SECTION 320523

CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section.

1.2 SUMMARY

A. Section Includes:

- 1. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown on the Drawings. Construction shall include the following:
 - a. Curbs
 - b. Pedestrian Pavement: Walks, pedestrian crossings, wheelchair curb ramps, and steps.
 - c. Equipment Pads: Trash enclosure pad.
- B. Related Sections:
 - 1. Contract Documents.
 - 2. Section 312000 Earthwork.

1.3 DEFINITIONS AND ABREVIATIONS

- A. Definitions: None.
- B. Abbreviations: None.

1.4 REFERENCES

- A. The most current version of the publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
 - 1. American Association of State Highway and Transportation Officials (AASHTO).

M147-65-UL Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses (R 2004)

M148-05-UL Liquid Membrane Forming Compounds for Curing Concrete (ASTM C309)

M171-05-UL Sheet Materials for Curing Concrete (ASTM C171)

M182-05-UL Burlap Cloth Made from Jute or Kenaf and Cotton Mats

2. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

A82/A82M-07 Reinforcement	Standard Specification for Steel Wire, Plain, for Concrete						
A185/185M-07 Plain, for Concrete	Standard Specification for Steel Welded Wire Reinforcement,						
A615/A615M-12 Bars for Concrete Re	A615/A615M-12 Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement						
A653/A653M-11 or Zinc Iron Alloy Co	A653/A653M-11 Standard Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc Iron Alloy Coated (Galvannealed) by the Hot Dip Process						
A706/A706M-09b Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement							
A767/A767M-09 Standard Specification for Zinc Coated (Galvanized) Steel Bars for Concrete Reinforcement							
A775/A775M-07b	Standard Specification for Epoxy Coated Reinforcing Steel Bars						
A820/A820M-11 Concrete	Standard Specification for Steel Fibers for Fiber Reinforced						
C31/C31M-10Standard Practice for Making and Curing Concrete Test Specimens in the field							
C33/C33M-11a	Standard Specification for Concrete Aggregates						
C39/C39M-12Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens							
C94/C94M-12Standa	ard Specification for Ready Mixed Concrete						
C143/C143M-10a	Standard Test Method for Slump of Hydraulic Cement Concrete						
C150/C150M-12	Standard Specification for Portland Cement						
C171-07 Standa	C171-07 Standard Specification for Sheet Materials for Curing Concrete						
C172/C172M-10	Standard Practice for Sampling Freshly Mixed Concrete						
C173/C173M-10b Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method							
C192/C192M-07 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory							
C231/C231M-10 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method							
C260/C260M-10a Concrete	Standard Specification for Air Entraining Admixtures for						

C309-11 Standard Specification for Liquid Membrane Forming Compounds for Curing Concrete

C494/C494M-12 Standard Specification for Chemical Admixtures for Concrete

C618-12 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

C666/C666M-03(2008) Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing

D1751-04(2008) Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types)

D4263-83(2012) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method.

D4397-10 Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications

3. American Welding Society (AWS):

D1.4/D1.4M (2005) Structural Welding Code Reinforcing Steel

1.5 ACTION SUBMITTALS

A. General:

- 1. Make submittal in compliance with all provisions of Division 01 pertaining to submittals and quality assurance.
- 2. Render submittals and receive approval prior to delivery of installation.
- 3. Approval in writing by the Engineer of submitted products, samples, test reports, and certificates, does not constitute final acceptance.
- B. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified.
 - 1. Expansion Joint Filler.
 - 2. Hot poured sealing compound.
 - 3. Reinforcement.
 - 4. Curing materials.
- C. Jointing Plan for all concrete areas.
- D. Concrete Mix Design.
- E. Concrete Test Reports
- F. Construction Staking Notes from Surveyor.
- G. Data and Test Reports: Select subbase material.
 - 1. Job mix formula.

- 2. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.
- 3. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.
- 4. The Contractor shall retain a testing laboratory to design a select subbase material mixture and submit a job mix formula to the Resident Engineer, in writing, for approval. The formula shall include the source of materials, gradation, plasticity index, liquid limit, and laboratory compaction curves indicating maximum density at optimum moisture. Cost of the testing laboratory to be included in the Contractor's cost of project.

1.6 INFORMATION SUBMITTALS

A. Qualification Data: For qualified installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of Owners' contact persons.

1.7 QUALITY ASSURANCE

A. The Contractor shall engage the services of a geotechnical engineer and testing agency to perform quality control of the earthworks.

