globe Valve Actuators/220 lbs. force.
 - Actuators must have Two- Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a 0...10 Vdc, 2...10 Vdc, 4...20 mAdc, or 6...9 Vdc. Control function direct/reverse action is jumper selectable.
 - b. Actuator is to be spring return.
 - c. Actuator will have 220 lb. force (979 newton) with $\frac{1}{2}$ " (13 mm) or 1" (25 mm) nominal linear stroke.
 - d. Feedback on proportional model with 2...10 Vdc (max. 0.5 mA) output signal or to operate up to four like additional slave actuators.
 - e. Actuator must automatically set input span to match valve travel.
 - f. Actuator Operating temperature 0...140°F (-18...60°C) up to a maximum valve fluid temperature of 300°F (149°C).
 - g. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.
 - h. Actuator housings rated for up to NEMA 2/IP54.
 - i. Actuator must have manual override to allow positioning of valve and preload.
 - j. Actuator is to mount directly to vales without separate linkage.
 - k. Actuator agency Listings: UL 873, CUL: UL.
 - I. Basis of Design: Schneider Electric SmartX Mx61-720x, or approved equal.
 - 8. 2-¹/₂" to 6" Cast Iron Flanged Globe Valve Actuators with linkage SR.
 - a. Actuators with 60, 133, or 150 lb.-in of force depending on model.
 - b. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb.-in. rated a NEMA 4.
 - c. Actuators are to be spring return.
 - d. Actuators are to have Two-position, Floating and Proportional models.
 - e. Actuators must have overload protection throughout rotation.
 - f. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.
 - g. Actuator agency listings: UL-873, C22-2 No.24-83, CUL0.
 - h. Basis of Design: Schneider Electric SmartX, or approved equal.

- 8. 2" to 18" 2-Way and 2" to 16" 3-Way Linear Butterfly Valve Actuator with linkage NSR
 - a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0...10 Vdc or 4...20 mA models. All Actuators are to be NEMA 4, manual override (hand wheel) two auxiliary switches, and built-in heater.
 - b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
 - c. Actuators must be available in 24 Vac and 120 Vac models.
 - d. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
 - e. Proportional models must have feedback of 0...10 Vdc or 4...20 mA.
 - f. Actuator operating temperature shall be -40...150°F (-40...60°C).
 - g. Actuator agency listings (North America) UL, CSA and CE
 - h. Basis of Design: Schneider Electric S70, or approved equal.
- 9. 2" to 4" 2-Way and 3-Way Butterfly Valve Actuators SR
 - a. The butterfly valve actuators are to be Spring Return (SR) two-position and proportional taking 2...10 Vdc or 4...20 mA models. All Actuators are to be NEMA 2.
 - b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
 - c. Actuators must be available in 24 Vac models.
 - d. Actuators shall have two SPDT auxiliary switch models.
 - e. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
 - f. Proportional models must have feedback of 2...10 Vdc or 4...20 mA.
 - g. Actuator operating temperature shall be -22...140°F (-12...60°C).
 - h. Actuator agency listings (North America) UL, CSA and CE
 - i. Basis of Design: Schneider Electric SmartX Mx-41-7153, or approved equal.
- 10. 2" to 6" 2-Way and 3-Way Butterfly Valve Actuators NSR
 - a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0...10 Vdc or 4...20 mA models. All Actuators are to be NEMA 2.
 - b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
 - c. Actuators must be available in 24 Vac models.
 - d. Actuators shall have two SPDT auxiliary switch models.
 - e. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
 - f. Proportional models must have feedback of 2...10 Vdc or 4...20 mA.
 - g. Actuator operating temperature shall be -4...122°F (-2...50°C).
 - h. Actuator agency listings (North America) UL, CSA and CE
 - i. Basis of Design: Schneider Electric SmartX NR-22xx-5xx, or approved equal.
- R. Dampers
 - Automatic dampers, furnished by the Building Automation Contractor shall be single or multiple blade as required. Dampers are to be installed by the HVAC Contractor under the supervision of the BAS system supplier. All blank-off plates and conversions necessary to install smaller than duct size dampers are the responsibility of the Sheet Metal Contractor.
 - 2. Damper frames are to be constructed of 13 gauge galvanized sheet steel mechanically joined with linkage concealed in the side channel to eliminate noise as friction. Compressible spring stainless steel side seals and acetyl or bronze bearings shall also be provided.

