SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY #### A. Section Includes: - 1. Electrical equipment coordination and installation. - 2. Sleeves for raceways and cables. - 3. Sleeve seals. - 4. Grout. - 5. Common electrical installation requirements. #### 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. ## 1.4 SUBMITTALS A. Product Data: For sleeve seals. #### 1.5 COORDINATION - A. Coordinate arrangement, mounting, and support of electrical equipment: - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated. - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations. - 3. To allow right of way for piping and conduit installed at required slope. - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment. - B. Coordinate installation of required supporting devices and set sleeves in east-in-place concrete, masonry walls, and other structural components as they are constructed. - C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames." - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."." ## PART 2 - PRODUCTS ## 2.1 SLEEVES FOR RACEWAYS AND CABLES - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel. - 1. Minimum Metal Thickness: - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). ## 2.2 SLEEVE SEALS - A. Description: Modular scaling device, designed for field assembly, to fill annular space between sleeve and raceway or cable. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following: - a. Advance Products & Systems, Inc. - b. Calpico, Inc. - c. Metraflex Co. - d. Pipeline Seal and Insulator, Inc. - 3. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 4. Pressure Plates: Stainless steel. Include two for each scaling element. 5. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. ## 2.3 GROUT A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. #### PART 3 - EXECUTION # 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION - A. Comply with NECA 1. - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items. - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements. - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity. - E. Right of Way: Give to piping systems installed at a required slope. ## 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies. - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - E. Cut sleeves to length for mounting flush with both surfaces of walls. - F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise. - H. Seal space outside of sleeves with grout for penetrations of concrete and masonry - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing. - I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.". - J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping." - K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. - L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. - M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals. ## 3.3 SLEEVE-SEAL INSTALLATION - A. Install to seal exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. # 3.4 FIRESTOPPING A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping." END OF SECTION 260500 # SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes the following: - 1. Building wires and cables rated 600 V and less. - 2. Connectors, splices, and terminations rated 600 V and less. - 3. Sleeves and sleeve seals for cables. - B. Related Sections include the following: - 1. Division 26 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V. - 2. Division 26 Section "Undercarpet Electrical Power Cables" for flat cables for undercarpet installations. - 3. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits. ## 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. # 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Qualification Data: For testing agency. - C. Field quality-control test reports. # 1.5 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - C. Comply with NFPA 70. #### 1.6 COORDINATION A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed. ## PART 2 - PRODUCTS ## 2.1 CONDUCTORS AND CABLES - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Alcan Products Corporation; Alcan Cable Division. - 2. American Insulated Wire Corp.; a Leviton Company. - 3. General Cable Corporation. - 4. Senator Wire & Cable Company. - 5. Southwire Company. - C. Copper Conductors: Comply with NEMA WC 70. - D. Conductor Insulation: Comply with NEMA WC 70 for Types THWor THHN-THWN - E. Multiconductor Cable: Comply with NEMA WC 70 for armored cable, Type ACwith ground wire. ## 2.2 CONNECTORS AND SPLICES - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Hubbell Power Systems, Inc. - 3. O-Z/Gedney; EGS Electrical Group LLC. - 4. 3M; Electrical Products Division. - 5. Tyco Electronics Corp. - C. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated. ## 2.3 SLEEVES FOR CABLES - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." ## 2.4 SLEEVE SEALS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following: - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. - D. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable. - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 2. Pressure Plates: Stainless steel. Include two for each sealing element. - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. ## PART 3 - EXECUTION ## 3.1 CONDUCTOR MATERIAL APPLICATIONS - A. Feeders: Copper Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. - B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. # 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS - A. Service Entrance: Type THHN-THWN, single conductors in raceway - B. Exposed Feeders: Type THHN-THWN, single conductors in raceway - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway - E. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway - F. Feeders in Cable Tray: Type THHN-THWN, single conductors in raceway - G. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway - H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway - I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway - J. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway - K. Branch Circuits in Cable Tray: Type THHN-THWN, single conductors in raceway - L. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application. - M. Class 1 Control Circuits: Type THHN-THWN, in raceway. - N. Class 2 Control Circuits: Type THHN-THWN, in raceway ## 3.3 INSTALLATION OF CONDUCTORS AND CABLES - A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated. - B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway. - D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible. - E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems." - F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems." ## 3.4 CONNECTIONS - A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. - B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors. - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors. - C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack. ## 3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both wall surfaces. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed. - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies. - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants." - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping." - L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work. - M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. - N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals. ## 3.6 SLEEVE-SEAL INSTALLATION - A. Install to scal underground exterior-wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. #### 3.7 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping." ## 3.8 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports. - B. Perform tests and inspections and prepare test reports. - C. Tests and Inspections: - 1. After installing conductors and cables and before electrical circuitry has been energized, testfor compliance with requirements. - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion. - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. - D. Test Reports: Prepare a written report to record the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements. - E. Remove and replace malfunctioning units and retest as specified above. END OF SECTION 260519 ## SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Hangers and supports for electrical equipment and systems. - 2. Construction requirements for concrete bases. - B. Related Sections include the following: - 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria. ## 1.3 DEFINITIONS - A. EMT: Electrical metallic tubing. - B. IMC: Intermediate metal conduit. - C. RMC: Rigid metal conduit. ## 1.4 PERFORMANCE REQUIREMENTS - A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. - B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents. - C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components. - D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of fivetimes the applied force. ## 1.5 SUBMITTALS - A. Product Data: For the following: - 1. Steel slotted support systems. - 2. Nonmetallic slotted support systems. - B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following: - 1. Trapeze hangers. Include Product Data for components. - 2. Steel slotted channel systems. Include Product Data for components. - 3. Nonmetallic slotted channel systems. Include Product Data for components. - 4. Equipment supports. - C. Welding certificates. ## 1.6 QUALITY ASSURANCE - A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - B. Comply with NFPA 70. #### 1.7 COORDINATION - A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. - B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories." ## PART 2 - PRODUCTS # 2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS - A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Allied Tube & Conduit. - b. Cooper B-Line, Inc.; a division of Cooper Industries. - e. ERICO International Corporation. - d. GS Metals Corp. - e. Thomas & Betts Corporation. - f. Unistrut; Tyco International, Ltd. - g. Wesanco, Inc. - 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4. - 4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4. - 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4. - 6. Channel Dimensions: Selected for applicable load criteria. - B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- (14-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c., in at least 1 surface. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Allied Tube & Conduit. - b. Cooper B-Line, Inc.; a division of Cooper Industries. - c. Fabco Plastics Wholesale Limited. - d. Seasafe, Inc. - 3. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items. - 4. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel. - 5. Rated Strength: Selected to suit applicable load criteria. - C. Raceway and Cable Supports: As described in NECA 1 and NECA 101. - D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported. - E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron. - F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized. - G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following: - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used. - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1) Hilti Inc. - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc. - 3) MKT Fastening, LLC. - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit. - 2. Mechanical-Expansion Anchors: Insert-wedge-type, **stainless** steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used. - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1) Cooper B-Line, Inc.; a division of Cooper Industries. - 2) Empire Tool and Manufacturing Co., Inc. - 3) Hilti Inc. - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc. - 5) MKT Fastening, LLC. - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58. - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element. - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325. - 6. Toggle Bolts: All-steel springhead type. - 7. Hanger Rods: Threaded steel. # 2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment. B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates. ## PART 3 - EXECUTION ## 3.1 APPLICATION - A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter. - B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required byNFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter. - C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slottedor other support system, sized so capacity can be increased by at least 25percent in future without exceeding specified design load limits. - 1. Secure raceways and cables to these supports with two-bolt conduit clamps - D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports. ## 3.2 SUPPORT INSTALLATION - A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article. - B. Raceway Support Methods: In addition to methods described in NECA 1, EMTmay be supported by openings through structure members, as permitted in NFPA 70. - C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg). - D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code: - 1. To Wood: Fasten with lag screws or through bolts. - 2. To New Concrete: Bolt to concrete inserts. - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units. - 4. To Existing Concrete: Expansion anchor fasteners. - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick. - 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts - 7. To Light Steel: Sheet metal screws. - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate. - E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars. ## 3.3 INSTALLATION OF FABRICATED METAL SUPPORTS - A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports. - B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment. - C. Field Welding: Comply with AWS D1.1/D1.1M. ## 3.4 CONCRETE BASES - A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base. - B. Use **3000-psi (20.7-MPa)**, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete." - C. Anchor equipment to concrete base. - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 2. Install anchor bolts to elevations required for proper attachment to supported equipment. - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions. ## 3.5 PAINTING A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces. - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm). - B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal. - C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780. END OF SECTION 260529 ## SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring. - B. Related Sections include the following: - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction. ## 1.3 DEFINITIONS - A. EMT: Electrical metallic tubing. - B. ENT: Electrical nonmetallic tubing. - C. EPDM: Ethylene-propylene-diene terpolymer rubber. - D. FMC: Flexible metal conduit. - E. IMC: Intermediate metal conduit. - F. LFMC: Liquidtight flexible metal conduit. - G. LFNC: Liquidtight flexible nonmetallic conduit. - H. NBR: Acrylonitrile-butadiene rubber. - I. RNC: Rigid nonmetallic conduit. ## 1.4 SUBMITTALS - A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets. - B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. - 1. Custom enclosures and cabinets. - 2. For handholes and boxes for underground wiring, including the following: - a. Duct entry provisions, including locations and duct sizes. - b. Frame and cover design. - Grounding details. - d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons. - e. Joint details. - C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved: - 1. Structural members in the paths of conduit groups with common supports. - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports. - D. