

architects + engineers

PROJECT MANUAL

VILLAGE OF MOUNT KISCO 104 Main Street Mount Kisco, NY 10549

ADDITIONS AND ALTERATIONS AT

INDEPENDENT FIRE COMPANY 33 LEXINGTON AVE. MT KISCO, NY 10549

Project No: MKIV 1803

CONTRACT G - GENERAL CONSTRUCTION

Volume III of III: Division 22 - 33

FINAL BID DOCUMENTS

February 8, 2022

TABLE OF CONTENTS

VOLUME I DIVISIONS 00 - 01

DIVISION 00 – BIDDING AND CONTRACT REQUIREMENTS

<u>Section</u>	<u>Title</u>	<u>Pages</u>	
000105	Seals Page – Independent Fire Station	1 – 1	
000105	Seals Page – Mutual Fire Station	1 – 1	
001000	Project Manual Preface	1 – 2	
001116	Invitation to Bid	1 – 2	
002100	Notice to Bidders	1 – 3	
002113	Instructions to Bidders AIA – A701, 2018 – Independent Station	1 – 8	
02113	Instructions to Bidders AIA – A701, 2018 – Mutual Station	1 – 8	
004100	Bid Form for both Independent and Mutual Stations	1 – 7	
004313	Bid Bond, AIA – A310, 2010, Independent and Mutual Stations	1 – 2	
005000	Standard Form of Agreement Between Owner and Contractor AIA –		
	A101, 2017, Independent and Mutual Stations	each	
	Attachment "A" – Project Manual Enumeration – Independent Station		
	Attachment "A" – Project Manual Enumeration – Mutual Station	1 – 7	
	Attachment "B" – Drawing Set Enumeration – Independent Station	1 – 1	
	Attachment "B" – Drawing Set Enumeration – Mutual Station	1 – 1	
	Attachment "C" – Insurance Requirements	1 – 2	
000440	Attachment "D" – Milestone Schedule	1 – 1	
006113	Performance & Payment Bond, AIA – A312, 2010 – Independent &		
007000	Mutual Fire Stations Construction AIA A201 20	47 4 45	
007000	General Conditions of the Contract for Construction, AIA – A201, 20		
007343	Independent and Mutual Stations	each 1 – 1	
007343	Prevailing Wage Information Project Labor Agreement (PLA)	1 – 1	
	Floject Labor Agreement (FLA)	1 – 60	
<u>DIVISION 01 – GENERAL REQUIREMENTS</u>			
Section	Title	Pages	
<u>Section</u> 010600		<u>Pages</u> 1 – 4	
	Title Regulatory Requirements and Safety Allowances		
010600	Regulatory Requirements and Safety	1 – 4	
010600 012100	Regulatory Requirements and Safety Allowances	1 – 4 1 – 2	
010600 012100 012200 012300 012600	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures	1 – 4 1 – 2 1 – 2	
010600 012100 012200 012300	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both	1 – 4 1 – 2 1 – 2 1 – 3	
010600 012100 012200 012300 012600 012900	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703)	1 – 4 1 – 2 1 – 2 1 – 3 1 – 4	
010600 012100 012200 012300 012600 012900	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4	
010600 012100 012200 012300 012600 012900 013100 013200	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4	
010600 012100 012200 012300 012600 012900	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8	
010600 012100 012200 012300 012600 012900 013100 013200 013300	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1	
010600 012100 012200 012300 012600 012900 013100 013200 013300	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6 1 - 2	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6 1 - 2 1 - 3	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6 1 - 2	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6 1 - 2 1 - 3 1 - 7	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station	1 - 4 1 - 2 1 - 2 1 - 3 1 - 4 1 - 5 1 - 4 1 - 8 1 - 1 1 - 6 1 - 2 1 - 3 1 - 7	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station Testing and Inspection Services	1-4 1-2 1-2 1-3 1-4 1-5 1-4 1-8 1-1 1-6 1-2 1-3 1-7	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station	1-4 1-2 1-2 1-3 1-4 1-5 1-4 1-8 1-1 1-6 1-2 1-3 1-7	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11 014523 044533	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station Testing and Inspection Services Code Required Special Inspections	1-4 1-2 1-2 1-3 1-4 1-5 1-4 1-8 1-1 1-6 1-2 1-3 1-7 1-7 1-7	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11 014523 044533 015000 015800	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station Testing and Inspection Services Code Required Special Inspections Temporary Facilities and Controls Project Identification	1-4 1-2 1-2 1-3 1-4 1-5 1-4 1-8 1-1 1-6 1-2 1-3 1-7 1-7 1-7 1-4 1-13 1-11	
010600 012100 012200 012300 012600 012900 013100 013200 013300 014000 014100 014216 014500.11 014523 044533 015000 015800 H2M architects	Regulatory Requirements and Safety Allowances Unit Prices Alternates Contract Modification Procedures Payment Procedures-Partial Release & Waiver of Lien for both Independent & Mutual Stations (AIA G702, G703) Project Management & Coordination Construction Progress Documentation Submittal Procedures Submittal Procedures Submittal Cover Sheets for both Independent & Mutual Stations Quality Requirements Regulatory Requirements Definitions Statement of Special Inspections and Tests (2020) – Independent Station Statement of Special Inspections and Tests (2020) – Mutual Station Testing and Inspection Services Code Required Special Inspections Temporary Facilities and Controls Project Identification	1-4 1-2 1-2 1-3 1-4 1-5 1-4 1-8 1-1 1-6 1-2 1-3 1-7 1-7 1-7 1-4 1-13 1-11 1-3	

		H2M
016000	Product Requirements	1 – 7
017123	Field Engineering	1 – 2
017329	Cutting and Patching	1 – 4
017423	Cleaning	1 – 3
017700	Closeout Procedures, AIA G706, G706A, G707 and Final Waiver of Lien for both Independent and Mutual Stations	
017900	Demonstration and Training	1 – 4

H2M

VOLUME II – DIVISIONS 02 - 14

<u>DIVISION 02 – EXISTING CONDITIONS</u>			
Section 023200 024119 028080 028080.01	Title Geotechnical Investigations Geotechnical Report Selective Demolition Removal and Disposal of Asbestos Containing Materials Lab Asbestos and Lead Report	Pages 1 - 1 1 - 26 1 - 8 1 - 25 1 - 70	
	DIVISION 03 – CONCRETE		
Section 031000 033000 033500 036000	Title Concrete Forming and Accessories Cast-In-Place Concrete Concrete Finishing Grouting	<u>Pages</u> 1 – 6 1 – 13 1 – 5 1 – 4	
	DIVISION 04 – MASONRY		
Section 040513 040523 042200 042300 044300	Mortar Masonry Accessories Concrete Unit Masonry Glass Unit Masonry Stone Masonry	Pages 1 - 4 1 - 8 1 - 12 1 - 5 1 - 4	
	DIVISION 05 - METALS		
Section 051200 052100 053100 055000 055133	Structural Steel Framing Steel Joist Framing Steel Decking Metal Fabrications Metal Ladders	Pages 1 - 12 1 - 7 1 - 8 1 - 10 1 - 4	
DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES			
Section 061000 061643 062000	Title Rough Carpentry Gypsum Sheathing Finish Carpentry	<u>Pages</u> 1 – 8 1 – 4 1 – 4	
DIVISION 07 – THERMAL AND MOISTURE PROTECTION			
Section 071116 072113 072116 072129 072713 075323 076200	Title Cementitious Waterproofing Board Insulation Blanket Insulation Spray Foam Insulation Air Barrier/Vapor Retarder Fully Adhered EPDM Roofing System Sheet Metal Flashing & Trim	Pages 1 - 2 1 - 4 1 - 4 1 - 6 1 - 4 1 - 15 1 - 6	

H2M architects + engineers Village of Mount Kisco-Additions/Alterations at Independent Fire Co.

H2M

077123	Manufactured Gutters & Downspouts	1 – 4
077213 077233	Manufactured Curbs Roof Hatches	1 – 1 1 – 4
078400	Firestopping	1 – 8
078413 078600	Penetration Firestopping Smoke Barrier System	1 – 6 1 – 3
079200	Sealants	1 – 8
	DIVISION 08 – OPENINGS	
Section	<u>Title</u>	<u>Pages</u>
081113	Hollow Metal Doors & Frames	1 – 8 1 – 6
081429 084113	Pre-finished Wood Doors Aluminum Framed Entrances and Storefronts (Alternate)	1 – 6 1 – 8
085213	Aluminum Clad Wood Windows	1 – 8
087100 088000	Door Hardware Glazing	1 – 13 1 – 10
088300	Mirrors	1 – 5
	DIVISION 09 - FINISHES	
<u>Section</u>	<u>Title</u>	<u>Pages</u>
090561.13 092116	Moisture Vapor Emission Control Gypsum Board Assemblies	1 – 5 1 – 13
093013	Ceramic Tiling	1 – 8
093016 095100	Quarry Tiling Acoustical Lay-In Ceilings	1 – 6 1 – 7
096513	Resilient Base and Accessories	1 – 4
096519.23 097720	Luxury Solid Vinyl Tile Fiberglass Reinforced Plastic Panels	1 – 5 1 – 3
097813	Metal Interior Wall Paneling	1 – 3
099100 099113	Painting Exterior Painting	1 – 10 1 – 5
	DIVISION 10 - SPECIALTIES	
Section	Title	Pages
101400	Signage	<u>Pages</u> 1 – 5
102113.19 102813	Toilet Partitions – High Privacy Toilet & Miscellaneous Accessories	1 – 5 1 – 4
104400	Fire Protection Specialties	1 – 4
105113.13 105153	Gear Lockers Locker Room Benches	1 – 3 1 – 2
103133		1 – 2
	<u>DIVISION 12 – FURNISHINGS</u>	_
<u>Section</u> 123216	<u>Title</u> Plastic Laminate Countertops, Shelving and Casework	<u>Pages</u> 1 – 3
123661	Quartz Surfacing Countertops	1 – 5
	DIVISION 14 – CONVEYING EQUIPMENT	
Section	<u>Title</u>	<u>Pages</u>
142400	Machine Room-Less Hydraulic Passenger Elevator	1 – 11
H2M architect	s + engineers	TABLE OF CONT

H2M architects + engineers Village of Mount Kisco-Additions/Alterations at Independent Fire Co. TABLE OF CONTENTS

VOLUME III – DIVISIONS 22 - 33

DIVISION 22 – PLUMBING

<u>Section</u>	<u>Title</u>	<u>Pages</u>
220517	Sleeves and Sleeve Seals for Plumbing Piping	1 – 4
220523	General Duty Valves for Plumbing Piping	1 – 7
220529	Hangers and Supports for Plumbing Piping and Equipment	1 – 4
220553	Identification for Plumbing Piping and Equipment	1 – 3
220719	Plumbing Piping Insulation	1 – 4
221005	Plumbing Piping	1 – 10
221006	Plumbing Piping Specialties	1 – 5
022300	Plumbing Equipment	1 – 3
224000	Plumbing Fixtures	1 – 5

<u>DIVISION 23 – HEATING, VENTILATING AND AIR</u> <u>CONDITIONING (HVAC)</u>

<u>Section</u>	<u>Title</u>	<u>Pages</u>
230010	General Mechanical Requirements	1 – 11
230015	Mechanical Demolition	1 – 4
230135	HVAC System Cleaning	1 – 8
230529	Pipe Hangers and Supports	1 – 7
230555	Mechanical System Identification	1 – 3
230594	Balancing of Air and Hydronic Systems	1 – 6
230700	Pipe Insulation	1 – 9
230719	Ductwork Insulation	1 – 9
230993	Sequence of Operations	1 – 4
232000	Pipe, Valves and Fittings	1 – 10
232001	Condensate Drain Piping	1 – 4
232300	Refrigerant Piping	1 – 7
233113	Sheet Metal Work	1 – 16
233416	Exhaust Fans	1 – 3
233713	Diffusers, Registers and Grilles	1 – 5
233813	Kitchen Hood Systems	1 – 10
238100	Package Rooftop Units	1 – 5
238126	Ductless Split System Air Conditioner	1 – 4
238239	Electric Heaters	1 – 3

DIVISION 26 – ELECTRICAL

<u>Section</u>	<u>Title</u>	<u>Pages</u>
260000	Electrical	1 – 4
260010	Electrical Demolition	1 – 2
260519	Low-Voltage Electrical Power Conductors and Cables	1 – 6
260526	Grounding and Bonding for Electrical Systems	1 – 2
260529	Hangers and Supports for Electrical Systems	1 – 2
260533	Raceways and Boxes for Electrical Systems	1 – 10
260553	Identification for Electrical Systems	1 – 3
261823	Surge Protection	1 – 3
262400	Switch Boards and Panel Boards	1 – 3
262726	Wiring Devices	1 – 3
262816	Enclosed Switches and Circuit Breakers	1 – 3
262914	Combination Motor Controllers	1 – 2

H2M architects + engineers Village of Mount Kisco-Additions/Alterations at Independent Fire Co.

Stormwater Report for Small Project SWPPP's

1 - 145

1.01 SECTION INCLUDES

- A. Pipe sleeves.
- B. Manufactured sleeve-seal systems.

1.02 RELATED REQUIREMENTS

- A. Section 078400 Firestopping.
- B. Section 099113 Exterior Painting: Preparation and painting of exterior piping systems.
- C. Section 099123 Interior Painting: Preparation and painting of interior piping systems.
- D. Section 220523 General-Duty Valves for Plumbing Piping.
- E. Section 220553 Identification for Plumbing Piping and Equipment: Piping identification.
- F. Section 220719 Plumbing Piping Insulation.

1.03 REFERENCE STANDARDS

- A. ASTM C592 Standard Specification for Mineral Fiber Blanket Insulation and Blanket-Type Pipe Insulation (Metal-Mesh Covered) (Industrial Type); 2016.
- B. ASTM E814 Standard Test Method for Fire Tests of Penetration Firestop Systems; 2013a (Reapproved 2017).

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Shop Drawings: Indicate pipe materials used, jointing methods, supports, floor and wall penetration seals. Indicate installation, layout, weights, mounting and support details, and piping connections.
- C. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 016000 Product Requirements, for additional provisions.

1.05 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum three years documented experience.
- B. Installer Qualifications: Company specializing in performing work of the type specified this section.
 - 1. Approved by manufacturer.
- C. Clean equipment, pipes, valves, and fittings of grease, metal cuttings, and sludge that may have accumulated from the installation and testing of the system.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store sleeve and sleeve seals in shipping containers, with labeling in place.

H2M architects + engineers

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING B. Provide temporary protective coating on cast iron and steel sleeves if shipped loose.

1.07 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

PART 2 PRODUCTS

2.01 PIPE SLEEVES

- A. Manufacturers:
 - 1. Flexicraft Industries; Pipe Wall Sleeve: www.flexicraft.com/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.
- B. Vertical Piping:
 - 1. Sleeve Length: 1 inch (25 mm) above finished floor.
 - 2. Provide sealant for watertight joint.
 - 3. Blocked Out Floor Openings: Provide 1-1/2 inch (40 mm) angle set in silicon adhesive around opening.
 - 4. Drilled Penetrations: Provide 1-1/2 inch (40 mm) angle ring or square set in silicone adhesive around penetration.
- C. Plastic or Sheet Metal: Pipe passing through interior walls, partitions, and floors, unless steel or brass sleeves are specified below.
- D. Pipe Passing Through Below Grade Exterior Walls:
 - 1. Zinc coated or cast iron pipe.
 - Provide watertight space with link rubber or modular seal between sleeve and pipe on both pipe ends.
- E. Pipe Passing Through Concrete Beam Flanges, except where Brass Pipe Sleeves are Specified:
 - 1. Galvanized steel pipe or black iron pipe with asphalt coating.
 - 2. Connect sleeve with floor plate except in mechanical rooms.
- F. Pipe Passing Through Mechanical, Laundry, and Animal Room Floors above Basement:
 - 1. Galvanized steel pipe or black iron pipe with asphalt coating.
 - 2. Connect sleeve with floor plate except in mechanical rooms.
- G. Penetrations in concrete beam flanges are permitted but are prohibited through ribs or beams without prior approval from the Architect/Engineer.
- H. Clearances:
 - 1. Provide allowance for insulated piping.
 - 2. Wall, Floor, Floor, Partitions, and Beam Flanges: 1 inch (25 mm) greater than external; pipe diameter.
 - 3. All Rated Openings: Caulked tight with fire stopping material complying with ASTM E814 in accordance with Section 078400 to prevent the spread of fire, smoke, and gases.

2.02 MANUFACTURED SLEEVE-SEAL SYSTEMS

- A. Manufacturers:
 - 1. Advance Products & Systems, LLC; Innerlynx: www.apsonline.com/#sle.
 - 2. Flexicraft Industries: PipeSeal: www.flexicraft.com/#sle.

H2M architects + engineers

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING 220517-2

- 3. Substitutions: See Section 016000 Product Requirements.
- B. Modular/Mechanical Seal:
 - 1. Synthetic rubber interlocking links continuously fill annular space between pipe and wall/casing opening.
 - 2. Provide watertight seal between pipe and wall/casing opening.
 - 3. Elastomer element size and material in accordance with manufacturer's recommendations.
 - 4. Glass reinforced plastic pressure end plates.

PART 3 EXECUTION

3.01 PREPARATION

- A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
- B. Remove scale and foreign material, from inside and outside, before assembly.

3.02 INSTALLATION

- A. Route piping in orderly manner, plumb and parallel to building structure. Maintain gradient.
- B. Install piping to conserve building space, to not interfere with use of space and other work.
- C. Install piping and pipe sleeves to allow for expansion and contraction without stressing pipe, joints, or connected equipment.

D. Inserts:

- 1. Provide inserts for placement in concrete formwork.
- 2. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
- 3. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches (100 m).
- 4. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.

E. Structural Considerations:

- 1. Do not penetrate building structural members unless indicated.
- F. Provide sleeves when penetrating footings, floors, walls, and partitions. Seal pipe including sleeve penetrations to achieve fire resistance equivalent to fire separation required.
 - 1. Aboveground Piping:
 - a. Pack solid using mineral fiber complying with ASTM C592.
 - b. Fill space with an elastomer caulk to a depth of 0.50 inch (15 mm) where penetrations occur between conditioned and unconditioned spaces.
 - 2. All Rated Openings: Caulk tight with fire stopping material complying with ASTM E814 in accordance with Section 078400 to prevent the spread of fire, smoke, and gases.
 - 3. Caulk exterior wall sleeves watertight with lead and oakum or mechanically expandable chloroprene inserts with mastic-sealed components.
- G. Manufactured Sleeve-Seal Systems:
 - 1. Install manufactured sleeve-seal systems in sleeves located in grade slabs and exterior concrete walls at piping entrances into building.
 - 2. Provide sealing elements of the size, quantity, and type required for the piping and sleeve inner diameter or penetration diameter.
 - 3. Locate piping in center of sleeve or penetration.

H2M architects + engineers

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING 220517-3

- 4. Install field assembled sleeve-seal system components in annular space between sleeve and piping.
- 5. Tighten bolting for a water-tight seal.
- 6. Install in accordance with manufacturer's recommendations.
- H. When installing more than one piping system material, ensure system components are compatible and joined to ensure the integrity of the system. Provide necessary joining fittings. Ensure flanges, union, and couplings for servicing are consistently provided.

3.03 CLEANING

- A. Upon completion of work, clean all parts of the installation.
- B. Clean equipment, pipes, valves, and fittings of grease, metal cuttings, and sludge that may have accumulated from the installation and testing of the system.
- C. See Section 017419 Construction Waste Management and Disposal, for additional requirements.

END OF SECTION

1.01 SECTION INCLUDES

- A. Applications.
- B. Angle valves.
- C. Ball valves.
- D. Check valves.
- E. Gate valves.
- F. Globe valves.
- G. Plug valves.

1.02 RELATED REQUIREMENTS

- A. Section 078400 Firestopping.
- B. Section 083100 Access Doors and Panels.
- C. Section 220553 Identification for Plumbing Piping and Equipment.
- D. Section 220716 Plumbing Equipment Insulation.
- E. Section 220719 Plumbing Piping Insulation.
- F. Section 221005 Plumbing Piping.

1.03 ABBREVIATIONS AND ACRONYMS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Non-rising stem.
- E. OS&Y: Outside screw and yoke.
- F. PTFE: Polytetrafluoroethylene.
- G. RS: Rising stem.
- H. SWP: Steam working pressure.
- I. TFE: Tetrafluoroethylene.
- J. WOG: Water, oil, and gas.

1.04 REFERENCE STANDARDS

- A. API STD 594 Check Valves: Flanged, Lug Wafer, and Butt-Welding; 2017.
- B. ASME B1.20.1 Pipe Threads, General Purpose (Inch); 2013 (Reaffirmed 2018).
- C. ASME B16.1 Gray Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, and 250; 2015.
- D. ASME B16.5 Pipe Flanges and Flanged Fittings NPS 1/2 Through NPS 24 Metric/Inch Standard; 2017.
- E. ASME B16.10 Face-to-Face and End-to-End Dimensions of Valves; 2017.
- F. ASME B16.18 Cast Copper Alloy Solder Joint Pressure Fittings; 2018.
- G. ASME B16.34 Valves Flanged, Threaded and Welding End; 2017.
- H. ASME B31.9 Building Services Piping; 2017.
- ASME BPVC-IX Qualification Standard for Welding, Brazing, and Fuzing Procedures;
 Welders; Brazers; and Welding, Brazing, and Fusing Operators Welding Brazing and Fusing Qualifications; 2019.
- J. ASTM A48/A48M Standard Specification for Gray Iron Castings; 2003 (Reapproved 2016).
- K. ASTM A126 Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings; 2004 (Reapproved 2019).
- ASTM A395/A395M Standard Specification for Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures; 1999 (Reapproved 2018).
- M. ASTM A536 Standard Specification for Ductile Iron Castings; 1984 (Reapproved 2019)e1.
- N. ASTM B61 Standard Specification for Steam or Valve Bronze Castings; 2015.
- ASTM B62 Standard Specification for Composition Bronze or Ounce Metal Castings; 2017.
- P. AWWA C606 Grooved and Shouldered Joints; 2015.
- Q. MSS SP-45 Bypass and Drain Connections; 2003 (Reaffirmed 2008).
- R. MSS SP-67 Butterfly Valves; 2017.
- S. MSS SP-70 Cast Iron Gate Valves, Flanged and Threaded Ends; 2011.
- T. MSS SP-71 Cast Iron Swing Check Valves, Flanged and Threaded Ends; 2018.
- U. MSS SP-72 Ball Valves with Flanged or Butt-Welding Ends for General Service; 2010a.
- V. MSS SP-78 Cast Iron Plug Valves, Flanged and Threaded Ends; 2011.
- W. MSS SP-80 Bronze Gate, Globe, Angle and Check Valves; 2013.
- X. MSS SP-85 Cast Iron Globe & Angle Valves, Flanged and Threaded Ends; 2011.

- Y. MSS SP-110 Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends; 2010.
- Z. MSS SP-125 Gray Iron and Ductile Iron In-Line, Spring-Loaded, Center-Guided Check Valves; 2018.
- AA. NSF 61 Drinking Water System Components Health Effects; 2019.
- AB. NSF 372 Drinking Water System Components Lead Content; 2016.

1.05 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide data on valves including manufacturers catalog information. Submit performance ratings, rough-in details, weights, support requirements, and piping connections.
- C. Warranty: Submit manufacturer warranty and ensure that forms have been completed in Owner's name and registered with manufacturer.
- D. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, maintenance and repair data, and parts listings.
- E. Maintenance Materials: Furnish Owner with one wrench for every five plug valves, in each size of square plug valve head.
 - 1. See Section 016000 Product Requirements, for additional provisions.

1.06 QUALITY ASSURANCE

- A. Manufacturer:
 - 1. Obtain valves for each valve type from single manufacturer.

1.07 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Minimize exposure of operable surfaces by setting plug and ball valves to open position.
 - 2. Protect valve parts exposed to piped medium against rust and corrosion.
 - 3. Protect valve piping connections such as grooves, weld ends, threads, and flange faces.
 - 4. Adjust globe, gate, and angle valves to the closed position to avoid clattering.
 - 5. Secure check valves in either the closed position or open position.
 - 6. Adjust butterfly valves to closed or partially closed position.
- B. Use the following precautions during storage:
 - Maintain valve end protection and protect flanges and specialties from dirt.
 - a. Provide temporary inlet and outlet caps.
 - b. Maintain caps in place until installation.

1.08 EXERCISE THE FOLLOWING PRECAUTIONS FOR HANDLING:

A. Avoid the use of operating handles or stems as rigging or lifting points.

PART 2 PRODUCTS

2.01 APPLICATIONS

- A. Provide the following valves for the applications if not indicated on drawings:
 - 1. Shutoff: Ball, butterfly, gate or plug.
 - 2. Dead-End: Single-flange butterfly (lug) type.
 - 3. Throttling: Provide globe, ball, or butterfly.
- B. Domestic. Hot and Cold Water Valves:
 - 1. 2 NPS (50 DN) and Smaller:
 - a. Bronze and Brass: Provide with solder-joint ends.
 - b. Bronze Angle: Class 125, bronze disc.
 - c. Ball: One piece, full port, brass with brass trim.
 - d. Bronze Swing Check: Class 125, bronze disc.
 - e. Bronze Gate: Class 125, NRS.
 - f. Bronze Globe: Class 125, bronze disc.

2.02 GENERAL REQUIREMENTS

- A. Valve Pressure and Temperature Ratings: No less than rating indicated; as required for system pressures and temperatures.
- B. Valve Sizes: Match upstream piping unless otherwise indicated.
- C. Valve Actuator Types:
 - 1. Gear Actuator: Quarter-turn valves 8 NPS (200 DN) and larger.
 - 2. Hand Lever: Quarter-turn valves 6 NPS (150 DN) and smaller except plug valves.
 - 3. Wrench: Plug valves with square heads.
- D. Valves in Insulated Piping: With 2 NPS (50 DN) stem extensions and the following features:
 - 1. Gate Valves: Rising stem.
 - 2. Ball Valves: Extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: Extended neck.
- E. Valve-End Connections:
 - Threaded End Valves: ASME B1.20.1.
 - Pipe Flanges and Flanged Fittings 1/2 NPS (15 DN) through 24 NPS (600 DN): ASME B16.5.
 - 3. Solder Joint Connections: ASME B16.18.
 - 4. Grooved End Connections: AWWA C606.
- F. General ASME Compliance:
 - 1. Ferrous Valve Dimensions and Design Criteria: ASME B16.10 and ASME B16.34.
 - 2. Solder-joint Connections: ASME B16.18.
 - 3. Building Services Piping Valves: ASME B31.9.
- G. Potable Water Use:
 - 1. Certified: Approved for use in compliance with NSF 61 and NSF 372.
 - 2. Lead-Free Certified: Wetted surface material includes less than 0.25 percent lead content.

H2M architects + engineers

GENERAL-DUTY VALVES FOR PLUMBING PIPING 220523-4 H. Source Limitations: Obtain each valve type from a single manufacturer.

2.03 BRONZE, ANGLE VALVES

- A. Class 125: CWP Rating: 200 psig (1380 kPa).
 - 1. Comply with MSS SP-80, Type 1.
 - 2. Body: Bronze; ASTM B62, with integral seat and screw in bonnet.
 - 3. Ends: Threaded.
 - 4. Stem: Bronze.
 - 5. Disc: Bronze.
 - 6. Packing: Asbestos free.
 - 7. Handwheel: Bronze or aluminum.

2.04 BRASS, BALL VALVES

- A. Two Piece, Full Port with Brass Trim and Threaded Connections:
 - 1. Comply with MSS SP-110.
 - 2. SWP Rating: 150 psig (1035 kPa).
 - 3. CWP Rating: 600 psig (4140 kPa), WOG.
 - 4. Body: Forged brass.
 - 5. Seats: PTFE.
 - 6. Ball: Chrome-plated brass.

2.05 BRONZE, BALL VALVES

- A. General:
 - 1. Fabricate from dezincification resistant material.
 - 2. Copper alloys containing more than 15 percent zinc are not permitted.
- B. One Piece, Reduced Port with Bronze Trim:
 - 1. Comply with MSS SP-110.
 - 2. SWP Rating: 400 psig (2760 kPa).
 - 3. CWP Rating: 600 psig (4140 kPa).
 - 4. Body: Bronze.
 - 5. Ends: Press.
 - 6. Seats: PTFE.

2.06 STAINLESS STEEL, BALL VALVES

- A. Two Piece, Full Port with Stainless Steel Trim:
 - 1. Comply with MSS SP-110.
 - 2. SWP Rating: 150 psig (1035 kPa).
 - 3. CWP Rating: 1000 psig (6895 kPa).
 - 4. Body: Stainless steel.
 - 5. Ends: Threaded or press.
 - 6. Seats: PFTE.
 - 7. Stem: Stainless steel.
 - 8. Ball: Stainless steel.

2.07 BRASS, INLINE CHECK VALVES

A. Class 150: CWP Rating: 300 psig (2,068 kPa), WOG.

- B. Maximum Service Temperature: 250 deg F (121.1 deg C).
- C. Body: Forged brass.
- D. Disc: Forged brass.
- E. Seal: PTFE, bubble-tight.
- F. End-Connections: Threaded.

2.08 BRONZE, SWING CHECK VALVES

A. General:

- 1. Fabricate from dezincification resistant material.
- 2. Copper alloys containing more than 15 percent zinc are not permitted.
- B. Class 125 CWP Rating; 200 psig (1,380 kPa) WOG:
 - 1. Comply with MSS SP-80, Type 3.
 - 2. Design: Y-pattern, horizontal or vertical flow.
 - 3. Body: Bronze, ASTM B62.
 - 4. Ends: Threaded.
 - 5. Disc: Bronze.

2.09 IRON, HORIZONTAL SWING CHECK VALVES

A. Class 125:

- 1. Comply with MSS SP-71, Type I.
- 2. CWP Rating: 200 psig (1380 kPa).
- 3. Design: Clear or full waterway.
- 4. Body: ASTM A126, gray cast iron with bolted bonnet.
- 5. Ends: Flanged.
- 6. Trim: Composition.
- 7. Seat Ring and Disc Holder: Bronze.
- 8. Disc: PTFE.
- 9. Gasket: Asbestos free.

2.10 IRON, GROOVED-END SWING CHECK VALVES

A. 300 CWP:

- 1. CWP Rating: 300 psig (2070 kPa).
- 2. Body: ASTM A536, Grade 65-45-12 ductile iron.
- 3. Seal: EPDM.
- 4. Disc: Ductile iron.
- 5. Coating: Black, non-lead paint.

2.11 IRON, CENTER-GUIDED CHECK VALVES

A. Class 125, Globe:

- 1. Comply with MSS SP-125.
- 2. CWP Rating: 200 psig (1380 kPa).
- 3. Style: Spring loaded.
- 4. Ends: Flanged.

2.12 BRONZE, GATE VALVES

A. General:

- 1. Fabricate from dezincification resistant material.
- 2. Copper alloys containing more than 15 percent zinc are not permitted.
- B. NRS (Non-rising Stem) or OS & Y (Rising Stem):
 - 1. Comply with MSS SP-80, Type I.
 - 2. Class 125: CWP Rating 200 psig (1380 kPa).
 - 3. Body: ASTM B62, bronze with integral seat and screw-in bonnet.
 - 4. Ends: Threaded or solder joint joint.
 - 5. Stem: Bronze.
 - 6. Disc: Solid wedge; bronze.
 - 7. Packing: Asbestos free.
 - 8. Handwheel: Malleable iron, bronze, or aluminum.

2.13 BRONZE, GLOBE VALVES

A. General:

- 1. Fabricate from dezincification resistant material.
- 2. Copper alloys containing more than 15 percent zinc are not permitted.
- B. Class 125: CWP Rating 200 psig (1380 kPa):
 - 1. Comply with MSS SP-80, Type 1.
 - 2. Body: ASTM B62, bronze with integral seat and screw-in bonnet.
 - 3. Ends: Threaded joint.
 - 4. Stem: Bronze.
 - 5. Disc: PTFE.
 - 6. Packing: Asbestos free.
 - 7. Handwheel: Malleable Iron.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Discard all packing materials and verify that valve interior, including threads and flanges are completely clean without signs of damage or degradation that could result in leakage.
- B. Verify valve parts to be fully operational in all positions from closed to fully open.
- C. Confirm gasket material to be suitable for the service, to be of correct size, and without defects that could compromise effectiveness.
- D. Should valve is determined to be defective, replace with new valve.

3.02 INSTALLATION

- A. Provide unions or flanges with valves to facilitate equipment removal and maintenance while maintaining system operation and full accessibility for servicing.
- B. Provide separate valve support as required and locate valve with stem at or above center of piping, maintaining unimpeded stem movement.

END OF SECTION

1.01 SECTION INCLUDES

A. Support and attachment components for equipment, piping, and other plumbing work.

1.02 REFERENCE STANDARDS

- A. ASTM A123/A123M Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products; 2017.
- B. ASTM A153/A153M Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware; 2016a.
- ASTM B633 Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel; 2019.
- D. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials; 2019b.
- E. ASTM E96/E96M Standard Test Methods for Water Vapor Transmission of Materials; 2016.
- F. MFMA-4 Metal Framing Standards Publication; 2004.
- G. MSS SP-58 Pipe Hangers and Supports Materials, Design, Manufacture, Selection, Application, and Installation; 2018.
- H. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials; Current Edition, Including All Revisions.

1.03 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Installer's Qualifications: Include evidence of compliance with specified requirements.
- C. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

1.04 QUALITY ASSURANCE

- A. Comply with applicable building code.
- B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.01 SUPPORT AND ATTACHMENT COMPONENTS

- A. General Requirements:
 - 1. Comply with MSS SP-58.
 - 2. Provide all required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for the complete installation of plumbing work.
 - 3. Provide products listed, classified, and labeled as suitable for the purpose intended, where applicable.
 - 4. Steel Components: Use corrosion resistant materials suitable for the environment where installed.
 - a. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.
 - Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.
- B. Metal Channel (Strut) Framing Systems:
 - 1. Comply with MFMA-4.
- C. Hanger Rods: Threaded zinc-plated steel unless otherwise indicated.
- D. Thermal Insulated Pipe Supports:
 - 1. General Construction and Requirements:
 - Insulated pipe supports to be provided at hanger, support, and guide locations on pipe requiring insulation or additional support.
 - b. Surface Burning Characteristics: Flame spread index/smoke developed index of 5/30, maximum, when tested in accordance with ASTM E84 or UL 723.
 - c. Pipe supports to be provided for nominally sized, 1/2 inch to 30 inch (12.7 mm to 762 mm) iron pipes.
 - d. Insulation inserts to consist of rigid phenolic foam insulation surrounded by a 360 degree, PVC jacketing.
 - PVC Jacket:
 - a. Pipe insulation protection shields to be provided with a ball bearing hinge and locking seam
 - b. Moisture Vapor Transmission: 0.0071 perm inch (0.0092 ng/Pa s m), when tested in accordance with ASTM E96/E96M.
 - c. Thickness: 60 mil (1.524 mm).
- E. Anchors and Fasteners:
 - Unless otherwise indicated and where not otherwise restricted, use the anchor and fastener types indicated for the specified applications.
- F. Pipe Installation Accessories:
 - CPVC Pipe Supports:
 - a. Manufacturers:
 - 1) HoldRite, a brand of Reliance Worldwide Corporation: www.holdrite.com/#sle.
 - 2) Substitutions: See Section 016000 Product Requirements.
 - 2. Thermal Insulated Pipe Supports:
 - a. Manufacturers:
 - 1) HoldRite, a brand of Reliance Worldwide Corporation: www.holdrite.com/#sle.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that field measurements are as indicated.
- B. Verify that mounting surfaces are ready to receive support and attachment components.
- C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

- A. Install products in accordance with manufacturer's instructions.
- B. Provide independent support from building structure. Do not provide support from piping, ductwork, conduit, or other systems.
- C. Unless specifically indicated or approved by Architect/Engineer, do not provide support from suspended ceiling support system or ceiling grid.
- D. Unless specifically indicated or approved by Architect/Engineer, do not provide support from roof deck.
- E. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.
- F. Provide thermal insulated pipe supports complete with hangers and accessories. Install thermal insulated pipe supports during the installation of the piping system.
- G. Equipment Support and Attachment:
 - 1. Use metal fabricated supports or supports assembled from metal channel (strut) to support equipment as required.
 - 2. Use metal channel (strut) secured to study to support equipment surface-mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.
 - 3. Use metal channel (strut) to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.
 - 4. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.
- H. Secure fasteners according to manufacturer's recommended torque settings.
- Remove temporary supports.