- 3. Damper blade width shall not exceed eight inches. Seals and 3/8 inch square steel zinc plated pins are required. Blade rotation is to be parallel or opposed as shown on the schedules.
- 4. For high performance applications, control dampers will meet or exceed the UL Class I leakage rating.
- 5. Control and smoke dampers shall be Ruskin, or approved equal.
- 6. Provide opposed blade dampers for modulating applications and parallel blade for two position control.
- S. Damper Actuators
 - 1. Direct-coupled type non-hydraulic designed for minimum 100,000 full-stroke cycles at rated torque.
 - 2. Direct-coupled damper actuators must have a five-year warrantee.
 - 3. Size for torque required for damper seal at maximum design conditions and valve close-off pressure for system design.
 - 4. Direct-coupled damper actuators should accommodate 3/8", $\frac{1}{2}$ " 1.05" round or 3/8"... $\frac{1}{2}$ " and $\frac{3}{4}$ " square damper shafts.
 - Actuator operating temperature minimum requirements: 44, 88 and 133 lb.-in. are -25°F...130°F (-32°C...55°C). The 30, 35, 60, 150 and 300 lb.-in. are -25°...140°F (-30°C... 60 °C). The 270 are -22°...122°F (-30°C... 50 °C).
 - 6. Overload protected electronically throughout rotation except for selected Floating actuators the have a mechanical clutch.
 - 7. Spring Return Actuators: Mechanical fail safe shall incorporate a spring-return mechanism.
 - 8. Non-Spring Return Actuators shall stay in the position last commended by the controller with an external manual gear release to allow positioning when not powered.
 - 9. Power Requirements: 24Vac/dc [120Vac][230Vac]
 - 10. Proportional Actuators controller input range from 0...10 Vdc, 2...10 Vdc or 4...20 mA models.
 - 11. Housing: Minimum requirement NEMA type 2 with NEMA type 4 available for applications requiring higher ratings.
 - 12. Actuators with a microprocessor should not be able to be modified by an outside source (cracked or hacked).
 - 13. Actuators of 133 and 270 lb.-in. of torque or more should be able to be tandem mount or "gang" mount.
 - 14. Agency Listings: ISO 9001, cULus, CE and CSA
 - 15. Basis of Design: Schneider Electric SmartX Actuators, or approved equal.
- T. Smoke Detectors
 - 1. Air duct smoke detectors shall be by Air Products & Controls or approved equal. The detectors shall operate at air velocities from 300 feet per minute to 4000 feet per minute.
 - 2. The smoke detector shall utilize a photoelectric detector head.
 - 3. The housing shall permit mechanical installation without removal of the detector cover.
 - 4. The detectors shall be listed by Underwriters Laboratories and meet the requirements of UL 268A.
- U. Airflow Measuring Stations
 - 1. Provide a thermal anemometer using instrument grade self heated thermistor sensors with thermistor temperature sensors.
 - 2. The flow station shall operate over a range of 0 to 5,000 feet/min with an accuracy of +/- 2% over 500 feet/min and +/- 10 ft/min for reading less than 500 feet/min.

