SECTION 23 3100 HVAC DUCTS AND CASINGS

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Metal ducts.

1.2 RELATED REQUIREMENTS

- A. Section 08 9100 Louvers
- B. Section 23 3416 Centrifugal HVAC Fans

1.3 REFERENCE STANDARDS

- A. ASTM A653/A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process; 2018.
- B. NFPA 90A Standard for the Installation of Air-Conditioning and Ventilating Systems; 2018.
- C. NFPA 90B Standard for the Installation of Warm Air Heating and Air-Conditioning Systems; 2018.
- D. SMACNA (DCS) HVAC Duct Construction Standards Metal and Flexible; 2005 (Revised 2009).

1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements for submittal procedures.
- B. Product Data: Provide data for duct materials.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience, and approved by manufacturer.

1.6 FIELD CONDITIONS

A. Do not install duct sealants when temperatures are less than those recommended by sealant manufacturers.

PART 2 PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Provide Ductwork, fittings, hangers, supports, and appurtenances in accordance with NFPA 90A and SMACNA (DCS) guidelines unless stated otherwise.
- B. Provide metal duct unless otherwise indicated. Fibrous glass duct can be substituted at the Contractor's option.
- C. Duct Sealing and Leakage in accordance with Static Pressure Class:
 - 1. Duct Pressure Class and Material for Common Mechanical Ventilation Applications:
 - a. General Exhaust Air: 1/2 in-wc pressure class, galvanized steel.
- D. Duct Fabrication Requirements:
 - 1. Duct and Fitting Fabrication and Support: SMACNA (DCS) including specifics for continuously welded round and oval duct fittings.
 - 2. Use reinforced and sealed sheet-metal materials at recommended gauges for indicated operating pressures or pressure class.
 - 3. Construct tees, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible and where rectangular elbows must be used, provide airfoil turning vanes of perforated metal with glass fiber insulation.
 - 4. Provide turning vanes of perforated metal with glass fiber insulation when an acoustical lining is required.
 - 5. Where ducts are connected to exterior wall louvers and duct outlet is smaller than louver frame, provide blank-out panels sealing louver area around duct. Use same material as duct, painted black on exterior side; seal to louver frame and duct.

2.2 METAL DUCTS

- A. Material Requirements:
 - 1. Galvanized Steel: Hot-dipped galvanized steel sheet, ASTM A653/A653M FS Type B, with G60/Z180 coating.
- B. Connectors, Fittings, Sealants, and Miscellaneous:
 - 1. Fittings: Manufacture with solid inner wall of perforated galvanized steel.
 - 2. Transverse Duct Connection System: SMACNA "E" rated rigid class connection, interlocking angle and duct edge connection system with sealant, gasket, cleats, and corner clips in accordance with SMACNA (DCS).

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install, support, and seal ducts in accordance with SMACNA (DCS).
- B. Comply with safety standards NFPA 90A and NFPA 90B.
- C. Duct sizes indicated are precise inside dimensions. For lined ducts, maintain sizes inside lining.
- D. Locate ducts with sufficient space around equipment to allow normal operating and maintenance activities.
- E. At exterior wall louvers, seal duct to louver frame and install blank-out panels.
- F. Louver Fit-out:
 - 1. Provide blank-out panels sealing available area of wall-mounted exterior-faced louver when connected ductwork is smaller than actual louver free area, and duct outlet is smaller than the louver frame.
 - 2. Use the same duct material painted black on the exterior side, then seal louver frame and duct.

3.2 CLEANING

A. Clean duct system by forcing air at high velocity through duct to remove accumulated dust. Clean half the system at a time to obtain sufficient air. Protect equipment that could be harmed by excessive dirt with temporary filters or bypass during cleaning.

END OF SECTION