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - E. Qualification Data: For professional engineer and testing agency. - F. Source quality-control test reports. ## 1.5 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. Comply with NFPA 70. ## PART 2 - PRODUCTS ## 2.1 METAL CONDUIT AND TUBING - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Alflex Inc. - 3. Allied Tube & Conduit; a Tyco International Ltd. Co. - 4. Anamet Electrical, Inc.; Anaconda Metal Hose. - 5. Electri-Flex Co. - 6. Manhattan/CDT/Cole-Flex. - 7. Maverick Tube Corporation. - 8. O-Z Gedney; a unit of General Signal. - 9. Wheatland Tube Company. - C. Rigid Steel Conduit: ANSI C80.1. - D. Aluminum Rigid Conduit: ANSI C80.5. - E. IMC: ANSI C80.6. - F. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit. - 1. Comply with NEMA RN 1. - 2. Coating Thickness: 0.040 inch (1 mm), minimum. - G. EMT: ANSI C80.3. - H. FMC: Zinc-coated steel - I. LFMC: Flexible steel conduit with PVC jacket. - J. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed. - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886. - 2. Fittings for EMT: Steeltype. - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints. - K. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity. ## 2.2 NONMETALLIC CONDUIT AND TUBING - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Anamet Electrical, Inc.; Anaconda Metal Hose. - 3. Arnco Corporation. - 4. CANTEX Inc. - 5. CertainTeed Corp.; Pipe & Plastics Group. - 6. Condux International, Inc. - 7. ElecSYS, Inc. - 8. Electri-Flex Co. - 9. Lamson & Sessions; Carlon Electrical Products. - 10. Manhattan/CDT/Cole-Flex. - 11. RACO; a Hubbell Company. - 12. Thomas & Betts Corporation. - C. ENT: NEMA TC 13. - D. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated. - E. LFNC: UL 1660. - F. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material. - G. Fittings for LFNC: UL 514B. # 2.3 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Arnco Corporation. - 2. Endot Industries Inc. - 3. IPEX Inc. - 4. Lamson & Sessions; Carlon Electrical Products. - C. Description: Comply with UL 2024; flexible type, approved for plenuminstallation. #### 2.4 METAL WIREWAYS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper B-Line, Inc. - 2. Hoffman. - 3. Square D; Schneider Electric. - C. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated. - D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system. - E. Wireway Covers: Hinged type - F. Finish: Manufacturer's standard enamel finish. ## 2.5 NONMETALLIC WIREWAYS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Hoffman. - 2. Lamson & Sessions: Carlon Electrical Products. - C. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets. - D. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners. - E. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system. ## 2.6 SURFACE RACEWAYS - A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect]. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Thomas & Betts Corporation. - b. Walker Systems, Inc.; Wiremold Company (The). - c. Wiremold Company (The); Electrical Sales Division. - B. Surface Nonmetallic Raceways: Two-piece construction, manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Butler Manufacturing Company; Walker Division. - b. Enduro Systems, Inc.; Composite Products Division. - c. Hubbell Incorporated; Wiring Device-Kellems Division. - d. Lamson & Sessions: Carlon Electrical Products. - e. Panduit Corp. - f. Walker Systems, Inc.; Wiremold Company (The). - g. Wiremold Company (The); Electrical Sales Division. ## 2.7 BOXES, ENCLOSURES, AND CABINETS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc. - 2. EGS/Appleton Electric. - 3. Erickson Electrical Equipment Company. - 4. Hoffman. - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division. - 6. O-Z/Gedney; a unit of General Signal. - 7. RACO; a Hubbell Company. - 8. Robroy Industries, Inc.; Enclosure Division. - 9. Scott Fetzer Co.; Adalet Division. - 10. Spring City Electrical Manufacturing Company. - 11. Thomas & Betts Corporation. - 12. Walker Systems, Inc.; Wiremold Company (The). - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary. - C. Sheet Metal Outlet and Device Boxes: NEMA OS 1. - D. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover. - E. Nonmetallic Outlet and Device Boxes: NEMA OS 2. - F. Metal Floor Boxes: Cast or sheet metalrectangular. - G. Nonmetallic Floor Boxes: Nonadjustable, round. - H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1. - I. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover. - J. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated. - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel. - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint. #### K. Cabinets: - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. - 2. Hinged door in front cover with flush latch and concealed hinge. - 3. Key latch to match panelboards. - 4. Metal barriers to separate wiring of different systems and voltage. - 5. Accessory feet where required for freestanding equipment. ## 2.8 SLEEVES FOR RACEWAYS - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." ## 2.9 SLEEVE SEALS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following: - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. - D. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable. - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 2. Pressure Plates: Stainless steel. Include two for each sealing element. - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. ## 2.10 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES - A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied. - 1. Tests of materials shall be performed by a independent testing agency. - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer. - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards. ## PART 3 - EXECUTION ## 3.1 RACEWAY APPLICATION - A. Outdoors: Apply raceway products as specified below, unless otherwise indicated: - 1. Exposed Conduit: Rigid steel conduit - 2. Concealed Conduit, Aboveground: Rigid steel conduit - 3. Underground Conduit: RNC, Type EPC-80-PVC, direct buried. - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC. - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R. - B. Comply with the following indoor applications, unless otherwise indicated: - 1. Exposed, Not Subject to Physical Damage: EMT. - 2. Exposed, Not Subject to Severe Physical Damage: EMT. - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations: - a. Loading dock. - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units. - c. Mechanical rooms. - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT. - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations. - 6. Damp or Wet Locations: Rigid steel conduit. - 7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: EMT - 8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: EMT. - 9. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: EMT. - 10. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations. - C. Minimum Raceway Size: 1/2-inch (16-mm) trade size. - D. Raceway Fittings: Compatible with raceways and suitable for use and location. - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated. - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer. - E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve. - F. Do not install aluminum conduits in contact with concrete. ## 3.2 INSTALLATION A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter. - B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping. - C. Complete raceway installation before starting conductor installation. - D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems." - E. Arrange stub-ups so curved portions of bends are not visible above the finished slab. - F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed. - G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated. - H. Raceways Embedded in Slabs: - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings. - 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor. - I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions. - J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG. - K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. - L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows: - 1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m). - 2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m). - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements. - M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points: - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces. - 2. Where otherwise required by NFPA 70. - N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). - 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location: - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change. - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) > temperature change. - c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change. - d. Attics: 135 deg F (75 deg C) temperature change. - 2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change. - 3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation. - O. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors. - 1. Use LFMC in damp or wet locations subject to severe physical damage. - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage. - P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. - Q. Set metal floor boxes level and flush with finished floor surface. - R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface. ## 3.3 INSTALLATION OF UNDERGROUND CONDUIT A. Direct-Buried Conduit: - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter. - 2. Install backfill as specified in Division 31 Section "Earth Moving." - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving." - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow. - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor. - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete. - b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment. - 6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit. ## 3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES - A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances. - B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth. - C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade. - D. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure. - E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed. ## 3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both surfaces of walls. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed. - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies. - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint scalant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Scalants" for materials and installation. - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping." - L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work. - M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve scals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. - N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals. ## 3.6 SLEEVE-SEAL INSTALLATION - A. Install to seal underground, exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. ## 3.7 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping." ## 3.8 PROTECTION - A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion. - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer. - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer. **END OF SECTION 260533** ## SECTION 260923 - LIGHTING CONTROL ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes the following lighting control devices: - 1. Time switches. - 2. Outdoor and indoor photoelectric switches. - 3. Indoor occupancy sensors. - 4. Outdoor motion sensors. - 5. Lighting contactors. - 6. Emergency shunt relays. - B. Related Sections include the following: - 1. Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches. ## 1.3 DEFINITIONS - A. LED: Light-emitting diode. - B. PIR: Passive infrared. - C. DLM: Digital Lighting Management ## 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Show installation details for occupancy and light-level sensors. - 1. Interconnection diagrams showing field-installed wiring. - C. Field quality-control test reports. - D. Closeout Submittals: - 1. Project Record Documents: Record actual installed locations and settings for lighting control devices. - 2. Operation and Maintenance Manual: - a. Include approved Shop Drawings and Product Data. - b. Include Sequence of Operation, identifying operation for each room or space. - e. Include manufacturer's maintenance information. - d. Operation and Maintenance Data: Include detailed information on device programming and setup. ## 1.5 DESIGN / PERFORMANCE REQUIREMENTS - A. Digital Lighting Management Systems shall accommodate the square-footage coverage requirements for each area controlled, utilizing room controllers, digital occupancy sensors, switches, daylighting sensors and accessories that suit the required lighting and electrical system parameters. - B. System shall conform to requirements of NFPA 70. - C. System shall comply with FCC emission standards specified in part 15, sub-part J for commercial and residential application. - D. System shall be listed under UL sections 916 and/or 508. ## 1.6 OUALITY ASSURANCE A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. # 1.7 COORDINATION A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies. # PART 2 - PRODUCTS ## 2.1 INDOOR OCCUPANCY SENSORS - A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated or a comparable product by one of the following: - 1. Hubbell Lighting. - 2. Leviton Mfg. Company Inc. - 3. Sensor Switch, Inc. - 4. Watt Stopper (The). - B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit. - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes. - 2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit. - 3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70. - 4. Mounting: - a. Sensor: Suitable for mounting in any position on a standard outlet box. - b. Relay: Externally mounted through a 1/2- inch knockout in a standard electrical enclosure. - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door. - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor. - 6. Bypass Switch: Override the on function in case of sensor failure. - 7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; keep lighting off when selected lighting level is present. - 8. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot- high ceiling in a corridor not wider than 14 feet. - C. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit. - 1. Sensitivity Adjustment: Separate for each sensing technology. - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s. - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling. - 4. Dimming control signal: 0-10VDC, sinks up to 50mA for control of compatible ballasts and drivers (12 if each sources 2mA) - 5. Basis of design: Wattstopper DW-311 ## 2.2 LIGHTING CONTACTORS A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Products. - 2. Hubbell Lighting. - 3. Lithonia Lighting; Acuity Lighting Group, Inc. - 4. Watt Stopper (The). - B. Description: DLM Digital room controllers mounted to junction box with physically separate 120/277 volt wiring compartment from low voltage control wiring. Provide low voltage digital communication to control devices as shown on drawings and schedules. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission. Dimmable relay modules shall be provided where indicated. Relay modules shall contain up to 4 relays. Relay modules shall be labeled with room number that relays control lighting within - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current). - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation. ## 2.3 SEGMENT MANAGER - A. Basis-of-Design Product: Subject to compliance with requirements, provide Wattstopper LMSM-3E or a comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Products. - 2. Hubbell Lighting. - 3. Lithonia Lighting; Acuity Lighting Group, Inc. - 4. Watt Stopper (The). - B. Digital Lighting Management system shall include at least one segment manager to manage network communication. It shall be capable of serving up a graphical user interface via a standard web browser utilizing either unencrypted TCP/IP traffic via a configurable port (default is 80) or 256 bit AES encrypted SSL TCP/IP traffic via a configurable port (default is 443). - C. Each segment manager shall have integral support for at least three segment networks. Segment networks may alternately be connected to the segment manger via external BACnet-to-IP interface routers and switches, using standard Ethernet structured wiring. Each router shall accommodate one segment network. Provide the quantity of routers and switches as shown on the Drawings. ## 2.4 PROGRAMMING, CONFIGURATION AND DOCUMENTATION SOFTWARE A. PC-native application for optional programming of detailed technician-level parameter information for all DLM products, including all parameters not accessible via BACnet and the handled IR configuration tool. Software must be capable of accessing room-level parameter information locally within the room when connected via a USB programming adapter, or globally for many segment networks simultaneously utilizing standard BACnet/IP communication. ### 2.5 CONDUCTORS AND CABLES - A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." - B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." ### **PART 3 - EXECUTION** ### 3.1 SENSOR INSTALLATION A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions. ### 3.2 CONTACTOR INSTALLATION A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators. ## 3.3 WIRING INSTALLATION - A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 1/2 inch. - B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions. - C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated. - D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. ## 3.4 IDENTIFICATION A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems." - 1. Identify controlled circuits in lighting contactors. - 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor. - B. Label time switches and contactors with a unique designation. ## 3.5 FIELD QUALITY CONTROL - A. Perform the following field tests and inspections and prepare test reports: - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements. - 2. Operational Test: Verify operation of each lighting control device, and adjust time delays. - B. Lighting control devices that fail tests and inspections are defective work. #### 3.6 ADJUSTING A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide up to twovisits to Project during other-than-normal occupancy hours for this purpose. ### 3.7 DEMONSTRATION - A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control system specified in Division 26 Section "Network Lighting Controls." - B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Division 01 Section "Demonstration and Training." **END OF SECTION 260923** ### SECTION 262200 - LOW-VOLTAGE TRANSFORMERS #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA: - 1. Distribution transformers. - 2. Buck-boost transformers. ## 1.3 SUBMITTALS - A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated. - B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 1. Wiring Diagrams: Power, signal, and control wiring. - C. Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified." - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - D. Qualification Data: For testing agency. - E. Source quality-control test reports. - F. Field quality-control test reports. - G. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals. ## 1.4 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7. - C. Source Limitations: Obtain each transformer type through one source from a single manufacturer. - D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - E. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers." ## 1.5 DELIVERY, STORAGE, AND HANDLING A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity. ## 1.6 COORDINATION A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided. ### PART 2 - PRODUCTS ## 2.1 MANUFACTURERS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. ACME Electric Corporation; Power Distribution Products Division. - 2. Challenger Electrical Equipment Corp.; a division of Eaton Corp. - 3. Controlled Power Company. - 4. Eaton Electrical Inc.; Cutler-Hammer Products. - 5. Federal Pacific Transformer Company; Division of Electro-Mechanical Corp. - 6. General Electric Company. - 7. Hammond Co.; Matra Electric, Inc. - 8. Magnetek Power Electronics Group. - 9. Micron Industries Corp. - 10. Myers Power Products, Inc. - 11. Siemens Energy & Automation, Inc. - 12. Sola/Hevi-Duty. - 13. Square D; Schneider Electric. ## 2.2 GENERAL TRANSFORMER REQUIREMENTS - A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service. - B. Cores: Grain-oriented, non-aging silicon steel. - C. Coils: Continuous windings without splices except for taps. - 1. Internal Coil Connections: Brazed or pressure type. - 2. Coil Material: Copper. ## 2.3 DISTRIBUTION TRANSFORMERS - A. Comply with NEMA ST 20, and list and label as complying with UL 1561. - B. Provide transformers that are constructed to withstand seismic forces specified in Division 26 Section "Vibration and Scismic Controls for Electrical Systems." - C. Cores: One leg per phase. - D. Enclosure: Ventilated, NEMA 250, Type 2. - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air. - E. Enclosure: Ventilated, NEMA 250, Type 3R. - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air. - F. Transformer Enclosure Finish: Comply with NEMA 250. - 1. Finish Color: Gray. - G. Taps for Transformers Smaller Than 3 kVA: None. - H. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity - I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity - J. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of [150] [115] [80] deg C rise above 40 deg C ambient temperature. - K. Energy Efficiency for Transformers Rated 15 kVA and Larger: - 1. Complying with NEMA TP 1, Class 1 efficiency levels. - 2. Tested according to NEMA TP 2. - L. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor. - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor. - 2. Indicate value of K-factor on transformer nameplate. - M. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance. - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals. - 2. Include special terminal for grounding the shield. - 3. Shield Effectiveness: - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz. - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz. - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz. - N. Wall Brackets: Manufacturer's standard brackets. - O. Fungus Proofing: Permanent fungicidal treatment for coil and core. - P. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91. ### 2.4 BUCK-BOOST TRANSFORMERS - A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall comply with NEMA ST 1 and shall be listed and labeled as complying with UL 506 or UL 1561. - B. Enclosure: Ventilated, NEMA 250, Type 2. - 1. Finish Color: Gray. ### 2.5 IDENTIFICATION DEVICES A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems." ## 2.6 SOURCE QUALITY CONTROL - A. Test and inspect transformers according to IEEE C57.12.91. - B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project. ## PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer. - B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions. - C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed. - D. Verify that ground connections are in place and requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer. E. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 INSTALLATION - A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer. - 1. Brace wall-mounting transformers as specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems. - B. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions and requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." ### 3.3 CONNECTIONS - A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems." - B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." ## 3.4 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports. - B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing. - C. Perform tests and inspections and prepare test reports. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. ## D. Tests and Inspections: - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - E. Remove and replace units that do not pass tests or inspections and retest as specified above. - F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections. - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration. - 2. Perform 2 follow-up infrared scans of transformers, one at 4 months and the other at 11 months after Substantial Completion. - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action. - G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component. ## 3.5 ADJUSTING - A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results. - B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals. - C. Output Settings Report: Prepare a written report recording output voltages and tap settings. ## 3.6 CLEANING A. Vacuum dirt and debris; do not use compressed air to assist in cleaning. END OF SECTION 16461 ## **SECTION 262413 - SWITCHBOARDS** ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY #### A. Section Includes: - 1. Service and distribution switchboards rated 600 V and less. - 2. Transient voltage suppression devices. - 3. Disconnecting and overcurrent protective devices. - 4. Instrumentation. - 5. Control power. - 6. Accessory components and features. - 7. Identification. - 8. Mimic bus. ## 1.3 PERFORMANCE REQUIREMENTS - A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7. - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event." ## 1.4 SUBMITTALS - A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes. - B. Shop Drawings: For each switchboard and related equipment. - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. - 2. Detail enclosure types for types other than NEMA 250, Type 1. - 3. Detail bus configuration, current, and voltage ratings. - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices. - 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation. - 6. Detail utility company's metering provisions with indication of approval by utility company. - 7. Include evidence of NRTL listing for series rating of installed devices. - 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components. - 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. - 10. Include diagram and details of proposed mimic bus. - 11. Include schematic and wiring diagrams for power, signal, and control wiring. - C. Samples: Representative portion of mimic bus with specified material and finish, for color selection. - D. Qualification Data: For qualified Installer. - E. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - F. Field Quality-Control Reports: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements. - G. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: - 1. Routine maintenance requirements for switchboards and all installed components. - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices. - 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. ## 1.5 QUALITY ASSURANCE - A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E. - B. Testing Agency Qualifications: Member company of NETA or an NRTL. - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing. - C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer. - D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions. - E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. - F. Comply with NEMA PB 2. - G. Comply with NFPA 70. - H. Comply with UL 891. ## 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path. - B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation. - C. Handle and prepare switchboards for installation according to NECA 400. ## 1.7 PROJECT CONDITIONS - A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place. - B. Environmental Limitations: - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period. - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated: - a. Ambient Temperature: Not exceeding 104 deg F (40 deg C). - b. Altitude: Not exceeding 6600 feet (2000 m). - C. Service Conditions: NEMA PB 2, usual service conditions, as follows: - 1. Ambient temperatures within limits specified. - 2. Altitude not exceeding 6600 feet (2000 m). - D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated: - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service. - 2. Indicate method of providing temporary electric service. - 3. Do not proceed with interruption of electric service without Owner's written permission. - 4. Comply with NFPA 70E. ### 1.8 COORDINATION - A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels. - B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. ## 1.9 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period. - 1. Warranty Period: Five years from date of Substantial Completion. ## 1.10 EXTRA MATERIALS - A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type. - 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type. - 3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type. - 4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type. - 5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type. - 6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type. ### PART 2 - PRODUCTS ### 2.1 MANUFACTURED UNITS - A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 3. Siemens Energy & Automation, Inc. - 4. Square D; a brand of Schneider Electric. 5. - B. Front-Connected, Front-Accessible Switchboards: - 1. Main Devices: Panel mounted. - 2. Branch Devices: Panel mounted. - 3. Sections front and rear aligned. - C. Front- and Side-Accessible Switchboards: - 1. Main Devices: Fixed, individually mounted. - 2. Branch Devices: Panel mounted. - 3. Sections front and rear aligned. - D. Front- and Rear-Accessible Switchboards: - 1. Main Devices: Fixed, individually mounted. - 2. Branch Devices: Panel and fixed, individually mounted. - 3. Sections front and rear aligned. - E. Nominal System Voltage: 480Y/277 V. - F. Main-Bus Continuous: 2000 A. - G. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - H. Indoor Enclosures: Steel, NEMA 250, Type 1. - I. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface. - J. Barriers: Between adjacent switchboard sections. - K. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections. - L. Cubical Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point. - 1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point - 2. Space-Heater Power Source: Transformer, factory installed in switchboard. - M. Utility Metering Compartment: Fabricated, barrier compartment and section complying with utility company's requirements; hinged sealed door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features. - N. Customer Metering Compartment: A separate customer metering compartment and section with front hinged door, for indicated metering, and current transformers for each meter. Current transformer secondary wiring shall be terminated on shorting-type terminal blocks. Include potential transformers having primary and secondary fuses with disconnecting means and secondary wiring terminated on terminal blocks. - O. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard. - P. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws, for access to rear interior of switchboard. - Q. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments. - R. Pull Box on Top of Switchboard: - 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard. - 2. Set back from front to clear circuit-breaker removal mechanism. - 3. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting. - 4. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard. - 5. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation. - S. Buses and Connections: Three phase, four wire unless otherwise indicated. - 1. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silverplated, with tin-plated aluminum or copper feeder circuit-breaker line connections. - 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections. - 3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silver-plated, or tin-plated, high-strength, electrical-grade aluminum alloy. - 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position. - 5. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run. - 6. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends. - 7. Neutral Buses: 50 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus. - 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus. - 9. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness. - T. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment. - U. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C. - V. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers. ### 2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES - A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents. - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting. - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings: - a. Instantaneous trip. - b. Long- and short-time pickup levels. - c. Long- and short-time time adjustments. - d. Ground-fault pickup level, time delay, and I²t response. - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5. - 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door. - 6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip). - 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip). - 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories: - a. Standard frame sizes, trip ratings, and number of poles. - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material. - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits. - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator. - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function. - f. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control." - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage. - h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay. - i. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts. - j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position. - B. Insulated-Case Circuit Breaker (ICCB): 80 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current. - 1. Fixed circuit-breaker mounting. - 2. Two-step, stored-energy closing. - 3. Standard-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings: - a. Instantaneous trip. - b. Long- and short-time time adjustments. - c. Ground-fault pickup level, time delay, and I²t response. - 4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function. - 5. Remote trip indication and control. - 6. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control." - 7. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position. - 8. Control Voltage: 120-V ac. - C. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Boltswitch, Inc. - b. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - c. Pringle Electrical Manufacturing Company, Inc. - d. Siemens Energy & Automation, Inc. - e. Square D; a brand of Schneider Electric. - 2. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating. - 3. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing. - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open. - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open. - 4. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated. - 5. Service-Rated Switches: Labeled for use as service equipment. - 6. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor. - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator. - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping. - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch. - d. Test Control: Simulates ground fault to test relay and switch (or relay only if "notrip" mode is selected). - 7. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens. - D. High-Pressure, Butt-Type Contact Switch: Operating mechanism uses butt-type contacts and a spring-charged mechanism to produce and maintain high-pressure contact when switch is closed. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 2. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating. - 3. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing. - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open. - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open. - 4. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated. - 5. Service-Rated Switches: Labeled for use as service equipment. - 6. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor. - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator. - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping. - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch. - d. Test Control: Simulates ground fault to test relay and switch (or relay only if "notrip" mode is selected). - 7. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens. - E. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle. - F. Fuses are specified in Division 26 Section "Fuses." ## 2.3 INSTRUMENTATION - A. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features: - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated: - a. Phase Currents, Each Phase: Plus or minus 1 percent. - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent. - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent. - d. Megawatts: Plus or minus 2 percent. - e. Megavars: Plus or minus 2 percent. - f. Power Factor: Plus or minus 2 percent. - g. Frequency: Plus or minus 0.5 percent. - h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours. - i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from five to 60 minutes. - j. Contact devices to operate remote impulse-totalizing demand meter. - 2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door. - B. Ammeters, Voltmeters, and Power-Factor Meters: ANSI C39.1. - 1. Meters: 4-inch (100-mm) diameter or 6 inches (150 mm) square, flush or semiflush, with antiparallax 250-degree scales and external zero adjustment. - 2. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent. - C. Instrument Switches: Rotary type with off position. - 1. Voltmeter Switches: Permit reading of all phase-to-phase voltages and, where a neutral is indicated, phase-to-neutral voltages. - 2. Ammeter Switches: Permit reading of current in each phase and maintain current-transformer secondaries in a closed-circuit condition at all times. - D. Feeder Ammeters: 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only. - E. Watt-Hour Meters and Wattmeters: - 1. Comply with ANSI C12.1. - 2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz. - 3. Suitable for connection to three- and four-wire circuits. - 4. Potential indicating lamps. - 5. Adjustments for light and full load, phase balance, and power factor. - 6. Four-dial clock register. - 7. Integral demand indicator. - 8. Contact devices to operate remote impulse-totalizing demand meter. - 9. Ratchets to prevent reverse rotation. - 10. Removable meter with drawout test plug. - 11. Semiflush mounted ease with matching cover. - 12. Appropriate multiplier tag. - F. Impulse-Totalizing Demand Meter: - 1. Comply with ANSI C12.1. - 2. Suitable for use with switchboard watt-hour meter, including two-circuit totalizing relay. - Cyclometer. - 4. Four-dial, totalizing kilowatt-hour register. - 5. Positive chart drive mechanism. - 6. Capillary pen holding a minimum of one month's ink supply. - 7. Roll chart with minimum 31-day capacity; appropriate multiplier tag. - 8. Capable of indicating and recording five-minute integrated demand of totalized system. ### 2.4 CONTROL POWER - A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer. - B. Control Circuits: 120-V ac, supplied from remote branch circuit. - C. Electrically Interlocked Main and Tie Circuit Breakers: Two control-power transformers in separate compartments, with interlocking relays, connected to the primary side of each control-power transformer at the line side of the associated main circuit breaker. 120-V secondaries connected through automatic transfer relays to ensure a fail-safe automatic transfer scheme. - D. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits. - E. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units. ## 2.5 ACCESSORY COMPONENTS AND FEATURES - A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation. - B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays. - C. Portable Circuit-Breaker Lifting Device: Floor-supported, roller-based, elevating carriage arranged for movement of circuit breakers in and out of compartments for present and future circuit breakers. - D. Overhead Circuit-Breaker Lifting Device: Mounted at top front of switchboard, with hoist and lifting yokes matching each drawout circuit breaker. - E. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting. ### 2.6 IDENTIFICATION - A. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on a photoengraved nameplate. - 1. Nameplate: At least 0.032-inch- (0.813-mm-) thick anodized aluminum, located at eye level on front cover of the switchboard incoming service section. - B. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on an engraved laminated-plastic (Gravoply) nameplate. - 1. Nameplate: At least 0.0625-inch- (1.588 mm-) thick laminated plastic (Gravoply), located at eye level on front cover of the switchboard incoming service section. - C. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram. - D. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections. - E. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations. - F. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices. ### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Receive, inspect, handle, and store switchboards according to NECA 400. - B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged. - C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work. - D. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 INSTALLATION - A. Install switchboards and accessories according to NECA 400. - B. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Castin-Place Concrete." - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor. - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 4. Install anchor bolts to elevations required for proper attachment to switchboards. - C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components. - D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards. - F. Install filler plates in unused spaces of panel-mounted sections. - G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation. - 1. Set field-adjustable switches and circuit-breaker trip ranges. - H. Install spare-fuse cabinet. - I. Comply with NECA 1. ## 3.3 CONNECTIONS - A. Comply with requirements for terminating feeder bus specified in Division 26 Section "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties. - B. Comply with requirements for terminating cable trays specified in Division 26 Section "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties. ## 3.4 IDENTIFICATION A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." - B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." - C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." ## 3.5 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections. - B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. - C. Perform tests and inspections. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. ## D. Acceptance Testing Preparation: - 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. - 2. Test continuity of each circuit. ### E. Tests and Inspections: - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest. - 3. Perform the following infrared scan tests and inspections and prepare reports: - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner. - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion. - c. Instruments and Equipment: - Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment. - F. Switchboard will be considered defective if it does not pass tests and inspections. - G. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. ### 3.6 ADJUSTING - A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer. - B. Set field-adjustable circuit-breaker trip ranges as indicated. ### 3.7 PROTECTION A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service. ### 3.8 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories, and to use and reprogram microprocessor-based trip, monitoring, and communication units. END OF SECTION 262413 ## **SECTION 262416 - PANELBOARDS** # PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - 1. Distribution panelboards. - 2. Lighting and appliance branch-circuit panelboards. - 3. Load centers. - 4. Electronic-grade panelboards. ## 1.3 DEFINITIONS - A. SVR: Suppressed voltage rating. - B. TVSS: Transient voltage surge suppressor. ## 1.4 PERFORMANCE REQUIREMENTS - A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7. - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event." ### 1.5 SUBMITTALS - A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes. - B. Shop Drawings: For each panelboard and related equipment. - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. - 2. Detail enclosure types and details for types other than NEMA 250, Type 1. - 3. Detail bus configuration, current, and voltage ratings. - 4. Short-circuit current rating of panelboards and overcurrent protective devices. - 5. Include evidence of NRTL listing for series rating of installed devices. - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components. - 7. Include wiring diagrams for power, signal, and control wiring. - 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. - C. Qualification Data: For qualified testing agency. - D. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. ## E. Field Quality-Control Reports: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements. - F. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing. - G. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments. # 1.6 QUALITY ASSURANCE - A. Testing Agency Qualifications: Member company of NETA or an NRTL. - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing. - B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer. - C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions. - D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. - E. Comply with NEMA PB 1. - F. Comply with NFPA 70. ### 1.7 DELIVERY, STORAGE, AND HANDLING - A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation. - B. Handle and prepare panelboards for installation according to NECA 407. ### 1.8 PROJECT CONDITIONS ## A. Environmental Limitations: - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period. - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated: - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C to plus 104 deg F (plus 40 deg C). - b. Altitude: Not exceeding 6600 feet (2000 m). - B. Service Conditions: NEMA PB 1, usual service conditions, as follows: - 1. Ambient temperatures within limits specified. - 2. Altitude not exceeding 6600 feet (2000 m). - C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated: - 1. Notify Owner no fewer than two days in advance of proposed interruption of electric service. - 2. Do not proceed with interruption of electric service without Owner's written permission. 3. Comply with NFPA 70E. #### 1.9 COORDINATION - A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels. - B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. ## 1.10 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period. - 1. Warranty Period: Five years from date of Substantial Completion. ### 1.11 EXTRA MATERIALS - A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Keys: Two spares for each type of panelboard cabinet lock. - 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard. - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type. - 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type. ## PART 2 - PRODUCTS ## 2.1 GENERAL REQUIREMENTS FOR PANELBOARDS - A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - B. Enclosures: Flush- and surface-mounted cabinets. - 1. Rated for environmental conditions at installed location. - a. Indoor Dry and Clean Locations: NEMA 250, Type 1. - b. Outdoor Locations: NEMA 250, Type 3R. - c. Kitchen Areas: NEMA 250, Type 4X, stainless steel. - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4. - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5. - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. - 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor. - 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections. - 6. Finishes: - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat. - b. Back Boxes: Same finish as panels and trim. - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components. - 7. Directory Card: Inside panelboard door, mounted in transparent card holder. - C. Incoming Mains Location: Top and bottom. - D. Phase, Neutral, and Ground Buses: - 1. Material: Hard-drawn copper, 98 percent conductivity. - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box. - 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box. - 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads. - 5. Split Bus: Vertical buses divided into individual vertical sections. - E. Conductor Connectors: Suitable for use with conductor material and sizes. - 1. Material: Hard-drawn copper, 98 percent conductivity. - 2. Main and Neutral Lugs: Mechanical type. - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type. - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device. - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device. - 6. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device. - 7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extracapacity neutral bus. - F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices. - G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices. - H. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL. - I. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. ### 2.2 DISTRIBUTION PANELBOARDS - A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 3. Siemens Energy & Automation, Inc. - 4. Square D; a brand of Schneider Electric. - B. Panelboards: NEMA PB 1, power and feeder distribution type. - C. Doors: Secured with vault-type latch with tumbler lock; keyed alike. - 1. For doors more than **36 inches (914 mm)** high, provide two latches, keyed alike. - D. Mains: Circuit breaker. - E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Plug-in circuit breakers. - F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal. - G. Branch Overcurrent Protective Devices: Fused switches. - H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard. - 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection. 2. External Control-Power Source: 120-V branch circuit. #### 2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS - A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 3. Siemens Energy & Automation, Inc. - 4. Square D; a brand of Schneider Electric. - B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type. - C. Mains: Circuit breaker or lugs only. - D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units. - E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard. - 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection. - 2. External Control-Power Source: 120-V branch circuit. - F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike. - G. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses. ### 2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES - A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following: - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 3. Siemens Energy & Automation, Inc. - 4. Square D; a brand of Schneider Electric. - B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents. - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting. - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings: - a. Instantaneous trip. - b. Long- and short-time pickup levels. - c. Long- and short-time time adjustments. - d. Ground-fault pickup level, time delay, and I²t response. - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5. - 5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip). - 6. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip). - 7. Arc-Fault Circuit Interrupter (AFCI) Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration. - 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories: - a. Standard frame sizes, trip ratings, and number of poles. - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials. - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits. - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator. - e. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control." - f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage. - g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay. - h. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts. - i. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips. - j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position. - k. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices. - l. Multipole units enclosed in a single housing or factory assembled to operate as a single unit. - m. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position. - n. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position. - C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle. - 1. Fuses, and Spare-Fuse Cabinet: Comply with requirements specified in Division 26 Section "Fuses." - 2. Fused Switch Features and Accessories: Standard ampere ratings and number of poles. - 3. Auxiliary Contacts: One normally open and normally closed contact(s) that operate with switch handle operation. ### 2.5 ACCESSORY COMPONENTS AND FEATURES - A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation. - B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays. ### **PART 3 - EXECUTION** ### 3.1 EXAMINATION - A. Receive, inspect, handle, and store panelboards according to NECA 407. - B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation. - C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work. - D. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 INSTALLATION - A. Install panelboards and accessories according to NECA 407. - B. Equipment Mounting: Install panelboards on concrete bases, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Castin-Place Concrete." - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of base. - 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor. - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 4. Install anchor bolts to elevations required for proper attachment to panelboards. - 5. Attach panelboard to the vertical finished or structural surface behind the panelboard. - C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards. - D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - E. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated. - F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box. - G. Install overcurrent protective devices and controllers not already factory installed. - 1. Set field-adjustable, circuit-breaker trip ranges. - H. Install filler plates in unused spaces. - I. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade. - J. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing. - K. Comply with NECA 1. ### 3.3 IDENTIFICATION - A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems." - B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable. - C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." - D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." ### 3.4 FIELD QUALITY CONTROL A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections. - B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. - C. Perform tests and inspections. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. ## D. Acceptance Testing Preparation: - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit. - 2. Test continuity of each circuit. ## E. Tests and Inspections: - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest. - 3. Perform the following infrared scan tests and inspections and prepare reports: - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner. - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion. - c. Instruments and Equipment: - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - F. Panelboards will be considered defective if they do not pass tests and inspections. - G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. #### 3.5 ADJUSTING - A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer. - B. Set field-adjustable circuit-breaker trip ranges as indicated Circuit changes made during load balancing may negate color-coding of phases and circuits. If load balancing proves undesirable or is to be performed by others, delete paragraph below. - C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. - 1. Measure as directed during period of normal system loading. - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment. - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records. - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement. # 3.6 PROTECTION A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions. END OF SECTION 262416 PANELBOARDS 262416 - 12 # **SECTION 262726 - WIRING DEVICES** # PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes the following: - 1. Receptacles, receptacles with integral GFCI, and associated device plates. - 2. Twist-locking receptacles. - 3. Receptacles with integral surge suppression units. - 4. Wall-box motion sensors. - 5. Isolated-ground receptacles. - 6. Hospital-grade receptacles. - 7. Snap switches and wall-box dimmers. - 8. Solid-state fan speed controls. - 9. Wall-switch and exterior occupancy sensors. - 10. Communications outlets. - 11. Pendant cord-connector devices. - 12. Cord and plug sets. - 13. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies. - B. Related Sections include the following: - 1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets. ## 1.3 DEFINITIONS - A. EMI: Electromagnetic interference. - B. GFCI: Ground-fault circuit interrupter. - C. Pigtail: Short lead used to connect a device to a branch-circuit conductor. - D. RFI: Radio-frequency interference. - E. TVSS: Transient voltage surge suppressor. - F. UTP: Unshielded twisted pair. #### 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates. - C. Samples: One for each type of device and wall plate specified, in each color specified. - D. Field quality-control test reports. - E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions. # 1.5 QUALITY ASSURANCE - A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source. - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - C. Comply with NFPA 70. ## 1.6 COORDINATION - A. Receptacles for Owner-Furnished Equipment: Match plug configurations. - 1. Cord and Plug Sets: Match equipment requirements. ## 1.7 EXTRA MATERIALS - A. Furnish extra materials described in subparagraphs below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Service/Power Poles: One for every 10, but no fewer than one. - 2. Floor Service Outlet Assemblies: One for every 10, but no fewer than one. - 3. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two. - 4. TVSS Receptacles: One for every 10 of each type installed, but no fewer than two of each type. ## PART 2 - PRODUCTS ## 2.1 MANUFACTURERS - A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles: - 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper). - 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell). - 3. Leviton Mfg. Company Inc. (Leviton). - 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour). ## 2.2 STRAIGHT BLADE RECEPTACLES - A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498. - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 5351 (single), 5352 (duplex). - b. Hubbell; HBL5351 (single), CR5352 (duplex). - c. Leviton; 5891 (single), 5352 (duplex). - d. Pass & Seymour; 5381 (single), 5352 (duplex). - B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498. - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell; CR 5253IG. - b. Leviton; 5362-IG. - c. Pass & Seymour; IG6300. - 3. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts. - C. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498. - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; TR8300. - b. Hubbell; HBL8300SG. - c. Leviton; 8300-SGG. - d. Pass & Seymour; 63H. - 3. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section. ## 2.3 GFCI RECEPTACLES - A. General Description: Straight blade, **feed**-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped. - B. Duplex GFCI Convenience Receptacles, 125 V, 20 A: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; GF20. - b. Pass & Seymour; 2084. - C. Isolated-Ground, Duplex Convenience Receptacles: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; IG5362BLS. - b. Hubbell; IG5362SA. - c. Leviton; 5380-IG. - 3. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts. - 4. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. - 5. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Comply with UL 498 Supplement SD. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts. - D. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell; IG2310. - b. Leviton; 2310-IG. - 3. Description: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts. ## 2.4 PENDANT CORD-CONNECTOR DEVICES - A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-20P and L5-20R, heavy-duty grade. - 1. Body: Nylon with screw-open cable-gripping jaws and provision for attaching external cable grip. - 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector. # 2.5 CORD AND PLUG SETS - A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected. - 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent. - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection. ## 2.6 SNAP SWITCHES - A. Comply with NEMA WD 1 and UL 20. - B. Switches, 120/277 V, 20 A: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way). - b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way). - c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way). - d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way). # C. Pilot Light Switches, 20 A: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 2221PL for 120 V and 277 V. - b. Hubbell; HPL1221PL for 120 V and 277 V. - c. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V. - d. Pass & Seymour; PS20AC1-PLR for 120 V. - 3. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON." - D. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors. - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 1995. - b. Hubbell; HBL1557. - c. Leviton; 1257. - d. Pass & Seymour; 1251. ## 2.7 WALL-BOX DIMMERS - A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters. - B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472. - C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module. - 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "OFF." - D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness. ## 2.8 FAN SPEED CONTROLS - A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917. - 1. Continuously adjustable slider. - 2. Three-speed adjustable slider, 1.5 A. # 2.9 OCCUPANCY SENSORS ## A. Wall-Switch Sensors: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 6111 for 120 V, 6117 for 277 V. - b. Hubbell; WS1277. - c. Leviton; ODS 10-ID. - d. Pass & Seymour; WS3000. - e. Watt Stopper (The); WS-200. - 3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m). ## B. Wall-Switch Sensors: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell; AT120 for 120 V, AT277 for 277 V. - b. Leviton; ODS 15-ID. - 3. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m). # C. Long-Range Wall-Switch Sensors: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell; ATP1600WRP. - b. Leviton; ODWWV-IRW. - c. Pass & Seymour; WA1001. - d. Watt Stopper (The); CX-100. 3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft. (111 sq. m). # D. Long-Range Wall-Switch Sensors: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell: ATD1600WRP. - b. Leviton; ODW12-MRW. - c. Watt Stopper (The); DT-200. - 3. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft. (111 sq. m). # E. Wide-Range Wall-Switch Sensors: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Hubbell; ATP120HBRP. - b. Leviton; ODWHB-IRW. - c. Pass & Seymour; HS1001. - d. Watt Stopper (The); CX-100-3. - 3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft. (111 sq. m). # 2.10 COMMUNICATIONS OUTLETS ## A. Telephone Outlet: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 3560-6. - b. Leviton; 40649. - 3. Description: Single RJ-45 jack for terminating 100-ohm, balanced, four-pair UTP; TIA/EIA-568-B.1; complying with Category 5c. Comply with UL 1863. # B. Combination TV and Telephone Outlet: 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 3562. - b. Leviton; 40595. - 3. Description: Single RJ-45 jack for 100-ohm, balanced, four-pair UTP; TIA/EIA-568-B.1; complying with Category 5e; and one Type F coaxial cable connector. ## 2.11 WALL PLATES - A. Single and combination types to match corresponding wiring devices. - 1. Plate-Securing Screws: Metal with head color to match plate finish. - 2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting. - 3. Material for Unfinished Spaces: Galvanized steel - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations." - B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover. #### 2.12 FLOOR SERVICE FITTINGS - A. Type: Modular, flush-type, dual-service units suitable for wiring method used. - B. Compartments: Barrier separates power from voice and data communication cabling. - C. Service Plate: Round, die-cast aluminum with satin finish. - D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated. - E. Voice and Data Communication Outlet: Blank cover with bushed cable opening ## 2.13 MULTIOUTLET ASSEMBLIES - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Hubbell Incorporated; Wiring Device-Kellems. - 2. Wiremold Company (The). - C. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles. - D. Raceway Material: Metal, with manufacturer's standard finish. E. Wire: No. 12 AWG. #### 2.14 SERVICE POLES - A. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor. - 1. Poles: Nominal 2.5-inch- (65-mm-) square cross section, with height adequate to extend from floor to at least 6 inches (150 mm) above ceiling, and with separate channels for power wiring and voice and data communication cabling. - 2. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment. - 3. Finishes: Manufacturer's standard painted finish and trim combination] [Satin-anodized aluminum. - 4. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, 4-pair, Category 3 or 5 voice and data communication cables. - 5. Power Receptacles: Two duplex, 20-A, heavy-duty, NEMA WD 6 configuration 5-20R units. - 6. Voice and Data Communication Outlets: Two RJ-45 Category 5e jacks. # 2.15 FINISHES - A. Color: Wiring device catalog numbers in Section Text do not designate device color. - 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing. - 2. Isolated-Ground Receptacles: Orange # PART 3 - EXECUTION # 3.1 INSTALLATION - A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted. - B. Coordination with Other Trades: - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes. - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables. - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall. 4. Install wiring devices after all wall preparation, including painting, is complete. ## C. Conductors: - 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire. - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails. - 4. Existing Conductors: - a. Cut back and pigtail, or replace all damaged conductors. - b. Straighten conductors that remain and remove corrosion and foreign matter. - c. Pigtailing existing conductors is permitted provided the outlet box is large enough. ## D. Device Installation: - 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete. - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors. - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment. - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length. - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw. - 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer. - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections. - 8. Tighten unused terminal screws on the device. - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact. # E. Receptacle Orientation: - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right. - F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening. ## G. Dimmers: - 1. Install dimmers within terms of their listing. - 2. Verify that dimmers used for fan speed control are listed for that application. - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions. - H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates. - I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings. # 3.2 IDENTIFICATION - A. Comply with Division 26 Section "Identification for Electrical Systems." - 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes. # 3.3 FIELD QUALITY CONTROL - A. Perform tests and inspections and prepare test reports. - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99. - 2. Test Instruments: Use instruments that comply with UL 1436. - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement. - B. Tests for Convenience Receptacles: - 1. Line Voltage: Acceptable range is 105 to 132 V. - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable. - 3. Ground Impedance: Values of up to 2 ohms are acceptable. - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943. - 5. Using the test plug, verify that the device and its outlet box are securely mounted. - 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above. **END OF SECTION 262726** ## SECTION 263600 - TRANSFER SWITCHES ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes transfer switches rated 600 V and less, including the following: - 1. Automatic transfer switches. - B. Related Sections include the following: - 1. Division 21 Section "Electric-Drive, Centrifugal Fire Pumps" for automatic transfer switches for fire pumps. - 2. Division 21 Section "Electric-Drive, Vertical-Turbine Fire Pumps" for automatic transfer switches for fire pumps. #### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories. - B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified. - 1. Single-Line Diagram: Show connections between transfer switch, bypass/isolation switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch. - C. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified." - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - D. Qualification Data: For manufacturer and testing agency. - E. Field quality-control test reports. - F. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: - 1. Features and operating sequences, both automatic and manual. - 2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable. # 1.4 QUALITY ASSURANCE - A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification. - B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - C. Source Limitations: Obtain automatic transfer switches through one source from a single manufacturer. - D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - E. Comply with NEMA ICS 1. - F. Comply with NFPA 70. - G. Comply with NFPA 99. - H. Comply with NFPA 110. - I. Comply with UL 1008 unless requirements of these Specifications are stricter. # 1.5 PROJECT CONDITIONS - A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service: - 1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service. - 2. Do not proceed with interruption of electrical service without Owner's written permission. # 1.6 COORDINATION A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. #### PART 2 - PRODUCTS # 2.1 MANUFACTURERS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Contactor Transfer Switches: - a. AC Data Systems, Inc. - b. Caterpillar; Engine Div. - c. Emerson; ASCO Power Technologies, LP. - d. Generac Power Systems, Inc. - e. GE Zenith Controls. - f. Kohler Power Systems; Generator Division. - g. Onan/Cummins Power Generation; Industrial Business Group. - h. Russelectric, Inc. - i. Spectrum Detroit Diesel. - 2. Transfer Switches Using Molded-Case Switches or Circuit Breakers: - a. AC Data Systems, Inc. - b. Eaton Electrical Inc.: Cutler-Hammer. - c. GE Zenith Controls. - d. Hubbell Industrial Controls, Inc. - e. Lake Shore Electric Corporation. # 2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS - A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated. - B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008. - 1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location. - C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C. - D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1. - E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions. - F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources. - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable. - 2. Switch Action: Double throw; mechanically held in both directions. - 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts. - G. Neutral Switching. Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles. - H. Neutral Terminal: Solid and fully rated, unless otherwise indicated. - I. Oversize Neutral: Ampacity and switch rating of neutral path through units indicated for oversize neutral shall be double the nominal rating of circuit in which switch is installed. - J. Heater: Equip switches exposed to outdoor temperatures and humidity, and other units indicated, with an internal heater. Provide thermostat within enclosure to control heater. - K. Battery Charger: For generator starting batteries. - 1. Float type rated 2 A. - 2. Ammeter to display charging current. - 3. Fused ac inputs and dc outputs. - L. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device. - M. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations. Color-coding and wire and cable tape markers are specified in Division 26 Section "Identification for Electrical Systems." - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated. - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated. - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips. - N. Enclosures: General-purpose NEMA 250, Type 3R, complying with NEMA ICS 6 and UL 508, unless otherwise indicated. # 2.3 AUTOMATIC TRANSFER SWITCHES - A. Comply with Level 1 equipment according to NFPA 110. - B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated. - C. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation. - D. Manual Switch Operation: Unloaded. Control circuit automatically disconnects from electrical operator during manual operation. - E. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds. - F. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel. - G. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A. - H. Automatic Closed-Transition Transfer Switches: Include the following functions and characteristics: - 1. Fully automatic make-before-break operation. - 2. Load transfer without interruption, through momentary interconnection of both power sources not exceeding 100 ms. - 3. Initiation of No-Interruption Transfer: Controlled by in-phase monitor and sensors confirming both sources are present and acceptable. - a. Initiation occurs without active control of generator. - b. Controls ensure that closed-transition load transfer closure occurs only when the 2 sources are within plus or minus 5 electrical degrees maximum, and plus or minus 5 percent maximum voltage difference. - 4. Failure of power source serving load initiates automatic break-before-make transfer. - In In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase. Relay compares phase relationship and frequency difference between normal and emergency sources and initiates transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer is initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage. - J. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit inrush and seal currents are rated for actual currents to be encountered. - K. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Pause is adjustable from 0.5 to 30 seconds minimum and factory set for 0.5 second, unless otherwise indicated. Time delay occurs for both transfer directions. Pause is disabled unless both sources are live. ### L. Automatic Transfer-Switch Features: - 1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent. - 2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second. - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent. - 4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored. - 5. Test Switch: Simulate normal-source failure. - 6. Switch-Position Pilot Lights: Indicate source to which load is connected. - 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits. - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available." - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available." - 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac. - 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status. - 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V de minimum. - 11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source. - 12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source. - 13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following: - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer. - b. Push-button programming control with digital display of settings. - e. Integral battery operation of time switch when normal control power is not available. ## 2.4 REMOTE ANNUNCIATOR SYSTEM - A. Functional Description: Remote annunciator panel shall annunciate conditions for indicated transfer switches. Annunciation shall include the following: - 1. Sources available, as defined by actual pickup and dropout settings of transfer-switch controls. - 2. Switch position. - 3. Switch in test mode. - 4. Failure of communication link. - B. Annunciator Panel: LED-lamp type with audible signal and silencing switch. - 1. Indicating Lights: Grouped for each transfer switch monitored. - 2. Label each group, indicating transfer switch it monitors, location of switch, and identity of load it serves. - 3. Mounting: Flush, modular, steel cabinet, unless otherwise indicated. - 4. Lamp Test: Push-to-test or lamp-test switch on front panel. ## 2.5 REMOTE ANNUNCIATOR AND CONTROL SYSTEM - A. Functional Description: Include the following functions for indicated transfer switches: - 1. Indication of sources available, as defined by actual pickup and dropout settings of transfer-switch controls. - 2. Indication of switch position. - 3. Indication of switch in test mode. - 4. Indication of failure of digital communication link. - 5. Key-switch or user-code access to control functions of panel. - 6. Control of switch-test initiation. - 7. Control of switch operation in either direction. - 8. Control of time-delay bypass for transfer to normal source. - B. Malfunction of annunciator, annunciation and control panel, or communication link shall not affect functions of automatic transfer switch. In the event of failure of communication link, automatic transfer switch automatically reverts to stand-alone, self-contained operation. Automatic transfer-switch sensing, controlling, or operating function shall not depend on remote panel for proper operation. - C. Remote Annunciation and Control Panel: Solid-state components. Include the following features: - 1. Controls and indicating lights grouped together for each transfer switch. - 2. Label each indicating light control group. Indicate transfer switch it controls, location of switch, and load it serves. - 3. Digital Communication Capability: Matched to that of transfer switches supervised. - 4. Mounting: Flush, modular, steel cabinet, unless otherwise indicated. # 2.6 SOURCE QUALITY CONTROL A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1. # PART 3 - EXECUTION ## 3.1 INSTALLATION A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - B. Floor-Mounting Switch: Anchor to floor by bolting. - 1. Concrete Bases: 4 inches (100 mm) high, reinforced, with chamfered edges. Extend base no more than 4 inches (100 mm) in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Division 26 Section "Hangers and Supports for Electrical Systems." - C. Annunciator and Control Panel Mounting: Flush in wall, unless otherwise indicated. - D. Identify components according to Division 26 Section "Identification for Electrical Systems." - E. Set field-adjustable intervals and delays, relays, and engine exerciser clock. ## 3.2 CONNECTIONS - A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring. - B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems." - C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." ## 3.3 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform tests and inspections and prepare test reports. - B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing. - C. Perform tests and inspections and prepare test reports. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing. - 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements. - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulation-resistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance. - a. Check for electrical continuity of circuits and for short circuits. - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features. - c. Verify that manual transfer warnings are properly placed. - d. Perform manual transfer operation. - 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times. - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available. - b. Simulate loss of phase-to-ground voltage for each phase of normal source. - c. Verify time-delay settings. - d. Verify pickup and dropout voltages by data readout or inspection of control settings. - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations. - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles. - g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown. - 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources. - a. Verify grounding connections and locations and ratings of sensors. - D. Testing Agency's Tests and Inspections: - 1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements. - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 3. Measure insulation resistance phase-to-phase and phase-to-ground with insulation-resistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance. - a. Check for electrical continuity of circuits and for short circuits. - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features. - c. Verify that manual transfer warnings are properly placed. - d. Perform manual transfer operation. - 4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times. - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available. - b. Simulate loss of phase-to-ground voltage for each phase of normal source. - c. Verify time-delay settings. - d. Verify pickup and dropout voltages by data readout or inspection of control settings. - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations. - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles. - g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown. - 5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources. - a. Verify grounding connections and locations and ratings of sensors. - E. Coordinate tests with tests of generator and run them concurrently. - F. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests. - G. Remove and replace malfunctioning units and retest as specified above. - H. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner. - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion. - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - 3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. # 3.4 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Division 01 Section "Demonstration and Training." ADAMS FAIRACRE FARMS RT. 211 EAST WALLKILL, NY 12589 FELLENZER ENGINEERING, LLP 22 MULBERRY STREET MIDDLETOWN, NY 10940 B. Coordinate this training with that for generator equipment. END OF SECTION 263600 # **SECTION 265100 - INTERIOR LIGHTING** # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY #### A. Section Includes: - 1. Interior lighting fixtures, lamps, and ballasts. - 2. Emergency lighting units. - 3. Exit signs. - 4. Lighting fixture supports. - 5. Retrofit kits for fluorescent lighting fixtures. ## B. Related Sections: - 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors. - 2. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps. ## 1.3 DEFINITIONS - A. BF: Ballast factor. - B. CCT: Correlated color temperature. - C. CRI: Color-rendering index. - D. HID: High-intensity discharge. - E. LER: Luminaire efficacy rating. - F. Lumen: Measured output of lamp and luminaire, or both. - G. Luminaire: Complete lighting fixture, including ballast housing if provided. ## 1.4 SUBMITTALS - A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following: - 1. Physical description of lighting fixture including dimensions. - 2. Emergency lighting units including battery and charger. - 3. Ballast, including BF. - 4. Energy-efficiency data. - 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles." - 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles." - 7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps. - 8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project. - a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer. - b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products. - B. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work. - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 2. Wiring Diagrams: For power, signal, and control wiring. - C. Samples: For each lighting fixture indicated in the Interior Lighting Fixture Schedule. Each Sample shall include the following: - 1. Lamps and ballasts, installed. - 2. Cords and plugs. - 3. Pendant support system. - D. Installation instructions. - E. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved: - 1. Lighting fixtures. - 2. Suspended ceiling components. - 3. Partitions and millwork that penetrate the ceiling or extends to within 12 inches (305 mm) of the plane of the luminaires. - 4. Ceiling-mounted projectors. - 5. Structural members to which suspension systems for lighting fixtures will be attached. - 6. Other items in finished ceiling including the following: - a. Air outlets and inlets. - b. Speakers. - c. Sprinklers. - d. Smoke and fire detectors. - e. Occupancy sensors. - f. Access panels. - 7. Perimeter moldings. - F. Qualification Data: For qualified agencies providing photometric data for lighting fixtures. - G. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer. - H. Field quality-control reports. - I. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals. - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes. - J. Warranty: Sample of special warranty. # 1.5 QUALITY ASSURANCE - A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products. - B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides. - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. - D. Comply with NFPA 70. - E. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global. - F. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections. - 1. Obtain Architect's approval of fixtures for mockups before starting installations. - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work. - 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion. ## 1.6 COORDINATION A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies. ## 1.7 WARRANTY - A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period. - 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years. - 2. Warranty Period for Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years. # PART 2 - PRODUCTS # 2.1 MANUFACTURERS A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, product(s) indicated on Drawings. # 2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS - A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures. - B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A. - C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable. - D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B. - E. Metal Parts: Free of burrs and sharp corners and edges. - F. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging. - G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. #### H. Diffusers and Globes: - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation. - a. Lens Thickness: At least **0.125 inch (3.175 mm)** minimum unless otherwise indicated. - b. UV stabilized. - 2. Glass: Annealed crystal glass unless otherwise indicated. - I. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place. - 1. Label shall include the following lamp and ballast characteristics: - a. "USE ONLY" and include specific lamp type. - b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires. - c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires. - d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires. - e. ANSI ballast type (M98, M57, etc.) for HID luminaires. - f. CCT and CRI for all luminaires. - J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter. # 2.3 EXIT SIGNS A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction. # B. Internally Lighted Signs: - 1. Lamps for AC Operation: Fluorescent, two for each fixture, 20,000 hours of rated lamp life. - 2. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life. - 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack. - a. Battery: Sealed, maintenance-free, nickel-cadmium type. - b. Charger: Fully automatic, solid-state type with sealed transfer relay. - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger. - d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability. - e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle. - f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response. - g. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED. # 4. Master/Remote Sign Configurations: - a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in [LED power supply] [ballast] [battery] for power connection to remote unit. - b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system. - C. Self-Luminous Signs: Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for [10] [15] [20] years. - D. Self-Luminous Signs: Using strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Provide with universal bracket for flush-ceiling, wall, or end mounting. ## 2.4 EMERGENCY LIGHTING UNITS A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924. - 1. Battery: Sealed, maintenance-free, lead-acid type. - 2. Charger: Fully automatic, solid-state type with sealed transfer relay. - 3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger. - 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability. - 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle. - 6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures. - 7. Integral Time-Delay Relay: Holds unit on for fixed interval of [15] < Insert period > minutes when power is restored after an outage. - 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response. - 9. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED. #### PART 3 - EXECUTION # 3.1 INSTALLATION # A. Lighting fixtures: - 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated. - 2. Install lamps in each luminaire. - B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall. - C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire. - D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element. - 1. Install ceiling support system rods or wires[, independent of the ceiling suspension devices,] for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners. - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application. - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees. - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3. # E. Suspended Lighting Fixture Support: - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging. - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers. - 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end. - 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure. - F. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment. - G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." ## 3.2 IDENTIFICATION A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems." # 3.3 FIELD QUALITY CONTROL - A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal. - B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101. - C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards. ## 3.4 STARTUP SERVICE A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage. # 3.5 ADJUSTING - A. Occupancy Adjustments: When requested within [12] <Insert number> months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to [two] <Insert number> visits to Project during other-thannormal occupancy hours for this purpose. Some of this work may be required after dark. - 1. Adjust aimable luminaires in the presence of Architect. END OF SECTION 265100 # SECTION 265600 - EXTERIOR LIGHTING ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY #### A. Section Includes: - 1. Exterior luminaires with lamps and ballasts. - 2. Luminaire-mounted photoelectric relays. - 3. Poles and accessories. - 4. Luminaire lowering devices. # B. Related Sections: 1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings. ## 1.3 DEFINITIONS - A. CCT: Correlated color temperature. - B. CRI: Color-rendering index. - C. HID: High-intensity discharge. - D. LER: Luminaire efficacy rating. - E. Luminaire: Complete lighting fixture, including ballast housing if provided. - F. Pole: Luminaire support structure, including tower used for large area illumination. - G. Standard: Same definition as "Pole" above. #### 1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION - A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M. - B. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M. - C. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map. - D. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M. - 1. Basic wind speed for calculating wind load for poles exceeding 49.2 feet (15 m) in height is 100 mph (45 m/s). a. Wind Importance Factor: 1.0. b. Minimum Design Life: 50 years. c. Velocity Conversion Factors: 1.0. - 2. Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 100 mph (45 m/s). - a. Wind Importance Factor: 1.0. - b. Minimum Design Life: 25 years. - c. Velocity Conversion Factors: 1.0. ## 1.5 SUBMITTALS - A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following: - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters. - 2. Details of attaching luminaires and accessories. - 3. Details of installation and construction. - 4. Luminaire materials. - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories. - a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer. - b. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products. - 6. Photoelectric relays. - 7. Ballasts, including energy-efficiency data. - 8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data. - 9. Materials, dimensions, and finishes of poles. - 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved. - 11. Anchor bolts for poles. - 12. Manufactured pole foundations. - B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer. - 3. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based. - 4. Wiring Diagrams: For power, signal, and control wiring. - C. Samples: For products designated for sample submission in the Exterior Lighting Device Schedule. Each Sample shall include lamps and ballasts. - D. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer. - E. Qualification Data: For qualified agencies providing photometric data for lighting fixtures. - F. Field quality-control reports. - G. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals. - H. Warranty: Sample of special warranty. # 1.6 QUALITY ASSURANCE - A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products. - B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910. - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. - D. Comply with IEEE C2, "National Electrical Safety Code." - E. Comply with NFPA 70. # 1.7 DELIVERY, STORAGE, AND HANDLING - A. Package aluminum poles for shipping according to ASTM B 660. - B. Store poles on decay-resistant-treated skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation. - C. Handle wood poles so they will not be damaged. Do not use pointed tools that can indent pole surface more than 1/4 inch (6 mm) deep. Do not apply tools to section of pole to be installed below ground line. - D. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps. - E. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps. #### 1.8 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage. - 1. Warranty Period for Luminaires: Five years from date of Substantial Completion. - 2. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion. - 3. Warranty Period for Color Retention: Five years from date of Substantial Completion. - 4. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Substantial Completion. # PART 2 - PRODUCTS # 2.1 MANUFACTURERS A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, product(s) indicated on Drawings. # 2.2 GENERAL REQUIREMENTS FOR LUMINAIRES - A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction. - 1. LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A. - 2. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable. - 3. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B. - B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires. - C. Metal Parts: Free of burrs and sharp corners and edges. - D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging. - E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires. - F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens. - G. Exposed Hardware Material: Stainless steel. - H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation. - I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field. - J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated: - 1. White Surfaces: 85 percent. - 2. Specular Surfaces: 83 percent. - 3. Diffusing Specular Surfaces: 75 percent. - K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors. - L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials. - M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling." - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel. - a. Color: As selected from manufacturer's standard catalog of colors. - b. Color: Match Architect's sample of manufacturer's standard color. - c. Color: As selected by Architect from manufacturer's full range. - N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes. - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax. - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611. - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611. - a. Color: Black. - O. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place. - 1. Label shall include the following lamp and ballast characteristics: - a. "USES ONLY" and include specific lamp type. - b. Lamp diameter code (T-4, T-5, T-8, T-12), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires. - c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires. - d. Start type (preheat, rapid start, instant start) for fluorescent and compact fluorescent luminaires. - e. ANSI ballast type (M98, M57, etc.) for HID luminaires. - f. CCT and CRI for all luminaires. # 2.3 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS - A. Structural Characteristics: Comply with AASHTO LTS-4-M. - 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article. - 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis. - B. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated. - C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components. - 1. Materials: Shall not cause galvanic action at contact points. - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated. - 3. Anchor-Bolt Template: Plywood or steel. - D. Handhole: Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws. Provide on all, except wood poles. - E. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." - F. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories. - G. Breakaway Supports: Frangible breakaway supports, tested by an independent testing agency acceptable to authorities having jurisdiction, according to AASHTO LTS-4-M. ## 2.4 STEEL POLES - A. Poles: Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall. - 1. Shape: Round, straight. - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support. - B. Steel Mast Arms: Single-arm type, continuously welded to pole attachment plate. Material and finish same as pole. - C. Brackets for Luminaires: Detachable, cantilever, without underbrace. - 1. Adapter fitting welded to pole, allowing the bracket to be bolted to the pole mounted adapter, then bolted together with stainless-steel bolts. - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire. - 3. Match pole material and finish. - D. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top. - E. Steps: Fixed steel, with nonslip treads, positioned for 15-inch (381-mm) vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet (3 m) above finished grade. - F. Intermediate Handhole and Cable Support: Weathertight, 3-by-5-inch (76-by-127-mm) handhole located at midpoint of pole with cover for access to internal welded attachment lug for electric cable support grip. - G. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole. - H. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor. - I. Platform for Lamp and Ballast Servicing: Factory fabricated of steel with finish matching that of pole. - J. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting. - K. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M. - L. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or with SSPC-SP 8, "Pickling." - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection. - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel. - a. Color: As indicated by manufacturer's designations. ## 2.5 ALUMINUM POLES - A. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall. - B. Poles: ASTM B 209 (ASTM B 209M), 5052-H34 marine sheet alloy with access handhole in pole wall. - 1. Shape: Round, straight. - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support. - C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top. - D. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole. - E. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts. - 1. Tapered oval cross section, with straight tubular end section to accommodate luminaire. - 2. Finish: Same as pole. - F. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting. - G. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes. - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax. - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611. - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611. - a. Color: As selected by Architect from manufacturer's full range. # 2.6 DECORATIVE POLES # A. Pole Material: - 1. Cast ductile iron. - 2. Cast gray iron, according to ASTM A 48/A 48M, Class 30. - 3. Cast aluminum. - 4. Cast concrete. - 5. Spun concrete. - 6. Steel tube, covered with closed-cell polyurethane foam, with a polyethylene exterior. # B. Mounting Provisions: - 1. Bolted to concrete foundation. - 2. Embedded. #### C. Fixture Brackets: 1. Cast ductile iron. - 2. Cast gray iron. - 3. Cast aluminum. ## 2.7 POLE ACCESSORIES - A. Duplex Receptacle: 120 V, 20 A in a weatherproof assembly complying with Division 26 Section "Wiring Devices" for ground-fault circuit-interrupter type. - 1. Surface mounted or Recessed, 12 inches (300 mm) above finished grade. - 2. Nonmetallic polycarbonate plastic or reinforced fiberglass, weatherproof in use, cover, that when mounted results in NEMA 250, Type 3R enclosure. - 3. With cord opening. - 4. With lockable hasp and latch that complies with OSHA lockout and tag-out requirements. - B. Minimum 1800-W transformer, protected by replaceable fuses, mounted behind access cover. - C. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole. ## PART 3 - EXECUTION ## 3.1 LUMINAIRE INSTALLATION - A. Install lamps in each luminaire. - B. Fasten luminaire to indicated structural supports. - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer. - C. Adjust luminaires that require field adjustment or aiming. # 3.2 POLE INSTALLATION - A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole. - B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings: - 1. Fire Hydrants and Storm Drainage Piping: 60 inches (1520 mm). - 2. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet (3 m). - 3. Trees: 15 feet (5 m) from tree trunk. - C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-Place Concrete." - D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer. - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer. - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space. - 3. Install base covers unless otherwise indicated. - 4. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole. - E. Embedded Poles with Tamped Earth Backfill: Set poles to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height. - 1. Dig holes large enough to permit use of tampers in the full depth of hole. - 2. Backfill in 6-inch (150-mm) layers and thoroughly tamp each layer so compaction of backfill is equal to or greater than that of undisturbed earth. - F. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height. - 1. Make holes 6 inches (150 mm) in diameter larger than pole diameter. - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi (20 MPa) at 28 days, and finish in a dome above finished grade. - 3. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole. - 4. Cure concrete a minimum of 72 hours before performing work on pole. - G. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inch- (150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab. - H. Raise and set poles using web fabric slings (not chain or cable). ## 3.3 BOLLARD LUMINAIRE INSTALLATION - A. Align units for optimum directional alignment of light distribution. - B. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete." ## 3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES A. Install on concrete base with top **4 inches (100 mm)** above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete." # 3.5 CORROSION PREVENTION - A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment. - B. Steel Conduits: Comply with Division 26 Section "Raceway and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap. #### 3.6 GROUNDING - A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems." - 1. Install grounding electrode for each pole unless otherwise indicated. - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system. - B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems." - 1. Install grounding electrode for each pole. - 2. Install grounding conductor and conductor protector. - 3. Ground metallic components of pole accessories and foundations. # 3.7 FIELD QUALITY CONTROL - A. Inspect each installed fixture for damage. Replace damaged fixtures and components. - B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source. - 1. Verify operation of photoelectric controls. # C. Illumination Tests: - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s): - a. IESNA LM-5, "Photometric Measurements of Area and Sports Lighting Installations." - b. IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations." - c. IESNA LM-52, "Photometric Measurements of Roadway Sign Installations." - d. IESNA LM-64, "Photometric Measurements of Parking Areas." - e. IESNA LM-72, "Directional Positioning of Photometric Data." - D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards. ## 3.8 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices. END OF SECTION 265600