3.03 FIELD QUALITY CONTROL

- A. See Section 014000 Quality Requirements, for additional requirements.
- B. Inspect support and attachment components for damage and defects.
- C. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.

D.	Correct deficiencies and replace damaged or defective support and attachment compone	nts
END O	SECTION	

1.01 SECTION INCLUDES

- A. Nameplates.
- B. Tags.
- C. Stencils.
- D. Pipe markers.

1.02 RELATED REQUIREMENTS

A. Section 099123 - Interior Painting: Identification painting.

1.03 REFERENCE STANDARDS

A. ASME A13.1 - Scheme for the Identification of Piping Systems; 2015.

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. List: Submit list of wording, symbols, letter size, and color coding for mechanical identification.
- C. Chart and Schedule: Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.
- D. Product Data: Provide manufacturers catalog literature for each product required.
- E. Manufacturer's Installation Instructions: Indicate special procedures, and installation.

PART 2 PRODUCTS

2.01 IDENTIFICATION APPLICATIONS

- A. Piping: Tags.
- B. Pumps: Nameplates.
- C. Tanks: Nameplates.
- D. Valves: Tags.

2.02 NAMEPLATES

- A. Manufacturers:
 - 1. Seton Identification Products: www.seton.com/#sle.
 - 2. Bunting
 - 3. Brady
 - 4. Substitutions: See Section 016000 Product Requirements.
- B. Description: Laminated three-layer plastic with engraved white letters on dark contrasting background color.

H2M architects + engineers

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT 220553-1

2.03 TAGS

- A. Manufacturers:
 - 1. Brady Corporation: www.bradycorp.com/#sle.
 - 2. Seton Identification Products: www.seton.com/#sle.
 - 3. Bunting
 - 4. Substitutions: See Section 016000 Product Requirements.
- B. Plastic Tags: Laminated three-layer plastic with engraved black letters on light contrasting background color. Tag size minimum 1-1/2 inch (40 mm) diameter.
- C. Metal Tags: Brass with stamped letters; tag size minimum 1-1/2 inch (40 mm) diameter with smooth edges.
- D. Valve Tag Chart: Typewritten letter size list in anodized aluminum frame.

2.04 STENCILS

- A. Manufacturers:
 - 1. Brady Corporation: www.bradycorp.com/#sle.
 - 2. Seton Identification Products: www.seton.com/#sle.
 - 3. Bunting
 - 4. Substitutions: See Section 016000 Product Requirements.
- B. Stencils: With clean cut symbols and letters of following size:
 - 1. 3/4 to 1-1/4 inch (20-30 mm) Outside Diameter of Insulation or Pipe: 8 inch (200 mm) long color field, 1/2 inch (15 mm) high letters.
 - 2. 1-1/2 to 2 inch (40-50 mm) Outside Diameter of Insulation or Pipe: 8 inch (200 mm) long color field, 3/4 inch (20 mm) high letters.
 - 3. 2-1/2 to 6 inch (65-150 mm) Outside Diameter of Insulation or Pipe: 12 inch (300 mm) long color field, 1-1/4 inch (30 mm) high letters.
- C. Stencil Paint: As specified in Section 099123, semi-gloss enamel, colors complying with ASME A13.1.

2.05 PIPE MARKERS

- A. Manufacturers:
 - 1. Brady Corporation: www.bradycorp.com/#sle.
 - 2. Seton Identification Products: www.seton.com/#sle.
 - 3. Bunting
 - 4. Substitutions: See Section 016000 Product Requirements.
- B. Comply with ASME A13.1.
- C. Plastic Pipe Markers: Factory fabricated, flexible, semi- rigid plastic, preformed to fit around pipe or pipe covering; minimum information indicating flow direction arrow and identification of fluid being conveyed.
- D. Plastic Tape Pipe Markers: Flexible, vinyl film tape with pressure sensitive adhesive backing and printed markings.

H2M architects + engineers

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT 220553-2

- E. Underground Plastic Pipe Markers: Bright colored continuously printed plastic ribbon tape, minimum 6 inches (150 mm) wide by 4 mil (0.10 mm) thick, manufactured for direct burial service.
- F. Color code as follows:
 - 1. Potable, Cooling, Boiler, Feed, Other Water: Green with white letters.
 - 2. Flammable Fluids: Yellow with black letters.
 - 3. Compressed Air: Blue with white letters.

PART 3 EXECUTION

3.01 PREPARATION

- A. Degrease and clean surfaces to receive adhesive for identification materials.
- B. Prepare surfaces in accordance with Section 099123 for stencil painting.

3.02 INSTALLATION

- A. Install plastic nameplates with corrosive-resistant mechanical fasteners, or adhesive. Apply with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer.
- B. Install tags with corrosion resistant chain.
- C. Apply stencil painting in accordance with Section 099123.
- D. Install plastic pipe markers in accordance with manufacturer's instructions.
- E. Install plastic tape pipe markers complete around pipe in accordance with manufacturer's instructions.
- F. Install underground plastic pipe markers 6 to 8 inches (150 to 200 mm) below finished grade, directly above buried pipe.
- G. Use tags on piping 3/4 inch (20 mm) diameter and smaller.
 - 1. Identify service, flow direction, and pressure.
 - 2. Install in clear view and align with axis of piping.
 - 3. Locate identification not to exceed 20 feet (6 m) on straight runs including risers and drops, adjacent to each valve and Tee, at each side of penetration of structure or enclosure, and at each obstruction.
- H. Install ductwork with plastic nameplates. Identify with air handling unit identification number and area served. Locate identification at air handling unit, at each side of penetration of structure or enclosure, and at each obstruction.

END OF SECTION

1.01 SECTION INCLUDES

- A. Piping insulation.
- B. Jackets and accessories.

1.02 RELATED REQUIREMENTS

- A. Section 078400 Firestopping.
- B. Section 099113 Exterior Painting: Painting insulation jacket.
- C. Section 099123 Interior Painting: Painting insulation jacket.
- D. Section 221005 Plumbing Piping: Placement of hangers and hanger inserts.

1.03 REFERENCE STANDARDS

- A. ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus; 2019.
- B. ASTM C195 Standard Specification for Mineral Fiber Thermal Insulating Cement; 2007 (Reapproved 2013).
- C. ASTM C449 Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement; 2007 (Reapproved 2013).
- D. ASTM C547 Standard Specification for Mineral Fiber Pipe Insulation; 2019.
- E. ASTM C795 Standard Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel; 2008 (Reapproved 2013).
- F. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials; 2019b.
- G. ASTM E96/E96M Standard Test Methods for Water Vapor Transmission of Materials; 2016.
- H. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials; Current Edition, Including All Revisions.

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.
- C. Manufacturer's Instructions: Indicate installation procedures that ensure acceptable workmanship and installation standards will be achieved.

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with not less than three years of documented experience.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Accept materials on site, labeled with manufacturer's identification, product density, and thickness.

1.07 FIELD CONDITIONS

- A. Maintain ambient conditions required by manufacturers of each product.
- B. Maintain temperature before, during, and after installation for minimum of 24 hours.

PART 2 PRODUCTS

2.01 REGULATORY REQUIREMENTS

A. Surface Burning Characteristics: Flame spread index/Smoke developed index of 25/50, maximum, when tested in accordance with ASTM E84 or UL 723.

2.02 GLASS FIBER

- A. Manufacturers:
 - 1. Johns Manville Corporation: www.jm.com/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.
- B. Insulation: ASTM C547 and ASTM C795; rigid molded, noncombustible.
 - K (Ksi) Value: ASTM C177, 0.24 at 75 degrees F (0.035 at 24 degrees C).
 - 2. Maximum Service Temperature: 850 degrees F (454 degrees C).
 - 3. Maximum Moisture Absorption: 0.2 percent by volume.
- C. Insulation: ASTM C547 and ASTM C795; rigid molded, noncombustible, with wicking material to transport condensed water to the outside of the system for evaporation to the atmosphere.
 - 1. K (Ksi) Value: ASTM C177, 0.23 at 75 degrees F (0.034 at 24 degrees C).
 - 2. Maximum Service Temperature: 220 degrees F (104 degrees C).
 - 3. Maximum Moisture Absorption: 0.2 percent by volume.
- D. Insulation: ASTM C547 and ASTM C795; semi-rigid, noncombustible, end grain adhered to jacket.
 - 1. K (Ksi) Value: ASTM C177, 0.24 at 75 degrees F (0.035 at 24 degrees C).
 - 2. Maximum Service Temperature: 650 degrees F (343 degrees C).
 - 3. Maximum Moisture Absorption: 0.2 percent by volume.
- E. Vapor Barrier Jacket: White Kraft paper with glass fiber yarn, bonded to aluminized film; moisture vapor transmission when tested in accordance with ASTM E96/E96M of 0.02 perm-inches (0.029 ng/Pa s m).
- F. Tie Wire: 0.048 inch (1.22 mm) stainless steel with twisted ends on maximum 12 inch (300 mm) centers.
- G. Vapor Barrier Lap Adhesive: Compatible with insulation.
- H. Insulating Cement/Mastic: ASTM C195; hydraulic setting on mineral wool.
- I. Fibrous Glass Fabric:
 - 1. Cloth: Untreated; 9 oz/sq yd (305 g/sq m) weight.

- J. Indoor Vapor Barrier Finish:
 - 1. Cloth: Untreated; 9 oz/sq yd (305 g/sq m) weight.
 - 2. Vinyl emulsion type acrylic, compatible with insulation, black color.
- K. Insulating Cement: ASTM C449.

2.03 JACKETS

- A. PVC Plastic.
 - Manufacturers:
 - a. Johns Manville Corporation: www.im.com/#sle.
 - b. Substitutions: See Section 016000 Product Requirements.
 - 2. Jacket: One piece molded type fitting covers and sheet material, off-white color.
 - a. Minimum Service Temperature: 0 degrees F (Minus 18 degrees C).
 - b. Maximum Service Temperature: 150 degrees F (66 degrees C).
 - c. Moisture Vapor Permeability: 0.002 perm inch (0.0029 ng/Pa s m), maximum, when tested in accordance with ASTM E96/E96M.
 - d. Thickness: 10 mil (0.25 mm).
 - e. Connections: Brush on welding adhesive.
 - 3. Covering Adhesive Mastic: Compatible with insulation.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that piping has been tested before applying insulation materials.
- B. Verify that surfaces are clean and dry, with foreign material removed.

3.02 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Install in accordance with North American Insulation Manufacturers Association (NAIMA) National Insulation Standards.
- C. Exposed Piping: Locate insulation and cover seams in least visible locations.
- D. Insulated pipes conveying fluids below ambient temperature: Insulate entire system including fittings, valves, unions, flanges, strainers, flexible connections, pump bodies, and expansion joints.
- E. Install cellular melamine with factory-applied jackets with a manufacturer-approved adhesive along seams, both straight lap joints and circumferential lap joints.
 - 1. Install seal over seams with factory-approved room temperature vulcanization (RTV) silicone sealant to ensure a positive vapor barrier seal in outdoor and sanitary washdown environments.
- F. Glass fiber insulated pipes conveying fluids below ambient temperature:
 - 1. Provide vapor barrier jackets, factory-applied or field-applied. Secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive. Secure with outward clinch expanding staples and vapor barrier mastic.
 - 2. Insulate fittings, joints, and valves with molded insulation of like material and thickness as adjacent pipe. Finish with glass cloth and vapor barrier adhesive or PVC fitting covers.

- G. For hot piping conveying fluids 140 degrees F (60 degrees C) or less, do not insulate flanges and unions at equipment, but bevel and seal ends of insulation.
- H. For hot piping conveying fluids over 140 degrees F (60 degrees C), insulate flanges and unions at equipment.
- I. Glass fiber insulated pipes conveying fluids above ambient temperature:
 - Provide standard jackets, with or without vapor barrier, factory-applied or field-applied.
 Secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive.
 Secure with outward clinch expanding staples.
 - 2. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe. Finish with glass cloth and adhesive or PVC fitting covers.
- J. Inserts and Shields:
 - 1. Application: Piping 1-1/2 inches (40 mm) diameter or larger.
 - 2. Shields: Galvanized steel between pipe hangers or pipe hanger rolls and inserts.
 - 3. Insert Location: Between support shield and piping and under the finish jacket.
 - 4. Insert Configuration: Minimum 6 inches (150 mm) long, of same thickness and contour as adjoining insulation; may be factory fabricated.
 - 5. Insert Material: Hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.
- K. Continue insulation through walls, sleeves, pipe hangers, and other pipe penetrations. Finish at supports, protrusions, and interruptions. At fire separations, refer to Section 078400.
- L. Pipe Exposed in Mechanical Equipment Rooms or Finished Spaces (less than 10 feet (3 meters) above finished floor): Finish with canvas jacket sized for finish painting.
- M. Exterior Applications: Provide vapor barrier jacket. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe, and finish with glass mesh reinforced vapor barrier cement. Cover with aluminum jacket with seams located on bottom side of horizontal piping.
- N. Buried Piping: Provide factory fabricated assembly with inner all-purpose service jacket with self-sealing lap, and asphalt impregnated open mesh glass fabric, with one mil (0.025 mm) thick aluminum foil sandwiched between three layers of bituminous compound; outer surface faced with a polyester film.

END OF SECTION

1.01 SECTION INCLUDES

- A. Pipe, pipe fittings, specialties, and connections for piping systems.
 - 1. Sanitary sewer.
 - 2. Domestic water.
 - Storm water.
 - 4. Flanges, unions, and couplings.
 - 5. Pipe hangers and supports.
 - 6. Manufactured sleeve-seal systems.
 - 7. Ball valves.
 - 8. Butterfly valves.
 - 9. Balancing valves.
 - 10. Control and service valves.
 - 11. Strainers.

1.02 RELATED REQUIREMENTS

- A. Section 078400 Firestopping.
- B. Section 099113 Exterior Painting.
- C. Section 099123 Interior Painting.
- D. Section 220516 Expansion Fittings and Loops for Plumbing Piping.
- E. Section 220553 Identification for Plumbing Piping and Equipment.
- F. Section 220719 Plumbing Piping Insulation.
- G. Section 330110.58 Disinfection of Water Utility Piping Systems.

1.03 REFERENCE STANDARDS

- A. ANSI Z21.22 American National Standard for Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems; 2015.
- B. ANSI Z223.1 National Fuel Gas Code; 2016.
- C. ASME B16.3 Malleable Iron Threaded Fittings: Classes 150 and 300; 2016.
- D. ASME B16.18 Cast Copper Alloy Solder Joint Pressure Fittings; 2018.
- E. ASME B16.22 Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings; 2018.
- F. ASME B31.1 Power Piping; 2018.
- G. ASTM A53/A53M Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless; 2018.
- H. ASTM A74 Standard Specification for Cast Iron Soil Pipe and Fittings; 2017.
- ASTM A123/A123M Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products; 2017.

- J. ASTM A234/A234M Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service; 2019.
- K. ASTM B32 Standard Specification for Solder Metal; 2008 (Reapproved 2014).
- L. ASTM B88 Standard Specification for Seamless Copper Water Tube; 2016.
- M. ASTM B88M Standard Specification for Seamless Copper Water Tube (Metric); 2018.
- N. ASTM B813 Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube; 2016.
- O. ASTM B828 Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings; 2016.
- P. ASTM C14 Standard Specification for Nonreinforced Concrete Sewer, Storm Drain, and Culvert Pipe; 2015a.
- Q. ASTM C14M Standard Specification for Nonreinforced Concrete Sewer, Storm Drain, Culvert Pipe and (Metric); 2015a.
- R. ASTM C76 Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe; 2019b.
- S. ASTM C76M Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe (Metric); 2019b.
- T. ASTM C443 Standard Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets; 2012 (Reapproved 2017).
- U. ASTM C443M Standard Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets (Metric); 2011 (Reapproved 2017).
- V. ASTM C564 Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings; 2014.
- W. ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120; 2015, with Editorial Revision (2018).
- X. ASTM D2235 Standard Specification for Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and Fittings; 2004 (Reapproved 2016).
- Y. ASTM D2239 Standard Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter: 2012a.
- ASTM D2241 Standard Specification for Poly (Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series); 2015.
- AA. ASTM D2466 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40; 2017.
- AB. ASTM D2513 Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings; 2019.
- AC. ASTM D2564 Standard Specification for Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems; 2012 (Reapproved 2018).

- AD. ASTM D2609 Standard Specification for Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe; 2015.
- AE. ASTM D2661 Standard Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe and Fittings; 2014, with Editorial Revision (2018).
- AF. ASTM D2665 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings; 2014.
- AG. ASTM D2680 Standard Specification for Acrylonitrile-Butadiene-Styrene (ABS) and Poly(Vinyl Chloride) (PVC) Composite Sewer Piping; 2001 (Reapproved 2014).
- AH. ASTM D2683 Standard Specification for Socket-Type Polyethylene Fittings for Outside Diameter-Controlled Polyethylene Pipe and Tubing; 2014.
- AI. ASTM D2729 Standard Specification for Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings; 2017.
- AJ. ASTM D2846/D2846M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Hot- and Cold-Water Distribution Systems; 2019.
- AK. ASTM D2855 Standard Practice for the Two-Step (Primer & Solvent Cement) Method of Joining Poly (Vinyl Chloride) (PVC) or Chlorinated Poly (Vinyl Chloride) (CPVC) Pipe and Piping Components with Tapered Sockets; 2015.
- AL. ASTM D2996 Standard Specification for Filament-Wound "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe; 2017.
- AM. ASTM D2997 Standard Specification for Centrifugally Cast "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe; 2015.
- AN. ASTM D3034 Standard Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings; 2016.
- AO. ASTM D3262 Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer Pipe; 2016.
- AP. ASTM D3517 Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe; 2019.
- AQ. ASTM D3754 Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer and Industrial Pressure Pipe; 2019.
- AR. ASTM D3840 Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe Fittings for Nonpressure Applications; 2019.
- AS. ASTM F437 Standard Specification for Threaded Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80; 2015.
- AT. ASTM F438 Standard Specification for Socket-Type Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40; 2017.
- AU. ASTM F439 Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80; 2019.

- AV. ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80; 2015.
- AW. ASTM F442/F442M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe (SDR-PR); 2019.
- AX. ASTM F477 Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe; 2014.
- AY. ASTM F493 Standard Specification for Solvent Cements for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe and Fittings; 2014.
- AZ. ASTM F628 Standard Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe With a Cellular Core; 2012, with Editorial Revision (2018).
- BA. ASTM F679 Standard Specification for Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings; 2016.
- BB. ASTM F708 Standard Practice for Design and Installation of Rigid Pipe Hangers; 1992, with Editiorial Revision (2018).
- BC. ASTM F876 Standard Specification for Crosslinked Polyethylene (PEX) Tubing; 2019a.
- BD. ASTM F877 Standard Specification for Crosslinked Polyethylene (PEX) Hot- and Cold-Water Distribution Systems; 2019.
- BE. ASTM F1281 Standard Specification for Crosslinked Polyethylene/Aluminum/Crosslinked Polyethylene (PEX-AL-PEX) Pressure Pipe; 2017.
- BF. ASTM F1282 Standard Specification for Polyethylene/Aluminum/Polyethylene (PE-AL-PE) Composite Pressure Pipe; 2017.
- BG. ASTM F1960 Standard Specification for Cold Expansion Fittings with PEX Reinforcing Rings for Use with Cross-linked Polyethylene (PEX) Polyethylene of Raised Temperature (PE-RT) Tubing; 2019.
- BH. AWWA C105/A21.5 Polyethylene Encasement for Ductile-Iron Pipe Systems; 2010.
- BI. AWWA C651 Disinfecting Water Mains; 2014.
- BJ. AWWA C900 Polyvinyl Chloride (PVC) Pressure Pipe, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution; 2016.
- BK. AWWA C901 Polyethylene (PE) Pressure Pipe and Tubing, 1/2 In. (13 mm) Through 3 In. (76 mm), for Water Service; 2017.
- BL. AWWA C950 Fiberglass Pressure Pipe; 2013.
- BM. CISPI 301 Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste and Vent Piping Applications; 2017 (Revised 2018).
- BN. CISPI 310 Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications; 2012 (Revised 2018).
- BO. ICC-ES AC01 Acceptance Criteria for Expansion Anchors in Masonry Elements; 2015.

- BP. ICC-ES AC106 Acceptance Criteria for Predrilled Fasteners (Screw Anchors) in Masonry Elements; 2015.
- BQ. ICC-ES AC193 Acceptance Criteria for Mechanical Anchors in Concrete Elements; 2015.
- BR. ICC-ES AC308 Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete Elements; 2016.
- BS. MSS SP-58 Pipe Hangers and Supports Materials, Design, Manufacture, Selection, Application, and Installation; 2018.
- BT. MSS SP-110 Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends; 2010.
- BU. NSF 61 Drinking Water System Components Health Effects; 2019.
- BV. NSF 372 Drinking Water System Components Lead Content; 2016.

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements for submittal procedures.
- B. Product Data: Provide data on pipe materials, pipe fittings, valves, and accessories. Provide manufacturers catalog information. Indicate valve data and ratings.
- C. Shop Drawings: For non-penetrating rooftop supports, submit detailed layout developed for this project, with design calculations for loadings and spacings.
- D. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 016000 Product Requirements for additional provisions.

1.05 QUALITY ASSURANCE

- A. Perform work in accordance with applicable codes.
- B. Valves: Manufacturer's name and pressure rating marked on valve body.
- C. Identify pipe with marking including size, ASTM material classification, ASTM specification, potable water certification, water pressure rating.

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Accept valves on site in shipping containers with labeling in place. Inspect for damage.
- B. Provide temporary protective coating on cast iron and steel valves.
- C. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.
- D. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.

1.07 FIELD CONDITIONS

A. Do not install underground piping when bedding is wet or frozen.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

- A. Potable Water Supply Systems: Provide piping, pipe fittings, and solder and flux (if used), that comply with NSF 61 and NSF 372 for maximum lead content; label pipe and fittings.
- 2.02 SANITARY SEWER PIPING, BURIED BEYOND 5 FEET (1500 MM) OF BUILDING
- 2.03 SANITARY SEWER PIPING, BURIED WITHIN 5 FEET (1500 MM) OF BUILDING
 - A. Cast Iron Pipe: ASTM A74 extra heavy weight.
 - 1. Fittings: Cast iron.
 - Joints: Hub-and-spigot, CISPI HSN compression type with ASTM C564 neoprene gaskets or lead and oakum.
 - B. Cast Iron Pipe: CISPI 301, hubless.
 - 1. Fittings: Cast iron.
 - 2. Joints: CISPI 310, neoprene gasket and stainless steel clamp and shield assemblies.

2.04 SANITARY SEWER PIPING, ABOVE GRADE

- A. PVC Pipe: ASTM D2729.
 - 1. Fittings: PVC.
 - 2. Joints: Solvent welded, with ASTM D2564 solvent cement.

2.05 DOMESTIC WATER PIPING, ABOVE GRADE

- A. Copper Tube: ASTM B88 (ASTM B88M), Type K (A), Drawn (H).
 - 1. Fittings: ASME B16.18, cast copper alloy or ASME B16.22, wrought copper and bronze.
 - 2. Joints: ASTM B32, alloy Sn95 solder.

2.06 STORM WATER PIPING, BURIED WITHIN 5 FEET (1500 MM) OF BUILDING

- A. PVC Pipe: ASTM D2665 or ASTM D3034.
 - 1. Fittings: PVC.
 - 2. Joints: Solvent welded, with ASTM D2564 solvent cement.

2.07 STORM WATER PIPING, ABOVE GRADE

- A. PVC Pipe: ASTM D2665 or ASTM D3034.
 - 1. Fittings: PVC.
 - 2. Joints: Solvent welded, with ASTM D2564 solvent cement.

2.08 NATURAL GAS PIPING, BURIED BEYOND 5 FEET (1500 MM) OF BUILDING

- A. Polyethylene Pipe: ASTM D2513, SDR 11.
 - 1. Fittings: ASTM D2683 or ASTM D2513 socket type.
 - 2. Joints: Fusion welded.

2.09 NATURAL GAS PIPING, BURIED WITHIN 5 FEET (1500 MM) OF BUILDING

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASTM A234/A234M, wrought steel welding type.
 - 2. Joints: ASME B31.1, welded.

3. Jacket: AWWA C105/A21.5 polyethylene jacket or double layer, half-lapped 10 mil (0.25 mm) polyethylene tape.

2.10 NATURAL GAS PIPING, ABOVE GRADE

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASME B16.3, malleable iron, or ASTM A234/A234M, wrought steel welding type.
 - 2. Joints: Threaded or welded to ASME B31.1.

2.11 FLANGES, UNIONS, AND COUPLINGS

A. Dielectric Connections: Union with galvanized or plated steel threaded end, copper solder end, water impervious isolation barrier.

2.12 PIPE HANGERS AND SUPPORTS

- A. Provide hangers and supports that comply with MSS SP-58.
 - 1. If type of hanger or support for a particular situation is not indicated, select appropriate type using MSS SP-58 recommendations.
 - 2. Overhead Supports: Individual steel rod hangers attached to structure or to trapeze hangers.
 - 3. Trapeze Hangers: Welded steel channel frames attached to structure.
 - 4. Vertical Pipe Support: Steel riser clamp.
 - 5. Floor Supports: Concrete pier or steel pedestal with floor flange; fixture attachment.
 - 6. Rooftop Supports for Low-Slope Roofs: Steel pedestals with bases that rest on top of roofing membrane, not requiring any attachment to the roof structure and not penetrating the roofing assembly, with support fixtures as specified; and as follows:
 - a. Bases: High-density polypropylene.
 - b. Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
 - c. Steel Components: Stainless steel or carbon steel hot-dip galvanized after fabrication in accordance with ASTM A123/A123M.
 - d. Attachment/Support Fixtures: As recommended by manufacturer, same type as indicated for equivalent indoor hangers and supports; corrosion-resistant material.
 - e. Height: Provide minimum clearance of 6 inches (150 mm) under pipe to top of roofing.
- B. Plumbing Piping Drain, Waste, and Vent:
 - 1. Hangers for Pipe Sizes 1/2 to 1-1/2 inch (15 to 40 mm, DN): Malleable iron, adjustable swivel, split ring.
 - 2. Hangers for Pipe Sizes 2 inch (50 mm, DN) and Over: Carbon steel, adjustable, clevis.
 - 3. Wall Support for Pipe Sizes to 3 inch (80 mm, DN): Cast iron hook.
- C. Plumbing Piping Water:
 - 1. Hangers for Pipe Sizes 1/2 to 1-1/2 inch (15 to 40 mm, DN): Malleable iron, adjustable swivel, split ring.
 - 2. Hangers for Cold Pipe Sizes 2 inch (50 mm, DN) and Over: Carbon steel, adjustable, clevis
 - 3. Hangers for Hot Pipe Sizes 2 to 4 inch (50 to 100 mm, DN): Carbon steel, adjustable, clevis.

2.13 MANUFACTURED SLEEVE-SEAL SYSTEMS

A. Manufacturers:

1. The Metraflex Company; MetraSeal: www.metraflex.com/#sle.

- B. Modular/Mechanical Seal:
 - 1. Synthetic rubber interlocking links continuously fill annular space between pipe and wall/casing opening.
 - 2. Provide watertight seal between pipe and wall/casing opening.
 - 3. Elastomer element size and material in accordance with manufacturer's recommendations.
 - 4. Glass reinforced plastic pressure end plates.

2.14 BALL VALVES

- A. Manufacturers:
 - Apollo Valves: www.apollovalves.com/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.
- B. Construction, 4 inch (100 mm, DN) and Smaller: MSS SP-110, Class 150, 400 psi (2760 kPa) CWP, bronze or ductile iron body, 304 stainless steel or chrome plated brass ball, regular port, teflon seats and stuffing box ring, blow-out proof stem, lever handle with balancing stops, threaded or grooved ends with union.

2.15 BALANCING VALVES

A. Manufacturers:

- 1. Taco, Inc; ____: www.taco-hvac.com/#sle.
- 2. Substitutions: See Section 016000 Product Requirements.
- B. Construction: Class 125, brass or bronze body with union on inlet and outlet, temperature and pressure test plug on inlet and outlet, blowdown/backflush drain.
- C. Manual Operated Y-Pattern Globe, Size 1/2 to 2 inch (15 to 50 mm, DN):
 - 1. Class 125, brass or bronze body, multi-turn handwheel, memory stop, variable orifice, soldered connections, dual PT (hot and cold pressure-temperature) test ports for 300 psi (2,068 kPa), minus 4 to 250 deg F (minus 20 to 121.1 deg C) WOG service.
- D. Calibration: Control flow within five percent of selected rating, over operating pressure range of 10 times minimum pressure required for control, maximum minimum pressure 3.5 psi (24 kPa).

2.16 STRAINERS

- A. Manufacturers:
 - 1. Armstrong International, Inc; _____: www.armstronginternational.com/#sle.
 - 2. Jomar Valves, a division of Jomar Group; ____: www.jomarvalve.com/#sle.
 - 3. Substitutions: See Section 016000 Product Requirements.
- B. Size 1/2 inch (15 mm, DN) to 3 inch (80 mm, DN):
 - 1. Class 150, threaded forged bronze Y-pattern body, stainless steel perforated mesh screen with cap, and rated for 150 psi (1,034 kPa), 250 deg F (121.1 deg C) WOG service.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that excavations are to required grade, dry, and not over-excavated.

3.02 PREPARATION

- A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
- B. Remove scale and dirt, on inside and outside, before assembly.
- C. Prepare piping connections to equipment with flanges or unions.

3.03 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Provide non-conducting dielectric connections wherever jointing dissimilar metals.
- Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls.
- D. Install piping to maintain headroom, conserve space, and not interfere with use of space.
- E. Group piping whenever practical at common elevations.
- F. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment. See Section 220516.
- G. Provide clearance in hangers and from structure and other equipment for installation of insulation and access to valves and fittings.
- H. Copper Pipe and Tube: Make soldered joints in accordance with ASTM B828, using specified solder, and flux meeting ASTM B813; in potable water systems use flux also complying with NSF 61 and NSF 372.
- I. PVC Pipe: Make solvent-welded joints in accordance with ASTM D2855.
- J. Sleeve pipes passing through partitions, walls, and floors.
- K. Manufactured Sleeve-Seal Systems:
 - 1. Install manufactured sleeve-seal systems in sleeves located in grade slabs and exterior concrete walls at piping entrances into building.
 - Provide sealing elements of the size, quantity, and type required for the piping and sleeve inner diameter or penetration diameter.
 - 3. Locate piping in center of sleeve or penetration.
 - 4. Install field assembled sleeve-seal system components in annular space between sleeve and piping.
 - 5. Tighten bolting for a watertight seal.
 - 6. Install in accordance with manufacturer's recommendations.

3.04 APPLICATION

A. Provide flow controls in water recirculating systems where indicated.

3.05 TOLERANCES

A. Drainage Piping: Establish invert elevations within 1/2 inch (10 mm) vertically of location indicated and slope to drain at minimum of 1/8 inch per foot (1:100) slope.

B. Water Piping: Slope at minimum of 1/32 inch per foot (1:400) and arrange to drain at low points.

3.06 DISINFECTION OF DOMESTIC WATER PIPING SYSTEM

A. Disinfect water distribution system in accordance with Section 330110.58.

END OF SECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Drains.
- B. Cleanouts.
- C. Hose bibbs.
- D. Washing machine boxes and valves.
- E. Backflow preventers.
- F. Water hammer arrestors.
- G. Sanitary waste interceptors.
- H. Mixing valves.
- I. Catch basins and manholes.
- J. Hose Reels
- K. Exterior penetration accessories.

1.02 RELATED REQUIREMENTS

- A. Section 016000 Product Requirements: Procedures for Owner-supplied products.
- B. Section 221005 Plumbing Piping.
- C. Section 223000 Plumbing Equipment.
- D. Section 224000 Plumbing Fixtures.

1.03 REFERENCE STANDARDS

- A. ADA Standards Americans with Disabilities Act (ADA) Standards for Accessible Design; 2010.
- B. ASME A112.6.3 Floor and Trench Drains: 2016.
- C. ASME A112.6.4 Roof, Deck, and Balcony Drains; 2008 (Reaffirmed 2012).
- D. ASSE 1011 Performance Requirements for Hose Connection Vacuum Breakers; 2004, with Errata.
- E. ASSE 1012 Performance Requirements for Backflow Preventers with an Intermediate Atmospheric Vent; 2009.
- F. ASSE 1013 Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers; 2011.
- G. ASSE 1019 Performance Requirements for Wall Hydrant with Backflow Protection and Freeze Resistance; 2011 (Reaffirmed 2016).

- H. ASTM B209 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate; 2014.
- I. ASTM B209M Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate (Metric); 2014.
- J. DIN 19580 Drainage channels for vehicular and pedestrian areas Durability, mass per unit area and evaluation of conformity; 2010.
- K. NEMA MG 1 Motors and Generators; 2018.
- L. NSF 2 Food Equipment; 2018.
- M. NSF 61 Drinking Water System Components Health Effects; 2019.
- N. NSF 372 Drinking Water System Components Lead Content; 2016.
- O. PDI-WH 201 Water Hammer Arresters; 2010.

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements for submittal procedures.
- B. Shop Drawings: Indicate dimensions, weights, and placement of openings and holes.
- C. Certificates: Certify that grease interceptors meet or exceed specified requirements.
- D. Manufacturer's Instructions: Indicate Manufacturer's Installation Instructions: Indicate assembly and support requirements.
- E. Operation Data: Indicate frequency of treatment required for interceptors.
- F. Maintenance Data: Include installation instructions, spare parts lists, exploded assembly views.
- G. Project Record Documents: Record actual locations of equipment, cleanouts, backflow preventers, water hammer arrestors.

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with not less than three years documented experience.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Accept specialties on site in original factory packaging. Inspect for damage.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

A. Specialties in Potable Water Supply Systems: Provide products that comply with NSF 61 and NSF 372 for maximum lead content.

2.02 DRAINS

A. Roof Drains [RD-1]

H2M architects + engineers

PLUMBING PIPING SPECIALTIES 221006-2

- 1. Assembly: ASME A112.6.4.
- Manufacturers:
 - a. ZURN.
 - b. Model No. Z100
 - c. Fifteen (15) inch diameter roof drain and overflow drain, with static extension, Dura-Coated cast iron bodies with combination membrane flashing clamp/gravel guards, double top-set deck plate, and low silhouette cast iron domes.
 - d. Substitutions: See Section 016000 Product Requirements.

B. Floor Drains [FD-1]

- Manufacturers:
 - a. ZURN.
 - b. Model No. Z415-SZ1
 - c. Dura-Coated cast iron body with bottom outlet, trap seal protection device, combination invertible membrane clamp and adjustable collar with seepage slots.
 - d. Substitutions: See Section 016000 Product Requirements.

C. Floor Sink [FS-1]

- Manufacturers:
 - a. ZURN.
 - b. Model No. Z1900
 - Sani-Flor Receptor 12"x12"x6" deep cast body and square, combination invertible membrane clamp and adjustable collar with seepage slots.
 - d. Substitutions: See Section 016000 Product Requirements.

2.03 CLEANOUTS

- A. Manufacturers:
 - 1. ZURN.
 - 2. Model No. Z-1400
 - 3. Lacquered cast iron body with anchor flange, adjustable threaded top assembly, and round gasketed scored cover in concrete floor areas and square gasketed depressed cover to accept floor finish in finished floor areas.
 - 4. Substitutions: See Section 016000 Product Requirements.
- B. Cleanouts at Interior Finished Wall Areas:
 - 1. Line type with lacquered cast iron body and round epoxy coated gasketed cover, and round stainless steel access cover secured with machine screw.

