SECTION 26 05 26 - GROUNDING AND BONDING SYSTEMS: GENERAL

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of system described in other Sections.
- B. Related Sections include the following:
 - 1. Division 26 Section "Lightning Protection" for additional grounding and bonding materials.
- 1.03 SUBMITTALS
- A. Product Data For the following:
 - 1. Ground rods.
 - 2. Chemical rods.
- B. Qualification Data: For firms and persons specified in "Quality Assurance" Article.
- C. Field Test Reports: Submit written test reports to include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- 1.04 QUALITY ASSURANCE
- A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - 1. Comply with UL 467.
- C. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

GROUNDING AND BONDING SYSTEMS: GENERAL

- 1. Grounding Conductors, Cables, Connectors, and Rods:
 - a. Chance/Hubbell
 - b. Copperweld Corp.
 - c. Erico Inc.; Electrical Products Group.
 - d. Framatome Connectors/Burndy Electrical
 - e. Galvan Industries, Inc.
 - f. Ideal Industries, Inc.
 - g. Kearney/Cooper Power Systems.
 - h. Korns: C.C. Korns Co.; Division of Robroy Industries.
 - i. Lyncole XIT Grounding.
 - j. O-Z/Gedney Co.; a business of the EGS Electrical Group.
 - k. Raco, Inc.; Division of Hubbell.
 - I. Salisbury: W.H. Salibury & Co.
 - m. Superior Grounding Systems, Inc.
 - n. Thomas & Betts, Electrical

2.02 GROUNDING CONDUCTORS

- A. For insulated conductors, comply with Section 26 27 00.
- B. Material: Aluminum, copper-clad aluminum, and copper.
- C. Equipment Grounding Conductors: Insulated with green-colored insulation.
- D. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two band of yellow.
- E. Grounding Electrode Conductors: Stranded cable.
- F. Underground Conductors: Bare, tinned, stranded, unless otherwise indicated.
- G. Bare Copper Conductors: Comply with the following:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Assembly of stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
- H. Copper Bonding Conductors: As follows:
 - 1. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG copper conductor, 1/4 inch in diameter.
 - 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded copper conductor.
 - 3. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules: 1-5/8" wide and 1/16" thick.
 - 4. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules: 1-5/8" wide and 1/16" thick.
- I. Aluminum Bonding Conductors: As follows:
 - 1. Bonding Cable: 10 strands of No. 14 AWG aluminum conductor 1/4" in diameter.
 - 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded aluminum conductor.
 - 3. Bonding Jumper: Aluminum tape, braided bare aluminum conductors, terminated with aluminum ferrules: 1-5/8" wide and 1/16" thick.
- J. Ground Conductor and Conductor Protector for Wood Poles: As follows:
 - 1. No. 4 AWG aluminum, soft-drawn copper conductor.
 - 2. Conductor Protector: Half-round PVC or wood molding. If wood, use pressure-treated fir, or cypress or cedar.
- K. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.
- 2.03 CONNECTOR PRODUCTS
- A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes and combinations of conductors and connected items.

- B. Bolted Connectors: Bolted-pressure type connectors, or compression type.
- C. Welded Connectors: Exothermic-welded type, in kit form, and selected per

2.04 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel.
- B. Ground Rods: Section type; copper-clad steel.
- 1. Size: 5/8 in diameter.
- C. Chemical Electrodes: Copper tube, straight or L-shaped, filled with nonhazardous chemical salts, terminated with a 4/0 bare conductor. Provide backfill material recommended by manufacturer.

PART 3 - EXECUTION

3.01 APPLICATION

- A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- B. In raceways, use insulated equipment grounding conductors.
- C. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells.
- D. Equipment Grounding Conductor Terminations: Use bolted pressure clamps.
- E. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Use insulated spacer; space 1 inch from wall and support from wall 6 inches above finished floor, unless otherwise indicated.
 - 2. At doors, route the bus up to the top of the door frame, across the top of the doorway, and down to the specified height above the floor.
- F. Underground Grounding Conductors: Use tinned copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches below grade or bury 12 inches above duct bank when installed as part of the duct bank.
- 3.02 EQUIPMENT GROUNDING CONDUCTORS
- A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
- B. Install equipment grounding conductors in all feeders and circuits.
- C. Install insulated equipment grounding conductor with circuit conductors for the following items, in addition to those required by NEC:
 - 1. Feeders and branch circuits.
 - 2. Single-phase motor branch circuits.
 - 3. Three phase motor branch circuits.
- D. Busway Supply Circuits: Install insulated equipment grounding conductor from the grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- E. Bond metal parts, motor frames, fittings, plumbing pipes, drains, metal conduit, metal surfaces within 5', and all electrical devices and controls within 5'.
- F. Motors shall be grounded by means of a grounding conductor in the same raceway with the motor feeder connected to the grounding bushing at the motor terminal box and the ground bus in the motor control center or to the incoming conduit grounding bushing of an individually mounted motor

starter.

3.03 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.

3.04 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
 - 1. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- E. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- F. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.
- 3.05 FIELD QUALITY CONTROL
- A. Testing: Engage a qualified testing agency to perform the following field quality-control testing:
 - 1. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.
 - 2. Test completed grounding system at each location where a maximum ground-resistance

level is specified, at service disconnect enclosure grounding terminal, and at ground test wells. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. Perform tests, by the fall-of-potential method according to IEEE 81. (Ensure that the test is performed with all ground -to -neutral bands broken. The grounding system must be completely isolated for the test to be valid.)

3. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Engineer promptly and include recommendations to reduce ground resistance.

END OF SECTION