1.8 DELIVERY STORAGE AND HANDLING

A. Follow industry guidelines for the timing and placement of concrete.

1.9 PROJECT CONDITIONS

A. Weather Limitations

1. Hot Weather: Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

Cold Weather: Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

- B. Codes and Standards: Perform earthwork complying with federal, state, and local regulations including the Occupational Safety and Health Act of 1970 as amended.
- C. All applicable regulations regarding notification of utility companies.
- D. Any pumped water shall be discharged from the Site in accordance with federal, state and local codes and regulations. Comply with all local, county, and state permit requirements.

PART 2 - PRODUCTS

2.1 GENERAL

A. Concrete Type: Concrete shall be as per Table 1 – Concrete Type, air entrained.

TABLE I - CONCRETE TYPE

	Concrete	Strength	Non-Air- Entrained	Air-Entrained		
	Min. 28 Day Comp. Str. Psi (MPa) Min. Cement lbs/c. yd (kg/m³)		Max. Water Cement Ratio	Min. Cement lbs/c. yd (kg/m³)	Max. Water Cement Ratio	
Type A	5000 (35) ^{1,3}	630 (375)	0.45	650 (385)	0.40	
Type B	4000 (30) ^{1,3}	550 (325)	0.55	570 (340)	0.50	
Type C	3000 (25) ^{1,3}	470 (280)	0.65	490 (290)	0.55	
Type D	3000 (25)1,2	500 (300)	*	520 (310)	*	

- 1. If trial mixes are used, the proposed mix design shall achieve a compressive strength 1200 psi in excess of the compressed strength. For concrete strengths above 5000 psi, the proposed mix design shall achieve a compressive strength 1400 psi in excess of the compressed strength.
- 2. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- B. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

TABLE II – MAXIMUM SLUMP – INCHES (MM)

TYPE	MAXIMUM SLUMP*			
Curb & Gutter	3 inches			
Pedestrian Pavement	3 inches			
Vehicular Pavement	2 inches (Machine Finished) 4 inches(Hand Finished)			
Equipment Pad	3 to 4 inches			
* For concrete to be vibrated: Slump as determined by ASTM C143. Tolerances as established by ASTM C94.				

2.2 REINCORCEMENT

A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications.

2.3 SELECT SUBBASE (WHERE REQUIRED)

A. Subbase material shall consist of select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials conforming to AASHTO M147, as follows.

GRADE REQUIREMENTS FOR SOILS USED AS SUBBASE MATERIALS, BASE COURSES AND SURFACES COURSES

AASHTO M147	Percentage Passing by Mass							
Size	Grades							
(in)	A	В	С	D	Е	F		
2	100	100						
1		75-95	100	100	100	100		
3/8	30-6	5 40-75	50-85	60-100				
No. 4	25-5	5 30-60	35-65	50-85	55-100	70-100		
No. 10	15-4	0 20-45	25-50	40-70	40-100	55-100		
No. 40	8-20	15-30	15-30	25-45	20-50	30-70		
No. 200	2-8	5-20	5-15	5-20	6-20	8-25		

- B. Materials meeting other gradations than that noted will be acceptable whenever the gradations are within a tolerance of three to five percent, plus or minus, of the single gradation established by the job-mix formula, or as recommended by the geotechnical engineer and approved by the Resident Engineer.
 - 1. Salvaged existing on-site asphalt material or dense graded aggregate, meeting requirements of this section, and approved for use by the Licensed Site Remediation Professional to be re-used where indicated on the Drawings.
- C. Subbase material shall produce a compacted, dense-graded course, meeting the density requirement specified herein.

2.4 FORMS

- A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved.
- B. Do not use forms if they vary from a straight line more than 1/8 inch in any ten foot long section, in either a horizontal or vertical direction.
- C. Wood forms should be at least 2 inches thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii.

2.5 CONCRETE CURING MATERIALS

A. Concrete curing materials shall conform to one of the following:

- 1. Burlap having a weight of seven ounces or more per yard when dry.
- 2. Impervious Sheeting conforming to ASTM C171.
- 3. Liquid Membrane Curing Compound conforming to ASTM C309, Type 1 and shall be free of paraffin or petroleum.

2.6 EXPANSION JOINT FILLERS

A. Material shall conform to ASTM D1751-04.

PART 3 - EXECUTION

3.1 SUBGRADE PREPARATION

- A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTHWORK.
- B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE (WHERE REQUIRED)

A. Mixing: Proportion the select subbase by weight or by volume in quantities so that the final approved job mixed formula gradation, liquid limit, and plasticity index requirements will be met after subbase course has been placed and compacted. Add water in approved quantities, measured by weight or volume, in such a manner to produce a uniform blend.