2.04 HOSE BIBBS [HB-1]

- A. Manufacturers:
 - 1. Acorn.
 - 2. Model No. 8121
 - 3. Cartridge-operated hose valve with vandal resistant lock shield bonnet, removable wheel handle, and ¾ inch male hose thread outlet. Hose bib shall be of the bent nose type and provided with a polished chrome finish, vacuum breaker, and flange for wall installation. Hose bib shall be in conformance with ANSI/ASSE Standard 1011.
 - 4. Substitutions: See Section 016000 Product Requirements.

2.05 WASHING MACHINE BOXES AND VALVES

- A. Box Manufacturers:
 - 1. Viega LLC; ____: www.viega.us/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.

H2M architects + engineers

PLUMBING PIPING SPECIALTIES 221006-3

- B. Valve Manufacturers:
 - 1. Viega LLC; ____: www.viega.us/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.
- C. Description: Plastic preformed rough-in box with brass long shank valves with wheel handles, socket for 2 inch (50 mm) waste, slip in finishing cover.

2.06 BACKFLOW PREVENTERS

- A. Manufacturers:
 - Watts Regulator Company, a part of Watts Water Technologies; LF009: www.wattsregulator.com/#sle.
 - 2. Substitutions: See Section 016000 Product Requirements.
- B. Reduced Pressure Backflow Preventer Assembly:
 - ASSE 1013; cast bronze body and stainless steel springs; two independently operating, spring loaded check valves; diaphragm type differential pressure relief valve located between check valves; third check valve that opens under back pressure in case of diaphragm failure, and non-threaded vent outlet.
 - 2. Size: 2" inch (_____ mm) assembly with threaded full port ball valves.
 - 3. Accessories: Provide air gap fitting, lead-free Y-strainer, and test cocks.

2.07 WATER HAMMER ARRESTORS

- A. Manufacturers:
 - 1. Sioux Chief Manufacturing.
 - 2. Model No. 650
 - 3. Sioux Chief 650 series piston-type water hammer arrestors shall be required in piping systems. Water hammer arrestors shall have sufficient volume of air to dissipate the calculated kinetic energy generated in the piping system. Arrestors shall be effective when installed at any angle and approved for installation without an access panel. Water hammer arrestors shall be ANSI/ASSE 1010 2004 certified and shall be sized and placed per manufacturer's instructions.
 - 4. Substitutions: See Section 016000 Product Requirements.

2.08 SANITARY WASTE INTERCEPTORS

- A. Manufacturers:
 - 1. Substitutions: See Section 016000 Product Requirements.
- B. Grease Interceptors [GT-1]:
 - Construction:
 - a. Material: Epoxy-coated fabricated steel.
 - b. Rough-in: Fully recessed (shallow rough-in) with anchor flange.
 - c. Cover: Steel, epoxy coated, non-skid with gasket, securing handle, and enzyme injection port, recessed for floor finish.
 - 2. Unit Rating: 75 gpm (____ L/s) flow and 150 lbs (____ kg) grease capacity.
 - 3. Manufacturers:
 - a. Zurn, Inc.; Z1172-HD.
 - b. Substitutions: See Section 016000 Product Requirements.

2.09 MIXING VALVES

A. Thermostatic Mixing Valves [MV-1]:

H2M architects + engineers

PLUMBING PIPING SPECIALTIES 221006-4

- Manufacturers:
 - a. Leonard Valve Company; 210-LF-F: www.leonardvalve.com/#sle.
 - b. Substitutions: See Section 016000 Product Requirements.
- 2. Valve: Chrome plated cast brass body, stainless steel or copper alloy bellows, integral temperature adjustment.
- 3. Accessories:
 - a. Volume control shut-off valve on outlet.
 - b. Stem thermometer on outlet.

2.10 FLOOR DRAIN TRAP SEALS

- A. Manufacturers:
 - 1. Zurn, Inc; Z1072.
 - 2. Substitutions: See Section 016000 Product Requirements.
- B. Description: Push-fit EPDM or silicone fitting with a one-way membrane.

2.11 EXTERIOR PENETRATION ACCESSORIES

- A. Roof Drain Outlet Pipe Connection: Drain seal to connect roof drain to drain piping.
- B. Sealing Systems for Roof Penetrations: Premanufactured components and accessories as required to preserve integrity of roofing system and maintain roof warranty; suitable for piping, cables, and roofing system to be installed; designed to accommodate existing penetrations where applicable.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Extend cleanouts to finished floor or wall surface. Lubricate threaded cleanout plugs with mixture of graphite and linseed oil. Ensure clearance at cleanout for rodding of drainage system.
- C. Encase exterior cleanouts in concrete flush with grade.
- D. Install approved potable water protection devices on plumbing lines where contamination of domestic water may occur; on boiler feed water lines, janitor rooms, fire sprinkler systems, premise isolation, irrigation systems, flush valves, interior and exterior hose bibbs.
- E. Pipe relief from backflow preventer to nearest drain.
- F. Install water hammer arrestors complete with accessible isolation valve on hot and cold water supply piping to lavatory sinks or washing machine outlets.
- G. Install air chambers on hot and cold water supply piping to each fixture or group of fixtures (each washroom). Fabricate same size as supply pipe or 3/4 inch (20 mm) minimum, and minimum 18 inches (450 mm) long.

END OF SECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Water Heaters:
 - 1. Commercial gas fired.
- B. In-line circulator pumps.
- C. Submersible sump pumps.

1.02 RELATED REQUIREMENTS

A. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections.

1.03 REFERENCE STANDARDS

- A. ABMA STD 9 Load Ratings and Fatigue Life for Ball Bearings; 2015.
- B. ABMA STD 11 Load Ratings and Fatigue Life for Roller Bearings; 2014.
- C. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum); 2018.
- D. NEMA MG 1 Motors and Generators; 2018.
- E. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
- F. UL 778 Standard for Motor-Operated Water Pumps; Current Edition, Including All Revisions.

1.04 SUBMITTALS

- A. See Section 013000 Administrative Requirements for submittals procedures.
- B. Product Data:
 - 1. Indicate pump type, capacity, power requirements.
 - 2. Provide certified pump curves showing pump performance characteristics with pump and system operating point plotted. Include NPSH curve when applicable.
 - 3. Provide electrical characteristics and connection requirements.
- C. Project Record Documents: Record actual locations of components.
- D. Operation and Maintenance Data: Include operation, maintenance, and inspection data, replacement part numbers and availability, and service depot location and telephone number.
- E. Warranty Documentation: Submit manufacturer warranty and ensure that forms have been completed in Owner's name and registered with manufacturer.

1.05 QUALITY ASSURANCE

- A. Identification: Provide pumps with manufacturer's name, model number, and rating/capacity identified by permanently attached label.
- B. Performance: Ensure pumps operate at specified system fluid temperatures without vapor binding and cavitation, are non-overloading in parallel or individual operation, operate within 25 percent of midpoint of published maximum efficiency curve.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Provide temporary inlet and outlet caps. Maintain caps in place until installation.

1.07 WARRANTY

A. See Section 017800 - Closeout Submittals for additional warranty requirements.

PART 2 PRODUCTS

2.01 WATER HEATERS

- A. Manufacturers:
 - 1. Substitutions: See Section 016000 Product Requirements.
- B. Commercial Gas Fired [WH-1]:
 - 1. Type: Automatic, natural gas-fired, vertical storage.
 - 2. Performance:
 - 3. Tank: Glass lined welded steel ASME labeled; multiple flue passages, 4 inch (100 mm) diameter inspection port, thermally insulated with minimum 2 inches (50 mm) glass fiber, encased in corrosion-resistant steel jacket; baked-on enamel finish; floor shield and legs.
 - 4. Accessories:
 - a. Water Connections: Brass.
 - b. Dip Tube: Brass.
 - c. Drain valve.
 - d. Anode: Magnesium.
 - 5. Certified For The Following Applications:

2.02 IN-LINE CIRCULATOR PUMPS

- A. Manufacturers:
 - 1. Taco, Inc; 007-SF5.
 - 2. Substitutions: See Section 016000 Product Requirements.
- Casing: Bronze, rated for 125 psig (860 kPa) working pressure, with stainless steel rotor assembly.
- C. Impeller: Bronze.
- D. Shaft: Alloy steel with integral thrust collar and two oil lubricated bronze sleeve bearings.
- E. Seal: Carbon rotating against a stationary ceramic seat.
- F. Drive: Flexible coupling.

2.03 SUBMERSIBLE SUMP PUMPS

- A. Manufacturers:
 - 1. Zoeller Company; 940-0013: www.zoeller.com/#sle.
- B. Type: Completely submersible, vertical, centrifugal.
- C. Casing: Cast iron pump body and oil filled motor chamber.
- D. Impeller: Cast iron; open non-clog, stainless steel shaft.

E.	Bearings: Ball bearings.			
F.	Sump: Fiberglass basin with steel cover plate; (mm) deep.	inches (mm) diameter,	inches

- G. Accessories: Oil resistant 6 foot (2 m) cord and plug with three-prong connector for connection to electric wiring system including grounding connector.
- H. Servicing: Slide-away coupling consisting of discharge elbow secure to sump floor, movable bracket, guide pipe system, lifting chain and chain hooks.

2.04 ELECTRICAL WORK

- A. Provide electrical motor driven equipment specified complete with motors, motor starters, controls, and wiring.
- B. Furnish motor starters complete with thermal overload protection and other appurtenances necessary for the motor control specified.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install plumbing equipment in accordance with manufacturer's instructions, as required by code, and complying with conditions of certification, if any.
- B. Coordinate with plumbing piping and related fuel piping work to achieve operating system.
- C. Pumps:
 - 1. Ensure shaft length allows sump pumps to be located minimum 24 inches (600 mm) below lowest invert into sump pit and minimum 6 inches (150 mm) clearance from bottom of sump pit.
 - 2. Ensure pumps operate at specified system fluid temperatures without vapor binding and cavitation, are non-overloading in parallel or individual operation, and operate within 25 percent of midpoint of published maximum efficiency curve.

END OF SECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Water closets.
- B. Urinals.
- C. Lavatories.
- D. Sinks.
- E. Kitchen Sinks.
- F. Service sinks.
- G. Mop sinks.
- H. Showers
- I. Drinking fountains.

1.02 RELATED REQUIREMENTS

- A. Section 011000 Summary: Owner-furnished fixtures.
- B. Section 064100 Architectural Wood Casework: Preparation of counters for sinks and lavatories.
- C. Section 079200 Joint Sealants: Sealing joints between fixtures and walls and floors.
- D. Section 114000 Foodservice Equipment: Food service sinks.
- E. Section 123600 Countertops: Preparation of counters for sinks and lavatories.
- F. Section 221005 Plumbing Piping.
- G. Section 221006 Plumbing Piping Specialties.

1.03 REFERENCE STANDARDS

- A. ADA Standards Americans with Disabilities Act (ADA) Standards for Accessible Design; 2010.
- ASHRAE Std 18 Methods of Testing for Rating Drinking-Water Coolers with Self-Contained Mechanical Refrigeration; 2013.
- C. ASME A112.6.1M Supports for Off-the-Floor Plumbing Fixtures for Public Use; 1997 (Reaffirmed 2017).
- D. ASME A112.18.1 Plumbing Supply Fittings; 2018.
- E. ASME A112.19.2 Ceramic Plumbing Fixtures; 2018.
- F. ASME A112.19.4M Porcelain Enameled Formed Steel Plumbing Fixtures; 1994 (R2009).
- G. ASME A112.19.5 Flush Valves and Spuds for Water Closets, Urinals, and Tanks; 2017.

- H. ASSE 1070 Performance Requirements for Water Temperature Limiting Devices; 2015.
- I. IAPMO PS 106 Tileable Shower Receptors And Shower Kits; 2015.
- J. ICC A117.1 Accessible and Usable Buildings and Facilities; 2017.
- K. ITS (DIR) Directory of Listed Products; current edition.
- L. NSF 61 Drinking Water System Components Health Effects; 2019.
- M. NSF 372 Drinking Water System Components Lead Content; 2016.
- N. UL (DIR) Online Certifications Directory; Current Edition.

1.04 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittal procedures.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

A. Potable Water Systems: Provide plumbing fittings and faucets that comply with NSF 61 and NSF 372 for maximum lead content; label pipe and fittings.

2.02 REGULATORY REQUIREMENTS

- A. Comply with applicable codes for installation of plumbing systems.
- B. Comply with UL (DIR) requirements.
- C. Perform work in accordance with local health department regulations.

2.03 FLUSH VALVE WATER CLOSETS - WALL HUNG [WC-1 & WC-2]

- A. Water Closets: Vitreous china, ASME A112.19.2, wall hung, siphon jet flush action, china bolt caps.
 - 1. Bowl: ASME A112.19.2; 16.5 inches (420 mm) high with elongated rim.
 - 2. Flush Valve: Exposed (top spud).
 - 3. Flush Operation: Manual, oscillating handle.
 - 4. Supply Size: 1-1/2 inches (38 mm).
 - 5. Outlet Size: 2 inches (50 mm).
 - 6. Color: White.
 - 7. Manufacturers:
 - a. American Standard, Inc: www.americanstandard-us.com/#sle.
 - b. Model AFWALL MILLENIUM FloWise No. 2856.128
 - c. Substitutions: See Section 016000 Product Requirements.

B. Flush Valves:

- 1. Manufacturers:
 - a. Sloan Valve Company: www.sloanvalve.com/#sle.
 - b. Model CORWN No. 111
 - c. Substitutions: See Section 016000 Product Requirements.

C. Seats:

- 1. Manufacturers:
 - a. American Standard, Inc: www.americanstandard-us.com/#sle.
 - b. Substitutions: See Section 016000 Product Requirements.
 - c. Model No. 5901.100
- 2. Solid black plastic, open front, extended back, self-sustaining hinge, brass bolts, with cover.

D. Water Closet Carriers:

- 1. Manufacturers:
 - a. Zurn Industries, Inc: www.zurn.com/#sle.
 - b. Model No. Z1202-ND4
 - c. Substitutions: See Section 016000 Product Requirements.
- 2. ASME A112.6.1M; adjustable cast iron frame, integral drain hub and vent, adjustable spud, lugs for floor and wall attachment, threaded fixture studs with nuts and washers.

2.04 WALL HUNG URINALS [UR-1]

- A. Manufacturers:
 - 1. American Standard, Inc: www.americanstandard-us.com/#sle.
 - 2. Model Washbrook FloWise No. 6590.525
 - 3. Substitutions: See Section 016000 Product Requirements.
- B. Urinals: Vitreous china, ASME A112.19.2, wall hung with side shields and concealed carrier.
 - 1. Flush Volume: 0.125 gallons (0.47 liters), maximum.
 - 2. Flush Valve: Exposed (top spud).
 - 3. Flush Operation: Manual, oscillating handle.
 - 4. Trap: Integral.
- C. Flush Valves:
 - Manufacturers:
 - a. Sloan Valve Company: www.sloanvalve.com/#sle.
 - b. Model CROWN No. 3122665
 - c. Substitutions: See Section 016000 Product Requirements.
- D. Wall-Hung Urinal Carriers:
 - Manufacturers:
 - a. Zurn Industries, Inc: www.zurn.com/#sle.
 - b. Model No. Z1221
 - c. Substitutions: See Section 016000 Product Requirements.
 - 2. ASME A112.6.1M; cast iron and steel frame with tubular legs, lugs for floor and wall attachment, threaded fixture studs for fixture hanger, bearing studs.

2.05 LAVATORIES [LAV-1]

- A. Manufacturers:
 - 1. American Standard, Inc: www.americanstandard-us.com/#sle.
 - 2. Model Aqualyn No. 0476.028
 - 3. Substitutions: See Section 016000 Product Requirements.
- B. Vitreous China Counter Top Basin: ASME A112.19.2; vitreous china self-rimming counter top lavatory, _____ with drillings on 4 inch (100 mm) centers, front overflow, soap depression, seal of putty, calking, or concealed vinyl gasket.
- C. Supply Faucet Manufacturers:
 - 1. American Standard, Inc: www.americanstandard-us.com/#sle.

- 2. Model Monterrey No. 5502.175
- 3. Substitutions: See Section 016000 Product Requirements.
- D. Supply Faucet: ASME A112.18.1; chrome plated combination supply fitting with pop-up waste, water economy aerator with maximum flow of 0.5 gallon per minute (low-flow) (1.9 liters per minute (low-flow)), indexed handles.

2.06 DRINKING FOUNTAINS [DF-1]

- A. Manufacturers:
 - 1. Elkay Manufacturing Company: www.elkay.com/#sle.
 - 2. Model No. LVRCGRNTL8WSK
 - 3. Substitutions: See Section 016000 Product Requirements.

2.07 MOP SINKS

- A. Manufacturers:
 - 1. Fiat Products; MSB 2424.
- B. Accessories:
 - 1. Hose clamp hanger.
 - 2. Mop hanger.
 - 3. Service Faucet (830-AA).

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that walls and floor finishes are prepared and ready for installation of fixtures.
- B. Verify that electric power is available and of the correct characteristics.
- C. Confirm that millwork is constructed with adequate provision for the installation of counter top lavatories and sinks.

3.02 PREPARATION

A. Rough-in fixture piping connections in accordance with minimum sizes indicated in fixture rough-in schedule for particular fixtures.

3.03 INSTALLATION

- A. Install each fixture with a trap if it does not come integral to fixture, easily removable for servicing and cleaning.
- B. Install components level and plumb.

3.04 INTERFACE WITH WORK OF OTHER SECTIONS

A. Review millwork shop drawings. Confirm location and size of fixtures and openings before rough-in and installation.

3.05 CLEANING

A. Clean plumbing fixtures and equipment.

3.06 PROTECTION

- A. Protect installed products from damage due to subsequent construction operations.
- B. Repair or replace damaged products before Date of Substantial Completion.

END OF SECTION

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This section describes the general requirements for all mechanical items and systems required by the Contract Documents.
- B. Comply with all Contract Requirements, General Conditions, Supplementary Conditions and Division 1 Sections applying to or affecting the Work of Division 23.
- C. Unless specifically dimensioned, the Work shown on the Drawings is in diagrammatic form only to show general arrangement.
- D. Include, in the Work, all accessories and appurtenances, necessary and integral, for the intended operation of any system, component or device, as such systems, components and devices are specified.
- E. Do not install pipe or conduit through ductwork.
- F. If the pipe or duct size shown on the Drawings does not match the connection size of the equipment that it is connected to, provide the necessary transition pieces at the piece of equipment.
- G. Do not use or allow to be used asbestos or asbestos-containing materials on this project. Be rigorous in assuring that all materials, equipment, systems and components thereof do not contain asbestos. Any deviations from this requirement shall be remedied at the Contractor's expense without regard to prior submittal approvals.

1.02 RELATED DOCUMENTS

A. The General Conditions and General Requirements Division 1 apply to the Work of this Section.

1.03 REFERENCE STANDARDS

A. Compliance with the following codes and standards shall be required:

-1.	Codes	. Rules and	Reaul	ations of	of the	State o	f New `	York

USAS
 AMCA
 USA Standards Institute (Formerly ASA)
 Air Moving and Conditioning Association

4. ADC Air Diffusion Council

5. NEMA National Electrical Manufacturers Association

6. FM Factory Mutual

NFPA National Fire Protection Association
 ASTM American Society for Testing Materials

9. UL Underwriters Laboratories, Inc.

10. NEC National Electrical Code

11. ASME American Society of Mechanical Engineers
12. ANSI American National Standards Institute
13. OSHA Occupational Safety and Health Act
14. BSA Board of Standards and Appeals
15. MEA Materials and Equipment Acceptance

16. DEC New York State Department of Environmental Conservation - 6

NYCRR Part 613 Handling and Storage of Petroleum

17. ASHRAE American Society of Heating, Refrigeration and Air Conditioning

Engineers.

18. AWWA American Water Works Association

H2M architects + engineers

19. MSS Manufacturer's Standardization Society of the Valve and Fitting

Industry

20. ARI American Refrigeration Institute

21. SMACNA Sheet Metal and Air Conditioning Contractor's Nation-al Association

22. TEMA Tubular Exchanger Manufacturers Association

23. F.S. or FED Spec. Federal Specification24. ASA Acoustical Society of America

25. NACE National Association or Corrosion Engineers26. ASSE American Society of Sanitary Engineers

- 27. International Building Code
- 28. International Fire Code
- 29. International Existing Building Code
- 30. International Fuel Gas Code31. International Plumbing Code
- 32. International Energy Conservation Code
- 33. International Mechanical Code
- 34. New York State Industrial Code Rules

35. IRI Industrial Risk Insurers
 36. AGA American Gas Association
 37. AABC American Air Balance Council

38. NEBB National Environmental Balancing Bureau

39. AWS American Welding Society

1.04 DEFINITIONS

- A. "Provide" means furnish and install, complete the specified material, equipment or other items and perform all required labor to make a finished installation.
- B. "Furnish and install" has the same meaning as given above for "Provide."
- C. Refer to General Conditions for other definitions.

1.05 ABBREVIATIONS

A. Reference by abbreviation may be made in the Specifications and the Drawings in accordance with the following list:

1. HVAC Heating, Ventilating and Air Conditioning

2. CM Construction Manager

3. AC Air Conditioning

4. H & V Heating and Ventilating
5. AWG American Wire Gauge
6. BWG Birmingham Wire Gauge
7. USS United States Standard

8. B & S Brown & Sharpe

OS & Y
 Outside Screw and Yoke
 IBBM
 Iron Body Brass Mounted
 WSP
 Working Steam Pressure
 PSIG
 Pounds per Square Inch Gauge

13. PRV Pressure Reducing Valve
14. GPM Gallons per Minute
15. MBH Thousand BTU per hour
16. BTU British Thermal Units

17. WG Water Gage

18. LB Pound (Also shown as: #)

H2M architects + engineers

- ASME American Society of Mechanical Engineers
 ASTM American Society for Testing Materials
 ABMA American Boiler Manufacturers Association
 ASA American Standards Associates
- 23. MER Mechanical Equipment Room
 See Drawings for additional abbreviations

1.06 REVIEW OF CONTRACT DOCUMENTS AND SITE

- A. Give written notice with the submission of bid to the Architect/Engineer of any materials or apparatus believed inadequate or unsuitable, in violation of laws, ordinances, rules or regulations of Authorities having jurisdiction, and any necessary items of work omitted. In the absence of such written notice it is mutually agreed that the Contractor has included the cost of all required items in his proposal for a complete project.
- B. Contractors shall acknowledge that they have examined the Plans, Specifications and Site, and that from his own investigations he has satisfied himself as to the nature and location of the Work; the general and local conditions, particularly those bearing upon transportation, disposal, handling and storage of materials; availability of labor, utilities, roads and uncertainties of weather; the composition and condition of the ground; the characters quality and quantity of subsurface materials to be encountered; the character of equipment and facilities needed preliminary to and during the execution of the Work; all federal, state, county, township and municipal laws, ordinances and regulations particularly those relating to employment of labor, rates of wages, and construction methods; and all other matters which can in any way affect the Work or the cost thereof under this Contract. Any failure by the Contractor to acquaint himself with the available information concerning these conditions will not relieve him from the responsibility for successfully performing the Work.
- C. Owner assumes no responsibility for any understanding or representation made during or prior to the negotiation and execution of this Contract unless such understanding or representations are expressly stated in the Contract and the Contract expressly provides that the responsibility, therefore, is assumed by the Owner.

1.07 MEASUREMENTS

A. Base all measurements, both horizontal and vertical from established bench marks. Make all Work agree with these established lines and levels. Verify all measurements at site; and check the correctness of same as related to the Work.

1.08 LABOR AND MATERIALS

- A. Provide all materials and apparatus required for the Work of new and first-class quality. Furnish, deliver, arrange, erect, connect and finish all materials and equipment in every detail, so selected and arranged as to fit properly into the building spaces.
- B. Remove all materials delivered, or work erected, which does not comply with Drawings or Specifications, and replace with proper materials, or correct such work as directed, at no additional cost to the Owner.

1.09 COVERING OF WORK

A. Do not cover up or hide from view any duct, piping, fitting, or other work of any kind before it has been examined or approved by the Architect/Engineer and/or other authority having jurisdiction over the same. Remove and correct immediately any unacceptable or imperfect work or unauthorized or disapproved materials discovered immediately after being disapproved.

H2M architects + engineers

1.10 PROTECTION

- A. Protect the Work and material of all trades from damage and replace all damaged material with new.
- B. Protect work and equipment until the Work is finally inspected, tested, and accepted; protect the Work against theft, injury or damage; and carefully store material and equipment received on site which is not immediately installed; close open ends of work with temporary covers or plugs during construction to prevent entry of foreign material.
- C. Preserve all public and private property, along and adjacent to the Work, and use every precaution necessary to prevent damage or injury thereto. Use suitable precautions to prevent damage to pipes, conduits and other underground structures or utilities, and carefully protect from disturbance or damage all property marks until an authorized agent has witnessed or otherwise referenced their location, and do not remove them until directed.

1.11 CUTTING AND PATCHING

- A. Provide all cutting and rough patching required for the Work. Perform all finish patching.
- B. Furnish and locate all sleeves and inserts required before the floors and walls are built, pay the cost of cutting and patching required for pipes where sleeves and inserts were not installed in time, or where incorrectly located. Provide all drilling required for the installation of hangers.
- C. Punch or drill all holes cut through concrete slabs or arches from the underside. Do not cut structural members without the approval of the Architect/Engineer. Perform all cutting in a manner directed by the Architect/Engineer.
- D. Do not do any cutting that may impair strength of building construction. Do no drill any holes, except for small screws, in beams or other structural members without obtaining prior approval. All Work shall be done in a neat manner by mechanics skilled in their trades and as approved.

1.12 SUBMITTALS

- A. Submit for review, shop drawings for all materials and equipment furnished and installed under this Contract. Submissions shall include but not be limited to:
 - 1. Ductwork layout drawings, air devices and accessories
 - 2. Breeching layout drawings
 - 3. Piping and equipment layout drawings.
 - 4. Piping materials, valves, hangers, supports and accessories
 - Automatic temperature control equipment, diagrams and control sequences
 - 6. Equipment, fixtures, and appurtenances
 - 7. Insulation
 - 8. Rigging Plan Include the name of the rigging company; a layout drawing that details the crane with its outriggers extended outward. Provide dimensions showing how rigging operations will affect the road and parking lines being used, the type of crane and its specification including crane arm height, lift capacity, crane reach.

B. Reports

- 1. Compliance with listings and approvals for equipment and for fire ratings.
- 2. Acceptance certificates from inspecting agencies.
- 3. Complete printed and illustrated operating instructions in report format.
- 4. Manufacturer's performance tests of equipment.
- 5. Field pipe and duct testing reports.

H2M architects + engineers

- 6. Field operating test results for equipment.
- 7. Performance report on the balancing of air and water systems.
- 8. Performance reports for vibration isolation equipment.
- 9. Manufacturer's reports on motorized equipment alignment and installation.
- C. Specific references to any article, device, product or material, fixture or item of equipment by name, make or catalog number shall be interpreted as establishing a basis of cost and a standard of quality. All devices shall be of the make and type listed by Special Agencies, such as the Underwriters' Laboratories, and where required, approved by the Fire Department.

1.13 SPACE ALLOTMENTS AND SUBSTITUTIONS

- A. The space allotments and equipment layouts on the Drawings are based on the manufacturer's model indicated or scheduled as the "Basis of Design". Ensure that any equipment that is submitted other than the "Basis of Design" will fit in the space allotment and will provide the necessary maintenance clearances as recommended by the manufacturer. If maintenance clearances are not met, pay for any changes such that maintenance clearances will be met.
- B. Bear all costs associated with re-layout of the equipment, changes to piping/ductwork, and other changes as required if approved equipment other than the "Basis of Design" equipment is purchased. This shall also include any structural steel modifications and structural steel design changes. Submit, at no cost to the Owner, a steel design stamped by a structural engineer licensed in the state in which the Work is to be performed for structural modifications that must be made resulting from the use of equipment other than the "Basis of Design" or not specified.

1.14 PAINTING

A. Prime paint all bare supplemental steel, supports and hangers required for the installation of Division 23 Work in accordance with "Painting" Specification Section. Touch up welds of galvanized surfaces with galvanizing primer.

1.15 MATERIAL SAFETY DATA SHEETS

A. Submit material safety data sheets (MSDS) for all chemicals, hydraulic fluids, seal oils, lubricating oils, glycols and any other hazardous materials used in the performance of the Work, in accordance with the US Department of Labor, Occupational Safety and Health Administration (OSHA) hazard communication and right-to-know requirements stipulated in 29 CFR 1910.1200 (g).

1.16 MOTORS AND STARTERS

- A. Provide new NEMA Standard electric motors, sized and designed to operate at full load and full speed continuously without causing noise, vibration, and temperature rise in excess of their rating. Provide motors with a service factor of at least 1.15.
- B. Equip motors for belt driven equipment with rails with adjusting screws for belt tension adjustment. Weather protect motors exposed to the weather.
- C. Install high efficiency electric motors for air handling units, relief fans, and exhaust fans.
- D. Provide all motors for use with Variable Frequency Drives with "high efficiency inverter duty" insulation class "F" with class "B" temperature rise and that conform to or exceed the International Energy Conservation Code or the Federal EP Act of 1992 requirements for efficiency.

- E. Provide stainless steel nameplates, permanently attached to the motor, and having the following information as a minimum:
 - 1. Manufacturer
 - 2. Type
 - 3. Model
 - 4. Horsepower
 - 5. Service Factor
 - 6. RPM
 - 7. Voltage/Phase/Frequency
 - 8. Enclosure Type
 - 9. Frame Size
 - 10. Full-Load Current
 - 11. UL Label (where applicable)
 - 12. Lead Connection Diagram
 - 13. Bearing Data
 - 14. Efficiency at Full Load.
- F. Provide motors whose sound power levels do not exceed that recommended in NEMA MG 1-12.49.
- G. Provide motors with drive shafts long enough to extend completely through belt sheaves when sheaves are properly aligned and balanced.
- H. Protect motor starters on equipment located outdoors in weatherproof NEMA 4X enclosures.
- I. Provide weatherproof NEMA 4X disconnect switches when located outdoors.
- J. Motor Characteristics:
 - 1. 120V/1/60 Hz, 208V/1/60 Hz or 240V/1/60 Hz: Capacitor start, open drip-proof type, ball bearing, rated 40 C. continuous rise.
 - 2. 208V/3/60 Hz, 240V/3/60 Hz or 460/3/60 Hz: NEMA B, normal starting torque, single speed, squirrel-cage type, open drip-proof, rated 40 C continuous rise, with ball bearings rated for B-10 life of 100,000 hours and fitted with grease fittings and relief ports. Provide motors with aluminum end brackets with steel inserts in bearing cavities.

1.17 ACOUSTICAL PERFORMANCE OF EQUIPMENT AND SYSTEMS

- A. Install the Work in such a manner that noise levels from operation of motor driven equipment, whether airborne or structure-borne, and noise levels created by or within air handling equipment and air distribution and control media, do not to exceed sound pressure levels determined by the noise criteria curves published in the ASHRAE guide.
- B. Acoustical Tests
 - Owner may direct the Contractor to conduct sound tests for those areas he deems too noisy.
 - 2. If NC level exceeds the requirements of the Contract Documents due to improper installation or operation of mechanical systems, make changes or repairs to bring noise levels to within required levels.
 - 3. Retest until specified criteria have been met.

1.18 OPERATING AND MAINTENANCE INSTRUCTIONS

A. Instructions and Demonstration for Owner's Personnel

H2M architects + engineers

- 1. Provide operating and maintenance instruction to the Owner when project is completed and all HVAC equipment serving the building is ready to be turned over to the Owner.
- 2. Turn over the HVAC equipment to the Owner only after the final testing and proper balancing of HVAC systems.
- Instruct the Owner's personnel in the use, operation and maintenance of all equipment of each system.
- 4. The above instruction requirements are in addition to that specified for specific equipment or systems. Conform to specified requirements if more stringent or longer instruction is specified for specific equipment or systems.

1.19 CODES, RULES, PERMITS & FEES

- A. Give all necessary notices, obtain all permits and pay all government sales taxes, fees, and other costs, in connection with the Work. Unless indicated otherwise, fees for all utility connections, extensions, and tap fees for water, storm, sewer, gas, telephone, and electricity will be paid directly to utility companies and/or agencies by the Owner. File all necessary plans, prepare all documents and obtain all necessary approvals of all governmental departments having jurisdiction; obtain all required certificates of inspection for the Work and deliver same to the Owner's Representative before request for acceptance and final payment for the Work.
- B. Conform to the requirements of the NFPA, NEC, FM, UL and any other local or State codes which may govern.

1.20 RECORD DRAWINGS

- A. During the progress of the Work, make a record set of drawings of all changes by which the actual installation differs from the Drawings.
- B. Create all record drawings in AutoCAD version 2002 or later in .dwg format. Upon completion of the Work, submit to the Architect/Engineer for approval three complete sets of hard copies of the record drawings, of the same size as the Drawings for approval. Upon approval by the Architect/Engineer furnish the Owner a CD copy of the record drawings along with one hard copy for his records.

PART 2 - PRODUCTS

NOT USED

PART 3 - EXECUTION

3.01 CLEANING AND ADJUSTING

A. Cleaning

- 1. Blow out, clean and flush each system of piping and equipment, to thoroughly clean the systems.
- 2. Clean all materials and equipment; leave in condition ready to operate and ready to receive final finishes where required.
- 3. Clean the operating equipment and systems to be dust free inside and out.
- 4. Clean concealed and unoccupied areas such as plenums, pipe and duct spaces and equipment rooms to be free of rubbish and dust.

B. Adiustina

- 1. Adjust and align equipment interconnected with couplings or belts.
- 2. Adjust valves of all types and operating equipment of all types to provide proper operation.
- 3. Clean all strainers after system cleaning and flushing and again before system startup.

H2M architects + engineers

C. Lubrication

- Lubricate equipment as recommended by the manufacturer, during temporary construction use.
- 2. Provide complete lubrication just prior to acceptance.
- D. Permanent Equipment Operating During Construction
 - 1. Use only in same service as the permanent applications.
 - 2. Use disposable filters during temporary operation.
 - 3. Replace expendable media, including belts used for temporary operation and similar materials just prior to acceptance of the Work.
 - 4. Repack packing in equipment operated during construction just prior to system acceptance, using materials and methods specified by the equipment manufacturer.
- E. Retouch or repaint equipment furnished with factory finish as required to provide same appearance as new.

F. Tools

1. Provide one set of specialized or non-standard maintenance tools and devices required for servicing the installed equipment.

3.02 EQUIPMENT BASES, PLATFORMS AND SUPPORTS

- A. Provide supporting platforms, steel supports, anchor bolts, inserts, etc., for all equipment and apparatus provided.
- B. Obtain prior approval for installation method of structural steel required to frame into building structural members for the proper support of equipment, conduit, etc. Welding will be permitted only when approved by the Architect/Engineer.
- C. Submit shop drawings of supports to the Architect/Engineer for approval before fabricating or constructing.
- D. Provide leveling channels, anchor bolts, complete with nuts and washers, for all apparatus and equipment secured to concrete pads and further supply exact information and dimensions for the location of these leveling channels, anchor bolts, inserts, concrete bases and pads.
- E. Where supports are on concrete construction, take care not to weaken concrete or penetrate waterproofing.

3.03 ACCESSIBILITY

A. Install valves, dampers and other items requiring access conveniently and accessibly located with reference to the finished building.

3.04 USE OF EQUIPMENT

A. The use of any equipment, or any part thereof, even with the Owner's consent, is not an indication of acceptance of the Work on the part of the Owner, nor shall it be construed to obligate the Owner in any way to accept improper work or defective materials.

3.05 MODIFICATIONS OF EXISTING WORK

A. Coordinate the Work with all other contractors and provide necessary dimensions for all openings. Provide all cuts and openings which are necessary for the Work for passage of piping and ductwork

H2M architects + engineers

B. Upon completion, remove all temporary piping and equipment, shoring, scaffolds, etc., and leave all areas clean and free from material and debris resulting from the Work performed under this Section. Provide rough patching in areas required.