MOUNT PLEASANT CENTRAL SCHOOL DISTRICT 2024 WLHS PPS PROJECT

2.8 ELECTRICAL POWER MEASUREMENT

- A. Electrical Power Monitors, Single Point (Easy Install)
 - 1. Acceptable Manufacturer: Schneider Electric, Veris Industries.
 - 2. General: Consist of three split-core CTs, factory calibrated as a system, hinged at both axes with the electronics embedded inside the master CT. The transducer shall measure true (rms.RMS) power demand real power (kW) consumption (kWh). Conform to ANSI C12.1 metering accuracy standards.
 - 3. Voltage Input: Load capacity as shown on drawings. 208-480 VAC, 60 Hz
 - 4. Maximum Current Input: Up to 2400A
 - 5. Performance:
 - a. Accuracy: +/- 1% system from 10% to 100% of the rated current of the CT's
 - b. Operating Temperature Range: 32-140°F, 122°F for 2400A.
 - 6. Output: 4 to 20 mA, Pulse. or Modbus RTU
 - 7. Ratings:
 - a. Agency: UL508 or equivalent
 - b. Transducer internally isolated to 2000 VAC.
 - c. Case isolation shall be 600 VAC.
 - 8. Basis of Design: Similar to Enercept H80xx Series, E23 Series
 - Accessories: Current transducers (CTs): split-core (E681/H681/U004) series, solid-core (E682/U004 series) and Rogowski Coils – rope style (E683 series); Communications gateways: Modbus to Ethernet (EGX150)
 - B. Electrical Power Monitors, Single Point (High Accuracy)
 - 1. Acceptable Manufacturer: Schneider Electric, Veris Industries.
 - 2. General: Revenue grade meter. Measures voltage, amperage, real power (kW), consumption (kWh), and reactive power (kVARar), and power factor (PF) per phase and total load for a single load. Factory calibrated as a system using split core CT's. Neutral voltage connection is required.
 - 3. Voltage Input: 208-480 VAC, 60 Hz
 - 4. Current Input: Up to 2400A
 - 5. Performance:
 - a. Accuracy: +/- 1% system from 2% to 100% of the rated current of the CT's
 - b. Operating Temperature Range: 32-122°F
 - 6. Output: Pulse, BACnet, Modbus RTU
 - 7. Display: Backlit LCD
 - 8. Enclosure: NEMA 1
 - 9. Agency Rating: UL508 or equivalent
 - 10. Basis of Design: Veris Industries H81xx00 series.
 - 11. Accessories: Current transducers (CTs): split-core (E681/H681/U004) series, solid-core (E682/U004 series)
 - C. Electrical Power Monitors, Single Point (High Accuracy/Versatility)
 - 1. Acceptable Manufacturer: Schneider Electric, Veris Industries.
 - 2. General: Revenue grade meter. Measures voltage, amperage, real power (kW), consumption (kWh), reactive power (kVAR), apparent power (kVA) and power factor (PF) per phase and total load for a single load. Available with data logging, Bi-directional (4-quadrant) metering, and pulse contact accumulator inputs.
 - 3. Voltage Input: 90-600 VAC, 50/60 Hz, 125-300 VDC

- 4. Current Input: 5A 32,000A, selectable 1/3V or 1V CT inputs
- 5. Performance:
 - a. Accuracy shall be +/- [0.2%][0.5%] revenue grade
 - b. Operating Temperature Range: -22-158°F
- 6. Output shall be [Pulse][BACnet][Modbus RTU][LON][Modbus TCP][BACnet/IP][Modbus RTU/TCP][SNMP]
- 7. Display: Backlit LCD
- 8. Enclosure: NEMA 4x optional
- 9. Agency Rating: UL508, ANSI C12.20
- 10. Basis of Design: Veris E50 series, Veris E60 Series or Schneider Electric PM5000 Series
- 11. Accessories: Current transducers (CTs): split-core (E681/H681/U004) series, solid-core (E682/U004 series) and Rogowski Coils rope style (E683 series)
- D. Electrical Power Monitors, Multiple Point (92 loads, High Accuracy)
 - 1. Acceptable Manufacturer: Schneider Electric, Veris Industries.
 - 2. General: Revenue grade meter. Measures volts, amps, power and energy for each circuit. 1/4 amp to 200 amp monitoring. 4 configurable alarm threshold registers
 - 3. Voltage Input: 90-277 VAC, 60 Hz
 - 4. Current Input: 5A 32,000A, 1/3V CT inputs
 - 5. Performance:
 - a. Accuracy: +/- 0.5% meter (split core), +/- 1% system from 1/4-100A (solid core)
 - b. Operating Temperature Range: 32-140°F
 - 6. Output: [BACnet][Modbus RTU][ModbusTCP][BACnet/IP][Modbus RTU/TCP][SNMP]
 - 7. Agency Rating: UL508, ANSI C12.10, IEC Class 1
 - 8. Basis of Design: Veris E3xxx series.