B. Placing:

- 1. Place the mixed material on the prepared subgrade in a uniform layer to the required contour and grades, and to a loose depth not to exceed 8 inches, and that when compacted, will produce a layer of the designated thickness.
- 2. When the designated compacted thickness exceeds 6 inches, place the material in layers of equal thickness. Remove unsatisfactory areas and replace with satisfactory mixture, or mix the material in the area.
- 3. In no case will the addition of thin layers of material be added to the top layer in order to meet grade.
- 4. If the elevation of the top layer is 1/2 inch or more below the grade, excavate the top layer and replace with new material to a depth of at least 3 inches in compacted thickness.

C. Compaction:

- 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
- 2. Moisten or aerate the material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.

- 3. Compact each layer to at least 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK.
- D. Smoothness Test and Thickness Control: Test the completed subbase for grade and cross section with a straight edge.
 - 1. The surface of each layer shall not show any deviations in excess of 3/8 inch.
 - 2. The completed thickness shall be within 1/2 inch of the thickness as shown on the Drawings.

E. Protection:

- 1. Maintain the finished subbase in a smooth and compacted condition until the concrete has been placed.
- 2. When Contractor's subsequent operations or adverse weather disturbs the approved compacted subbase, excavate, and reconstruct it with new material meeting the requirements herein specified, at no additional cost to the Owner.

3.3 SETTING FORMS

A. Base Support:

- 1. Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown.
- 2. Correct imperfections or variations in the base material grade by cutting or filling and compacting.

B. Form Setting:

- 1. Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines.
- 2. Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction.
- 3. Forms shall conform to line and grade with an allowable tolerance of 1/8 inch (3 mm) when checked with a straightedge and shall not deviate from true line by more than 1/4 inch (6 mm) at any point.
- 4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing.
- 5. Clean and oil forms each time they are used.
- 6. Make necessary corrections to forms immediately before placing concrete.
- 7. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete.

C. The Contractor's Registered Professional Land Surveyor shall establish the control, alignment and the grade elevations of the forms or concrete slipforming machine operations. Staking notes shall be submitted for approval to the Resident Engineer prior to placement of concrete. If discrepancies exist between the field conditions and the Drawings, Contractor shall notify Resident Engineer immediately. No placement of concrete shall occur if a discrepancy greater than 1 inch is discovered.

3.4 EQUIPMENT

- A. The Resident Engineer shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work.
- B. Maintain equipment and tools in satisfactory working condition at all times. newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

3.5 PLACING REINFORCEMENT

- A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement. All reinforcement shall be supported for proper placement within the concrete section.
- B. Before the concrete is placed, the Resident Engineer shall approve the reinforcement placement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown on the Drawings.

3.6 PLACING CONCRETE – GENERAL

- A. Obtain approval of the Resident Engineer before placing concrete.
- B. Remove debris and other foreign material from between the forms before placing concrete.
- C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water.
- D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or loss of ingredients. Deposit concrete so that it requires as little handling as possible.
- E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads.
- F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work.
- G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations.
- H. Cracked or Chipped Concrete Surfaces and Bird Baths. Cracked or chipped concrete and bird baths will not be allowed. Concrete with cracks or chips and bird baths will be removed and replaced to the nearest joints, and as approved by the Resident Engineer, by the Contractor with no additional cost to the Owner.

3.7 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

- A. Place concrete in the forms in one layer of such thickness that, when compacted and finished, it will conform to the cross section as shown.
- B. Deposit concrete as near to joints as possible without disturbing them but do not dump onto a joint assembly.
- C. After the concrete has been placed in the forms, use a strike off guided by the side forms to bring the surface to the proper section to be compacted.
- D. Consolidate the concrete thoroughly by tamping and spading, or with approved mechanical finishing equipment.
- E. Finish the surface to grade with a wood or metal float.
- F. All Concrete pads and pavements shall be constructed with sufficient slope to drain properly.

3.8 PLACEING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete into the forms as close as possible to its final position.
- B. Place concrete rapidly and continuously between construction joints.
- C. Strike off concrete and thoroughly consolidate by a finishing machine, vibrating screed, or by hand finishing.
- D. Finish the surface to the elevation and crown as shown.
- E. Deposit concrete as near the joints as possible without disturbing them but do not dump onto a joint assembly. Do not place adjacent lanes without approval by the Resident Engineer.

3.9 CONCRETE FINISHING – GENERAL

- A. The sequence of operations, unless otherwise indicated, shall be as follows:
 - 1. Consolidating, floating, straight-edging, troweling, texturing, and edging of joints.
 - 2. Maintain finishing equipment and tools in a clean and approved condition.

3.10 CONCRETE FINISHING - CURB AND GUTTER

- A. Round the edges of the gutter and top of the curb with an edging tool to a radius of 1/4 inch or as otherwise detailed.
- B. Float the surfaces and finish with a smooth wood or metal float until true to grade and section and uniform in textures.
- C. Finish the surfaces, while still wet, with a bristle type brush with longitudinal strokes.