3.06 EQUIPMENT INSTALLATION

- A. Locate and set equipment anchor bolts, dowels and aligning devices for equipment requiring them.
- B. Level and shim the equipment; coordinate and oversee the grouting work.
- C. Perform field assembly, installation and alignment of equipment under direct supervision provided by the manufacturer or with inspections, adjustments and approval by the manufacturer.
- D. Alignment and Lubrication Certification for Motor Driven Apparatus
 - 1. After permanent installation has been made and connections have been completed, but before the equipment is continuously operated, have a qualified representative of the equipment manufacturer inspect the installation and report in writing on the manufacturer's letterhead on the following:
 - a. Whether shaft, bearing, seal, coupling, and belt drive alignment and doweling is within the manufacturer's required tolerances so that the equipment will remain aligned in the normal service intended by the Contract Documents and that no strain or distortion will occur in normal service.
 - b. That all parts of the apparatus are properly lubricated for operation.
 - c. That the installation is in accordance with manufacturer's instructions.
 - That suitable maintenance and operating instructions have been provided for the Owner's use.
 - e. Make any corrections to items that are required or recommended based on the manufacturer's inspection and have the equipment re-inspected.

E. Belt Drives

- V-belt drives a driving and driven sheave grooved for belts of trapezoidal cross-section.
 Construct belts of fabric and rubber so designed so as not to touch the bottom of the
 grooves, the power being transmitted by the contact between the belts and V-shaped
 groove sides. Design drives for a minimum of 150 percent of motor horsepower. Provide
 companion type driven sheaves.
- Select drives to provide for 12-1/2 percent variation in speed, plus or minus, from specified speed. Provide all motors with adjustable sheaves except where indicated otherwise in the Specifications or on the Drawings.
- 3. Install all fans with adjustable pitch sheaves on their drive motors. Select sheaves to provide air quantities under specified conditions. Put air systems into operation, and determine as a result of the completed air balance the actual size of sheaves required to produce specified air quantities on installed systems. The adjustable pitch sheaves shall then be replaced with the proper size fixed sheaves. Remove adjustable pitch sheaves from premises. Provide fixed motor sheaves manufactured by Wood's.
- 4. Where indicated on the Drawings or specified, provide spare motor, bearings, and belts.

F. Machinery Guards

- 1. Protect motor drives by guards furnished by the equipment manufacturer or in accordance with the Sheet Metal and Air Conditioning Contractors National Association's Low Pressure Duct Manual. Provide guards of all types approved as acceptable under OSHA Standards.
- G. Equipment Start-up

H2M architects + engineers

- 1. Require each equipment manufacturer to provide qualified personnel to inspect and approve equipment and installation and to supervise the start-up of the equipment and to supervise the operating tests of the equipment.
- 2. If a minimum number of hours for start-up and instruction are not stated with the equipment specifications, these shall be 2 full 8-hour working days as a minimum.
- 3. Advise Owner of start-up at least 72 hours in advance.

3.07 CLOSEOUT PROCEDURES

- A. General Operating and Maintenance Instructions: Arrange for each installer of operating equipment and other work that requires regular or continuing maintenance, to meet at the site with the Owner's personnel to provide necessary basic instructions in the proper operation and maintenance of the entire Work. Where installers are not expert in the required procedures, include instruction by the manufacturer's representatives.
- B. Where applicable, provide instruction and training, including application of special coatings systems, at manufacturer's recommendation.
- C. Provide a detailed review of the following items:
 - 1. Maintenance manuals
 - 2. Record documents and catalog cuts for each piece of equipment.
 - 3. Spare parts and materials
 - 4. Tools
 - 5. Lubricants
 - 6. Fuels
 - 7. Identification systems
 - 8. Control sequences
 - 9. Hazards
 - 10. Cleaning
- D. Warranties, bonds, maintenance agreements, and similar continuing commitments.
- E. Demonstrate the following procedures:
 - 1. Start-up
 - 2. Shut-down
 - 3. Emergency operations
 - 4. Noise and vibration adjustments
 - 5. Safety procedures
 - 6. Economy and efficiency adjustments
 - 7. Effective energy utilization.
- F. Prepare instruction periods to consist of approximately 50% classroom instruction and 50% "hands-on" instruction. Provide minimum instruction periods as follows:

Systems or Equipment	Training Time (Hours)			
Roof Top Units	8 hrs.			
Boilers and Burners	16 hrs			
All other equipment	4 hrs. (each)			

Note: Consult individual equipment specification sections for additional training requirements.

G. Prepare a written agenda for each session and submit for review and approval. Include date, location, purpose, specific scope, proposed attendance and session duration.

H2M architects + engineers

H. Record training sessions in digital format, format as selected by the Owner. Turn over digital files to the Owner after training has been completed.

END OF SECTION 230010

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. This Section describes the draining, disconnecting, dismantling, demolition, removal, relocation, rerouting and reconnection of existing mechanical facilities, in a neat and workmanlike manner, of mechanical systems, materials and accessories as required, as shown on the Drawings and specified herein, to accomplish alteration, restoration and to accommodate the Work.

1.02 RELATED WORK

A. General Mechanical Requirements - Section 230010

1.03 REFERENCES

- A. BOCA Building Code
- B. NFPA Fire Code
- C. ANSI A10.6 Safety Requirements for Demolition
- D. National Association of Demolition Contractors (NADC) Demolition Safety Manual
- E. NFPA 51B Cutting and Welding Processes
- F. NFPA 70 National Electrical Code
- G. NFPA 241 Safeguarding Building Construction and Demolition Operations
- H. OSHA 29 CRF 1910 Occupational Safety and Health Standards
- I. US EPA Clean Air Act Amendment of 1990.

1.04 SUBMITTALS

- A. Demolition Schedule
- B. Fire Watch Procedures
- C. Inspection Report of Underground Piping Systems
- D. Welding/Burning Permit Obtain a welding/burning permit from the local Fire Official prior to the start of any welding or burning in accordance with the local Fire Code or as required by the Owner.

1.05 QUALITY ASSURANCE

- A. Only employ workers skilled in the specific trades involved for cutting, patching and removal.
- B. Job Conditions: Prior to start of the Work, make an inspection accompanied by the Architect/Engineer to determine physical condition of adjacent construction that is to remain.

1.06 SPECIAL PRECAUTIONS

A. Do not torch cut ductwork.

- B. Torch cutting of other mechanical equipment will be permitted only with the specific written approval of the Architect/Engineer.
- C. Include "Fire Watch" procedures as required by the Fire Code and/or Owner's Fire Insurance Carrier for any cutting work that may produce sparks. Submit fire watch procedures for approval.
- D. Perform draining operations so that damage to existing building components does not occur.

PART 2 - PRODUCTS

2.01 GENERAL

A. Adequately sized rubbish containers for the proper and safe disposal of all debris.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Construct temporary partitions enclosing respective work prior to any demolition work. Erect temporary fencing and signage around demolished materials.
- B. Protect existing materials and equipment which are not to be demolished.
- C. Prevent movement of structure; provide required bracing and shoring.
- D. Do not begin the work until the time schedules and manner of operations have been approved by the Architect/Engineer and Owner. Include all interruptions of existing services in schedules submitted for approval by the Architect/Engineer and Owner.

3.02 GENERAL

- A. Provide alteration and demolition of mechanical facilities as required by the Drawings and Specifications. The Drawings are diagrammatic and do not show the exact location of all existing mechanical work. Where existing equipment is to remain in service during construction, provide rerouting and reconnection of mechanical services as required to maintain continuous service.
- B. Review all equipment with the Architect/Engineer and Owner prior to disposal. Completely remove existing ductwork, piping, conduit and similar items to be abandoned that are not embedded in walls or floor slabs unless otherwise shown on the Drawings. Cap open ends at all walls and floors.
- C. Remove, store and protect all equipment or materials designated to be turned over to the Owner. Coordinate exact location of storage with the Owner.
- D. Temporarily cap ends of ductwork, piping and sanitary vent piping to avoid entry of dirt, debris, or discharge of foul odors and gases.
- E. Where existing louvers or ductwork penetrations are to remain, blank-off the opening on the inside with galvanized sheet metal on both sides of 2-inch thick, 6 pcf density rigid fiberglass board insulation. Paint side attached to the opening with weather resistant flat black paint.
- F. Do not close or obstruct egress width to exits.

- G. Do not disable or disrupt building fire or life safety systems without five (5) days prior written notice to the Architect/Engineer and Owner.
- H. Conform to procedures applicable when discovering hazardous or contaminated materials.
- Conduct demolition to minimize interference with adjacent building structures or Owner's operations.
- J. Cease operations immediately if structure appears to be in danger or hazardous materials are encountered. Notify Architect/Engineer. Do not resume operations until directed.
- K. Demolish in an orderly and careful manner. Do not cut or remove more than is necessary to accommodate the new construction or alteration.
- L. Remove demolished materials from site daily. Do not burn or bury materials on site. Dispose of all material at an approved disposal facility.
- M. Protect finished surfaces at all times and repair or replace, if damaged, to match existing construction to the satisfaction of the Architect/Engineer.

3.03 PIPING REMOVAL

- A. Cut off all welded piping square at the locations indicated on the Drawings. No cutting is required where the demolition ends at a flanged valve or equipment. Close off all openings of any remaining valves, piping or fittings with weld caps or blind flanges to prevent debris from entering the existing system.
- B. Disconnect all threaded piping at the location indicated on the Drawings. Close off all openings of remaining valves, piping, fittings and equipment with pipe plugs or pipe caps as required to prevent debris from entering the existing systems.
- C. Remove all pipe hangers, supports, miscellaneous steel and anchors with the piping.

3.04 PROTECTION FROM FREEZING

- A. It is intended that the building remain protected from damage due to freezing temperatures. To that end, keep in place and in operation existing equipment and systems used for heating until scheduling permits shutdown.
- B. Where the removal of equipment, etc. will leave an area unprotected from freezing, notify the Owner and Architect/Engineer at least 72 hours in advance prior to removal so appropriate steps can be taken by the Owner to protect the area. Provide temporary heating equipment sufficient to prevent freezing.
- C. It is the Contractor's responsibility to ensure that piping systems that are being worked on are completely drained from water prior to the start of demolition. If water is not drained and the water freezes it is the Contractor's responsibility to replace piping and repair all damages caused by water leakage at his own expense.

3.05 DISCONNECTION AND INTERRUPTION OF MECHANICAL SERVICES

A. When portions of an existing piping system or ductwork system are removed, and this removal causes loss of operation to another piece of equipment due to open or disconnected piping or ductwork, cap piping or ductwork or provide temporary piping or ductwork system to retain operation of the system.

3.06 MECHANICAL EQUIPMENT REMOVAL

- A. Remove all mechanical equipment as shown on the Drawings. Remove all electrical work, including wiring between equipment, and wiring to power source or point of origin.
- B. Where equipment is supported by steel and/or structural supports, remove these supports.

3.07 REFRIGERANT REMOVAL

A. Recover and dispose of all existing refrigerant charges in accordance with EPA regulations. Comply with all regulations applicable to the release of chlorofluorocarbon refrigerants to the atmosphere.

3.08 DUCTWORK REMOVAL

- A. Disconnect all ductwork which must be removed, at the closest joint and support the remaining ductwork.
- B. Prepare all remaining ductwork joints at the point of disconnection to receive new ducts or blank-off panels.
- C. Remove all ductwork supports and miscellaneous steel with ductwork to be demolished.

3.09 INSULATION REMOVAL

 Remove insulation, together with all piping, fittings, valves and equipment designated for demolition.

3.10 CONTROL WIRING REMOVAL

A. Disconnect and remove all control wiring and tubing, including conduit, for the Automatic Temperature Control (ATC) System associated with equipment and systems to be removed.

END OF SECTION 230015

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This section describes the tools, procedures and performance required for cleaning of the existing HVAC system.
- B. NADCA Standards: The HVAC system cleaning contractor shall perform the services specified here in accordance with the current published standards of the National Air Duct Cleaners Association (NADCA).
 - All terms in this specification shall have their meaning defined as stated in the NADCA Standards
 - 2. NADCA Standards shall be followed with no modifications or deviations being allowed.
- C. Scope: This section defines the minimum requirements necessary to render HVAC components clean, and to verify the cleanliness through inspection and/or testing in accordance with items specified herein and applicable NADCA Standards.
- D. The Contractor shall be responsible for the removal of visible surface contaminants and deposits from within the HVAC system in strict accordance with these specifications.
- E. The HVAC system includes any interior surface of the facility's air distribution system for conditioned spaces and/or occupied zones. This includes the entire heating, air-conditioning and ventilation system from the points where the air enters the system to the points where the air is discharged from the system. The return air grilles, return air ducts, and outdoor air ducts, to the air handling unit (AHU), the interior surfaces of the AHU, mixing box, coil compartment, condensate drain pans, humidifiers and dehumidifiers, supply air ducts, fans, fan housing, fan blades, air wash systems, spray eliminators, turning vanes, filters, filter housings, reheat coils, and supply diffusers are all considered part of the HVAC system. The HVAC system may also include other components such as dedicated exhaust and ventilation components and make-up air systems.

1.02 QUALITY ASSURANCE

- A. Contractors' personnel shall have OSHA Certification for OSHA 40-hour HAZWOPER, OSHA Lockout Tagout Procedures and OSHA Permit required, Confined Space Entry. Certifications shall be included with bid, in order for the bid to be considered.
- B. Contractor shall have at least two (2) years experience in air duct cleaning. Three (3) commercial references, including contract name and telephone number shall be submitted with bid, in order for the bid to be considered.
- C. Membership: The HVAC system cleaning contractor shall be a certified member of the National Air Duct Cleaners Association (NADCA), or shall maintain membership in a nationally recognized non-profit industry organization dedicated to the cleaning of HVAC systems.
- D. Certification: The HVAC system cleaning contractor shall have a minimum of one (1) Air System Cleaning Specialist (ASCS) certified by NADCA on a full time basis, or shall have staff certified by a nationally recognized certification program and organization dedicated to the cleaning of HVAC systems.
- E. Supervisor Qualifications: A person certified as an ASCS by NADCA, or maintaining an equivalent certification by a nationally recognized program and organization, shall be responsible for the total work herein specified.

- F. Experience: The HVAC system cleaning contractor shall submit records of experience in the field of HVAC system cleaning as requested by the Owner. Bids shall only be considered from firms which are regularly engaged in HVAC system maintenance with an emphasis on HVAC system cleaning and decontamination.
- G. Equipment, Materials and Labor: The HVAC system cleaning contractor shall possess and furnish all necessary equipment, materials and labor to adequately perform the specified services.
 - The contractor shall assure that its employees have received safety equipment training, medical surveillance programs, individual health protection measures, and manufacturer's product and material safety data sheets (MSDS) as required for the work by the U.S. Occupational Safety and Health Administration, and as described by this specification. For work performed in countries outside of the U.S.A., contractors shall comply with applicable national safety codes and standards.
 - 2. The contractor shall maintain a copy of all current MSDS documentation and safety certifications at the site at all times, as well as comply with all other site documentation requirements of applicable OSHA programs and this specification.
 - 3. Contractor shall submit to the Owner and Engineer/ Architect, all Material Safety Data Sheets (MSDS) for all chemical products proposed to be used in the cleaning process.
- H. Licensing: The HVAC system cleaning contractor shall provide proof of maintaining the proper license(s), if any, as required to do work in this state. Contractor shall comply with all Federal, state and local rules, regulations, and licensing requirements.

1.03 REFERENCES

- A. National Air Duct Cleaners Association (NADCA): "Assessment, Cleaning & Restoration of HVAC Systems (ACR 2005)," 2004.
- B. National Air Duct Cleaners Association (NADCA): "Understanding Microbial Contamination in HVAC Systems," 1996.
- C. National Air Duct Cleaners Association (NADCA): "Introduction to HVAC System Cleaning Services," 2004.
- D. National Air Duct Cleaners Association (NADCA): Standard 05 "Requirements for the Installation of Service Openings in HVAC Systems," 2004.
- E. Underwriters' Laboratories (UL): UL Standard 181.
- F. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE): Standard 62-89, "Ventilation for Acceptable Indoor Air Quality".
- G. Environmental Protection Agency (EPA): "Building Air Quality," December 1991.
- H. Sheet Metal and Air Conditioning Contractors' National Association (SMACNA): "HVAC Duct Construction Standards Metal and Flexible." 1985.
- I. North American Insulation Manufacturers Association (NAIMA): "Cleaning Fibrous Glass Insulated Air Duct Systems," 1993.

1.04 LABORATORY SERVICES

A. Contractor shall provide testing and analysis of contaminants such as Legionella, asbestos, microbials or any other hazardous airborne particulates using the (Air Conveyance System) as

a pollutant pathway should such testing be deemed necessary. Swipe samples of the ACS shall be used to determine what contaminates are present. Laboratory results shall be included as part of the prepared Mechanical Hygiene Report.

1.05 SCOPE OF WORK - EXISTING AIR CONVEYANCE SYSTEM CLEANING

A. The entire air distribution system in the building shall be cleaned as per this specification this shall include all supply, return and exhaust ductwork, reheat coils and all air outlets and inlets.

B. Existing Air Duct Cleaning

- 1. Access points shall be strategically placed throughout the supply and return duct systems, as required. SMACNA approved insulated access doors shall be used upon closure to prevent heat loss/gain, and to facilitate inspection.
- Interior surfaces of the ductwork, dampers, turning vanes, shall be cleaned by using HEPA filtered vacuums, rotary brush and air whip dislodging systems, and contact cleaning as required.

C. Sanitizing Existing Ductwork:

 Upon completion of cleaning, sanitizing shall be performed throughout the entire air conveyance system. This process shall eliminate mold, bacteria, odors and viruses, plus retard their growth.

1.06 NOTIFICATION

A. The Contractor shall notify the Owner that prior to commencing of the cleaning work, the Owner shall remove the smoke detectors and other safety devices from the ductwork.

1.07 HEALTH AND SAFETY REQUIREMENTS

- A. Safety Standards: Cleaning contractors shall comply with applicable federal, state, and local requirements for protecting the safety of the contractor's employees, building occupants, and the environment. In particular, all applicable standards of the Occupational Safety and Health Administration (OSHA) shall be followed when working in accordance with this specification.
- B. Occupant Safety: No processes or materials shall be employed in such a manner that they will introduce additional hazards into occupied spaces.
- C. Disposal of Debris: All Debris removed from the HVAC System shall be disposed of in accordance with applicable federal, state and local requirements.

PART 2 - PRODUCTS

2.01 GENERAL

A. Contractor shall provide all necessary material and tools to provide access doors in the ductwork to reach the areas around dampers and turning vanes, bends, coils, smoke detectors, etc.

2.02 ACCESS DOORS

- A. Sandwich access door shall be as manufactured by:
 - 1. DUCTMATE INDUSTRIES, INC.
 - 2. Approved Equal.
- B. Composition and material

- The sandwich access door shall consist of three layers of precision stamped hot-dipped galvanized steel.
- 2. The inside door shall combine two layers of metal which be shall spot welded together along the rim, encapsulating high density fiberglass insulation UL classified FHC25/50.
- 3. The inside surface of the access door shall be smooth to minimize friction.
- 4. Gasket: Closed cell neoprene gasket shall be UL94HF1 listed with a service temperature range of (ASTM D746) -20°F to 200°F. The gasket shall be permanently bonded to the inside of the door to eliminate leakage.
- 5. Springs: Zinc plated conical springs shall be installed over the bolts, between the inner and outer door, to facilitate opening.
- 6. Knobs: Knobs shall have threaded metal inserts to eliminate thread stripping. Knobs shall be easily turned by hand without wrenches. UL94HB listed.
- 7. Bolts: Zinc plated carriage bolts shall be clinched and sealed to the inner door.
- 8. Template: Self-adhesive cut-around template shall be provided for the exact size of cut opening required.
- 9. Technical Data: Each door shall be tested to 20" WG with no leakage noted.
- 10. Guarantees: The Sandwich Access Door shall be guaranteed against defective material.

2.03 TOOLS AND EQUIPMENT

- A. Contractor, shall utilize HEPA filters and vacuums meeting the following minimum requirements:
 - 1. Vacuum: CFM minimum 6,000
 - HEPA filter: 99.97% collection efficiency for particulates 0.3 microns or greater

2.04 SANITIZING

A. Upon completion of cleaning, sanitizing will be performed throughout the entire air conveyance system. Sanitizer will be fogged into ACS using a portable fogging system. Envirocon or other EPA Registered sanitizer will be used.

PART 3 - EXECUTION

3.01 INSPECTION/PREPARATION

- A. HVAC System Component Inspections: Prior to the commencement of any cleaning work, the HVAC system cleaning contractor shall perform a visual inspection of the HVAC system to determine appropriate methods, tools, and equipment required to satisfactorily complete this project. The cleanliness inspection should include air handling units and representative areas of the HVAC system components and ductwork. In HVAC systems that include multiple air handling units, a representative sample of the units should be inspected.
- B. The cleanliness inspection shall be conducted without negatively impacting the indoor environment through excessive disruption of settled dust, microbial amplification or other debris. In cases where contamination is suspected, and/or in sensitive environments where even small amounts of contaminant may be of concern, implement environmental engineering control measures.
- C. Damaged system components found during the inspection shall be documented and brought to the attention of the Owner.
- D. Site Evaluation and Preparations: Contractor shall conduct a site evaluation, and establish a specific, coordinated plan which details how each area of the building will be protected during the various phases of the project.

- E. Protect all furniture and flooring in the work area using clean protective coverings. Perform cleanup of these areas by use of HEPA filtered vacuums, to avoid recontamination of occupied space.
- F. Contractor prior to his work shall check if the smoke detectors were removed from the ductwork.
- G. Insulation: Identify areas of internally lined air conveyance systems that are deteriorated and negatively impacting air quality. Notify the Owner of these conditions so that he may correct them.
- H. Inspector Qualifications: Qualified personnel should perform the HVAC cleanliness inspection to determine the need for cleaning. At a minimum, such personnel should have an understanding of HVAC system design, and experience in utilizing accepted indoor environmental sampling practices, current industry HVAC cleaning procedures, and applicable industry standards.

3.02 GENERAL DUCT CLEANING REQUIREMENTS

- A. Install filter material over all terminal diffusers to protect surrounding areas during cleaning operation. Remove all filter material from diffusers after cleaning is complete.
- B. Wherever grilles and/or diffusers are removable, they shall be removed, vacuum cleaned, washed, dried, and then replaced. Welded or fixed grilles shall be cleaned in place.
- C. Interior surfaces of the ductwork, dampers, turning vanes, VAV boxes, and reheat coils shall be cleaned by using HEPA filtered vacuums, rotary brush and air whip dislodging systems, and contact cleaning as required. All removable diffusers shall be removed for cleaning, while others shall be done in place.
- D. All internally lined ductwork and flex duct shall be cleaned using soft nylon brushes for dislodging, to avoid damage to fibrous insulation.
- E. Containment: Debris removed during cleaning shall be collected and precautions shall be taken to ensure that debris is not otherwise dispersed outside the HVAC system during the cleaning process.
- F. Particulate Collection: Where the Particulate Collection Equipment is exhausting inside the building, HEPA filtration with 99.97% collection efficiency for 0.3-micron size (or greater) particles shall be used. When the Particulate Collection Equipment is exhausting outside the building, Mechanical Cleaning operations shall be undertaken only with Particulate Collection Equipment in place, including adequate filtration to contain debris removed from the HVAC system. When the Particulate Collection Equipment is exhausting outside the building, precautions shall be taken to locate the equipment down wind and away from all air intakes and other points of entry into the building.
- G. Controlling Odors: Measures shall be employed to control odors and/or mist vapors during the cleaning process.
- H. Component Cleaning: Cleaning methods shall be employed such that all HVAC system components must be Visibly Clean as defined in applicable standards (see NADCA Standards). Upon completion, all components must be returned to those settings recorded just prior to cleaning operations.
- I. Air-Volume Control Devices: Dampers and any air-directional mechanical devices inside the HVAC system shall have their position marked prior to cleaning and, upon completion, must be restored to their marked position.

- Service Openings: The contractor shall utilize service openings, as required for proper cleaning, at various points of the HVAC system for physical and mechanical entry, and inspection.
 - 1. Contractor shall utilize the existing service openings already installed in the HVAC system where possible.
 - Other openings shall be created where needed and they shall be created so they can be 2. sealed in accordance with industry codes and standards.
 - 3. Closures shall not significantly hinder, restrict, or alter the airflow within the system.
- K. Closures shall be properly insulated to prevent heat loss/gain or condensation on surfaces within the system.
 - Openings shall not compromise the structural integrity of the system.
 - Construction techniques used in the creation of openings shall conform to requirements of applicable building and fire codes, and applicable NFPA, SMACNA and NADCA
 - 3. Cutting service openings into flexible duct is not permitted. Flexible duct shall be disconnected at the ends as needed for proper cleaning and inspection.
 - Rigid fiber glass duct systems shall be resealed in accordance with NAIMA recommended practices. Only closure techniques that comply with UL Standard 181 or UL Standard 181a are suitable for fiber glass duct system closures.
 - All service openings capable of being re-opened for future inspection or remediation shall be clearly marked and shall have their location reported to the Owner in project report documents.
- L. Ceiling sections (tile): The contractor may remove and reinstall ceiling sections to gain access to HVAC systems during the cleaning process.
- M. Air distribution devices (registers, grilles & diffusers): The contractor shall clean all air distribution devices.
- N. Air handling units, terminal units (VAV, Dual duct boxes, etc.), blowers and exhaust fans: The contractor shall insure that supply, return, and exhaust fans and blowers are thoroughly cleaned. Areas to be cleaned include blowers, fan housings, plenums (except ceiling supply and return plenums), scrolls, blades, or vanes, shafts, baffles, dampers and drive assemblies. All visible surface contamination deposits shall be removed in accordance with NADCA Standards. Contractor shall:
 - Clean all air handling units (AHU) internal surfaces, components and condensate collectors and drains.
 - 2. Assure that a suitable operative drainage system is in place prior to beginning wash down procedures.
 - Clean all coils and related components, including evaporator fins.
- O. Duct Systems. Contractor shall:
 - Create service openings in the system as necessary in order to accommodate cleaning of otherwise inaccessible areas.
 - Mechanically clean all duct systems to remove all visible contaminants, such that the systems are capable of passing Cleaning Verification Tests (see NADCA Standards).

3.03 DUCT CLEANING METHODOLOGY

A. Source Removal Cleaning Methods: The HVAC system shall be cleaned using Source Removal mechanical cleaning methods designed to extract contaminants from within the HVAC system and safely remove contaminants from the facility. It is the contractor's responsibility to select Source Removal methods that will render the HVAC system Visibly Clean and capable of passing cleaning verification methods (See applicable NADCA Standards) and other specified

tests, in accordance with all general requirements. No cleaning method, or combination of methods, shall be used which could potentially damage components of the HVAC system or negatively alter the integrity of the system.

- All methods used shall incorporate the use of vacuum collection devices that are operated continuously during cleaning. A vacuum device shall be connected to the downstream end of the section being cleaned through a predetermined opening. The vacuum collection device shall be of sufficient power to render all areas being cleaned under negative pressure, such that containment of debris and the protection of the indoor environment are assured.
- 2. All vacuum devices exhausting air inside the building shall be equipped with HEPA filters (minimum efficiency), including hand-held vacuums and wet-vacuums.
- 3. All vacuum devices exhausting air outside the facility shall be equipped with Particulate Collection including adequate filtration to contain Debris removed from the HVAC system. Such devices shall exhaust in a manner that will not allow contaminants to re-enter the facility. Release of debris outdoors must not violate any outdoor environmental standards, codes or regulations.
- 4. All methods require mechanical agitation devices to dislodge debris adhered to interior HVAC system surfaces, such that debris may be safely conveyed to vacuum collection devices. Acceptable methods will include those, which will not potentially damage the integrity of the ductwork, nor damage porous surface materials such as liners inside the ductwork or system components.

B. Methods of Cleaning Fibrous Glass Insulated Components

- Fibrous glass thermal or acoustical insulation elements present in any equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment, while the HVAC system is under constant negative pressure, and not permitted to get wet in accordance with applicable NADCA and NAIMA standards and recommendations.
- Cleaning methods used shall not cause damage to fibrous glass components and will render the system capable of passing Cleaning Verification Tests (see NADCA Standards).

C. Damaged Fibrous Glass Material

- Evidence of damage: If there is any evidence of damage, deterioration, delaminating, friable material, mold or fungus growth, or moisture such that fibrous glass materials cannot be restored by cleaning or resurfacing with an acceptable insulation repair coating, they shall be identified for replacement.
- 2. Replacement: When requested or specified, Contractor must be capable of remediating exposed damaged insulation in air handlers and/or ductwork requiring replacement.
- 3. Replacement material: In the event fiber glass materials must be replaced, all materials shall conform to applicable industry codes and standards, including those of UL and SMACNA.

D. Cleaning of coils

1. Any cleaning method may be used which will render the Coil Visibly Clean and capable of passing Coil Cleaning Verification (see applicable NADCA Standards). Coil drain pans shall be subject to Non-Porous Surfaces Cleaning Verification. The drain for the condensate drain pan shall be operational. Cleaning methods shall not cause any appreciable damage to, displacement of, inhibit heat transfer, or erosion of the coil surface or fins, and shall conform to coil manufacturer recommendations when available. Coils shall be thoroughly rinsed with clean water to remove any latent residues.

E. Antimicrobial Agents and Coatings

 Antimicrobial agents shall only be applied if active fungal growth is reasonably suspected, or where unacceptable levels of fungal contamination have been verified through testing.

- Application of any antimicrobial agents used to control the growth of fungal or bacteriological contaminants shall be performed after the removal of surface deposits and debris.
- 3. When used, antimicrobial treatments and coatings shall be applied in strict accordance with the manufacturer's written recommendations and EPA registration listing.
- Antimicrobial coatings shall be applied according to the manufacturer's written instructions.
 Coatings shall be sprayed directly onto interior ductwork surfaces, rather than "fogged"
 downstream onto surfaces.

3.04 CLEANLINESS VERIFICATION

- A. General: Verification of HVAC System cleanliness will be determined after mechanical cleaning and before the application of any treatment or introduction of any treatment-related substance to the HVAC system, including biocidal agents and coatings.
- B. Visual Inspection: The HVAC system shall be inspected visually to ensure that no visible contaminants are present.
 - 1. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean; however, the Owner reserves the right to further verify system cleanliness through Surface Comparison Testing or the NADCA vacuum test specified in the NADCA standards.
 - 2. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.
 - 3. NADCA vacuum test analysis shall be performed by a qualified third party experienced in testing of this nature.

C. Verification of Coil Cleaning

1. Cleaning shall restore the coil pressure drop to within 10 percent of the pressure drop measured when the coil was first installed. If the original pressure drop is not known, the coil will be considered clean only if the coil is free of foreign matter and chemical residue, based on a thorough visual inspection (see NADCA Standards).

3.05 HVAC SYSTEM REPORT

- A. At the conclusion of the project, the Contractor shall provide a bound report to the Owner indicating the following:
- B. Success of the cleaning project, as verified through visual inspection (before and after photographs) and gravimetric analysis.
- C. Areas of the system found to be damaged and/or in need of repair

3.06 PROTECTION/ CLEANUP OF PROPERTY

A. Protect all furniture, wood flooring, and equipment in the work area using clean protective coverings. Cleanup of these areas shall be performed by use of the HEPA filtered vacuums, to avoid recontamination of occupied space. The contractor shall perform clean up and remove the protective coverings on a daily basis.

3.07 REPAIRING OF DAMAGED DUCTWORK, ACCESSORIES AND THERMAL INSULATION

A. Contractor shall repair all damages resulted by his work to the ductwork, thermal insulation and vapor barrier.

END OF SECTION 230135

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. The Work covered under this Section consists of the furnishing of all necessary labor, supervision, materials, equipment, and services to completely execute the pipe hanger and supports as described in this Specification. Size hangers and supports to fit the outside diameter of the

1.02 REFERENCES

- A. ASTM B633 Specification for Electrodeposited Coatings of Zinc on Iron and Steel
- B. ASTM A123 Specification for Zinc (Hot-Galvanized) Coatings on Products Fabricated from Rolled, Pressed, and Forged Steel Shapes, Plates, Bars, and Strip
- C. ASTM A653 Specification for Steel Sheet, Zinc-Coated by the Hot-Dip Process
- D. ASTM A1011 Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability (Formerly ASTM A570)
- E. MSS SP58 Manufacturers Standardization Society: Pipe Hangers and Supports- Materials, Design, and Manufacture
- F. MSS SP69 Manufacturers Standardization Society: Pipe Hangers and Supports- Selection and Application
- G. MSS SP89 Pipe Hangers and Supports Fabrication and Installation Practices

1.03 QUALITY ASSURANCE

- A. Provide hangers and supports used in fire protection piping systems listed and labeled by Underwriters Laboratories.
- B. Steel pipe hangers and supports shall have the manufacturer's name, part number, and applicable size stamped in the part itself for identification.
- C. Design and manufacture hangers and supports in conformance with MSS SP 58.

1.04 SUBMITTALS

- A. Submit product data on all hanger and support devices, including shields and attachment methods. Include as a minimum as part of product data materials, finishes, approvals, load ratings, and dimensional information.
- B. Submit Pipe Hanger and Support Application Schedule.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Manufacturer: Subject to compliance with these specifications, provide pipe hanger and support systems manufactured by:
 - 1. Cooper B-Line, Inc.
 - 2. Carpenter and Patterson

H2M architects + engineers

PIPE HANGERS AND SUPPORTS 230529-1

3. Grinnell

2.02 PIPE HANGERS AND SUPPORTS

A. Hangers

- 1. Uninsulated pipes 2 inch and smaller:
 - a. Adjustable steel swivel ring (band type) hanger, B-Line B3170.
 - b. Adjustable steel swivel J-hanger, B-Line B3690.
 - c. Malleable iron ring hanger, B-Line B3198R or hinged ring hanger, B3198H.
 - d. Malleable iron split-ring hanger with eye socket, B-Line B3173 with B3222.
 - e. Adjustable steel clevis hanger, B-Line B3104 or B3100.
- 2. Uninsulated pipes 2-1/2 inch and larger:
 - a. Adjustable steel clevis hanger, B-Line B3100.
 - b. Pipe roll with sockets, B-Line B3114.
 - c. Adjustable steel yoke pipe roll, B-Line B3110.
- 3. Insulated pipe- Hot or steam piping:
 - a. 2 inch and smaller pipes: use adjustable steel clevis with galvanized sheet metal shield. B-Line B3100 with B3151 series.
 - b. 2-1/2 inch and larger pipes
 - 1) Adjustable steel yoke pipe roll with pipe covering protection saddle. B-Line B3110 with B3160-B3165 series.
 - Pipe roll with sockets with pipe covering protection saddle, B-Line B3114 with B3160-B3165 series.
- 4. Insulated pipe- Cold or chilled water piping:
 - a. 5 inch and smaller pipes: use adjustable steel clevis with galvanized sheet metal shield. B-Line B3100 with B3151 series.
 - b. 6 inch and larger pipes:
 - Pipe roll with sockets with pipe covering protection saddle, B-Line B3114 with B3160-B3165 series.
 - 2) Adjustable steel yoke pipe roll with pipe covering protection saddle. B-Line B3110 with B3160-B3165 series.

B. Pipe Clamps

 When flexibility in the hanger assembly is required due to horizontal movement, use pipe clamps with weldless eye nuts, B-Line B3140 or B3142 with B3200. For insulated lines use double bolted pipe clamps, B-Line B3144 or B3146 with B3200.

C. Multiple or Trapeze Hanger

- Construct trapeze hangers from 12 gauge roll formed ASTM A1011 SS Grade 33 structural steel channel, 1-5/8 inch by 1-5/8 inch minimum, B-Line B22 strut or stronger as required.
- 2. Mount pipes to trapeze with 2 piece pipe straps sized for outside diameter of pipe, B-Line B2000 Series.
- 3. For pipes subjected to axial movement:
 - Strut mounted roller support, B-Line B3126. Use pipe protection shield or saddles on insulated lines.
 - b. Strut mounted pipe guide, B-Line B2417.