PART 3 - EXECUTION

- 3.1 GENERAL
 - A. In addition to the requirements specified herein, execution shall be in accordance with the requirements of Specification Section 23 00 00 and Drawings.
 - B. Examine equipment exterior and interior prior to installation. Report any damage and do not install any equipment that is structurally, moisture, or mildew damaged.
 - C. Verification of Conditions: Examine areas and conditions under which the work is to be installed, and notify the Contractor in writing, with a copy to the Owner and the Engineer, of any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected.
 - D. Beginning of the work shall indicate acceptance of the areas and conditions as satisfactory by the Installer.
 - E. Install equipment in accordance with reviewed product data, final shop drawings, manufacturer's written instructions and recommendations, and as indicated on the Drawings.
 - F. Provide final protection and maintain conditions in a manner acceptable to the manufacturer that shall help ensure that the equipment is without damage at time of Substantial Completion.

G. Demolition

- 1. Remove controls which do not remain as part of the building automation system, all associated abandoned wiring and conduit, and all associated pneumatic tubing. The Owner will inform the Contractor of any equipment which is to be removed that will remain the property of the Owner. All other equipment which is removed will be disposed of by the Contractor.
- H. Access to Site
 - 1. Unless notified otherwise, entrance to building is restricted. No one will be permitted to enter the building unless their names have been cleared with the Owner or the Owner's Representative.
- I. Code Compliance
 - 1. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer's recommendations. Should any discrepancy be found between wiring specifications in Division 17 and Division 16, wiring requirements of Division 17 will prevail for work specified in Division 17.

J. Cleanup

1. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract.

3.2 SYSTEM ACCEPTANCE TESTING

- A. All application software will be verified and compared against the sequences of operation.
- B. Control loops will be exercised by inducing a setpoint shift of at least 10% and observing whether the system successfully returns the process variable to setpoint. Record all test results and attach to the Test Results Sheet.
- C. Test each alarm in the system and validate that the system generates the appropriate alarm message, that the message appears at all prescribed destinations (workstations or printers), and that any other related actions occur as defined (i.e. graphic panels are invoked, reports are generated, etc.). Submit a Test Results Sheet to the owner.
- D. Perform an operational test of each unique graphic display and report to verify that the item exists, that the appearance and content are correct, and that any special features work as intended. Submit a Test Results Sheet to the owner.
- E. Perform an operational test of each third party interface that has been included as part of the automation system. Verify that all points are properly polled, that alarms have been configured, and that any associated graphics and reports have been completed. If the interface involves a file transfer over Ethernet, test any logic that controls the transmission of the file, and verify the content of the specified information.

3.3 INSTALLATION

- A. Hardware Installation Practices for Wiring
 - 1. All controllers are to be mounted vertically and per the manufacturer's installation documentation.
 - 2. The 120VAC power wiring to each Ethernet or Remote Site controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.
 - 3. A true earth ground must be available in the building. Do not use a corroded or galvanized pipe, or structural steel.

- 4. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
- 5. Conduit in finished areas will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception; metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.
- 6. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.
- 7. Wires are to be kept a minimum of three (3) inches from hot water, steam, or condensate piping.
- 8. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.
- 9. Wire will not be allowed to run across telephone equipment areas.
- 10. Provide fire caulking at all rated penetrations.
- B. Installation Practices for Field Devices
 - 1. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.
 - 2. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.
 - 3. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150% of the rated coil voltage.
 - 4. Water line mounted sensors shall be removable without shutting down the system in which they are installed.
 - 5. For duct static pressure sensors, the high pressure port shall be connected to a metal static pressure probe inserted into the duct pointing upstream. The low pressure port shall be left open to the plenum area at the point that the high pressure port is tapped into the ductwork.
 - 6. For building static pressure sensors, the high pressure port shall be inserted into the space via a metal tube. Pipe the low pressure port to the outside of the building.
- C. Wiring, Conduit, and Cable
 - 1. All wire will be copper and meet the minimum wire size and insulation class listed below:
 - a. Power 12 Gauge 600 Volt
 - b. Class One 14 Gauge Std. 600 Volt
 - c. Class Two 18 Gauge Std. 300 Volt
 - d. Class Three 18 Gauge Std. 300 Volt
 - e. Communications Per Mfr.
 - 2. Power and Class One wiring may be run in the same conduit. Class Two and Three wiring and communications wiring may be run in the same conduit.
 - 3. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.
 - 4. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit seal-off fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.
 - 5. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.
 - 6. Junction boxes shall be provided at all cable splices, equipment termination, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.