- D. Immediately after removing the front curb form, rub the face of the curb with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Brush the surface, while still wet, in the same manner as the gutter and curb top.
- E. Except at grade changes or curves, finished surfaces shall not vary more than 1/8 inch for gutter and 1/4 for top and face of curb, when tested with a 10 foot straightedge.
- F. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
- G. Correct any depressions which will not drain. See Article 3.6, Paragraph H, above.
- H. Visible surfaces and edges of finished curb, gutter, and/or combination curb and gutter shall be free of blemishes, form marks, and tool marks, and shall be uniform in color, shape, and appearance.

3.11 CONCRETE FINISHING – PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, and Wheelchair Curb Ramps:
 - 1. Finish the surfaces to grade and cross section with a metal float, troweled smooth and finished with a broom moistened with clear water.
 - 2. Brooming shall be transverse to the line of traffic.
 - 3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings.
 - 4. Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 1/16 inch in depth.
 - 5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 3/16 inch when tested with a 10 foot straightedge.
 - 6. The thickness of the pavement shall not vary more than 1/4 inch.
 - 7. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints at no additional cost.
- B. Steps: The method of finishing the steps and the sidewalls is similar to above except as herein noted.
 - 1. Remove the riser forms one at a time, starting with the top riser.
 - 2. After removing the riser form, rub the face of the riser with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Use an outside edger to round the corner of the tread; use an inside edger to finish the corner at the bottom of the riser.

- 3. Give the risers and sidewall a final brush finish. The treads shall have a final finish with a stiff brush to provide a non-slip surface.
- 4. The texture of the completed steps shall present a neat and uniform appearance and shall not deviate from a straightedge test more than 3/16 inch.

3.12 CONCRETE FINISHING – EQUIPMENT PADS

- A. After the surface has been struck off and screeded to the proper elevation, provide a smooth dense float finish, free from depressions or irregularities.
- B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings.
- C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 1/8 inch when tested with a 10 foot straightedge.
- D. Correct irregularities exceeding the above. See Article 3.6, Paragraph H, above.

3.13 JOINTS – GENERAL

- A. Place joints, where shown on the Shop Drawings and Drawings, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface.
- B. Joints shall be straight and continuous from edge to edge of the pavement.

3.14 CONTRACTION JOINTS

- A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth.
- B. Construct joints in curbs and gutters by inserting 1/8 inch steel plates conforming to the cross sections of the curb and gutter.
- C. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed.
- D. Finish edges of all joints with an edging tool having the radius as shown.
- E. Score pedestrian pavement with a standard grooving tool or jointer.

3.15 EXPANSION JOINTS

- A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints.
- B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing.
- C. Anchor with approved devices to prevent displacing during placing and finishing operations.
- D. Round the edges of joints with an edging tool.

- E. Form expansion joints as follows:
 - 1. Without dowels, about structures and features that project through, into, or against any site work concrete construction.
 - 2. Using joint filler of the type, thickness, and width as shown.
 - 3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item.

3.16 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on the Shop Drawing jointing plan and Drawings.
- B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes.
- C. Use a butt type joint with dowels in curb and gutter if the joint occurs at the location of a planned joint.
- D. Use keyed joints with tiebars if the joint occurs in the middle third of the normal curb and gutter joint interval.

3.17 FORM REMOVAL

- A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete.
- B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal.

3.18 CURING OF CONCRETE

- A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the Resident Engineer.
- B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 6 inches.
- C. Impervious Sheeting: Use waterproof paper, polyethylene coated burlap, or polyethylene sheeting. Polyethylene shall be at least 4 mils in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 12 inches. Securely anchor sheeting.
- D. Liquid Membrane Curing:

- 1. Apply pigmented membrane forming curing compound in two coats at right angles to each other at a rate of 200 square feet per gallon for both coats.
- 2. Do not allow the concrete to dry before the application of the membrane.
- 3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint.
- 4. Immediately re-spray any area covered with curing compound and damaged during the curing period.

3.19 CLEANING

- A. After completion of the curing period:
 - 1. Remove the curing material (other than liquid membrane).
 - 2. Sweep the concrete clean.
 - 3. After removal of all foreign matter from the joints, seal joints as specified.
 - 4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed.

3.20 PROTECTION

A. The contractor shall protect the concrete against all damage prior to final acceptance by the Owner. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the Resident Engineer, and at no additional cost to the Owner. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the Resident Engineer.

3.21 FINAL CLEAN-UP

A. Remove all debris, rubbish and excess material from the Site.

END OF SECTION