D. Wall Supports

- 1. Pipes 4 inch and smaller:
 - a. Carbon steel hook, B-Line B3191.
 - b. Carbon steel J-hanger, B-Line B3690.
- 2. Pipes larger than 4 inch:
 - a. Welded strut bracket and pipe straps, B-Line B3064 and B2000 series.

H2M architects + engineers

PIPE HANGERS AND SUPPORTS 230529-2 Welded steel brackets, B-Line B3066 or B3067, with roller chair or adjustable steel yoke pipe roll. B-Line B3120 or B3110. Use pipe protection shield or saddles on insulated lines.

E. Floor Supports

- 1. Hot piping under 6 inch and all cold piping:
 - a. Carbon steel adjustable pipe saddle and nipple attached to steel base stand sized for pipe elevation. B-Line B3093 and B3088T or B3090 and B3088. Screw or weld pipe saddle to appropriate base stand.
- 2. Hot piping 6 inch and larger:
 - a. Adjustable Roller stand with base plate, B-Line B3117SL
 - b. Adjustable roller support and steel support sized for elevation, B-Line B3124

F. Vertical Supports

- 1. Steel riser clamp sized to fit outside diameter of pipe, B-Line B3373.
- 2. Copper Tubing Supports
 - a. Size hangers to fit copper tubing outside diameters.
 - 1) Adjustable steel swivel ring (band type) hanger, B-Line B3170CT.
 - 2) Malleable iron ring hanger, B-Line B3198RCT or hinged ring hanger B3198HCT.
 - 3) Malleable iron split-ring hanger with eye socket, B-Line B3173CT with B3222.
 - 4) Adjustable steel clevis hanger, B-Line B3104CT.
 - b. For supporting vertical runs use epoxy painted or plastic coated riser clamps, B-Line B3373CT or B3373CTC.
 - c. For supporting copper tube to strut use epoxy painted pipe straps sized for copper tubing, B-Line B2000 series, or plastic inserted vibration isolation clamps, B-Line BVT series.

G. Plastic Pipe Supports

- V-Bottom clevis hanger with galvanized 18-gauge continuous support channel, B-Line B3106 and B3106V, to form a continuous support system for plastic pipe or flexible tubing.
- 2. Supplementary Structural Supports
 - a. Design and fabricate supports using structural quality steel bolted framing materials as manufactured by Cooper B-Line. Provide roll formed channels, 12 gauge ASTM A1011 SS Grade 33 steel, 1-5/8 inch by 1-5/8 inch or greater as required by loading conditions. Submit designs for pipe tunnels, pipe galleries, etc., to Architect/Engineer for approval. Use clamps and fittings designed for use with the strut system.
- H. Pipe Supports Between Anchors and Pipe Expansion Loops
 - 1. Provide supports between pipe anchors designed to cause minimal resistance to piping movement. Provide roller hanger supports or slide plates between anchors.
 - Provide supports near the L bends of pipe thermal expansion loops. No more than 12 inches from either side of the horizontal elbow.

2.03 SPRING HANGERS

- A. For critical high temperature piping, at hanger locations where the vertical movement of the piping is ¾ inch or more, or where it is necessary to avoid the transfer of load to adjacent hangers or connected equipment, provide approved constant support hangers. However, where the piping movement occurs at a hanger supporting a portion of piping riser on which a rigid support is also located, variable spring hangers may be used for any amount of expansion up to the full recommended working range of the spring, provided the change in supporting effect of the variable spring is added to the design load of the rigid support.
- B. Where transfer of load to adjacent hangers or equipment is not critical, and where the vertical movement of the piping is less than ¾ inch, variable spring hangers may be used, provided the

H2M architects + engineers

PIPE HANGERS AND SUPPORTS 230529-3

- variation in supporting effect does not exceed 25 percent of the calculated piping load through its total vertical travel.
- C. The total travel for constant support hangers shall be equal to actual travel plus 20 percent. In no case shall the difference between actual and total travel be less than one inch.
- D. Furnish constant support hangers with travel stops, which shall prevent upward and downward movement of the hanger. The travel stops shall be factory installed so that the hanger level is at the "cold" position. Design the travel stops to permit future reengagement, even in the event the lever is at a position other than "cold", without having to make hanger adjustments.
- E. For low temperature systems where vertical movements are anticipated, use approved precompressed variable spring hangers.

2.04 UPPER ATTACHMENTS

A. Beam Clamps

- Use beam clamps where piping is to be suspended from building steel. Select clamp type on the basis of load to be supported, and load configuration.
- Use center loaded beam clamps where specified. For steel clamps provide B-Line B3050, or B3055. For malleable iron or forged steel beam clamps with cross bolt provide B-Line B3054 or B3291-B3297 Series as required to fit beams.

B. Concrete Inserts

- Use cast in place spot concrete inserts where applicable; either steel or malleable iron body, B-Line B2500 or B3014. Select spot inserts to allow for lateral adjustment and to have means for attachment to forms. Select inserts to suit threaded hanger rod sizes, B-Line N2500 or B3014N series.
- Use continuous concrete inserts where applicable. Provide 12 gauge channels, ASTM A1011 SS Grade 33 structural quality carbon steel, complete with Styrofoam inserts and end caps with nail holes for attachment to forms. Provide continuous concrete inserts with a load rating of 2,000 lbs/ft. in concrete, B-Line B22I, 32I, or 52I. Select channel nuts suitable for strut and rod sizes.
- 3. Provide Drop-In, shell type anchors with an internally threaded, all-steel shell with expansion cone insert and flush embedment lip. Manufacture anchors from plated carbon steel, 18-8 stainless steel and 316 stainless steel. Install anchors with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications. Test anchors to ASTM E488 criteria and listed by ICC (formerly ICBO) and SBCCI. Provide anchors listed by the following agencies as required by the local building code: UL, FM. Select inserts to suit threaded hanger rod sizes, Redhead Multi-Set.

2.05 ACCESSORIES

- A. Hanger Rods shall be threaded both ends or continuous threaded rods of circular cross section. Use adjusting locknuts at upper attachments and hangers. No wire, chain, or perforated straps are allowed.
- B. Provide shields that are 180 degree galvanized sheet metal, 12 inch minimum length, 18 gauge minimum thickness, designed to match outside diameter of the insulated pipe, B-Line B3151.
- C. Pipe protection saddles shall be formed from carbon steel, 1/8 inch minimum thickness, sized for insulation thickness. Saddles for pipe sizes greater than 12 inch shall have a center support rib.

2.06 FINISHES

A. Indoor Finishes

- Coat hangers and clamps for support of bare copper piping with copper colored epoxy paint, B-Line Dura-Copper®. Use additional PVC coating of the epoxy painted hanger where necessary.
- 2. Zinc plate hangers for other than bare copper pipe in accordance with ASTM B633 OR provide an electro-deposited green epoxy finish, B-Line Dura-Green®.
- 3. Provide pre-galvanized strut channels in accordance with ASTM A653 SS Grade 33 G90 or provide an electro-deposited green epoxy finish, B-Line Dura-Green®.

B. Outdoor and Corrosive Area Finishes

- 1. Hot dip galvanize hangers and struts located outdoors after fabrication in accordance with ASTM A123. Provide all hanger hardware as hot dip galvanized or stainless steel. Zinc plated hardware is not acceptable for outdoor or corrosive use.
- 2. Provide hangers and strut manufactured of type 304 stainless steel with stainless steel hardware where located in corrosive areas.

PART 3 - EXECUTION

3.01 PIPE HANGERS AND SUPPORTS

- A. Adequately support pipe by pipe hanger and supports specified in PART 2 PRODUCTS. Allow for forces imposed by expansion joints, satisfy structural requirements and maintain proper clearances with respect to adjacent piping, equipment and structures. Size hangers for insulated pipes sized to accommodate insulation thickness.
- B. Keep the different types of hangers to a minimum and provide hangers that are neat, without complicated bolting and with the number of parts of each hanger and its anchor kept to a minimum.
- C. Make accurate weight balance calculations to determine the required supporting forces at each hanger or support location and the pipe weight load at each equipment connection.
- D. Provide pipe hangers capable of supporting the pipe in all conditions of operation selected to allow free expansion and contraction of the piping, and prevent excessive stress resulting from transferred weight being induced into the pipe or connected equipment.
- E. Painted or shop prime all hangers and supports that are not galvanized.
- F. Support horizontal steel piping in accordance with MSS SP-69 Tables 3 and 4, excerpts of which follow below:

NOMINAL PIPE SIZE (INCHES)	ROD DIAMETER (INCHES)	MAXIMUM SPACING (FEET)
1/2 to 1-1/4	3/8	6
1-1/2	3/8	9
2	3/8	10
2-1/2	1/2	11
3	1/2	12
3-1/2	1/2	13
4	5/8	14
5	5/8	16

6	3/4	17
8	3/4	19
10	7/8	22
12	7/8	23
14	1	25
16	1	27

G. Support horizontal copper tubing in accordance with MSS SP-69 Tables 3 and 4, excerpts of which follow below:

NOMINAL PIPE SIZE (INCHES)	ROD DIAMETER (INCHES)	MAXIMUM SPACING (FEET)
1/2 to 3/4	3/8	5
1	3/8	6
1-1/4	3/8	6
1-1/2	3/8	8
2	3/8	8
2-1/2	1/2	9
3	1/2	10
3-1/2	1/2	11
4	1/2	12
5	1/2	13
6	5/8	14
8	3/4	16

H. For grooved end steel pipe:

NOMINAL PIPE SIZE (INCHES)	MAXIMUM SPACING (FEET)
1-1/2 and under	7
2 through 4	10
5 and over	12

Do not leave any pipe length unsupported between any two coupling joints.

- I. Provide means of preventing dissimilar metal contact such as plastic coated hangers, copper colored epoxy paint, or non adhesive isolation tape- B-Line Iso-pipe. Galvanized felt isolators sized for copper tubing may also be used, B-Line B3195CT.
- J. Install hangers to provide a minimum of 1/2 inch space between finished covering and adjacent work.
- K. Place a hanger within 12 inches of each horizontal elbow.
- L. Support vertical piping independently of connected horizontal piping. Support vertical pipes at every floor. Wherever possible, locate riser clamps directly below pipe couplings or shear lugs.
- M. Where several pipes can be installed in parallel and at the same elevation, provide trapeze hangers as specified in section 2.02 C. Space trapeze hangers according to the smallest pipe size, or install intermediate supports according to schedules in this Section.

H2M architects + engineers

- N. Do not support piping from other pipes, ductwork or other equipment that is not building structure.
- O. Where horizontal piping movements are greater than ½ inch, or where the hanger rod angularity from the vertical is greater than four degrees from the cold to hot position of the pipe, offset the hanger pipe and structural attachments in such a manner that the rod is vertical in the hot position.
- P. In any part of the building which is steel-framed, attach hangers to the building structural steel beams. Where hangers do not correspond with the building structural steel beams, provide supplemental steel members continuously welded or bolted to the building structural steel beams. Provide two (2) coats of primer on the supplemental steel. In any parts of the building which is a concrete structure, attach hangers to the concrete structure by installing anchors into the concrete.

3.02 CONCRETE INSERTS

- A. Secure pipe hangers attached to concrete structure and slabs with embedded inserts, anchor bolts or concrete fasteners. Use a safety factor of 5 in selection of all inserts and expansion bolts unless there are seismic requirements (See "Seismic Restraint" specification if applicable). In which case, the larger of the two loadings shall govern the design.
- B. Provide inserts for placement in formwork before concrete is poured.
- Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
- D. Where concrete slabs form finished ceilings, provide inserts to be flush with slab surface.
- E. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inch.

END OF SECTION 230529

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This Section describes the marking and identification materials for identifying mechanical equipment, ductwork and piping systems.
- B. Mark and identify all mechanical equipment, ductwork and piping systems described herein, and as shown and specified in the Contract Documents.

1.02 REFERENCES

- A. ANSI A13.1 Scheme for the Identification of Piping Systems.
- B. Z53.1 Safety Color Code for Marking Physical Hazards.
- C. OSHA 29 CFR 1910 Subpart J, General Environmental Controls

1.03 SUBMITTALS

- A. Identification Scheme Submit scheme of identification codes.
- B. Steam Trap Schedule Submit steam trap schedules listing proposed steam trap number, location, type, sizes and service.
- C. Valve Schedules Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.
- D. Samples Submit samples of tags, attachments, labeled and identified.
- E. Equipment Schedules Submit mechanical equipment schedules, listing proposed equipment numbers, and their location and function.
- F. Product Data: Provide manufacturers catalog literature for each product required.

PART 2 - PRODUCTS

2.01 APPROVED MANUFACTURERS

- A. Seton
- B. Bunting
- C. W.H. Brady Company

2.02 VALVE TAGS

- A. Provide valve tags for all valves installed for this project. Valve tags shall be constructed of brass with stamped letters and service designation tag size minimum 1-1/2 inches (38 mm) diameter with smooth edges, brass S hook.
- B. Valve tags shall be permanently stamped and marked with a service designation, normal valve position, and an identifying number as large as possible. Each valve shall have a separate and distinct number coordinated with the service designations shown on the Drawings and the Owners existing valve numbering system. Coordinate with the Architect/Engineer and Owner before finalizing the valve tag numbering system.

H2M architects + engineers

MECHANICAL SYSTEM IDENTIFICATION 230555-1

2.03 PIPE MARKERS

- A. All accessible piping installed indoors for this project, insulated and uninsulated shall be identified with wraparound pipe markers. Pipe markers shall be factory fabricated, flexible, semi-rigid plastic, preformed to fit around pipe or pipe covering. "Accessible" piping shall include exposed piping, and piping located above lay-in ceilings. Markers shall include system name, flow arrow, and color code and pipe diameter.
- B. All piping installed outdoors for this project, insulated and uninsulated, shall be identified with wraparound pipe markers. Pipe markers shall be factory fabricated, flexible, semi-rigid plastic, preformed to fit around pipe or pipe covering. The marker shall be printed with weather-resistant ink.
- C. Where pipes are too small or not readily accessible for application of pipe markers, a brass identification tag at least 1 ½ inches in diameter, with depressed ½ inch high black letters and numerals, shall be securely fastened at locations specified for pipe markers.
- D. See pipe marker schedule for size requirements of pipe markers.

2.04 MECHANICAL EQUIPMENT MARKERS

- A. Identify all mechanical equipment, bare or insulated, installed in the rooms or on the roof, by means of lettered and numbered nameplate (not stenciled) identifying the equipment and service. Refer to the Drawings for equipment identifications. Nameplates shall be aluminum with permanent 1 ½ inch high white letters on a black background, mechanically affixed and installed in a readily visible location on the equipment. Coordinate the final equipment designation with the Owner.
- B. In addition to markers, all mechanical equipment shall be furnished with the manufacturer's identification plate showing the name of equipment, manufacturer's name and address, date of purchase, model number and performance data.

2.05 DUCT WORK IDENTIFICATION

- A. Provide full air distribution system identification at each side of a wall penetration, in a mechanical room, at all changes in direction and at no more than 50 foot intervals. Provide arrows identifying direction of flow.
- Fire damper or Smoke damper access points shall be permanently identified on the exterior by a label having letters not less than 0.5 inch in height reading: SMOKE DAMPER or FIRE DAMPER.
- C. Identification shall be preprinted labels.
- D. Letter Size: 1-1/2 inches in height.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Apply piping system markers and valve tags in the following locations:
 - 1. Adjacent to each valve and fitting.
 - 2. At each branch location and riser take-off
 - 3. At each side of a pipe passage through floors, walls, ceiling and partitions.
 - 4. At each pipe passage to and from underground areas.

H2M architects + engineers

MECHANICAL SYSTEM IDENTIFICATION 230555-2

- 5. Every 20 feet on all horizontal and vertical pipe runs.
- B. Provide arrow markers showing direction of flow incorporated into or adjacent to each piping system marker. Use double-headed arrows if flow is in both directions.
- C. Apply all piping system markers where view is unobstructed; markers and legends shall be clearly visible from operating positions.
- D. Apply all tags and piping system markers in accordance with the manufacturer's instructions. Do not attach tags to valve handle such that the normal or emergency operation of the valve will be hindered.

3.02 VALVE CHART

- A. Provide valve and steam trap chart identifying each valve's and steam trap's number, size of valve and service.
- B. Frame the chart and locate the schedule in the Mechanical Equipment Room. (Aluminum Frame with plastic window).
- C. Provide a compact disc that has the valve and steam trap chart schedule in a spreadsheet format. The spreadsheet software to be used for the schedule shall be identified by the Owner.

3.03 LAY IN CEILING TILES AND ACCESS DOORS

- A. Provide a lettered and numbered nameplate for each access door indicating the mechanical equipment that the door provides access too.
- B. Where VAV boxes, hot water reheat coils, or other mechanical devices are installed above a lay-in ceiling tile system, provide and install color coded thumb tabs to mark the location of the equipment above the ceiling.

3.04 SCHEDULES

A. Pipe Marker Letter Size Schedule:

Outside diameter of insulation or pipe Inches	Letter height Inches	Color field Inches
3/4 to 1-1/4	1/2	8
1-1/2 to 2	3/4	8
2-1/2 to 6	1 - 1/4	12
8 to 10	2 - 1/2	24
Over 10	3 - 1/2	24

END OF SECTION 230555

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This section specifies requirements for testing, adjusting, and balancing of all air and hydronic fluid distribution systems, including the equipment and devices associated with each system.
- B. The work includes setting speed and flow, adjusting equipment and devices installed for systems, recording data, conducting tests, preparing and submitting reports, and recommending modifications to the mechanical installations specified in other Sections of the Specifications.

1.02 RELATED WORK

A. Drawings and general provisions of the Contract, including General Conditions, any Supplemental Conditions and Division 1 Specification Sections, govern the work of this section.

1.03 SUBMITTALS

- A. Submit proof that the testing, adjusting and balancing agency meets the requirements of Section 1.04 "Quality Assurance", and all other specified requirements.
- B. Prior to performing the work, submit sample blank forms of the test reports that will be submitted by the entity performing work of this Section, indicating all data and parameters included.
- C. Submit certified test reports, signed by the authorized representative of the testing and balancing agency. Certify the reports to be proof that the systems have been tested, adjusted and balanced in accordance with the selected reference standards (NEBB or AABC); are an accurate representation of how the systems have been installed; are a true representation of how the systems are operating at completion of the testing, adjusting and balancing procedures; and are an accurate record of all final quantities measured, to establish normal operating values of the systems. Submittal of test report shall be in the following format:
 - 1. Draft Report: Upon completion of testing, adjusting and balancing procedures, prepare draft reports on the approved forms. Draft report may be handwritten, but must be complete, factual, accurate and legible. Organize and format draft reports in the same manner specified herein for the final reports. Submit two complete sets of draft reports. Only one complete set of draft reports will be returned.
 - Final Report: Upon verification and approval of draft reports, prepare final reports, type
 written and organized and formatted as described herein. Submit two complete sets of
 final reports.
 - a. Report Format: Submit reports using the standard forms prepared by the referenced standard for each respective item and system to be tested, adjusted and balanced. Include schematic systems diagrams. Enclose the report contents in a 3-ring binder. Divide the contents into the below listed divisions, separating them by divider tabs with titles descriptive of the contents:
 - 1) General Information and Summary.
 - 2) Air Systems.
 - 3) Hydronic Systems.
 - b. Report Contents: Provide the following minimum information, forms and data:
 - General Information and Summary: Identify the testing, adjusting and balancing Agency, Contractor, Owner, Architect/Engineer, and Project on the inside cover sheet. Include addresses, and contact names and telephone numbers. Include a certification sheet containing the seal and name, address, telephone number and signature of the Agency's responsible certified Test and Balance Engineer.

H2M architects + engineers

BALANCING OF AIR AND HYDRONIC SYSTEMS 230594-1

- Include in this division a listing of the instrumentation used for the procedures, along with the proof of calibrations.
- 2) Include in the remainder of the reports the appropriate forms containing, as a minimum, the information indicated on the standard report forms prepared by AABC or NEBB, for each item of equipment and system. Prepare a schematic diagram for each item of equipment and system, to accompany each respective report form.
- c. Calibration Reports: Submit proof that all required instrumentation has been calibrated to tolerances specified in the referenced standards within a period not exceeding six months prior to conducting the test procedures.
- d. Existing Systems: Where existing systems are to be added to or modified include in the report results of operational tests taken prior to modifications including but not limited to existing fan and pump curves, pressure readings and flow measurements. Include in the report copies of the equipment and motor nameplate data along with equipment performance curves indicating operating points prior to any modifications and, where existing equipment is retained, operating points after system balance. Where terminals are adjusted or modified include terminal performance curves/data and final readings.

1.04 QUALITY ASSURANCE

- A. Test, adjust and balance systems and equipment by using competent mechanics regularly employed by a testing, adjusting and balancing Subcontractor whose primary business is the testing, adjusting and balancing of building mechanical systems. The testing, adjusting and balancing Subcontractor shall be a business established for a minimum of 10 years.
- B. The testing, adjusting, and balancing Subcontractor shall be certified by the Associated Air Balance Council (AABC) or the National Environmental Balancing Bureau (NEBB).
- C. Instrumentation type, quantity, and accuracy shall be as described in AABC's "National Standards for Field Measurement and Instrumentation, or Total System Balance, or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."
- D. All instrumentation shall be calibrated at least every 6 months or more frequently if required by the instrument manufacturer.

1.05 PERFORMANCE REQUIREMENTS

- A. Comply with all applicable Federal, State and Local laws, ordinances, regulations and codes, and the latest industry standards including, but not limited to the entities listed below for procedures, measurements, instruments and test reports for testing, adjusting and balancing work:
 - 1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
 - 2. Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
 - 3. National Environmental Balancing Bureau (NEBB)
 - 4. Associated Air Balance Council (AABC)
- B. Set the air delivery or intake of each diffuser, grille and register to be as designed or within five percent of the air flow rates shown on the Drawings.
- C. Set the fan air flow rate and static pressure rise across the fan to be within 10 percent above the design value at design speed.

1.06 JOB CONDITIONS

- A. Require the testing and balancing specialist to review his work with the respective manufacturers of the equipment and devices involved, and coordinate and schedule all work.
- B. Furnish and install balancing dampers, pressure taps, gauges, valves, and other components as required for a properly balanced system, whether or not specified herein or shown on the Drawings, all at no additional cost to the Owner. Make all adjustment or replacement parts recommended by the testing and balancing specialist in strict accordance with the respective equipment manufacturer's recommendations.
- C. Coordinate with the control manufacturer's representative to set the adjustment of the automatically operated dampers and control valves to operate as required.

1.07 GENERAL

- A. The Owner will occupy the building during the entire testing, adjusting, and balancing period. Cooperate with the Owner during testing, adjusting, and balancing operations to minimize conflicts with the Owner's operations.
- B. Complete all tests specified herein to the satisfaction of the Architect/Engineer before final acceptance.
- C. The Architect/Engineer, or his representative, is the sole judge of the acceptability of the tests. The Architect/Engineer may direct the performance of any such additional tests, as he deems necessary in order to determine the acceptability of the systems, equipment, material and workmanship. No additional payment will be made for any test required by the Architect/Engineer.

PART 2 - PRODUCTS

NOT USED.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Obtain design drawings and specifications and become thoroughly acquainted with the design intent.
- B. Obtain copies of approved shop drawings of all air handling and hydronic equipment, air outlets (supply, return and exhaust), manual valves, automatic valves and the temperature control diagrams, including intended sequence of operations.
- C. Existing Systems: Where existing systems are to be added to or modified perform operational tests prior to modifications including but not limited to existing fans and pumps curves, pressure readings and flow measurements.
 - Obtain copies of the equipment and motor nameplate data along with equipment performance curves indicating operating points prior to any modifications. Where terminal units are to be adjusted or modified obtain performance data for these units.
- D. Examine installed work and conditions under which testing is to be done to ensure that work has been completed, cleaned, and is operable. Do not proceed with testing, adjusting and balancing until unsatisfactory conditions have been corrected in a manner approved by the testing and balancing specialist.

H2M architects + engineers

BALANCING OF AIR AND HYDRONIC SYSTEMS

- E. Examine the air systems to see that they are free from obstructions. Determine that all dampers and registers are open, moving equipment is lubricated, clean filters are installed, and automatic controls are functioning; and perform other inspections and maintenance activities necessary for proper operation of the systems.
- F. Examine the hydronic systems to see that they are free from abnormal obstructions, and that all piping, valves and equipment have been properly made fully operational. Determine that all equipment and control systems are performing correctly by functional testing.
- G. Where existing systems are to be modified or added to ensure that all strainers and filters are clean and any operational problems that will prevent system balance have been brought to the attention of the Owner and repaired.

3.02 TESTING, ADJUSTING AND BALANCING

- A. Notify the Owner 48 hours in advance of starting any tests. Do not perform any tests until acknowledgment of notification and approval has been received from the Owner.
- B. Provide all necessary instruments and personnel for the tests. If, in the opinion of the Architect/Engineer, the results of such tests show that the Work has not complied with the requirements of the Contract Documents, make all additions or changes necessary to put the system in proper working condition and pay all expenses for all subsequent tests which are necessary to determine whether the Work is satisfactory. Any additional work or subsequent tests shall be carried out at the convenience of the Architect/Engineer.
- C. Test all packaged equipment in strict accordance with the equipment manufacturer's requirements.
- D. Perform any and all other tests that may be required by the local municipality or other governing body, board or agency having jurisdiction.
- E. Perform testing, adjusting, and balancing after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.
- F. Actuate all safety devices in a manner that clearly demonstrates their workability and operation.
- G. Cut insulation, ductwork and piping for installation of test probes to the minimum extent necessary to allow adequate performance of test procedure.
- H. Perform tests and compile test data for all air systems and hydronic systems.
- I. Include a schematic diagram locating the air inlets, outlets, fans, equipment, dampers and regulating devices for air systems, and a schematic diagram for location of balancing valves, flow indicators, equipment, and devices for hydronic systems.
- J. All instruments used shall be provided by the entity performing the Work of this Section, and shall be accurately calibrated and maintained in good working order.

K. Air Systems

Perform the testing, adjusting and balancing of air systems in accordance with the detailed procedures outlined in the referenced standards; including but not be limited to the following:

- 1. Test, record and adjust fan rpm to design requirements.
- 2. Test and record motor full load amperes.
- 3. Make a pitot tube traverse of main supply ducts and obtain design flow rate at fans.

H2M architects + engineers

BALANCING OF AIR AND HYDRONIC SYSTEMS

- 4. Test and record system static pressure, velocity pressure and total pressure.
- 5. Test and adjust system for design supply, transfer and return air flow rate.
- 6. Test and adjust system for minimum and maximum design flow rates of outside air.
- 7. Test and record return air temperatures.
- 8. Test and record coil and fan leaving air temperatures.
- 9. Adjust all main supply, return, relief, and exhaust air ducts to proper design flow rate.
- 10. Adjust all zones to proper design flow rate for supply, return, transfer, relief and exhaust air.
- 11. Test and adjust each diffuser, grille and register.
- 12. Identify each grille, diffuser and register as to location and area on the schematic diagram.
- 13. Identify and list in the final report size, type and manufacturer of diffusers, grilles and registers and all tested equipment. Use manufacturer's data on all equipment to make required calculations for testing, adjusting and balancing. Include design required velocity and test resultant velocity, required flow rate and test resultant flow rate after adjustment as part of readings and tests of diffusers, grilles and registers.
- 14. Adjust all diffusers, grilles and registers to minimize drafts in all areas.
- 15. Permanently mark all dampers after air balance is complete so that they can be restored to their correct position, if disturbed later.
- 16. Seal openings in ductwork for pitot tube insertion with snap-in plugs after air balance is complete.

L. Hydronic Systems

- Perform the testing, adjusting and balancing of hydronic systems in accordance with the detailed procedures outlined in the referenced standards; and including but not limited to the following:
 - a. Preliminary procedure prior to balancing:
 - 1) Examine water in system and determine if water has been treated and cleaned.
 - 2) Check expansion tank to determine that it is not air bound and the system is completely full of water.
 - Purge all air vents of water systems, check automatic air vents and determine if they are operating properly. Repair or replace any air vents that are not operating properly.
 - Coordinate with control manufacturer for required cooling and heating temperature controls and corresponding, automatic valve operation settings.
 - Open all normally open valves to full open position. Set automatic valves to full coil flow.
 - 6) Complete air balance before final water balance begins.
 - 7) Check water pumps for pump rotation and for proper flow rate delivery against manufacturer's pump curves.
 - 8) Set all balancing valves for required flow delivery at mains and branch mains to cooling and heating elements.
 - 9) Upon completion of flow readings and adjustments of balancing valves, mark all settings and record data, so that they can be restored to their correct "balanced" position, if disturbed later.
 - b. Include the following as part of the final balancing:
 - After required cooling and heating temperature controls and automatic valve operation settings are made, recheck pump flow requirements and readjust system as required.
 - 2) Record pressure drop through coil at set flow rate of coil for full cooling and for full heating. Set pressure drop across bypass valve to match coil pressure drop.
 - 3) Record and check the following items at each cooling and heating element:
 - 4) Inlet water temperatures and static pressure at connections.
 - 5) Leaving water temperatures and pressure drop of each coil.
 - 6) Flow rate through coil with control valve stroked manually wide open.

- 7) Record operating suction and discharge pressures of each pump and final total dynamic head and rated amperage versus actual amperage of pump motors.
- 8) Record entering and leaving water temperatures and flow through all equipment and devices.
- Check and record all flow rates at all locations in the piping system with flow meters.
- 10) Upon completion of air and hydronic systems testing, patch insulation, ductwork and housings, using materials identical to those removed.
- 11) Perform final testing, adjusting and balancing during summer season for air conditioning systems and during winter season for heating systems, including operation when outside conditions are within 5 degrees F wet bulb temperature of maximum summer design condition, and within 10 degrees F dry bulb temperature of minimum winter design condition.
- 12) Retest, adjust, and balance systems subsequent to system modifications. Resubmit test results.

END OF SECTION 230594

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. This section describes the insulation, jackets and accessories for piping as scheduled in Part 3 of this Section and as shown on the Drawings.

1.02 RELATED REQUIREMENTS

- A. Section 078400 Firestopping
- B. Section 078413 Through Penetration Firestopping for HVAC Systems
- C. Section 079201 Non Fire Rated Sleeves and Seals
- D. Section 232000 Pipe, Valves, and Fittings
- E. Section 232300 Refrigerant Piping

1.03 REFERENCES

- A. National Fire Protection Association (NFPA):
 - 1. NFPA 255 Surface Burning Characteristics of Building Materials.
- B. Greenguard
- C. 2015 International Energy Conservation Code
- D. 2015 International Mechanical Code
- E. Underwriters Laboratories, Inc. (UL):
 - 1. UL 723 Standard for Test for Surface Burning Characteristics of Building Materials.
- F. American Society for Testing and Materials (ASTM):
 - 1. ASTM A666 Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar.
 - 2. ASTM B209 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate.
 - 3. ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus.
 - 4. ASTM C195 Standard Specification for Mineral Fiber Thermal Insulating Cement.
 - ASTM C335 Standard Test Method for Steady-State Heat Transfer Properties of Horizontal Pipe Insulation.
 - 6. ASTM C449 Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement.
 - 7. ASTM C518 Standard Test Method for Steady-State Heat Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
 - 8. ASTM C533 Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation.
 - 9. ASTM C534 Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form.
 - 10. ASTM C547 Standard Specification for Mineral Fiber Preformed Pipe Insulation.
 - 11. ASTM C 552 Standard Specification for Cellular Glass Thermal Insulation
 - 12. ASTM C553 Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.
 - 13. ASTM C578 Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation.

- 14. ASTM C585 Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing.
- 15. ASTM C 591 Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation.
- ASTM C 610 Standard Specification for Molded Expanded Perlite Block and Pipe Thermal Insulation.
- 17. ASTM C795 Standard Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel.
- ASTM C921 Standard Practice for Determining the Properties of Jacketing Materials for Thermal Insulation.
- ASTM C1136 Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
- ASTM D1056 Standard Specification for Flexible Cellular Materials Sponge or Expanded Rubber.
- 21. ASTM D2842 Standard Test Method for Water Absorption of Rigid Cellular Plastics.
- 22. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials.
- 23. ASTM E96 Standard Test Method for Water Vapor Transmission of Materials.

1.04 DEFINITIONS

- A. Greenguard: Greenguard Environmental Institute
- B. IAQ: Indoor Air Quality
- C. EPA: Environmental Protection AgencyA
- D. WHO: World Health Organization
- E. ASJ: All Service Jacket
- F. SSL: Self-Sealing Lap
- G. FSK: Foil-Scrim-Kraft; jacketing
- H. PSK: Poly-Scrim-Kraft; jacketing
- I. PVC: Polyvinyl Chloride
- J. FRP: Fiberglass Reinforced Plastic
- K. Cold Service Piping/ Surfaces: Pipes or surfaces where the normal operating temperature is 60 degrees F or lower.
- L. Hot Service Piping/ Surfaces: Pipes or surfaces where the normal operating temperature is 105 degrees F or higher.

1.05 SUBMITTALS

- A. Product data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.
- B. Manufacturer's Instructions: Indicate installation procedures that ensure acceptable workmanship and installation standards will be achieved.

1.06 QUALITY ASSURANCE

A. Qualifications:

- Manufacturer: Company specializing in manufacturing products specified with minimum 3
 years documented experience.
- 2. Installer: Company specializing in performing the Work of this Section with minimum 3 years documented experience.

B. Materials:

- Flame spread/smoke developed rating of 25/50 or less in accordance with ASTM E84, NFPA 255 and UL 723.
- 2. Insulation for duct, pipe and equipment for above grade exposed to weather outside building shall be certified as being self-extinguishing for 1" thickness in less than 53 seconds when tested in accordance with ASTM D1692.

1.07 DELIVERY, STORAGE, AND HANDLING

- A. Accept materials on site, labeled with manufacturer's identification, product density, and thickness.
- B. Follow manufacturer's recommended storage and handling practices.

1.08 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient conditions required by manufacturers of each product (tapes, adhesives, mastics, cements, insulation, etc.).
- B. Maintain temperature before, during, and after installation for a minimum of 24 hours.
- C. Supply fiberglass products that assure excellent IAQ (Indoor Air Quality) performance through Greenguard Certification.
- D. Mold: Carefully inspect any insulation that has been exposed to water. If it shows any sign of mold growth remove it from the Site. If the material is wet but shows no sign of mold, dry rapidly and thoroughly. If it shows signs of facing degradation from wetting remove it from the Site.

PART 2 - PRODUCTS

2.01 FIBER GLASS INSULATION

- A. Approved Manufacturers:
 - 1. Knauf Insulation
 - 2. Johns Manville Corporation
 - 3. Owens Corning Corporation
 - 4. CertainTeed Corporation
- B. Fiber glass insulation meeting ASTM C547, ASTM C585, and ASTM C795; rigid molded, noncombustible.
- C. Factory applied vapor barrier jacket: ASJ/SSL conforming to ASTM C1136 Type I and ASTM E96, secured with self-sealing longitudinal laps and butt strips.

2.02 FIBER GLASS INSULATION JACKETS AND ACCESSORIES

A. Field-Applied Jackets and Fitting Covers

- 1. PVC 25/50 or Indoor/Outdoor, UV-resistant fittings, jacketing and accessories, white or colored. Fitting cover system consisting of pre-molded, high-impact PVC materials with fiber glass inserts. Approved Manufacturer: Proto Corporation.
 - a. Thickness: 10 mil.
 - b. Closures: stainless steel tacks, matching PVC tape, or PVC adhesive per manufacturer's recommendations.
- 2. ASTM B209 formed aluminum, 0.016-inch thick in smooth, corrugated, or embossed finish with factory-applied moisture barrier. Approved Manufacturer: Childers.
 - a. Overlap: 2-inch minimum.
 - b. Fittings: 0.016-inch thick die-shaped with factory-applied moisture barrier.
 - c. Metal jacket bands: 3/8-inch wide, 0.015-inch thick aluminum or 0.010-inch thick stainless steel.
- 3. ASTM A666, Type <<302; 304; 316>> stainless Steel, 0.010-inch thick in smooth, corrugated, or embossed finish with factory-applied moisture barrier. Approved Manufacturer: Childers.
 - a. Overlap: 2-inch minimum.
 - b. Fittings: 0.016-inch thick die-shaped with factory-applied moisture barrier.
 - c. Metal jacket bands: 3/8-inch wide, 0.010-inch thick stainless steel.
- 4. Laminated Self-Adhesive Water and Weather Seals Permanent acrylic self-adhesive System; weather resistant, high puncture and tear resistance; meeting or exceeding requirements of UL 723; applied in strict accordance with manufacturers' recommendations.