- 7. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.
- 8. Fiber optic cable shall include the following sizes; 50/125, 62.5/125 or 100/140.
- 9. Only glass fiber is acceptable, no plastic.
- 10. Fiber optic cable shall only be installed and terminated by an experienced contractor. The BAS system supplier shall submit to the Engineer the name of the intended contractor of the fiber optic cable with his submittal documents.

D. Enclosures

- 1. For all I/O requiring field interface devices, these devices where practical will be mounted in a field interface panel (FIP). The Contractor shall provide an enclosure which protects the device(s) from dust, moisture, conceals integral wiring and moving parts.
- 2. FIPs shall contain power supplies for sensors, interface relays and contactors, and safety circuits.
- 3. The FIP enclosure shall be of steel construction with baked enamel finish; NEMA 1 rated with a hinged door and keyed lock. The enclosure will be sized for twenty percent spare mounting space. All locks will be keyed identically.
- 4. All wiring to and from the FIP will be to screw type terminals. Analog or communications wiring may use the FIP as a raceway without terminating. The use of wire nuts within the FIP is prohibited.
- 5. All outside mounted enclosures shall meet the NEMA-4 rating.
- 6. The wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.
- E. Identification
 - 1. Identify all control wires with labeling tape or sleeves using words, letters, or numbers that can be exactly cross-referenced with as-built drawings.
 - 2. All field enclosures, other than controllers, shall be identified with a Bakelite nameplate. The lettering shall be in white against a black or blue background.
 - 3. Junction box covers will be marked to indicate that they are a part of the BAS system.
 - 4. All I/O field devices (except space sensors) that are not mounted within FIP's shall be identified with name plates.
 - 5. All I/O field devices inside FIP's shall be labeled.
- F. Existing Controls.
 - 1. Existing controls which are to be reused must each be tested and calibrated for proper operation. Existing controls which are to be reused and are found to be defective requiring replacement, will be noted to the Owner. The Owner will be responsible for all material and labor costs associated with their repair.

G. Location

- 1. The location of sensors is per mechanical and architectural drawings.
- 2. Space humidity or temperature sensors will be mounted away from machinery generating heat, direct light and diffuser air streams.
- 3. Outdoor air sensors will be mounted on the north building face directly in the outside air. Install these sensors such that the effects of heat radiated from the building or sunlight is minimized.
- 4. Field enclosures shall be located immediately adjacent to the controller panel(s) to which it is being interfaced.

- H. Software Installation
 - 1. The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.
- 3.7 SEQUENCES OF OPERATION
 - A. VRF Ductless Split Ceiling Units
 - 1. Point List
 - a. Space Temperature
 - b. VRF Space Temperature Setpoint
 - c. Occupied/Unoccupied
 - d. VRF Indoor Mode (Heating/Cooling)
 - e. VRF Indoor Unit fan speed
 - e. Energy Recovery Unit Status (if applicable)
 - f. Baseboard Fin-tube Control Valve Status (if applicable)
 - g. VRF Outdoor Mode/status

(Provide all required hardware and software to interface the BMS with the VRF system.)

- 2. Sequence of Operation
 - a. <u>Unoccupied Mode:</u> Cooling shall not operate. Heat pump and heat recovery heating shall operate as required to satisfy space temperature setback setpoint.
 - b. <u>Occupied Mode:</u> Cooling shall operate as required based upon its own packaged controls to maintain thermostat setpoint. Heating heat pump operation shall operate to maintain space thermostat setpoint. Heat recovery mode shall operate as required, providing heating or cooling as required.
- B. Cabinet Heaters
 - 1. Point List
 - a. Space Temperature
 - b. Valve Modulation
 - c. Fan Start/Stop
 - 2. Sequence of Operation
 - a. <u>Unoccupied Mode (Heating Season):</u> Modulate heating control valve to maintain night setback temperature set-point (adjustable).
 - b. <u>Occupied Mode (Heating Season):</u> Modulate heating control valve to maintain occupied temperature set-point (adjustable). Fan shall not operate if hot water above 150 degrees F is not available. For corridors (excluding those located near exterior doors), the VRF system shall be the first stage of heating and the cabinet heater shall be stage two heating.
- C. Exhaust Fans
 - 1. Point List
 - a. Fans Start/Stop
 - b. Fans Status