B. Fitting Insulation

1. Pre-formed fiberglass, preformed perlite, mitered fiberglass, mitered perlite or calcium silicate in lieu of PVC systems. Protect fittings with field-applied fitting covers.

C. Tapes

 Vapor barrier type, self-sealing, non-corrosive, fire-retardant. Approved Manufacturer: Compac Corporation

2.03 ELASTOMERIC INSULATION

- A. Approved Manufacturers:
 - 1. Armacell LLC
 - 2. K-Flex USA, Inc.
- B. Flexible, tubular (Type 1) or sheet/roll form (Type 2) closed-cell elastomeric insulation complying with ASTM C534 <<Grade 1 Standard (temperature range -297°F to 220°F); Grade 2 High Temperature (to 350°F); Grade 3 Contains no halogens>>; use molded tubular material wherever possible.

2.04 ELASTOMERIC INSULATION ACCESSORIES

A. Adhesives:

1. Air dried, waterproof vapor barrier contact adhesive, compatible with insulation for joining of seams and butt joints.

B. Finishes:

 Provide a weather and UV resistant protective finish for outdoor applications in accordance with the manufacturer's recommendations.

2.05 CELLULAR GLASS INSULATION

A. Approved Manufacturers:

1. Pittsburgh Corning Corporation

B. Cellular glass insulation meeting ASTM C552, Type II.

2.06 CELLULAR GLASS INSULATION ACCESSORIES

- A. Field-Applied Jackets and Fitting Covers:
 - 1. ASTM B209 formed aluminum, 0.016-inch thick in smooth, corrugated, or embossed finish with factory-applied moisture barrier. Approved Manufacturer: Childers.
 - a. Overlap: 2-inch minimum.
 - b. Fittings: 0.016-inch thick die-shaped with factory-applied moisture barrier.
 - c. Metal jacket bands: 3/8-inch wide, 0.015-inch thick aluminum or 0.010-inch thick stainless steel.
 - 2. ASTM A666, Type <<302; 304; 316>> stainless Steel, 0.010-inch thick in smooth, corrugated, or embossed finish with factory-applied moisture barrier. Approved Manufacturer: Childers.
 - a. Overlap: 2-inch minimum.
 - b. Fittings: 0.016-inch thick die-shaped with factory-applied moisture barrier.
 - c. Metal jacket bands: 3/8-inch wide, 0.010-inch thick stainless steel.
 - 3. Laminate: Factory applied vapor retarder jacket: ASJ/SSL conforming to ASTM C 1136 Type I, secured with self-sealing longitudinal laps and butt strips.

B. Adhesives:

1. Two component adhesive for adhering cellular glass insulation to itself or to other porous or nonporous substrates. Approved products: PC 88 Adhesive by Pittsburgh-Corning.

C. Joint Sealants:

1. Styrenebuadiene rubber sealant, stainless steel compatible. Approved products: Pittseal 727 Sealant by Pittsburgh-Corning.

D. Coatings:

- Vapor and weather barrier acrylic latex coating. Approved products: Pittecote 404 Coating by Pittsburgh-Corning.
- 2. Vapor and weather barrier asphalt coating. Approved Products: Pittecote 300 Coating by Pittsburgh-Corning.

2.07 HIGH DENSITY JACKETED INSULATION INSERTS FOR HANGERS AND SUPPORTS

- A. For use with Fiberglass Insulation:
 - 1. Cold Service Piping:
 - a. Polyurethane Foam: Minimum density 4 pcf, K of 0.13 at 75 degrees F, minimum compressive strength of 125 psi.
 - 2. Hot Service Piping:
 - a. Calcium Silicate: Minimum density 15 pcf, K of 0.50 at 300 degrees F; ASTM C 533.
 - b. Perlite: Minimum density 12 pcf, K of 0.60 at 300 degrees F; ASTM C 610.
- B. For Use with Flexible Elastomeric Foam Insulation: Hardwood dowels and blocks, length or thickness equal to insulation thickness, other dimensions as specified or required.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify that all piping is tested and approved prior to insulation installation.
- B. Verify that all surfaces are clean, dry and without foreign material before applying insulation materials.

3.02 INSTALLATION (GENERAL)

- A. Install all materials using skilled labor regularly engaged in this type of work. Install all materials in strict accordance with manufacturer's recommendations, building codes, and industry standards.
- B. Locate insulation and cover seams in the least visible location. Extend all surface finishes in such a manner as to protect all raw edges, ends and surfaces of insulation.
- C. On cold surfaces where a vapor retarder must be maintained, apply insulation with a continuous, unbroken moisture and vapor seal. Insulate and vapor seal all hangers, supports, anchors, or other projections secured to cold surfaces to prevent condensation.
- D. Insulated pipes conveying fluids below ambient temperature; insulate entire system including fittings, valves, unions, flanges, strainers, flexible connections, pump bodies, and expansion joints.
- E. For hot piping conveying fluids <<140°F>> or less, do not insulate flanges and unions at equipment, but bevel and seal ends of insulation.
- F. For hot piping conveying fluids over <<140°F>>, insulate flanges and unions at equipment.
- G. Maintain continuous pipe insulation through walls, ceiling or floor openings, or sleeves except where firestop or firesafing materials are required.
- H. Install insulation neatly, accurately and without voids, in accordance with manufacturer's instructions and NIAC National Commercial and Industrial Insulation Standards.
- I. Insulate fittings, valves and flanges using premolded covers with precut insulation inserts.
- J. Insulate piping using insulation of type and thickness scheduled in this Section.
- K. Install metal shields between hangers or supports and the piping insulation. Install rigid insulation inserts as required between the pipe and the insulation shields. Fabricate inserts to be of equal thickness to the adjacent insulation and vapor seal as required. Insulation inserts shall be no less than the following lengths:

1½" to 2½" IPS	10" long	
3" to 6" IPS	12" long	
8" to 10" IPS	16" long	
12" and over IPS	22" long	

- L. Pipe exposed in Mechanical Equipment Rooms or Finished Spaces (less than 10 feet above finished floor) to be finished with PVC jacket and fitting covers, aluminum jacket, or stainless steel jacket.
- M. Buried Piping: Provide factory fabricated assembly with inner all-purpose service jacket with self-sealing lap, and asphalt impregnated open mesh glass fabric, with one mil thick aluminum foil sandwiched between three layers of bituminous compound; outer surface faced with polyester film.
- N. Heat Traced Piping: Insulate fittings, joints, and valves with insulation of like material, thickness, and finish as adjoining pipe. Size large enough to enclose pipe and heat tracer. Cover with <<alumnial content of the content

horizontal piping. Coordinate insulation installation with heat-tracing installation and testing. Insulate piping after tracing or heat distribution tape has been installed and tested for continuity.

3.03 INSTALLATION (FIBER GLASS)

- A. Provide a continuous vapor retarder on piping operating below ambient temperatures. Seal all joints, seams and fittings.
- B. Firmly butt and secure ends with appropriate butt-strip material. On high-temperature piping, double layering with staggered joints when recommended by the insulation manufacturer. When double layering, the inner layer should not be jacketed.
- C. Insulated pipes conveying fluids below ambient temperature:
 - 1. Provide vapor barrier jackets, factory-applied or field-applied; secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive. Secure with outward clinch expanding staples and vapor barrier mastic.
 - 2. Insulate fittings, joints, and valves with molded insulation of like material and thickness as adjacent pipe. Finish with glass cloth and vapor barrier adhesive or PVC fitting covers.
- D. Insulated pipes conveying fluids above ambient temperature:
 - 1. Provide standard jackets, with or without vapor barrier, factory-applied or field-applied. Secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive. Secure with outward clinch expanding staples.
 - 2. Insulate fittings, joints, and valves with insulation of like material and thickness as adjacent pipe. Finish with glass cloth and vapor barrier adhesive or PVC fitting covers.

E. Exterior Applications:

- 1. Jacket piping and fittings exposed to the elements using aluminum or stainless steel jackets with a factory applied moisture barrier. Hold firmly in place with a friction type Z lock or a minimum 2" overlap joint. Seal all joints completely along the longitudinal seam and install so as to shed water. Seal all circumferential joints by use of preformed butt strips; minimum 2" wide or a minimum 2" overlap. Overlap butt strips to the adjacent jacketing a minimum ½-inch and completely weather seal. Install a 6" to 10" unsealed slide joint every 25 to 30 lineal feet to allow for the thermal expansion of the pipe and jacketing. In addition, apply a thin bead of silicone grease in the overlap to prevent water migration while allowing the joint to slide. Install an unsealed slide joint where distance between fittings exceeds 8 lineal feet.
- Provide vapor barrier jacket. Insulate fittings, joints, and valves with insulation of like material and thickness ad adjoining pipe, and finish with glass mesh reinforced vapor barrier cement. Cover with <<aluminum; stainless steel>> jacket with seams located on bottom side of horizontal piping.

F. Cold Piping Insulation:

- 1. On below freezing applications and in high abuse areas protect the ASJ jacket with a PVC vapor retarding outer jacket. Seal exposed ends of the insulation with a vapor retarder mastic installed per the manufacturer's recommendations. Apply vapor seals at butt joints at every fourth pipe section joint and at each fitting to isolate any water incursion.
- 2. On chilled water systems operating in conditions of: RH of 90% and above, follow the same guidelines as described above for below freezing applications.

3.04 INSTALLATION (ELASTOMERIC)

A. Piping:

Install pipe insulation by slitting tubular sections and applying onto piping or tubing.
 Alternately, slide unslit sections over the open ends of piping or tubing. Adhere and seal all seams and butt joints using adhesive.

- 2. Push insulation onto the pipe, never pull. Stretching of insulation may result in open seams and joints.
- 3. Tape the ends of the tubing before slipping the insulation over the new pipes to prevent dust from entering the pipe.
- 4. Clean cut all edges. Do not leave rough or jagged edges of the insulation. Use proper tools such as sharp non-serrated knives.
- 5. On cold piping, adhere insulation directly to the piping at the high end of the run using a two-inch strip of adhesive on the inner diameter of the insulation and on the pipe. Coat all exposed end cuts of the insulation with adhesive. Adhere all penetrations through the insulation and termination to the substrate to prevent condensation migration.
- 6. Use sheet insulation on all pipes larger than 6-inch diameter. Do not stretch insulation around the pipe. On pipes larger than 12-inch diameter, adhere insulation directly to the pipe on the lower 1/3 of the pipe. On pipes greater than 24-inch diameter, completely adhere insulation.
- 7. Stagger seams when applying multiple layers of insulation.

B. Valves, Flanges and Fittings:

- 1. Insulate all fittings with the same insulation thickness as the adjacent piping. Adhere all seams and mitered joints with adhesive. Sleeve screwed fittings and adhere with a minimum 1" overlap onto the adjacent insulation.
- 2. Insulate valves, flanges, strainers, and Victaulic couplings using donuts covered with sheet or oversized tubular insulation.

C. Hangers:

- Support piping system using high density inserts with sufficient compressive strength.
 Apply elastomeric foam insulation with the same or greater thickness than the pipe insulation to pipe supports. Seal all joints with adhesive.
- 2. Standard and split hangers Insulate piping supported by ring hangers with the same insulation thickness as the adjacent pipe. Seal all seams and butt joints with adhesive. Sleeve ring hangers using oversized tubular insulation. On cold piping, extend insulation up the hanger rod a distance equal to four times the insulation thickness. Insulation tape may be used to a thickness equal to the adjacent insulation thickness.
- 3. Clevis hangers or other pipe support systems Install saddles under all insulated lines at unistrut clamps, clevis hangers, or locations where insulation may be compressed due to the weight of the pipe. Insert and adhere wooden dowels or blocks of a thickness equal to the insulation to the insulation between the pipe and the saddle.
- 4. Pre-insulated pipe hangers can be used to prevent compression of insulation at standard split, clevis hangers or other pipe support systems. Adhere a pair of non-skid pads to the clamps to minimize the movement. In addition, to prevent loosening of the clamps, use an antivibratory fastener, such as a nylon-locking nut.

D. Exterior Applications:

- 1. Paint all outdoor exposed piping with two coats of UV resistant finish. Prior to applying the finish, wipe the insulation with denatured alcohol. Do not tint the finish.
- 2. Locate seams for all outdoor exposed piping on the lower half of the pipe.

3.05 INSTALLATION (CELLULAR GLASS)

- A. Apply cellular glass insulation in a single layer where thickness permits. Seal joints with joint sealant. Secure inner layers of insulation with fiber-reinforced tape. Secure the outermost layer of insulation with metal bands of appropriate width and thickness, two bands per insulation section.
 - 1. Finish:
 - a. Outdoor Applications field applied metal jacket.
 - b. Indoor Applications factory applied ASJ.

- B. Consult the manufacturer's installation instructions for additional information.
- C. Exterior Applications: Provide vapor barrier jacket. Insulate fittings, joints, and valves with insulation of like material and thickness ad adjoining pipe, and finish with glass mesh reinforced vapor barrier cement. Cover with <<al>
 subarrier cement. Cover with <subarrier caluminum; stainless steel> jacket with seams located on bottom side of horizontal piping.

3.06 PIPING INSULATION MATERIAL SCHEDULE

SYSTEM OR SERVICE	LOCATION	INSULATION TYPE	JACKET
CONDENSATE DRAINS	INSIDE	ELASTOMERIC	
HVAC REFRIGERANT LINES	INSIDE	ELASTOMERIC	
HVAC REFRIGERANT LINES	OUTSIDE	ELASTOMERIC	EXTERIOR COATING

3.07 MINIMUM PIPING INSULATION THICKNESS (IN.)

FLUID OPERATING	SYSTEMS IN TEMP	INSUALATION CONDUCTIVITY		NON	IINAL P	IPE OR 1 (IN.)	TUBE S	SIZE
TEMP RANGE (°F)	RANGE	CONDUCTIVITY BTU*IN./(H*SQ. FT.*°F)	MEAN RATING TEMP (°F)	<1	1 TO < 1-1/2	1-1/2 TO < 4	4 TO < 8	=8
> 350		0.32-0.34	250	4.5	5.0	5.0	5.0	5.0
251-350		0.29-0.32	200	3.0	4.0	4.5	4.5	4.5
201-250		0.27-0.30	150	2.5	2.5	2.5	3.0	3.0
141-200		0.25-0.29	125	1.5	1.5	2.0	2.0	2.0
105-140		0.21-0.28	100	1.0	1.0	1.5	1.5	1.5
40-60		0.21-0.27	75	0.5	0.5	1.0	1.0	1.0
< 40		0.20-0.26	50	0.5	1.0	1.0	1.0	1.5

END OF SECTION 230700

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. This section describes the insulation, jackets and insulating accessories for sheet metal ductwork as scheduled in Part 3 of this Section and as shown on the Drawings.

1.02 REFERENCES

- A. National Fire Protection Association (NFPA):
 - 1. NFPA 255 Surface Burning Characteristics of Building Materials.
- B. Greenguard
- C. 2015 International Energy Conservation Code
- D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
- E. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- F. Underwriters Laboratories, Inc. (UL):
 - 1. UL 723 Surface Burning Characteristics of Building Materials.
- G. American Society for Testing and Materials (ASTM):
 - 1. ASTM B209 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 2. ASTM C177 Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus.
 - 3. ASTM C518 Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
 - 4. ASTM C553 Mineral Fiber Blanket and Felt Insulation.
 - 5. ASTM C612 Specification for Mineral Fiber Block and Board Thermal Insulation.
 - 6. ASTM C795 Standard Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel
 - 7. ASTM C921 Properties of Jacketing Materials for Thermal Insulation.
 - 8. ASTM C1136 Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
 - 9. ASTM D1056 Flexible Cellular Materials Sponge or Expanded Rubber.
 - 10. ASTM E84 Surface Burning Characteristics of Building Materials.
 - 11. ASTM E96 Water Vapor Transmission of Materials.

1.03 DEFINITIONS

- A. Greenguard: Greenguard Environmental Institute
- B. IAQ: Indoor Air Quality
- C. EPA: Environmental Protection Agency
- D. WHO: World Health Organization
- E. ASJ: All Service Jacket
- F. SSL: Self-Sealing Lap
- G. FSK: Foil-Scrim-Kraft; jacketing

- H. PSK: Poly-Scrim-Kraft; jacketing
- I. PVC: Polyvinyl Chloride
- J. FRP: Fiberglass Reinforced Plastic
- K. Cold Piping/Ductwork/Surfaces: Pipes or surfaces where the normal operating temperature is 60 degrees F or lower.

1.04 SUBMITTALS

- A. Product data: To include product description, manufacturer's installation instructions, types and recommended thicknesses for each application, and location of materials.
- B. Provide samples and mock-ups of systems as required.

1.05 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient conditions required by manufacturers of tapes, adhesives, mastics, cements, and insulation materials.
- B. Follow manufacturer's recommended handling practices.
- C. Supply fiberglass products that assure excellent IAQ (Indoor Air Quality) performance through Greenguard Certification.
- D. Mold: Carefully inspect any insulation that has been exposed to water. If it shows any sign of mold growth remove it from the Site. If the material is wet but shows no sign of mold, dry rapidly and thoroughly. If it shows signs of facing degradation from wetting remove it from the Site. Discard air handling insulation used in the air stream if exposed to water.

1.06 QUALITY ASSURANCE

A. Qualifications:

- 1. Manufacturer: Company specializing in manufacturing Products specified with minimum 3 years documented experience.
- 2. Installer: Company specializing in performing the Work of this Section with minimum 3 years documented experience.

B. Materials:

- Flame spread/smoke developed rating of 25/50 or less in accordance with ASTM E84, NFPA 255 and UL 723.
- Certify insulation for duct, pipe and equipment for above grade exposed to weather outside building as being self-extinguishing for 1" thickness in less than 53 seconds when tested in accordance with ASTM D1692.

PART 2 - PRODUCTS

2.01 FIBERGLASS DUCT WRAP

- Flexible Fiber Glass Blanket meeting ASTM C 553 Types I, II and III, and ASTM C 1290; Greenguard compliant.
- B. Factory Applied Vapor Retarder Jacket: FSK or PSK conforming to ASTM C 1136 Type II.

- C. Maximum service temperature of 250° F (Faced) or 350° F (Unfaced).
- D. Density:
 - 1. Concealed areas: Minimum 0.75 PCF.
 - 2. Exposed areas: Minimum 1.0 PCF.
- E. Approved Products:
 - 1. Friendly Feel Duct Wrap by Knauf

2.02 FIBERGLASS RIGID BOARD

- A. Rigid Fiber Glass Board insulation meeting ASTM C 612 Type IA and IB.
- B. Mean temperature by ASTM C 177 and a maximum service temperature of 450° F.
- C. Factory Applied Vapor Retarder Jacket: ASJ conforming to ASTM C 1136 Type I, or FSK or PSK conforming to ASTM C 1136 Type II.
- D. Density:
 - 1. Concealed areas: Minimum 3 PCF
 - 2. Exposed areas: Minimum 6 PCF
- E. Approved Products:
 - 1. Insulation Board by Knauf

2.03 INTERNAL DUCT LINING

- A. Conforming to ASTM C 1071 Type 1 and NFPA 90A & 90B.
- B. Noise Reduction Coefficient (NRC): ASTM C 423 Type A Mounting, 0.40 or higher for ½" product, 0.60 or higher for 1" product.
- C. Rated for a maximum air velocity of 6000 Feet per minute.
- D. Approved Products:
 - 1. Textile Duct Liner with HydroshieldÔ Technology by Knauf.

2.04 FIBERGLASS INSULATION ACCESSORIES

- A. Aluminum Jacket 0.016-inch (0.406 mm) thick in smooth, corrugated, or embossed finish with factory applied moisture barrier. Overlap 2-inch (50 mm) minimum.
- B. Laminated Self-Adhesive Water and Weather Seals apply per manufacturers' recommendations.
- C. Tapes Vapor barrier type, self-sealing, non-corrosive, fire-retardant. Approved Manufacturer: Compac Corporation
- D. Adhesives Approved Manufacturer: Foster
- E. Mastic Approved Manufacturer: Foster
- F. Vapor Barrier Coating Approved Manufacturer: Foster

2.05 SHEET WATERPROOFING MEMBRANE

- A. Prefabricated, self-adhering, sheet-type waterproofing membrane shall be FlexClad-400 by MFM Building Products Corp. or approved equal.
- B. Description:
 - Top Layer: Stucco-embossed, UV-resistant aluminum weathering surface.
 - 2. Middle Layer: Multiple layers of high-density cross-linked polymer film.
 - 3. Bottom Layer: Uniform layer of rubberized asphalt adhesive, protected by disposable silicone release paper.
- C. Color: As selected by Architect/Engineer.
- D. Material Thickness: ASTM D 1970, 40 Mils Nominal
- E. Flexibility: ASTM D 1970, Pass.
- F. Vapor Permeance: ASTM E 96, 0 perms.
- G. Nail Sealability: ASTM D 1970, Pass.
- H. Heat Aging: ASTM D 794, Pass.
- I. Tear Resistance: ASTM D 1424, Average: 660 grams.
- J. Ultimate Elongation MD: ASTM D 412, 434 percent.
- K. Ultimate Elongation CMD: ASTM D 412, 246 percent.
- L. Low Temperature Flexibility: 1,000,000 Cycles at -10 Degrees F, 1,200 Cycles at -20 Degrees F, No cracking.
- M. Flame Spread Index: ASTM E 84, 0.
- N. Smoke Density Index: ASTM E 84, 5.
- O. Wind-Driven Rain: SFBC TAS-110-95, 100 mph, No leakage or failure.
- P. UV Stability: Excellent.
- Q. Accessories: MFM Spray Adhesive

2.06 FIRE RATED BLANKET (KITCHEN HOOD EXHAUST DUCT)

- A. Thermal Material: 2192°F rated core blanket, manufactured from calcium magnesium silicate.
- B. Fully encapsulated thermal material in fiberglass reinforced aluminum/polypropylene scrip (FSP).
 - 1. Encapsulation FSP marked with UL Classification Mark.
 - 2. Encapsulation FSP marked with ICC-ES report number ESR 2213.
 - 3. Collars supplied in 6 inch wide by 25 feet long rolls.
- C. Product Characteristics:
 - 1. Thickness: 1-1/2 inch.
 - 2. Nominal Density: 6 pcf.

- 3. R-Value: 7.35 per layer when tested in accordance with ASTM C 518 at 75°F.
- 4. Flame Spread: <25 when tested in accordance with ASTM E 84.
- 5. Smoke Spread: <50 when tested in accordance with ASTM E 84.

D. Approved Products:

1. FireMaster FastWrap XL by Thermal Ceramics.

2.07 FIRE RATED BLANKET INSULATION ACCESSORIES

- A. Glass Filament Tape: Minimum ¾ inch wide used to temporarily secure blanket until permanent attachment using steel banding and/or steel insulation pins.
- B. Aluminum Foil Tape: Minimum 3 inches used to seal cut edges.
- C. Carbon Steel or Stainless Strapping Material Minimum: ½ inch wide and 0.015 inch thick.
- Steel Insulation Pins: Minimum 12 gage, length sufficient to penetrate through duct wrap insulation.
- E. Insulation Clips: Galvanized steel, minimum 1-1/2 inches round or square.
- F. Through Penetration Firestop Sealants:
 - 1. Packing Material: Remove encapsulation material from wrap, use core blanket (white) as penetration packing material.
 - 2. Firestop sealants per applicable building code report and/or laboratory design listings.
- G. Grease and HVAC Duct Access Doors:
 - Thermal Ceramics FastDoor XL Access doors

2.08 LOUVER BLANK OFF PANELS

- A. Facing: 0.032 inch thick aluminum on both sides.
- B. Perimeter Frame: 0.050 inch thick-formed aluminum channels.
- C. Core: Expanded polystyrene (EPS), R value of 8

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify that all ductwork is tested and approved prior to insulation installation.
- B. Verify that all surfaces are clean, dry and without foreign material before applying insulation materials.

3.02 DUCTWORK REQUIRING INSULATION

- A. Insulate Ductwork as specified in the DUCTWORK INSULATION SCHEDULE.
 - 1. Insulate any additional ductwork or plenums indicated to be insulated on the Drawings.

3.03 INSTALLATION (GENERAL)

A. Install all materials using skilled labor regularly engaged in this type of work. Install all materials in strict accordance with manufacturer's recommendations, building codes, and industry standards.

- B. Locate insulation and cover seams in the least visible location. Extend all surface finishes in such a manner as to protect all raw edges, ends and surfaces of insulation.
- C. On cold surfaces where a vapor retarder must be maintained, apply insulation with a continuous, unbroken moisture and vapor seal. Insulate and vapor seal all hangers, supports, anchors, or other projections secured to cold surfaces to prevent condensation.
- D. Install insulation neatly, accurately and without voids, in accordance with manufacturer's instructions and NIAC National Commercial and Industrial Insulation Standards.
- E. Install ductwork hanger supports on the outside of the insulation. Where vertical ducts are supported to the building structure, insulate the ductwork supports to prevent condensation.
- F. Insulate ductwork using insulation of the type and thickness scheduled at the end of this Section.
- G. If specified insulation board thickness does not cover ductwork standing seams and reinforcing angles, insulate them by adhering a grooved strip of fiberglass board with a thickness at least 1 ½ inches greater than the height of the seam or angle covered over the standing seam or angle.

3.04 FIBERGLASS INTERNAL DUCT LINING

- A. Apply Duct Lining in strict accordance with the latest edition of SMACNA's "HVAC Duct Construction Standard Metal & Flexible" and NAIMA's "Fibrous Glass Duct Liner Standard".
- B. Select length of mechanical fasteners in accordance with the manufacturer's recommendation as listed on each product. Install mechanical fasteners perpendicular to the duct surface, and such that the pin does not compress the liner more than ?" relative to the nominal thickness of the insulation.
- C. Adhesive shall conform to ASTM C 916. Apply adhesive to the sheet metal with a 90% minimum coverage. Coat all exposed edges of the duct liner with the same adhesive. Repair all rips and tears using an adhesive that conforms to ASTM C 916.
- D. Cover all internal duct areas with duct liner. Firmly butt transverse joints with no gaps and coat with adhesive. Overlap and compress longitudinal corner joints.
- E. When air velocities are 4000 to 6000 FPM, apply metal nosing to all upstream transverse edges to additionally secure the insulation.

3.05 FIBERGLASS WRAP INSULATION

- A. Apply external duct wrap per insulation schedule even where internally lined.
- B. Install Duct Wrap to obtain specified R-value using a maximum compression of 25%.
- C. Firmly butt all joints.
- D. Overlap the longitudinal seam of the vapor retarder a minimum of 2 inches.
- E. Where vapor retarder performance is required, repair all penetrations and damage to the facing using pressure-sensitive foil tape or mastic prior to system startup.
- F. Use pressure-sensitive foil tapes a minimum 3 inches wide and apply by moving pressure using a squeegee or other appropriate sealing tool.

- G. Additionally secure Duct Wrap to the bottom of rectangular ductwork over 24 inches wide using mechanical fasteners on 18-inch centers. Do not over-compress insulation during installation.
- H. Overlap unfaced Duct Wrap a minimum of 2 inches and fasten using 4-inch to 6-inch nails or skewers spaced 4 inches apart, or secured with a wire/banding system. Do not damage the Duct Wrap.

3.06 FIBERGLASS BOARD INSULATION

- A. Fit insulation by scoring, cutting and mitering to fit the contour of the ductwork.
- B. Attach insulation to ductwork in thickness scheduled by brushing adhesive uniformly on all sides of ductwork covering 100 percent of ductwork surface. Press insulation into place, making complete contact with adhesive. Butt edges of insulation board tightly together without gaps.
- C. Additionally, hold insulation in place by impaling on pins welded to all four sides of the ductwork. Locate and weld pins a minimum 12 inch on center with a minimum of 2 rows per side of duct and no less than 3 inches from the edges of the ductwork. Secure insulation to pins with 1 inch diameter hold-down washers. As an alternate to welded pins, provide "Gripnail" mechanical surface fasteners by Gripnail Corporation using pneumatic hammer designed for this work.
- D. Seal all joints, seams, breaks, and punctures in facing with adhesive and cover with 3 inch wide sealing tape. Flash supports with vapor barrier coating.
- E. For rectangular ducts and plenums exposed to weather, pitch ductwork or insulation board minimum ¼ inch per foot to prevent rainwater from accumulating on top of duct or plenum. Cover insulation board with Sheet Waterproofing Membrane.

3.07 SHEET WATERPROOFING MEMBRANE

A. Surface Preparation:

- 1. Prepare surfaces in accordance with manufacturer's instructions.
- 2. Ensure tops of ducts have sufficient slope to eliminate ponding water.
- 3. Ensure bottoms of ducts have foil-faced rigid insulation boards installed.
- 4. Ensure surfaces are clean and dry.
- 5. Remove dirt, dust, oil, grease, hand oils, processing lubricants, moisture, frost, and other contaminants that could adversely affect adhesion of waterproofing membrane.
- Prime metal, concrete, and masonry surfaces with primers approved by waterproofing membrane manufacturer.

B. Application:

- 1. Apply waterproofing membrane in accordance with manufacturer's instructions on all exterior insulated ductwork and at locations indicated on the Drawings.
- 2. Apply membrane to clean, dry, primed metal ductwork and foil-faced rigid insulation boards. Do not apply over wet or non-rigid insulation.
- 3. Apply membrane in accordance with manufacturer's air, material, and surface temperature requirements.
- 4. Apply firm, uniform pressure with hand roller to entire membrane to ensure proper adhesion. Concentrate pressure at seams and on underside of ductwork.
- 5. Apply membrane to ducts in accordance with manufacturer's instructions.
- 6. Apply membrane shingle fashion to shed water over, not against laps.
- 7. Do not terminate membrane on bottom of duct.
- 8. Apply minimum 3-inch laps and minimum 6-inch end laps for ductwork applications.
- 9. Embed membrane to bottom of ducts over 24 inches wide in light continuous layer of adhesive applied to insulation face.

- 10. Apply membrane to bottom of insulated ducts over 36 inches wide using mechanical attachment, in addition to adhesive, in accordance with manufacturer's instructions. Install pints on 12-inch centers with rows staggered.
- 11. Apply adhesive to areas where special adhesion requirements exist, including duct bottoms, flashings, transitions, joints, elbows, valves, tees, and other fittings.

C. Protection:

1. Protect applied waterproofing membrane and fabric flexible duct connections from damage during construction.

3.08 FIRE RATED BLANKET

- A. Install insulation in direct contact with the ductwork in accordance with the manufacturer's instructions and referenced standards.
- B. Install 2 layers of FireMaster FastWrap XL for zero clearance and a 1 and 2 hour commercial kitchen grease duct application per ASTM E 2336.
 - 1. Consult with manufacturer of proposed substitutions for required thickness to maintain a 2-hr fire rating with a zero clearance to combustibles.
- C. Install 1 layer of FireMaster FastWrap XL for a 1 and 2 hour air ventilation duct enclosure per ISO 6944-1985.
- D. Where exhaust duct penetrates firewall install ductwrap as per the manufacturer's instructions for through penetrations.
- E. Locate doors on 20-foot centers on straight runs of ductwork and at each change of direction. Position doors on the side of duct a minimum of 1.5 inches above the bottom of the duct.

3.09 DUCTWORK INSULATION SCHEDULE

A. Fiber Glass Insulation Schedule:

Ductwork System	Туре	Minimum R-Value
Supply Ducts and Plenums, Concealed	Fiberglass Duct Wrap	6
Return Ducts and Plenums, Concealed	Fiberglass Duct Wrap	6
Supply and Return Ducts and Plenums, Exposed Other Than in the Space Served	Fiberglass Rigid Board	6
Ducts Located Outdoors	Fiberglass Rigid Board	8
Unused Portions of Louvers	Louver Blank Off Panels	As Specified
Ductwork 20 Feet Upstream and Downstream of Air Handling Units and Supply and Return Fans, Located Indoors	Fiberglass Internal Duct Lining	Note 1
Ductwork 20 Feet Upstream and Downstream of Air Handling Units and Supply and Return Fans, Located Outdoors	Fiberglass Internal Duct Lining	Note 1
General Exhaust Ducts Except as Noted	Uninsulated	NA

NOTE 1 - Ductwork to be provided with 1-inch internal lining in addition to externally applied insulation in accordance with the table above.

B. Interior Concealed Range Hood and Elevated Temperature Exhaust Ducts

Ductwork System	Type	Thickness (In)
Kitchen Hood Exhaust Ducts	Fire Rated Blanket	Two layers 1-1/2" Each

END OF SECTION 230719

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. The Work specified as part of this Section consists of the work required to achieve operational and coordinated Sequences of Operation as described. Work includes coordination of functions of controllers supplied as part of equipment packages, sizing of control valves, interconnection of systems, provision and installation of all accessory devices required for complete system operation including devices not provided as part of equipment, coordination of start up and testing and demonstration of the operation of Sequences of Operation to the Owner and his representatives.
- B. The control system operation of all equipment shall be subject to the operational modes, conditions and logic described in this Section and the controlled equipment manufacturer's recommendations.
- C. Training of the Owner's personnel in the operation, trouble shooting, adjustment and repair of all system controls.

1.02 RELATED SECTIONS AND WORK

- A. Division 26
- B. Owner's Fire Alarm System (FAS)

PART 2 - PRODUCTS

NOT USED.

PART 3 - EXECUTION

3.01 GENERAL

A. General

- 1. Conform to the requirements of the Owner's standards for all electrical work and devices.
- 2. System and system components shall be BACNet compatible.
- 3. All space sensors and thermostats shall have an lcd display indicating their set point, the condition sensed and the mode of operation they are responding to

3.02 SEQUENCE OF OPERATION - DUCTLESS SPLIT SYSTEM, DSEU/DSCU-1, DSEU/DSCU-2, DSEU/DSCU-3, DSEU/DSCU-4, DSEU/DSCU-5

A. General:

Each ductless split system shall be provided with a wall mounted digital thermostat.

B. Cooling:

 The cooling set point temperature shall be 75 degrees F (adjustable). Upon a demand for mechanical cooling, the associated condensing unit shall be energized and the cooling coil shall be controlled to maintain space temperature.

C. Heating

1. The heating set point temperature shall be 70 degrees F (adjustable). When the space temperature falls below the set point temperature the heating unit shall stage on in order to maintain the set point temperature.

3.03 SEQUENCE OF OPERATION - ELECTRIC CEILING HEATER, ECH-1A, ECH-1B

A. General:

Each ceiling heater shall be provided with a remote, wall mounted digital thermostat. 1.

B. Heating:

The heating set point temperature shall be 70 degrees. When the space temperature falls below the set point temperature, the heater shall turn on in order to maintain the set point temperature.

3.04 SEQUENCE OF OPERATION - AIR SCRUBBER, AS-1

A. General:

The Air Scrubber shall be interlocked with a wall switch, provided by others. 1.

3.05 SEQUENCE OF OPERATION - ELECTRIC UNIT HEATER, EUH-1A, EUH-1B, EUH-1C, EUH-1D

A. General:

The unit heater shall be provided with a remote, wall mounted digital thermostat.

B. Heating:

The heating set point temperature shall be 70 degrees. When the space temperature falls below the set point temperature, the unit heater shall turn on in order to maintain the set point temperature.

3.06 SEQUENCE OF OPERATION - ELECTRIC WALL HEATER, EWH-1

Each wall heater shall be provided with a unit mounted digital thermostat. 1.

B. Heating:

The heating set point temperature shall be 70 degrees. When the space temperature falls below the set point temperature, the heater shall turn on in order to maintain the set point temperature.

3.07 SEQUENCE OF OPERATION - EXHAUST FANS, EF-1

A. General:

The exhaust fan shall run continunously, 24 hours per day, 7 days a week.

3.08 SEQUENCE OF OPERATION - ELEVATOR EXHAUST FAN, EF-EL-1

Α. General:

The exhaust fan shall be controlled by a remote temperature sensor, by factory. When the 1. elevator shaft rises above the setpoint, the exhaust fan shall turn on.

3.09 SEQUENCE OF OPERATION - PACKAGED ROOFTOP UNIT, RTU-1, RTU-2, RTU-3

A. Run Conditions - Scheduled:

- The unit shall run according to a user definable time schedule in the following modes:
 - a. Occupied Mode: The unit shall maintain
 - b. A 75 degree F (adj.) cooling set point
 - c. A 70 degree F (adj.) heating set point.
 - 1) Unoccupied Mode (night setback): The unit shall maintain
 - (a) A 85 degree F (adj.) cooling set point.

- (b) A 60 degree F (adj.) heating set point.
- 2. Alarms shall be provided as follows:
 - a. High Zone Temp: If the zone temperature is greater than the cooling set point by a user definable amount (adj.).
 - b. Low Zone Temp: If the zone temperature is less than the heating set point by a user definable amount (adj.).

B. Zone Set point Adjust:

 The occupant shall be able to adjust the zone temperature heating and cooling set points at the zone sensor.

C. Supply Fan:

- The supply fan shall run anytime the unit is commanded to run, unless shutdown on safeties. To prevent short cycling, the supply fan shall have a user definable (adj.) minimum runtime.
- 2. Alarms shall be provided as follows:
 - a. Supply Fan Failure: Commanded on, but the status is off.

D. Cooling Stages:

- 1. The controller shall measure the zone temperature and stage the cooling to maintain its cooling set point. To prevent short cycling, there shall be a user definable (adj.) delay between stages, and each stage shall have a user definable (adj.) minimum runtime.
- 2. The cooling shall be enabled whenever:
 - a. Outside air temperature is greater than 60 degree F (adj.).
 - b. AND the economizer (if present) is disabled or fully open.
 - c. AND the zone temperature is above cooling set point.
 - d. AND the supply fan status is on.
 - e. AND the heating is not active.

E. Gas Heating Stages:

- 1. The controller shall measure the zone temperature and stage the heating to maintain its heating set point. To prevent short cycling, there shall be a user definable (adj.) delay between stages, and each stage shall have a user definable (adj.) minimum runtime.
- 2. The heating shall be enabled whenever:
 - a. Outside air temperature is less than 65 degree F (adj.).
 - b. AND the zone temperature is below heating set point.
 - c. AND the supply fan status is on.
 - d. AND the cooling is not active.

F. Economizer:

- The controller shall measure the zone temperature and modulate the economizer dampers in sequence to maintain a set point 2 degree F less than the zone cooling set point. The outside air dampers shall maintain a minimum adjustable position of 20% (adj.) open whenever occupied.
- 2. The economizer shall be enabled whenever:
 - a. Outside air temperature is less than 65 degree F (adj.).
 - b. AND the outside air enthalpy is less than 22% (adj.).
 - c. AND the outside air temperature is less than the return air temperature.
 - d. AND the outside air enthalpy is less than the return air enthalpy.
 - e. AND the supply fan status is on.
- 3. The economizer shall close whenever:
 - a. Mixed air temperature drops from 45 degree F to 40 degree F (adj.).
 - b. OR on loss of supply fan status.
 - c. OR freezestat (if present) is on.

4. The outside and exhaust air dampers shall close and the return air damper shall open when the unit is off. If Optimal Start Up is available, the mixed air damper shall operate as described in the occupied mode except that the outside air damper shall modulate to fully closed.

G. Minimum Outside Air Ventilation - Fixed Percentage:

1. The outside air dampers shall maintain a minimum position (adj.) during building occupied hours and be closed during unoccupied hours.

H. Dehumidification:

1. The controller shall measure the return air humidity and override the cooling sequence to maintain return air humidity at or below 60% rh (adj.). Dehumidification shall be enabled whenever the supply fan status is on.

I. Prefilter Status:

- 1. The controller shall monitor the prefilter status.
- 2. Alarms shall be provided as follows:
 - a. Prefilter Change Required: Prefilter differential pressure exceeds a user definable limit (adj.).

J. Mixed Air Temperature:

- 1. The controller shall monitor the mixed air temperature and use as required for economizer control (if present) or preheating control (if present).
- 2. Alarms shall be provided as follows:
 - a. High Mixed Air Temp: If the mixed air temperature is greater than 90 degree F (adj.).
 - b. Low Mixed Air Temp: If the mixed air temperature is less than 45 degree F (adj.).

K. Return Air Humidity:

- 1. The controller shall monitor the return air humidity and use as required for economizer control (if present) or humidity control (if present).
- 2. Alarms shall be provided as follows:
 - a. High Return Air Humidity: If the return air humidity is greater than 70% (adj.).
 - b. Low Return Air Humidity: If the return air humidity is less than 35% (adj.).

L. Return Air Temperature:

- 1. The controller shall monitor the return air temperature and use as required for economizer control (if present).
- 2. Alarms shall be provided as follows:
 - a. High Return Air Temp: If the return air temperature is greater than 90 degree F adj.).
 - b. Low Return Air Temp: If the return air temperature is less than 45 degree F (adj.).

M. Supply Air Temperature:

- 1. The controller shall monitor the supply air temperature.
- 2. Alarms shall be provided as follows:
 - High Supply Air Temp: If the supply air temperature is greater than 120 degree F
 (adj.).
 - b. Low Supply Air Temp: If the supply air temperature is less than 45 degree F (adj.).

3.10 SEQUENCE OF OPERATION - KITCHEN EXHAUST FAN KEF-1/MAKE-UP AIR UNIT MUA-1

A. See 'H' Drawings for energy management sequence of operation.

END OF SECTION 230993

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. This Section describes the pipe, valves, fittings, and joining materials for use with the piping systems described in this Section and as shown on the Drawings.

1.02 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Section 079201 Non-Fire Rated Sleeves and Seals
- C. Section 230529 Pipe Hangers and Supports
- D. Section 230555 Mechanical System Identification
- E. Section 230700 Pipe Insulation
- F. Section 232007 Piping Specialties

1.03 ABBREVIATIONS

- A. The following are standard abbreviations:
 - 1. CWP: Cold working pressure.
 - 2. EPDM: Ethylene-propylene-diene-terpolymer rubber.
 - 3. NRS: Nonrising stem.
 - 4. OS&Y: Outside screw and yoke.
 - 5. PTFE: Polytetrafluoroethylene plastic.
 - 6. SWP: Steam working pressure.
 - 7. TFE: Tetrafluoroethylene plastic.
 - 8. NPS: Nominal Pipe Size

1.04 SUBMITTALS

- A. Product Data: For each type of valve indicated: Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
- B. Product data on pipe, fittings, gaskets, and bolts. Include dimensions, specifications, and manufacturer. Provide pipe and valve application schedule.
- C. Provide product data, including but not be limited to dimensions, specifications, manufacturer, installation and operation instructions, temperature and pressure ratings, end connections, and required clearances on piping specialties included in this Specification.
- D. Welder Certifications Furnish the names of pipe welders and welding operators employed by the Contractor to perform the Work who have been qualified to use the welding procedures which have been qualified in accordance with the specified pressure piping codes or AWS or NFPA standards.

E. Shop Drawings

 Where deviations from the Drawings and Specifications are proposed for any reason, submit shop drawings identifying proposed deviations showing layout of all piping, fittings,

- materials, dimensions, and fabrication and installation details. Submit a comparison table of the specified features and ratings of the specified item and those of the proposed deviation to allow a direct comparison.
- 2. The review of deviations will be for pressure drop only. The review will not address clearances or accessibility. No dimensional or coordination check will be made.
- 3. The Contractor has the sole responsibility to review the Drawings, coordinate piping fabrication, and provide clearances and access for installation, maintenance and balancing of this Work, and Work of other trades. Unless specifically dimensioned, Drawings indicate approximate locations only. The Contractor has the sole responsibility to locate and route the piping.
- 4. Submit all layout shop drawings on not less than ½ inch equals 1 foot scale drawings.

1.05 REFERENCES

- A. Division 1 Quality Control: Requirements for references and standards.
- B. AGA Z21.22 Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems.
- C. ANSI C111 Rubber-Gasket Joints for Ductile-Iron and Gray-Iron Pressure Pipe and Fittings
- D. ASME B16.3 Malleable Iron Threaded Fittings.
- E. ASME B16.5 Steel Pipe Flanges and Flanged Fittings
- F. ASME B16.9 Factory-Made Wrought Steel Buttwelding Fittings
- G. ASME B16.15 Cast Bronze Threaded Fittings
- H. ASME B16.18 Cast Copper Alloy Solder Joint Pressure Fittings.
- I. ASME B16.22 Wrought Copper and Bronze Solder Joint Pressure Fittings.
- J. ASME B16.23 Cast Copper Alloy Solder Joint Drainage Fittings DWV.
- K. ASME B16.24 Cast Copper Alloy Pipe Flanges and Flanged Fittings.
- ASME B16.29 Wrought Copper and Wrought Copper Alloy Solder Joint Drainage Fittings -DWV.
- M. ASME B16.39 Pipe Unions, Malleable Iron Threaded
- N. ASME-B31.1 Power Piping.
- O. ASME B31.2 Fuel Gas Piping.
- P. ASME B31.5 Refrigeration Piping.
- Q. ASME B31.9 Building Service Piping.
- R. ASME B36.10M Welded and Seamless Wrought Steel Pipe
- S. ASME SEC IV Construction of Heating Boilers.
- T. ASME SEC IX Welding and Brazing Qualifications.
- U. ASTM A47 Ferritic Malleable Iron Castings

- V. ASTM A53 Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless.
- W. ASTM A74 Cast Iron Soil Pipe and Fittings.
- X. ASTM A105 Forgings, Carbon Steel, for piping components.
- Y. ASTM A126 Gray Iron Castings for Valves, Flanges, and Pipe Fittings
- Z. ASTM A181 Forgings, Carbon Steel, for General Purpose Piping
- AA. ASTM A197 -Cupola Malleable Iron
- AB. ASTM A234/A234M Pipe Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and Elevated Temperatures.
- AC. ASTM A307 Carbon Steel Bolts and Studs, 60,000 psi Tensile
- AD. ASTM B32 Solder Metal.
- AE. ASTM B42 Seamless Copper Pipe.
- AF. ASTM B62 Composition Bronze or Ounce Metal Castings
- AG. ASTM B75 Seamless Copper Tube
- AH. ASTM B88 Seamless Copper Water Tube.
- Al. ASTM B306 Copper Drainage Tube (DWV).
- AJ. ASTM B584 Copper Alloy Sand Castings for General Applications
- AK. ASTM C564 Rubber Gaskets for Cast Iron Soil Pipe and Fittings.
- AL. ASTM B828 Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings.
- AM. AWS A5.8 Specification for Brazing Filler Material
- AN. AWWA C651 Disinfecting Water Mains.
- AO. MSS SP-80 Bronze Gate, Globe, Angle and Check Valves.
- AP. NFPA 30 Flammable and Combustible Liquids Code
- AQ. NFPA 54 National Fuel Gas Code.
- AR. NSF 61 Domestic Water Pipe, Valves, and Fittings.
- AS. Mechanical Code of New York State-Latest Edition
- AT. Plumbing Code of New York State-Latest Edition
- AU. Fuel Gas Code of New York State-Latest Edition
- AV. FM Factory Mutual Compliance

AW. UL - Underwriter's Laboratory Compliance

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use hand wheels or stems as lifting or rigging points.
- D. Protect all flange faces with wood, plastic or soft metal to prevent damage to parts.
- E. Protect all pipe threads from damage with plastic plugs or caps.
- F. Mark and identify all piping materials in accordance with the Reference Standards specified herein.

PART 2 - PRODUCTS

2.01 GENERAL

- A. When two or more valves of the same type are used in the same service, furnish all valves of this type from the same manufacturer.
- B. Specific manufacturer's model numbers are cited in the following Piping Material Schedules to establish the desired quality and performance for each type valve or material. Equivalent products by other approved manufacturers are also acceptable. Approval shall be subject to review by the Architect/Engineer.

PART 3 - EXECUTION

3.01 GENERAL INSTALLATION REQUIREMENTS

- A. Unless otherwise shown, route piping in the most direct manner parallel to building lines in accordance with the Drawings. Group piping whenever practical at common elevations.
- B. Accurately align, support and connect piping without forcing.
- C. Locate piping so that access to and clearance around equipment, and minimum piping headroom of 7 feet is maintained, except where otherwise shown.
- Space piping so that insulation and flanges, if any, have at least 1 inch clearance after maximum movement.

- E. Where pipe elevations are not shown, pitch supply and return lines to positive drain points and/or coils.
- F. Provide accessible flanges or union connections on the supply and return connections of terminal equipment and other items which must be disconnected for maintenance. Where unions are furnished as an integral part of the equipment, additional unions are not required unless required for access to or removal of components. Arrange equipment piping connections so that maintenance can be made without removing large sections of pipe or relocating the equipment.
- G. In Domestic Water Systems, connect branch lines to the top of the line. For all other liquid systems, connect branch lines to the bottom or lower half of the line, preferably the bottom.
- H. Connect branch lines in steam service and compressed air to the top or upper half of the line, preferably the top.
- Use fittings for all changes of direction. Bending of steel pipe is not permissible.
- Clean all piping materials before installation to remove grease, loose dirt, mill scale and other foreign matter.
- K. Provide air vents at all high points of water piping, and valved drains at all low points of water piping for complete venting, draining and flushing of the piping system. Locate and provide air vents at multiple high points that are necessary to prevent air binding in the piping system. Install additional air vents and drains if directed by the Architect/Engineer, at no cost to the Owner. As a minimum provide drains and air vents
 - 1. In each section of piping separated by valves.
 - 2. On all coils.
 - 3. For each riser, where riser or runout to riser has a valve installed.
 - 4. In low point of piping to each down fed convector or radiator.
- L. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment. Provide loops, pipe offsets and anchors.
- M. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.
- N. Install gate or ball valves for shut-off and to isolate equipment, parts of systems, or vertical risers.
- O. Sleeve pipes passing through partitions, walls and floors.
- P. Identify piping under provisions of "Mechanical System Identification" Specification.
- Q. Provide escutcheons at all locations where piping installed exposed to view penetrates wall, partitions, floors and ceilings.
- R. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.
- S. Install flexible connectors at inlet and discharge connections of pumps and other vibration producing equipment.
- T. Install strainers on the supply side of each control valve, pressure regulating valve, solenoid valve, trap, and elsewhere as indicated.

- U. For pressurized liquid piping systems installed horizontally make reductions in pipe sizes using eccentric reducer fitting installed with the level side up to allow air venting.
- V. For all nipples up to and including six inches in length provide extra-heavy shoulder type. For all nipples over six inches in length provide corresponding material, quality and thickness as the pipe on which they are used. Do not use close nipples. Provide nipples with designation mark of the manufacturer conforming to the ASTM pipe specifications for system served.
- W. Make connections to all cooling and heating units with single or multiple cooling or heating coils in accordance with the manufacturer's instructions and labeling on equipment
- X. For pressures over 15 psig, use nipples and caps instead of plugs for permanent closures. Plugs in equipment provided by equipment manufacturers are acceptable.
- Y. Do not install piping above electrical panels. Route piping around panels.

3.02 COPPER TUBING CONNECTIONS

- A. Provide soldered or brazed in accordance with Part 2 of this Section.
- B. Make soldered and brazed connections in accordance with the procedures in the current edition of the Copper Tube Handbook of the Copper Development Association.
- C. Qualifications of brazers, brazing procedures, and performance of brazers and brazing operators are required in compliance with the requirements of ASME B31.1, ASME B31.9, and the Boiler and Pressure Vessel Code, Section IX. Keep records and certifications required by the code on file and available for inspection.
- D. Make solder joints on all copper water piping with 95/5 solder. Absolutely no lead-based solder will be accepted.
- E. Clean joints thoroughly before soldering.
- Remove excess solder and flux with a cloth or brush to leave a uniform clean fillet.
- G. For refrigeration copper tubing connections, comply with ASME B31.5. Make brazed joints on all refrigeration piping.

3.03 CONNECTIONS OF DISSIMILAR METALLIC MATERIALS

A. Isolate connections between dissimilar metallic materials using dielectric connections. Use dielectric unions or flanges that provide a complete isolation of the two ends, including bolts for flanges, using materials suitable for the design pressure, temperature and fluid contained.

3.04 VALVES

- A. Provide valves of the same size as the pipe in which they are installed, unless shown otherwise on the Drawings. At pumps, match valve size to pipe size and not pump connection size.
- B. Install valves with the stem on or above the horizontal. Install valves with the stem horizontal if requirements of headroom, access or chain operation must be met.
- C. Pack valves and adjust glands before final acceptance.
- D. Install valve extension stems or chain operators where the center of valve hand wheels is more than 6 feet-6 inches above the floor and valve is 2 ½" and larger. Prove chain hooks where

required to prevent fouling of chains on equipment and to clear walkways. Terminate chains approximately 3 feet-6 inches above the floor. Provide worm gear operators or impact hand wheels for all valves 6 inches and larger.

- E. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation and a protective sleeve that allows operation of the valve without breaking the vapor seal or disturbing the insulation.
- F. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- G. Locate valves for easy access and provide separate support where necessary.
- H. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb
- Install butterfly valves with stems horizontal to allow support for the disc and the cleaning action
 of the disc.
- J. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
- K. Install balancing valves with lengths of straight pipe upstream and downstream of valve as per manufacturer's instructions such that calibrated accuracy is maintained. As a minimum provide straight lengths as per the following table;

REQUIRED STRAIGHT LENGTHS

Valve Size	Upstream (In Pipe Diameters)	Downstream (In Pipe Diameters)		
1/2"-3"	3	1		
4"-12"	5	2		

- L. Chain wheel Actuators- Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Sprocket rim with Chain guides: Ductile Iron (Aluminum for applications exposed to weather), of type and size required for valve.
 - 2. Brackets: Type, number, size, and fasteners required to securely mount actuator on valve.
 - 3. Chain: Stainless steel, of size required to fit sprocket rim.
 - 4. Manufacturers:
 - a. Babbitt Steam Specialty Co.
 - b. Roto Hammer Industries

3.05 CONTROL VALVE INSTALLATION

- A. Install all control valves so that the stem position is not more than 60 degrees from the vertical up position.
- B. Install valves in accordance with the manufacturer's recommendations.
- C. Install control valves so that they are accessible and serviceable, and such that actuators may be serviced and removed without interference from structure or other pipes, ducts and/or equipment.

D. Install isolation valves at control valves such that control valve body may be serviced without draining the supply/return side piping system. Install unions at all connections to screwed type control valves.

3.06 PRESSURE TESTING, FLUSHING AND CLEANING

- A. Pressure test piping systems in accordance with applicable codes and as described herein.
- B. Pressure testing Schedule pressure testing so that it may be witnessed by the Architect/Engineer, Owner, or their representative. Perform tests in accordance with the following procedures:
 - Before testing, complete the installation of each pipe line, including final supports, hangers and anchors. Perform testing before insulation or paint is applied for examination during the test. Clean piping and equipment of metal cuttings and foreign matter as they are installed.
 - Codes Pressure test piping to assure integrity of material and workmanship in accordance with the applicable ASME Code for pressure piping (B31) and New York State Code
 - 3. Protection of Equipment Protect equipment, instruments and piping specialties which are not included in the test by either disconnecting from the piping and blanking off the end of the pipe with a blind flange, plug or cap, or isolating by insertion of a line blind or spool piece as required. Disconnect pneumatic control lines and close all openings.
 - 4. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 5. Piping may be tested in sections or circuits as required for the progress of the work.
 - 6. Provide all systems to be pressurized with the appropriate gauges, certified calibrated by the manufacturer, and pressure-relieving devices.
 - 7. Install relief valve set at a pressure no more than 1/3 higher than the test pressure, to protect against damage by expansion of liquid or other source of overpressure during the test. Do not allow test pressure to exceed maximum pressure for any vessel, pump, valve, or other component in system under test.
 - 8. Records Provide records of all tests showing line designation, test pressure, ambient temperature, date of test, retests and signature of witness.
- C. Hydrostatic Test Procedures Perform hydrostatic testing in accordance with ASME B31.9.
 - Perform test using the pressure indicated under "Pressure Testing Schedule"
 - After hydrostatic test pressure has been applied for at least two hours, examine piping, joints, and connections for leakage while maintaining test pressure. Repeat hydrostatic test until there are no leaks.
 - 3. Repair leaks as specified under "Repair of Line Leaks"
- D. Service Testing Perform service testing in accordance with ASME B31.9.
 - For gases and steam and condensate service not over 15 psig, and for nontoxic, noncombustible, nonflammable liquids at pressures not over 100 psig and temperatures not over 200 degrees F a system test with the service fluid is acceptable. This exemption does not apply to natural gas piping.
 - 2. Bring the piping system up to operating pressure gradually with visual examination at a pressure between one-half and two-thirds of design pressure. Make a final examination at operating pressure.
 - 3. Repair leaks as specified under "Repair of Line Leaks"
 - 4. Repeat service test until there are no leaks.
- E. Repair of Line Leaks Comply with the following procedures for repair of leaks. In each case retest after repairs are made.
 - 1. Soldered/Brazed Joints Remove solder/brazing alloy and reapply with proper flux.

- 2. Flanged Joints Check to determine flange end alignment and that all bolts are uniformly tightened with the required torque. If leak persists, depressurize the line, remove gasket, examine flange end face, and insert new gasket.
- 3. Threaded Joints Tighten joint to a required torque. If leak does not stop, replace pipe and/or fittings. Do not use pipe dope, cement or seal weld to stop pipe leaks.
- 4. Gasketed Joints Remove existing gasket and insert new gasket.
- 5. Welded Steel Joints Repair pipe in accordance with applicable ASME B31 code.
- 6. Leaks in Material Leaks located in pipe or fitting material require the replacement of that section of pipe or fitting and a repeat of the entire system using the complete procedure required for that system. Caulking, welding or epoxy is not permitted. Repair all damage caused by leaks.
- F. Flushing Complete pressure testing requirements prior to flushing. Performance of the flushing may be witnessed by the Architect/Engineer, Owner, or their representative, provide ample notification to all parties in advance of flushing any system. Perform system flushing in accordance with the following procedures:
 - 1. Flush all main and branch steam and liquid piping systems after pressure testing is complete with new potable water while draining the system at all low points. Isolate all connected equipment and flush individually.
 - 2. Flushing for piping and equipment will be considered complete when water samples taken at all low points indicate clear discharge-with no visible solids. If not clear, continue flushing and sampling until discharge is clear.
- G. Cleaning Complete flushing requirements prior to cleaning. Performance of the cleaning may be witnessed by the Architect/Engineer, Owner, or their representative, provide ample notification to all parties in advance of cleaning any system. Perform system cleaning in accordance with the following procedures:
 - 1. Clean all steam and condensate lines by blowing them out with live steam. Discharge steam and condensate from each main and branch safely to atmosphere for a minimum of five minutes.
 - 2. Clean all compressed air, instrument air, and fuel oil lines with oil-free dry compressed air at design pressure through each section so that they are blown free of dirt and debris.
 - 3. Clean domestic water lines by flushing with water until effluent is visibly as clean as the flushing medium.
 - 4. Clean hot water/chilled water lines as described below:
 - a. When flushing discharge is clear, fill piping systems with water and sufficient approved alkaline cleaning material to remove dirt, oil and grease. Include all connected equipment in the cleaning.
 - b. Vent system and place in operation, with automatic controls operating at set point temperature or an operating temperature designated by the Architect/Engineer. Circulate the solution through the system for a minimum of 4 consecutive hours.
 - c. After 4 hours, drain system and flush with clean water until the pH at the farthest drain matches the clean water input. Keep strainers unplugged during the cleaning operations. Refill system with clean water.
 - Clean temporary pump strainers and strainers at coils, etc. every 2 hours periodically during cleaning procedures. Do not remove temporary strainers until all cleaning steps are completed and the operation of the system indicates that the system is free of all foreign matter.
 - 6. Blow out all piping and equipment after cleaning and final flushing is completed and the system is drained with clean dry instrument air for a minimum of 15 minutes or until all water is expelled from the system. Upon completion seal the system by closing all drains and vents.
 - 7. Following the Architect/Engineers approval of the above flushing and cleaning procedures, immediately fill each system and chemically treat and monitor in accordance with the "Chemical Treatment Systems" specifications.

H. Pressure Testing Schedule:

Service	Test Type	Design Operating Pressure (psig)	Test Pressure (psig)
Condensate Piping	Hydrostatic		1.5 times maximum working pressure, but not less than 100 psi

3.07 PAINTING

A. Upon completion of the installation, remove all protecting materials, thoroughly remove all scale and grease and leave in a clean condition for painting. Paint in accordance with the requirements of the "Painting" Specification Section.

END OF SECTION 232000

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Pipe, pipe fittings, valves, and connections for piping systems.
- B. Condensate Drain.

1.02 RELATED SECTIONS

- A. Section 230529 Pipe Hangers and Supports
- B. Section 230555 Mechanical System Identification
- C. Section 230700 Piping Insulation.

1.03 REFERENCES

- A. Section 014500 Quality Control: Requirements for references and standards.
- B. ASTM D 1784 Rigid Vinyl Compounds.
- C. ASTM D 1785 PVC Plastic Pipe, Schedule 40
- D. ASTM D 2466 PVC Plastic Fittings, Schedule 40
- E. ASTM D 2665 PVC Drain, Waste, and Vent Pipe and Fittings
- F. ASTM D 2564 Solvent Cements for PVC Pipe and Fittings
- G. ASTM D 2321 Underground Installation of Thermoplastic Pipe (non-pressure applications)
- H. ASTM F 1668 Procedures for Buried Plastic Pipe
- I. ASTM F 1866 Fabricated PVC DWV Fittings
- J. NSF Standard 14 Plastic Piping Components and Related Materials.
- K. NSF Standard 61 Drinking Water System Components Health Effects.

1.04 SUBMITTALS FOR REVIEW

- A. Section 013300 Submittals: Procedures for submittals.
- B. Product Data: Provide data on pipe materials, pipe fittings, and accessories. Provide manufacturers catalog information.

1.05 QUALITY ASSURANCE

- A. Perform Work in accordance with State of New York and Town code.
- B. Identify pipe with marking including size, ASTM material classification and ASTM specification.

1.06 REGULATORY REQUIREMENTS

A. Perform Work in accordance with the State of New York and the Town code.

1.07 DELIVERY, STORAGE, AND PROTECTION

- A. Section 016500 Product Delivery, Storage, and Handling: Transport, handle, store, and protect products.
- Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.
- C. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.

1.08 ENVIRONMENTAL REQUIREMENTS

A. Section 014536 - Environmental Quality Control: Moisture control affecting products on site.

PART 2 - PRODUCTS

2.01 CONDENSATE DRAIN PIPING (DIAMETER LESS THAN OR EQUAL TO 1")

- A. Copper Type L Pipe and Fitting System.
- Pipe and fittings shall be manufactured from Type L Copper.
- C. Pipe and fittings shall be manufactured as a system and be the product of one manufacturer.
- D. Pipe and fittings shall conform to National Sanitation Foundation (NSF) Standard 61 or the health effects portion of NSF Standard 14.
- E. Testing with or transport/storage of compressed air or gas in Copper pipe or fittings shall not be permitted.
- F. The system is intended for pressure drainage applications where the temperature will not exceed 140°F.

2.02 PVC SCHEDULE 40 SOLID WALL PIPE AND PVC DWV FITTING SYSTEM.

- Pipe and fittings shall be manufactured from virgin rigid PVC (polyvinyl chloride) vinyl compounds with a Cell Class of 12454 per ASTM D 1784.
- B. PVC Schedule 40 pipe shall be iron pipe size (IPS) conforming to ASTM D 1785 and ASTM D 2665.
- C. Injection molded PVC DWV fittings shall conform to ASTM D 2665. Fabricated PVC DWV fittings shall conform to ASTM F 1866.
- D. Pipe and fittings shall be manufactured as a system and be the product of one manufacturer.
- Pipe and fittings shall conform to National Sanitation Foundation (NSF) Standard 14.
- Testing with or transport/storage of compressed air or gas in PVC pipe or fittings shall not be permitted.
- G. Buried pipe shall be installed in accordance with ASTM D 2321 and ASTM F 1668.
- H. Solvent cement joints shall be made in a two step process with primer manufactured for thermoplastic piping systems and solvent cement conforming to ASTM D 2564.

- Primer shall conform to ASTM F 656. I.
- The system shall be protected from chemical agents, fire stopping materials, thread sealant, plasticized vinyl products, or other aggressive chemical agents not compatible with PVC compounds.
- K. The system is intended for non-pressure drainage applications where the temperature will not exceed 140°F.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Section 013100 - Project Management and Coordination: Verification of existing conditions before starting work.

3.02 PREPARATION

- A. Ream pipe and tube ends. Remove burrs.
- Remove scale and dirt, on inside and outside, before assembly.
- C. Prepare piping connections to equipment with flanges or unions.

3.03 INSTALLATION

- A. Install in accordance with manufacturer's instructions and the requirements of the Plumbing Code of New York State.
- B. Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls. Effect changes in size with reducing fittings.
- C. Install piping to maintain headroom, conserve space, and not interfere with use of space.
- D. Group piping whenever practical at common elevations.
- Provide clearance in hangers and from structure and other equipment for installation of insulation and access to fittings. Refer to Section 230700.
- F. Provide access where valves and fittings are not exposed. Coordinate size and location of access doors with Section 083100 - Access Doors and Panels.
- G. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.
- H. Sleeve pipes passing through partitions, walls and floors.
- Identify piping under provisions of Section 230555.

3.04 APPLICATION

A. Install unions downstream at equipment or apparatus connections.

3.05 ERECTION TOLERANCES

A. Section 014500 - Quality Control: Tolerances.

B. Establish invert elevations, slopes for drainage to ½ inch per foot minimum. Maintain gradients.

3.06 FIELD QUALITY CONTROL

A. Drainage System: Test plug all system openings with the exception of the system's highest point. Fill system with water to the point of overflow and subject the highest point to 10-foot head of water. The system shall be considered tight if the pressure is held for not less than 30 minutes without signs of leakage.

END OF SECTION 232001

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Requirements of the following Division 23 Sections apply to this section:
 - 1. Section 230010 General Mechanical Requirements.
 - 2. Section 230529 Pipe Hangers And Supports
 - 3. Section 230555 Mechanical System Identification
 - 4. Section 230700 Pipe Insulation

1.02 SUMMARY

- A. This Section includes refrigerant piping used for air conditioning applications. This Section includes:
 - 1. Piping, tubing, fittings, and specialties.
 - 2. Special duty valves.
 - 3. Refrigerants.
- B. Products installed but not furnished under this Section include pre-charged tubing, refrigerant specialties, and refrigerant accessories furnished as an integral part of or separately with packaged air conditioning equipment.

1.03 SUBMITTALS

- A. Product data for the following products:
 - Each type of valve specified.
 - 2. Each type of refrigerant piping specialty specified.
- B. Shop Drawings showing layout of refrigerant piping, specialties, and fittings including, but not necessarily limited to, pipe and tube sizes, valve arrangements and locations, slopes of horizontal runs, wall and floor penetrations, and equipment connection details. Show interface and spatial relationship between piping and proximity to equipment.
- C. Brazer's Certificates signed by Contractor certifying that brazers comply with requirements specified under "Quality Assurance" below.
- D. Maintenance data for refrigerant valves and piping specialties, for inclusion in Operating and Maintenance Manual specified in Division 01 and Division 23.

1.04 QUALITY ASSURANCE

- A. Qualify brazing processes and brazing operators in accordance with ASME "Boiler and Pressure Vessel Code," Section IX, "Welding and Brazing Qualifications".
- B. Regulatory Requirements: Comply with provisions of the following codes:
 - 1. ANSI B31.5: ASME Code for Pressure Piping Refrigerant Piping.
 - 2. ANSI/ASHRAE Standard 15: Safety Code for Mechanical Refrigeration.
- C. Mechanical Code of New York State

1.05 SEQUENCING AND SCHEDULING

A. Coordinate the installation of roof piping supports, and roof penetrations.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the Work include, but are not limited to, the following:
- B. Refrigerant Valves and Specialties:
 - 1. Alco Controls Div, Emerson Electric
 - 2. Danfoss Electronics, Inc.
 - 3. EATON Corporation, Control Div
 - 4. Henry Valve Company
 - 5. Parker-Hannifin Corporation, Refrigeration and Air Conditioning Division
 - 6. Sporlan Valve Company

2.02 PIPE AND TUBING MATERIALS

- A. General: Refer to Part 3, Article "PIPE APPLICATIONS" for identification of systems where the below specified pipe and fitting materials are used.
- B. Copper Tubing: ASTM B 280, Type ACR, hard-drawn straight lengths, and soft-annealed coils, seamless copper tubing. Tubing shall be factory cleaned, ready for installation, and have ends capped to protect cleanliness of pipe interiors prior to shipping.
- C. Copper Tubing: ASTM B 88, Type L, hard-drawn straight lengths, and soft-annealed coils, seamless copper tubing.

2.03 FITTINGS

A. Wrought-Copper Fittings: ANSI B16.22, streamlined pattern for hard drawn and soft copper.

2.04 JOINING MATERIALS

A. Brazing Filler Metals: AWS A5.8, Classification BAg-1 (Silver)

2.05 VALVES

- A. General: Complete valve assembly shall be UL-listed and designed to conform to ARI 760.
- B. Globe: 450 psig maximum operating pressure, 275 deg. F maximum operating temperature; cast bronze body, with cast bronze or forged brass wing cap and bolted bonnet; replaceable resilient seat disc; plated steel stem. Valve shall be capable of being repacked under pressure. Valve shall be straight through or angle pattern, with solder-end connections.
- C. Check Valves Smaller Than 7/8 inch: 500 psig maximum operating pressure, 300 deg. F maximum operating temperature; cast brass body, with removable piston, Teflon seat, and stainless steel spring; straight through globe design. Valve shall be straight through pattern, with solder-end connections.
- D. Check Valves 7/8 inch and Larger: 450 psig maximum operating pressure, 300 deg. F maximum operating temperature; cast bronze body, with cast bronze or forged brass bolted bonnet; floating piston with mechanically retained Teflon seat disc. Valve shall be straight through or angle pattern, with solder-end connections.

- E. Solenoid Valves: 250 deg. F temperature rating, 400 psig working pressure; forged brass, with Teflon valve seat, two-way straight through pattern, and solder end connections. Provide manual operator to open valve. Furnish complete with NEMA 1 solenoid enclosure with 1/2 inch conduit adapter, and 24 volt, 60 Hz. normally closed holding coil.
- F. Hot Gas Bypass Valve: adjustable type, sized to provide capacity reduction beyond the last step of compressor unloading; and wrought copper fittings for solder end connections.

2.06 REFRIGERANT PIPING SPECIALTIES

- General: Complete refrigerant piping specialty assembly shall be UL-listed and designed to conform to ARI 760.
- B. Strainers: 500 psig maximum working pressure; forged brass body with monel 80-mesh screen, and screwed cleanout plug; Y-pattern, with solder end connections.
- C. Moisture/liquid Indicators: 500 psig maximum operation pressure, 200 deg. F maximum operating temperature; forged brass body, with replaceable polished optical viewing window, and solder end connections.
- D. Filter-driers: 500 psig maximum operation pressure; steel shell, flange ring, and spring, ductile iron cover plate with steel capscrews, and wrought copper fittings for solder end connections. Furnish complete with replaceable filter-drier core kit, including gaskets. Standard capacity desiccant sieves to provide micronic filtration.
- E. Flanged Unions: 400 psig maximum working pressure, 330 deg. F maximum operating temperature; two brass tailpiece adapters for solder end connections to copper tubing; flanges for 7/8 inch through 1-5/8 inch unions shall be forged steel, and for 2-1/8 inch through 3-1/8 inch shall be ductile iron; four plated steel bolts, with silicon bronze nuts and fiber gasket. Flanges and bolts shall have factory-applied rust-resistant coating.
- F. Flexible Connectors: 500 psig maximum operating pressure; seamless tin bronze or stainless steel core, high tensile bronze braid covering, solder connections, and synthetic covering; dehydrated, pressure tested, minimum 7 inch in length.