- 2. Sequence of Operation
 - a. <u>Unoccupied Mode:</u> Fans Off, Dampers Closed.
 - b. <u>Occupied Mode:</u> Fans On, Dampers Open.
 - c. <u>Alarms generated at operator's workstation</u>: Exhaust Fan Status.
- D. Indoor Energy Recovery Unit
 - 1. Point List
 - a. Supply Fan Status
 - b. Exhaust Fan Status
 - c. OA, EA, Air Temperatures
 - d. OA, EA, Dampers
 - e. Discharge Temperature (before and after duct coils)
 - 2. Sequence of Operation
 - a. Unoccupied In this mode: Supply and Exhaust fans off, OA and EA dampers closed. The respective VRF cassette units shall start and run to maintain the night setback temperature (60°F).
 - b. Occupied In this mode:
 - The OA and EA dampers will open and through a hard wired interlock and the Supply and Exhaust fans will start.
 - Energy transfer in the heat recovery core will be both sensible and latent energy between air streams. Latent energy transfer media transfer will be accomplished by direct water vapor transfer from one air steam to the other, without exposing transfer media in succeeding cycles directly to the exhaust air and then to the fresh air.
 - The respective hot water control valve shall modulate open beyond the normal 72 degrees ventilation air discharge temperature to provide additional heat to maintain the occupied space temperature setpoint (72°F).
 - An adjustable dead band offset will prevent short cycling.
 - In cooling mode, the respective VRF unit serving the duct coil shall vary its capacity as required to maintain occupied cooling discharge setpoint (72° adjustable) as sensed by the duct discharge sensor.
 - c. Economizer In this mode:
 - If the outside air temperature is greater than the return air temperature, the system will operate as described in the occupied mode.
 - If the outside air temperature is less that the return air temperature and the outside air temperature is greater than 50 Degrees F. (adjustable), the RTU heat transfer wheel shall stop.
 - d. <u>Alarms:</u> In this mode:
 - i. Should the command not equal the status within 90 seconds from start-up an alarm will be generated at the operator's workstation.
 - ii. Should any temperature fall outside of its preset limits (high/low) an alarm will be generated at the operator's workstation.

- E. Space Temperature Setpoints
 - 1. Heating mode
 - a. Occupied temperature setpoint shall be maximum 72 degrees F.
 - b. Unoccupied temperature setpoint shall be minimum 55 degrees F.
 - 2. Cooling mode
 - a. Occupied temperature setpoint shall be minimum 78 degrees F.
 - b. Unoccupied temperature setpoint shall be maximum 85 degrees F.
- F. Two-Way Mixing Valve (Coil)
 - 1. Point List
 - a. HWS Temperature.
 - b. HWR Temperature.
 - c. Entering Mixed Air Temperature.
 - d. Leaving Air Temperature.
 - e. Valve Modulation.
 - f. Freeze-Stat Status.
 - 2. Sequence of Operation:

The two-way control valve will modulate through the DDC system to modulate the hot water supply to satisfy low limit and room temperature setpoints.

- 3. Alarms: In all modes:
 - a. Should the command not equal the status within 90 seconds from start-up, an alarm will be generated at the operator's workstation.
 - b. Should any temperature fall outside of its preset limits (high/low) an alarm will be generated at the operator's workstation.
 - c. A freezestat located on the discharge side of the coil shall open the valve, stop the associated air handler, and an alarm shall be generated at the operator's workstation.

G. Convectors

- 1. Point List
 - a. Space Temperature
 - b. Valve Modulation
- 2. Sequence of Operation
 - a. <u>Unoccupied Mode (Heating Season):</u> Modulate control valve to maintain night setback temperature set-point (adjustable).
 - a. <u>Occupied Mode (Heating Season)</u>: Modulate control valve to maintain daytime temperature set-point (adjustable). Interface with second stage heating (If applicable).
 - Alarms: In this mode: Should space temp fall out of range by 5°F (high/low) an alarm will be generated at the operator's workstation.

(Provide all required hardware and software to interface the baseboard with the VRF system through the BMS.)

- H. Cabinet Heater
 - 1. Point List
 - a. Space Temperature
 - b. Valve Modulation
 - c. Fan Start/Stop
 - 2. Sequence of Operation
 - a. <u>Unoccupied Mode (Heating Season)</u>: Open heating control valve to maintain night setback temperature set-point (adjustable). Fan shall not run if hot water is not enabled and available.
 - a. <u>Occupied Mode (Heating Season):</u> Open heating control valve to maintain occupied temperature set-point (adjustable). Fan shall not run if hot water is not enabled and available.
 - Alarms: In this mode: Should space temp fall out of range by 5°F (high/low) an alarm will be generated at the operator's workstation.
- 3.9 TRAINING
 - A. The Contractor shall supply personnel to train key customer personnel in the operation and maintenance of the installed system. The training program shall be designed to provide a comprehensive understanding and basic level of competence with the system. It shall be sufficiently detailed to allow customer personnel to operate the system independent of any outside assistance. On-line context sensitive HELP screens shall be incorporated into the system to further facilitate training and operation.
 - B. The training plan shall include detailed session outlines and related reference materials. The customer personnel shall be able to utilize these materials in the subsequent training of their co-workers.
 - 1. Training time shall not be less than a total of 40 hours, and shall consist of:
 - a. 16 hours during normal day shift periods for system operators. Specific schedules shall be established at the convenience of the customer.
 - b. 24 hours of system training shall be provided to customer supervisory personnel so that they are familiar with system operation.
 - c. The specified training schedule shall be coordinated with the customer and will follow the training outline submitted by the Contractor as part of the submittal process.
 - d. Provide an as built Video training tape, showing & explaining all animated graphics in detail, all controllers and equipment the FMS operates. (Four (4) Copies shall be supplied)
 - e. If further training is needed, the Contractor shall provide another 40 hours at no extra cost.
 - 2. All training sessions shall be scheduled by the Construction Manager. The Contractor shall provide sign-in sheets and distribute minutes of each session prior to the subsequent session. This documentation shall be included in the Operation and Maintenance manuals.

SECTION 230470 - TESTING, START-UP AND ADJUSTMENTS

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section.

- 1.1 TESTING, START-UP AND ADJUSTMENTS
 - A. Furnish all materials, supplies, labor and power required for testing. Make preliminary tests and prove work satisfactory. Notify Architect and all authorities having jurisdiction in ample time to be present for final testing of all piping. Test before insulating or concealing any piping. Repair defects disclosed by tests, or if required by Architect, replace defective work with new work without additional cost to Owner. Make tests in stages if so ordered by Architect to facilitate work of others. Use of wicking in tightening leaking joints not permitted.
 - B. HVAC Contractor is responsible for work of other trades disturbed or damaged by tests and/or repair and replacement of his work, and shall cause work so disturbed or damaged to be restored to its original condition at his own expense.
 - C. Unless otherwise specified, all piping systems shall be hydrostatically tested to 150 p.s.i.g. Tests shall be of four (4) hour duration during which time piping shall show no leaks and during time no sealing of leaks will be permitted.
 - D. HVAC Contractor shall balance out system and submit test reports showing operating data to include the following:
 - 1. C.F.M. of all air handling equipment.
 - 2. C.F.M. at each air outlet.
 - 3. G.P.M. for equipment.
 - 4. R.P.M. for each fan and fan motor.
 - 5. Motor power consumption.
 - 6. Air temperature readings before and after coils.
 - 7. Water temperature readings in and out of coils and through equipment.
 - 8. Pressure gauge readings before and out of all pertinent equipment.
 - E. If the performance of the systems does not conform to the design parameters the Contractor shall return to the site until the systems perform as designed.
 - F. HVAC Contractor shall furnish services of qualified personnel, thoroughly familiar with job, to operate and make all adjustments so that system and control equipment shall operate as intended. This shall include adjustment/replacement of sheaves/impellers to achieve design performance. Adjustments shall be made including balancing of water and air systems in cooperation with qualified representatives of mechanical equipment manufacturers and temperature control manufacturer. This shall include any required adjustment/replacement of sheaves, belts, impellers, etc. to achieve design performance. Architect/Engineer is to be notified when this balancing is to be performed.
 - G. When all work is in an acceptable operating condition, furnish operating and maintenance manuals as specified in General Requirements.
 - H. All HVAC equipment shall be carefully designed, constructed and installed so as to prevent any objectionable noise or vibration reaching any part of the building outside of the mechanical equipment room. Care shall also be taken to prevent transmission of noise or odor through ductwork into other spaces.

- I. Contractor shall include in his Bid, adjustment of air quantity below scheduled C.F.M. for air systems deemed "noisy" by Owner subsequent to initial balancing.
- J. The Contractor shall be required to rectify of replace at his own expense, any equipment not complying with the foregoing requirements.
- K. Final inspection and approval shall be made only after proper completion of all of above requirements.

SECTION 230480 - GENERAL LABELING, VALVE CHARTS AND PIPING IDENTIFICATION

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section. Submit shop drawings for checking and approval.

1.1 GENERAL LABELING AND VALVE CHARTS

- A. This Contractor shall have appropriate descriptive labels, identification tags and nameplates of equipment, valves, etc. furnished and installed under this Contract and shall be properly placed and permanently secured to (or adjacent to) the item being installed. All such labels, identifications, tags, nameplates, etc. shall be selected by the Architect/Engineer.
- B. In general, labels shall be the lamacoid type of sufficient size to permit easy identification, black coated, white edged, with letters 3/16" high. Major equipment, apparatus, control panels, etc. shall have 8" x 4" lamacoid plates with lettering of appropriate size.
- C. Provide tags for all valves, automatic and manual dampers. Tags shall be Type #2020 anodized aluminum of #1420 lamacoid engraved. Tags may not necessarily be standard. Fasten tags to valve or damper with brass chain.
- D. All nameplates, labels, identifications and tags shall be as manufactured by the Seton Name Plate Co., of New Haven, CT or approved equal. Submit complete schedules, listings and descriptive data together with samples for checking and approval before purchasing. Labeling shall include the "number" of the equipment, valve, dampers, switch, etc. and service of the valve.
- E. Mount on laminated plastic boards with transparent surface all valves, wiring diagrams, control diagrams, instruction charts, permits, etc. Valve chart shall be non-fading with original copies laminated.

1.2 IDENTIFICATION OF PIPING

- A. This Contractor shall provide on all piping, semi-rigid, wrap around plastic identification markers equal to Seton Snap-Around and/or Seton Strap-On pipe markers.
- B. Each marker background is to be appropriately color coded with a clearly printed legend to identify the contents of the pipe. Directions of flow arrows are to be included on each marker.
- C. Identification of all piping shall be adjacent to each valve, at each pipe passage through wall, floor and ceiling construction and at each branch and riser take-off.
- D. Identification shall be on all horizontal pipe runs, marked every 15 ft. as well as at each inlet outlet of equipment.

SECTION 230490 - GUARANTEE

PART 1 - GENERAL

Applicable Provisions of the Conditions of the Contract and Division 1 General Requirements govern work in this section.

1.1 GUARANTEE

A. The Contractor shall remove, replace and/or repair at his own expense and at the convenience of the Owner, any defects in workmanship, materials, ratings, capacities and/or characteristics occurring in the work within one (1) year or within such longer period as may be provided in the Drawings and/or Section of the Specifications, which guarantee period shall commence with the final acceptance of the entire Contract in accordance with the guarantee provisions stated in the General Conditions, and the Contractor shall pay for all damage to the system resulting from defects in the work and all expenses necessary to remove, replace, and/or repair any other work which may be damaged in removing, replacing and/or repairing the work.