2.07 REFRIGERANT

A. Refrigerant No. 410A, in accordance with ASHRAE Standard 34.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine rough-in for refrigerant piping systems to verify actual locations of piping connections prior to installation.

3.02 PIPE APPLICATIONS

- A. Use Type L, or Type ACR drawn copper tubing with wrought copper fittings and brazed joints above ground, within building. Use Type K, annealed temper copper tubing for 2 inch and smaller without joints, below ground and within slabs. Mechanical fittings (crimp or flair) are not permitted.
- B. Install annealed temper tubing in pipe duct. Vent pipe duct to the outside.

C. If other than Type ACR tubing is used, clean and protect inside of tubing as specified in Article "CLEANING" below.

3.03 PIPING INSTALLATIONS

- A. General: Install refrigerant piping in accordance with ASHRAE Standard 15 "The Safety Code for Mechanical Refrigeration."
- Install piping in as short and direct arrangement as possible to minimize pressure drop.
- C. Install piping for minimum number of joints using as few elbows and other fitting as possible.
- D. Arrange piping to allow normal inspection and servicing of compressor and other equipment. Install valves and specialties in accessible locations to allow for servicing and inspection.
- E. Provide adequate clearance between pipe and adjacent walls and hanger, or between pipes for insulation installation. Use sleeves through floors, walls, or ceilings, sized to permit installation of full thickness insulation.
- F. Insulate suction lines. Liquid line are not required to be insulated, except where they are installed adjacent and clamped to suction lines, where both liquid and suction lines shall be insulated as a unit.
- G. Do not install insulation until system testing has been completed and all leaks have been eliminated.
- H. Install branch tie-in lines to parallel compressors equal length, and pipe identically and symmetrically.
- Install copper tubing in rigid or flexible conduit in locations where copper tubing will be exposed to mechanical injury.
- Slope refrigerant piping as follows:
 - Install horizontal hot gas discharge piping with 1/2" per 10 feet downward slope away from the compressor.
 - 2. Install horizontal suction lines with 1/2 inch per 10 feet downward slope to the compressor, with no long traps or dead ends which may cause oil to separate from the suction gas and return to the compressor in damaging slugs.
 - Liquid lines may be installed level.
- K. Install traps and double risers where indicated, and where required to entrain oil in vertical runs.
- Use fittings for all changes in direction and all branch connections.
- M. Install exposed piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.
- N. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.
- O. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.
- P. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1 inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.

- Q. Locate groups of pipe parallel to each other, spaced to permit applying insulation and servicing of valves.
- R. Exterior Wall Penetrations: Seal pipe penetrations through exterior walls using sleeves and mechanical sleeve seals. Pipe sleeves smaller than 6 inch shall be steel; pipe sleeves 6 inch and larger shall be sheet metal.
- S. Fire Barrier Penetrations: Where pipes pass through fire rated walls, partitions, ceilings, and floors, maintain the fire rated integrity. Refer to Division 7 for special sealers and materials.
- T. Make reductions in pipe sizes using eccentric reducer fittings installed with the level side down.
- U. Install strainers immediately ahead of each expansion valve, solenoid valve, hot gas bypass valve, compressor suction valve, and as required to protect refrigerant piping system components.
- V. Install moisture/liquid indicators in liquid lines between filter/driers and thermostatic expansion valves and in liquid line to receiver.
- W. Install moisture/liquid indicators in lines larger than 2-1/8 inch OD, using a bypass line.
- X. Install unions to allow removal of solenoid valves, pressure regulating valves, expansion valves, and at connections to compressors and evaporators.
- Y. Install flexible connectors at the inlet and discharge connection of compressors.

3.04 HANGERS AND SUPPORTS

- A. General: Hanger, supports, and anchors are specified in Division 23 Section "PIPE HANGERS AND SUPPORTS." Conform to the table below for maximum spacing of supports:
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet in length.
- C. Support horizontal copper tubing in accordance with MSS SP-69 Tables 3 and 4, excerpts of which follow below:

NOMINAL PIPE SIZE (Inches)	ROD DIAMETER (Inches)	MAXIMUM SPACING (Feet)
1/2 to 3/4	3/8	5
1	3/8	6
1-1/4	3/8	6
1-1/2	3/8	8
2	3/8	8

D. Support vertical runs at each floor.

3.05 PIPE JOINT CONSTRUCTION

- A. Brazed Joints: Comply with the procedures contained in the AWS "Brazing Manual."
- B. WARNING: Some filler metals contain compounds which produce highly toxic fumes when heated. Avoid breathing fumes. Provide adequate ventilation.

- C. CAUTION: When solenoid valves are being installed, remove the coil to prevent damage. When sight glasses are being installed, remove the glass. Remove stems, seats, and packing of valves, and accessible internal parts of refrigerant specialties before brazing. Do no apply heat near the bulb of the expansion valve.
- D. Fill the pipe and fittings during brazing, with an inert gas (i.e., nitrogen or carbon dioxide) to prevent formation of scale.
- E. Heat joints using oxy-acetylene torch. Heat to proper and uniform brazing temperature.

3.06 VALVE INSTALLATIONS

- A. General: Install refrigerant valves where indicated, and in accordance with manufacturer's instructions.
- B. Install globe valves on each side of strainers and driers, in liquid and suction lines at evaporators, and elsewhere as indicated.
- C. Install a full sized, 3-valve bypass around each drier.
- D. Install solenoid valves ahead of each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at the top.
- E. Electrical wiring for solenoid valves is specified in Division 26. Coordinate electrical requirements and connections.
- F. Thermostatic expansion valves may be mounted in any position, as close as possible to the evaporator.
- G. Where refrigerant distributors are used, mount the distributor directly on the expansion valve outlet.
- H. Install the valve in such a location so that the diaphragm case is warmer than the bulb.
- I. Secure the bulb to a clean, straight, horizontal section of the suction line using two bulb straps. Do not mount bulb in a trap or at the bottom of the line.
- J. Where external equalizer lines are required make the connection where it will clearly reflect the pressure existing in the suction line at the bulb location.
- K. Install pressure regulating and relieving valves as required by ASHRAE Standard 15.

3.07 EQUIPMENT CONNECTIONS

- A. The Drawings indicate the general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow servicing and maintenance.

3.08 FIELD QUALITY CONTROL

- A. Inspect, test, and perform corrective action of refrigerant piping in accordance with ASME Code B31.5, Chapter VI.
- B. Repair leaking joints using new materials, and retest for leaks.

3.09 CLEANING

- A. Before installation of copper tubing other than Type ACR tubing, clean the tubing and fitting using following cleaning procedure:
 - 1. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through the tubing by means of a wire or an electrician's tape.
 - 2. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 - 3. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 - 4. Finally, draw a clean, dry, lintless cloth through the tube or pipe.

3.10 ADJUSTING AND CLEANING

- A. Verify actual evaporator applications and operating conditions, and adjust thermostatic expansion valve to obtain proper evaporator superheat requirements.
- B. Clean and inspect refrigerant piping systems in accordance with requirements of Division-23 General Mechanical Requirements
- C. Adjust controls and safeties. Replace damaged or malfunctioning controls and equipment with new materials and products.

3.11 COMMISSIONING

- A. Charge system using the following procedure:
 - 1. Install core in filter dryer after leak test but before evacuation.
 - 2. Evacuate refrigerant system with vacuum pump; until temperature of 35 deg F is indicated on vacuum dehydration indicator.
 - 3. During evacuation, apply heat to pockets, elbows, and low spots in piping.
 - 4. Maintain vacuum on system for minimum of 5 hours after closing valve between vacuum pump and system.
 - 5. Break vacuum with refrigerant gas, allow pressure to build up to 2 psi.
 - 6. Complete charging of system, using new filter dryer core in charging line. Provide full operating charge.
 - 7. Train Owner's maintenance personnel on procedures and schedules related to start-up and shut-down, troubleshooting, servicing, and preventative maintenance of refrigerant piping valves and refrigerant piping specialties.
- B. Review data in Operating and Maintenance Manuals. Refer to Division 01 section "Project Closeout."
- C. Schedule training with Owner with at least 7 days advance notice.

END OF SECTION 232300

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This Section describes the galvanized steel, flexible, and aluminum ductwork for HVAC duct systems in accordance with SMACNA Duct Construction Standards, except as otherwise specified.
- B. The construction material for each ductwork system shall be as listed in the "Ductwork Material Schedule" at the end of this Section.
- C. This Section also describes the fittings, access doors, hangers and supports, manual volume dampers and sealants for each ductwork system as required.

1.02 RELATED WORK

A. Section 230594 - Balancing of Air and Hydronic Systems.

1.03 REFERENCES

- A. ASHRAE Handbook Fundamentals; Latest Edition.
- B. SMACNA HVAC Duct Construction Standards Metal And Flexible (latest issue)
- C. ASTM A 653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
- D. ASTM B 209 Specifications for Aluminum and Aluminum-Alloy Sheet and Plate.
- E. NFPA 90A Installation of Air Conditioning and Ventilating Systems.
- F. UL 555 S Fire Dampers & Smoke Dampers.
- G. NFPA 96 Standard for Commercial Cooking Operations
- H. New York State Mechanical Code.

1.04 REGULATORY REQUIREMENTS

A. Construct ductwork to NFPA 90A and New York State Mechanical Code standards.

1.05 SUBMITTALS

- A. Ductwork shop drawings for approval:
 - 1. Coordinate layout duct drawings that differ from ductwork shown on the Drawings.
 - 2. The review of deviations will be for pressure drop only. The review will not address clearances or accessibility to maintain or balance the air systems. No dimensional or coordination check of the shop drawings will be made. The Contractor has the sole responsibility to review the Drawings, coordinate ductwork fabrication, and provide clearances and access for installation, maintenance and balancing of this work, and work of other trades. Unless specifically dimensioned, Drawings indicate approximate locations only. The Contractor has the sole responsibility to locate and route the ductwork.
 - 3. Deviations such as changing direction or transforming or dividing ductwork must maintain ductwork cross-sectional area and not exceed transformation taper of 15 degrees.
 - 4. Plans and section showing all equipment and accessories.

- 5. Minimum 3/8 in. scale, double line, showing sizes, transverse joints, transitions, elevations, clearances and accessories; sections where required.
- B. Shop details and catalog cuts of:
 - 1. Ductwork construction, including gauge and bracing schedule.
 - 2. Supports.
 - 3. Dampers.
 - 4. Turning vanes.
 - 5. Fire dampers.
 - 6. Access doors.
 - Flexible connections.
 - Other accessories.

1.06 QUALITY ASSURANCE

- A. Construct all ductwork in accordance with referenced SMACNA Standards, except as otherwise stated. Ductwork pressure classifications shall be in accordance with referenced SMACNA Standards, except as otherwise specified.
- B. For all uninsulated ductwork casings and plenums located outdoors, the reinforcement members shall be galvanized steel or stainless steel.
- C. Construction pressure classification of ductwork are shown on the Drawings. If not shown, the pressure classification shall be greater than or equal to the maximum operating static pressure (minimum 2" w.c. pressure classification).
- D. All ductwork shall be free from pulsation, chatter, vibration and objectionable noise. If any of these defects appear after a system is in operation, correct by removing and replacing, or reinforcing the ductwork, at no additional cost to the Owner.
- E. For all galvanized steel ductwork, zinc coating shall be minimum G90 per ASTM A 653.

PART 2 - PRODUCTS

2.01 GALVANIZED STEEL RECTANGULAR DUCTS AND FITTINGS

- A. Construct ducts of galvanized sheet steel meeting ASTM A 653 with G90 coating designation, and in accordance with the latest SMACNA HVAC Duct Construction Standards Metal And Flexible and pressure classifications as stated on the Drawings (minimum 2" w.c. pressure classification).
- B. No ducts shall be less than No. 22 U.S. Gauge.
- C. Piping, conduit and structure shall not penetrate ductwork. Where this condition cannot be avoided and with the written permission of the Architect/Engineer, follow SMACNA HVAC Duct Construction Standards Metal and Flexible, except that sides of transition sections shall slope a maximum of 15 degrees.
- D. Provide 90-degree full-radius elbows with a centerline radius 1.5 times the duct width in the plane of the bend.
- E. For elbows with centerline radius less than 1.5 times the width of the duct in the plane of the bend, provide turning vanes.
- F. Provide square throat elbows with manufactured turning vanes.

- G. All dissimilar metals shall be connected with flanged joints made up with fiber or neoprene gaskets to prevent contact between dissimilar metals. Flanges shall be fastened with bolts protected by ferrules and washers made of the same materials as the gaskets.
- H. For split fittings, the split shall be proportional to the air flow. Construct per SMACNA HVAC Duct Construction Standards- Metal and Flexible.
- I. Transitions and Offsets shall follow SMACNA HVAC Duct Construction Standards Metal and Flexible, except that sides of transitions shall slope a maximum of 15 degrees.
- J. All branch take-offs perpendicular to the main shall be a 45 degree entry.
- K. Longitudinal seams shall be of the Pittsburgh Lock type outlined in the SMACNA HVAC Duct Construction Standards Metal and Flexible.
- L. Duct transverse joints shall be selected and used consistent with the static pressure class, applicable sealing requirements, materials involved, duct support intervals and other provisions for proper assembly of ductwork outlined in the SMACNA HVAC Duct Construction Standards Metal and Flexible. Transverse joints T-25a, T-25b (Ductmate) shall only be used. Metal clips will only be allowed (NO PVC). Ductmate shall not be used for the following (use transverse joints T-15 through T-24 in these cases):
 - 1. The Ductmate '45' system shall not be used for applications with duct gauges heavier than 10 or lighter than 22.
 - 2. The Ductmate '35' system shall not be used for applications with duct gauges heavier than 16 GA. or lighter than 26 GA.
 - 3. The Ductmate '25' system shall not be used for application with duct gauges heavier than 20 GA. or lighter than 26 GA.

2.02 TURNING VANES

- A. Manufactured with same material as ductwork that it is installed in and to the same pressure classification as ductwork that they are installed in.
- B. Provide turning vanes in all square duct elbows and as noted on the Drawings.
- C. Vanes shall be single thickness Small Vane as detailed in SMACNA HVAC Duct Construction Standards Metal and Flexible.
- D. Where a rectangular duct changes in size at a square-throat elbow fitting, use single thickness turning vanes with trailing edge extensions aligned with the sides of the duct.

2.03 ACCESS DOORS

- A. For access doors for use in ductwork receiving Fire Rated Blanket Insulation see Ductwork Insulation Section for requirements. Fabricate all other access doors in accordance with SMACNA Duct Construction Standards Metal And Flexible and as indicated.
- B. For HVAC duct systems, construct doors of the same material as the ductwork. Minimum size of access doors shall be 8 inches by 8 inches, unless shown otherwise.
- C. Provide walkthrough doors where shown. These doors shall have a minimum clear width of 18 inches. Provide doors with 8 inch square double pane wire glass windows. Locate windows not to exceed 5 feet-6 inches to centerline above finished floor of installed casing. Walk-through doors shall be operable from both sides of the door.

- D. Access doors shall be insulated same as duct.
- E. Provide with continuous neoprene gaskets around perimeter of access doors for airtight seal.
- F. Provide all access doors with cam lock latches.
- G. Provide access doors with watertight gaskets in shower room exhaust ductwork. Doors shall be of extra-heavy stainless construction.
- H. All access doors serving a fire damper shall be painted red and shall have a label with white letters not less than ½ inch high reading "FIRE DAMPER". No external ductwork insulation shall conceal a fire damper access door unless there is a label attached to the insulation indicating the exact location of the access door.
- I. Provide access doors in following locations:
 - 1. Heaters and coils in ducts: entering and leaving side.
 - Automatic dampers: linkage side.
 - 3. Fire damper, on both sides of ducts.
 - 4. Smoke detection heads.
 - On both sides of ducts where necessary to provide maintenance accessibility to equipment on either side.
 - 6. VAV boxes
 - 7. Heating and Cooling coils.
 - 8. Fan Plenums.
 - 9. In-Line Fans (suction and discharge sides)
 - 10. Other items requiring access for service/maintenance
- J. Where duct access doors are concealed the Contractor shall furnish and pay for installation of access doors to be mounted in the fire rated walls and ductwork enclosures. The access doors must be fire resistive and minimum 6" larger on each side then the duct access door for the above mentioned applications.

2.04 MANUAL VOLUME DAMPER

- A. Fabricate in accordance with SMACNA Duct Construction Standards Metal And Flexible, and as indicated.
- B. Fabricate single blade dampers for duct sizes up to 6 inches in height.
- C. Fabricate multi-blade damper of opposed blade pattern with maximum blade sizes of 4 inches for ducts above 6 inches in height. Assemble center and edge crimped blades in prime coated or galvanized channel frame with suitable hardware.
- D. Except in round ductwork 12 inches and smaller, provide end bearings. On multiple blade dampers, provide oil-impregnated nylon or sintered bronze bearings.
- E. Provide locking, indicating quadrant regulators on single and multi-blade dampers. Where rod lengths exceed 30 inches, provide regulator at both ends.
- F. On insulated ducts mount quadrant regulators on stand-off mounting brackets, bases, or adapters.
- G. Volume damper shall be provided at each duct branch and also where shown on the Drawings. Volume dampers must be installed at each branch even if they are not shown on the Drawing.

- H. Approved Manufacturers:
 - 1. Ruskin Mfr. Co.
 - 2. Arrow Damper & Louver.
 - 3. Imperial Damper Co.

2.05 BACKDRAFT DAMPERS

- A. Dampers shall be low-leakage, parallel-blade type. Damper sizes shall be suitable for duct sizes noted on the Drawings. The dampers shall be suitable for a minimum 4000 fpm velocity.
- B. Damper frames shall be minimum No. 12 gauge galvanized steel blades shall be minimum No. 16 gauge galvanized steel or Type 6063-T5 aluminum with press-fit ball bearings.
- C. Dampers shall be complete with adjustable counterweights and linkage for duty at .20 inches w.g. and 3500 fpm.
- D. Provide neoprene or silicone rubber blade seals.
- E. Approved manufacturers Ruskin Manufacturing Company.

2.06 DUCT TEST HOLES

- A. Cut or drill temporary test holes in ducts as required. Cap with neat patches, neoprene plugs, threaded plugs, or threaded or twist-on metal caps.
- B. Permanent test holes shall be factory fabricated, air tight flanged fittings with screw cap. Provide extended neck fittings to clear insulation.

2.07 DUCT HANGERS AND SUPPORTS

- A. Provide trapeze, strap or angle iron hangers meeting SMACNA HVAC Duct Construction Standards Metal and Flexible.
- B. Materials of hangers, supports and fasteners shall conform to the manufacturer's load ratings.
- C. Hangers, supports, upper attachments and inserts shall be hot-dip galvanized steel or stainless steel
- D. Fasteners for HVAC duct systems shall be hot-dip galvanized steel, cadmium-plated steel or stainless steel.
- E. Secure ductwork hangers attached to concrete structures and slabs with embedded inserts, anchor bolts or concrete fasteners. A safety factor of 5 should be used in selection of all inserts and expansion bolts (if applicable safety factor shall be determined by analysis of seismic loads and the greater safety factor shall be used).
- F. Provide hangers and supports not more than 12 inches from each face of a horizontal elbow.
- G. Plenums shall be supported to permit personnel to enter the plenum. If no structural steel design is shown on the Drawings, it is the responsibility of the Contractor to provide the services of a licensed structural engineer in the in which the project is to be constructed to submit a structural design for review.

2.08 SEALANTS

- A. Where ducts are not continuously welded or soldered, provide sealants and gaskets as required to meet the specified duct leakage allowance.
- B. Provide Gaskets, Sealers, Mastics and Tapes as manufactured by Ductmate.

2.09 FIRE DAMPERS

- A. Fabricate and install in accordance with NFPA 90A and UL Safety Standard 555, and AMCA Standard 500.
- B. Fire Resistance: For penetrations through construction rated less than 3 hours, 1 ½ hours. For penetrations through construction rated for 3 hours or more, 3 hours.
- C. Pressure Differential Rating: 4 in. w. g.
- D. Velocity Rating: 2000 fpm
- E. Fabricate curtain type dampers of galvanized steel with interlocking blades. Provide stainless steel closure springs and latches for horizontal installations. Configure with blades in air stream. Fabricate fire dampers for vertical and horizontal position.
- F. Fabricate multiple blade fire dampers with 16 gage galvanized steel frame and blades, oil-impregnated bronze or stainless steel sleeve bearings and plated steel axles, 1/8 x 1/2 inch plated steel concealed linkage, stainless steel closure spring, blade stops, and lock.
- G. Fusible links, UL 33, shall separate at 165 degrees F.
- H. Acceptable Manufacturers:
 - 1. Greenheck Model DFD 150, 200 and 350
 - 2. Ruskin Mfr. Co.
 - 3. Arrow Damper & Louver.
 - 4. Imperial Damper Co.

2.10 SMOKE DAMPERS

- A. Fabricate and install in accordance with NFPA 90A and UL Safety Standard 555S, and AMCA Standard 500.
- B. Leakage Class: Leakage Class II per UL 555S
- C. Pressure Differential Rating: 4 In. w. g.
- D. Air Flow Velocity: 2000 fpm
- E. Elevated Temperature Rating: 350 Deg. F per UL555S
- F. Fabricate smoke dampers with 16 gage galvanized steel frame and blades, sintered bronze sleeve type bearings rotating in polished extruded holes in the damper frame, 1/2 inch dia. (minimum) plated steel axles, linkage concealed in the jamb, stainless steel blade stops, silicone rubber blade edge seals, and stainless steel compression type jamb seals.
- G. Actuators: 24 VDC, 2-position, external mounting

- H. Acceptable Manufacturers:
 - Greenheck Model SMD-200 and SMD-300.
 - 2. Ruskin Mfr. Co.
 - 3. Arrow Damper & Louver.
 - 4. Imperial Damper Co.

2.11 COMBINATION FIRE SMOKE DAMPERS

- Fabricate and install in accordance with NFPA 90A and UL Safety Standards 555 & 555S, and AMCA Standard 500.
- B. Fire Resistance: For penetrations through construction rated less than 3 hours, 1 ½ hours. For penetrations through construction rated for 3 hours or more, 3 hours.
- C. Leakage Class: Leakage Class II per UL 555S
- D. Fusible links, UL 33, shall separate at 165 degrees F.

OR

- E. Resettable links shall be provided in lieu of a fusible link. Resettable link shall interrupt power to the actuator causing the actuator's spring return mechanism to cause the damper to close at 165 degrees F. Resettable link to be provided with an electric sensor (thermostat). Sensor to be of the manual reset type and shall be capable of being reset after the temperature has cooled down below the sensor set point.
- F. Pressure Differential Rating: 4 In. w. g.
- G. Air Flow Velocity: 2000 fpm
- H. Elevated Temperature Rating: 350 Deg. F per UL555S
- I. Fabricate multiple blade fire dampers with 16 gage galvanized steel frame and blades, oil-impregnated bronze or stainless steel sleeve bearings and plated steel axles, 1/8 x 1/2 inch plated steel concealed linkage, stainless steel closure spring, blade stops, and lock.
- J. Actuators: 24 VDC, 2-position, external mounting
- K. Acceptable Manufacturers:
 - 1. Greenheck Model FSD-200
 - 2. Ruskin Mfr. Co.
 - 3. Arrow Damper & Louver.
 - 4. Imperial Damper Co.

2.12 KITCHEN EXHAUST DUCTWORK (PRE-FABRICATED)

- A. Furnish single-wall, factory built, grease duct for use with Type I kitchen hoods, which conforms to the requirements of NFPA-96. Products shall be ETL listed to UL-1978 and CAN/ULC-S662 for venting air and grease vapors from commercial cooking operations as described in NFPA-96.
- B. The duct wall shall be constructed of .036 and .047 thick stainless steel and be available in diameters 8" through 24".

- C. All supports, fan adapters, hood connections, fittings and expansion joints required to install grease duct shall be included.
- D. Roof penetrations shall comply with listed clearance to combustibles. The grease duct will terminate at the fan adapter plate, will be fully welded to the fan adapter plate and the fan adapter plate will be fastened to the curb using a suitably sized fastener provided by others. See manufacturers installation instructions for more details.
- E. Grease duct joints shall be held together by means of formed vee clamps and sealed with 3M Fire Barrier 2000+. Screws used to secure the vee clamps shall be of the hex-head type with flanged stops and tapered "lead in" threads for easy starting. Nuts shall be retained by means of a free-floating cage to allow easy alignment.
- F. Single-Wall Grease Duct shall be installed in accordance with the manufacturer's "Installation, Operation and Maintenance Manual", ETL listing and state and local codes.
- G. Grease duct installed outside of the building shall be protected against accidental damage or vandalism.
- H. Support vertically installed grease duct from the building structure using rigid structural supports. Anchor supports to the structure by welding or bolting steel expansion anchors or concrete inserts. Support horizontally installed grease duct from the building structure using above method. 1/2" Threaded rod and saddles may also be used for the support of horizontal grease duct.
- I. Fans shall be supported independently from the grease duct sections. Protect grease duct from twisting or movement caused by fan torque or vibration.
- J. Duct shall slope not less than one-fourth unit vertical in 12 units horizontal toward a grease reservoir. If a grease reservoir is not provided, slope shall be towards the hood.

2.13 KITCHEN EXHAUST DUCTWORK (BLACK IRON)

- A. All longitudinal seams shall be continuously welded. Transverse joints made in the shop shall also be made with a continuous weld. Kitchen range exhaust ducts shall be constructed of and supported as follows:
 - 1. Ducts with a cross-sectional area up to and including 155 square inches shall be No. 16 gauge black iron.
 - 2. Ducts with a cross-sectional area over 155 square inches but less than 200 square inches shall be No. 14 gauge black iron.
 - 3. Ducts with a cross-sectional area equal to or greater than 200 square inches shall be No. 12 gauge black iron.
- B. Ducts shall be installed without forming dips or traps.
- C. Overlapping duct connections of either the telescoping or the bell type shall be used for welded field joints, not butt-weld connections. The inside duct section shall always be uphill of the outside duct section. The difference between inside dimensions of overlapping sections shall not exceed ½ in. The overlap shall not exceed 2 in.
- D. For cleanout access doors requirements see the Ductwork Insulation Section.
- E. All elbows shall be radius type with centerline radius to 1-1/4 times the duct width.

- F. Locate the ductwork with the minimum clearances to combustible material required by NFPA 96 Chapter 4, Duct systems.
- G. Exhaust fans with ductwork connected to both sides shall have access doors for cleaning and inspection within 3 ft of each side of the fan.
- H. Openings shall be provided at the sides or at the top of the duct, whichever is more accessible, and at changes of direction.
- On horizontal ducts at least one 20 in. by 20 in. opening shall be provided for personnel entry. Horizontal ducting shall be secured sufficiently to allow for the weight of personnel entry into the duct. Where an opening of this size is not possible, openings large enough to permit thorough cleaning shall be provided at 12-ft intervals.
- Duct shall slope not less than one-fourth unit vertical in 12 units horizontal toward a grease reservoir. If a grease reservoir is not provided, slope shall be towards the hood.

2.14 ALUMINUM DUCTWORK

- A. Construct ducts of minimum No. 20 gauge aluminum sheet meeting ASTM B 209, Series 3000 Alloy.
- B. Construct ductwork as per "GALVANIZED STEEL RECTANGULAR DUCTS AND FITTINGS" section above unless otherwise noted in this section.
- C. At shower room locations, pitch horizontal ductwork minimum \(\frac{1}{2} \) inch per foot such that low point is at shower room.

2.15 CLOTHES DRYER EXHAUST DUCTWORK

- A. Construct ducts of rigid metal and shall have a smooth interior finish.
- B. Exhaust system shall be independent of all other systems.
- C. Fire dampers, combination fire/smoke dampers, and any similar device that will obstruct the exhaust flow, shall be prohibited in clothes dryer exhaust ducts.
- D. Each vertical riser shall be provided with a means for cleanout.
- Terminations at building exterior shall be provided with a backdraft damper. Screens shall not be installed at the duct termination.
- F. Ducts shall not be connected or installed with sheet metal screws or other fasteners that will obstruct the exhaust flow. The male end of the duct at overlapped duct joints shall extend in the direction of airflow.
- G. Clothes dryer transition ducts used to connect the appliance to the exhaust duct system shall be limited to single lengths not to exceed 8 feet and shall be listed and labeled for the application. Transition ducts shall not be concealed within construction.
- H. Clothes dryer exhaust ducts shall not be connected to a vent connector, vent, or chimney.
- Clothes dryer exhaust ducts shall not extend into or through ducts or plenums.
- Install in accordance with the manufacturer's instructions and the Mechanical Code of New York State.

2.16 STANDARD FLEXIBLE CONNECTIONS

- A. Provide fabric flexible duct connections.
- B. Fabric shall be UL approved, fire-retardant, closely-woven glass, double coated with neoprene, and a minimum of 4 inches wide.
- C. Shall be installed at duct connections to all ceiling hung fans and where vibration will be transmitted through ductwork.
- D. Approved Manufacturers:
 - 1. "Ventglas" by Vent Fabrics, Inc.

2.17 HEAVY DUTY FLEXIBLE CONNECTIONS

- A. Heavy Duty Flexible Connections shall be used in high pressure (greater than 2 in. w.c.), high temperature (greater than 150 degree F) air applications or where the gas is highly corrosive and the duct connector must be leak proof.
- B. Flexible Connectors shall be flanged. If installed outdoors, all metallic components shall be stainless steel construction. Provide flexible connector materials of construction as recommended by the manufacturer for the pressure, temperature, and gas that is being used in air handler system.
- C. Approved Manufacturers:
 - 1. Mercer Rubber Company

2.18 FLEXIBLE DUCTS

- A. Comply with SMACNA HVAC Flexible Duct Construction Standards and NFPA 90A.
- B. Provide where indicated on the Drawings Flexmaster Type TL- M Flexible Metal UL181 Class I Air Duct.
- C. The duct shall be constructed of .005" thick 3003-H14 aluminum alloy in accordance with ASTM B209.
- The duct shall be spiral wound into a tube and spiral corrugated to provide strength and flexibility.
- E. The internal working pressure rating shall be at least 10" w.g. positive and 10" w.g. negative with a bursting pressure of at least 2½ time the working pressure.
- F. The duct shall be rated for a velocity of at least 5500 feet per minute.
- G. The duct must be suitable for continuous operation at a temperature range of -40° F to +250° F.
- H. Factory insulate the flexible duct with fiberglass insulation. The R value shall be at least 4.2 at a mean temperature of 75° F.
- Cover the insulation with a fire retardant metalized vapor barrier jacket reinforced with crosshatched scrim having a permeance of not greater than 0.05 perms when tested in accordance with ASTM E96, Procedure A.
- J. Install flexible metal duct as per SMACNA HVAC Duct Construction Standards Metal and Flexible (Latest Edition).

K. Flexible ductwork shall only be installed where shown on the Drawings.

2.19 GALVANIZED STEEL ROUND DUCTS AND FITTINGS

- A. Construct ducts of galvanized sheet steel meeting ASTM A 653 with G90 coating designation, and in accordance with the latest SMACNA HVAC Duct Construction Standards Metal and Flexible (Latest Edition).and pressure classifications as stated on the Drawings (minimum 2" w.c. pressure classification). When the ductwork pressure classification of these standards is exceeded, construct galvanized steel round exhaust ductwork in accordance with SMACNA Round Industrial Duct Construction Standards.
- B. For ductwork through 60 inches in diameter, provide ducts of spiral lock-seam construction.
- C. For ductwork over 60 inches in diameter, provide ducts of welded longitudinal seam construction.
- D. For ductwork through 36 inches in diameter, use beaded sleeve transverse joints.
- E. For ductwork over 36 inches in diameter, use gasketed-flanged Van Stone transverse joints. Gasket shall be "440 Gasket Tape" by Ductmate Industries, Inc.
- F. For ductwork under a positive pressure through 96 in. diameter and 10 in. w. g. no reinforcing is required. For ductwork under a negative pressure in exposed areas use duct gauge that will minimize the use of reinforcing as appropriate for the pressures involved.
- G. Draw band joints will not be permitted.
- H. All elbows shall be constructed with a centerline radius equal to 1.5 times the duct diameter.
- I. Provide matching galvanized steel fittings with continuously welded seams and joints.
- J. All take-off connections to duct headers shall be made using tee (90 degrees), lateral (45 degrees), tee cross, lateral cross and "Y" branch fittings of the conical type. All fittings fabricated as separate fittings shall have continuous welds along all seams and joints.
- K. The use of two-piece mitered, vaned elbows will be permitted only with specific written approval from the Architect/Engineer. Provide turning vanes as per SMACNA HVAC Duct Construction Standards Metal and Flexible.

PART 3 - EXECUTION

3.01 INSTALLATION - GENERAL

- A. Install ductwork in accordance with applicable SMACNA Duct Construction Standards Metal And Flexible and approved submittals, and as shown on the Drawings. Duct sizes shown are inside clear dimensions. Where internal duct liners are used, duct sizes shown are inside clear of liner. For ductwork located outside, provide reinforcing sufficient to support wind and snow loads.
- B. The Drawings indicate general locations of ducts. Make additional offsets or changes in direction as required at no additional cost to the Owner.
- C. Wherever ductwork is divided, maintain the cross-sectional area.
- D. Do not exceed 15-degree taper when constructing duct transitions.

- E. Close the open ends of ducts during construction to prevent debris and dirt from entering.
- F. Secure casings and plenums to curbs according to the requirements of the SMACNA HVAC Duct Construction Standards Metal and Flexible.
- G. Make changes in direction with long radius bends.
- H. All unused portions of HVAC supply air and exhaust louvers shall be blanked off with Louver Blank Off Panels, see Ductwork Insulation Section.
- All welded and scratched galvanized steel surfaces shall be touched up with zinc-rich paint.
- J. 2 Hr. rated wall penetration: Where small size duct (up to 6 inches x 6 inches) is penetrating a 2 Hr wall the duct shall be constructed of 16 gauge galvanized sheet metal.
- Locate ducts with sufficient space around equipment to allow normal operating and maintenance activities.
- L. Patch and repair all wall penetrations.
- M. Insulation: Where Drawings and Specifications indicate that ducts are to be insulated make provisions for neat insulation finish around damper operating quadrants, splitter adjusting clamps, access doors, and similar operating devices. Metal collar equivalent in depth to insulation thickness and of suitable size to which insulation may be finished to be mounted on duct.

3.02 FITTING INSTALLATION

- A. Use minimum of four sheet metal screws per joint.
- B. Apply approved sealant on duct-to-duct joint before assembly. Apply additional sealant after assembly to make joint airtight.

3.03 HANGER AND SUPPORT INSTALLATION

- A. Support ductwork hung from building structure using trapeze, strap or angle iron hangers conforming to SMACNA HVAC Duct Construction Standards Metal and Flexible. Provide supplemental structural steel to span joists where required.
- B. Do not support ductwork from furring, hung ceilings, metal floor deck, metal roof deck or from another duct or pipe.
- C. Do not hang lighting fixtures or piping from ductwork.
- D. Do not use perforated band iron.
- E. Support ductwork at each change in direction.
- F. Where duct connects to or terminates at masonry openings or at floors where concrete curbs are not used, provide a continuous 1½ inch by 1½ inch by 3/16 inch galvanized steel angle support around the ductwork. Bolt and seal the supports to the building construction using expansion bolts and caulking compound. Seal shall be watertight at floor or wall and duct such that a spill will no pass down through the opening.
- G. Fasten plenums and casings connected to concrete curbs using continuous 1 $\frac{1}{2}$ inch by 1 $\frac{1}{2}$ inch by $\frac{1}{4}$ inch galvanized steel angle support. Set the angle support in a continuous bead of

caulking compound and anchor it to the curb with 3/8 inch diameter anchors on 16 inch centers. Terminate sheet metal at curb and bolt to angle support. Seal sheet metal to curb with a continuous bead of caulking.

H. For insulated ductwork, install hangers on the outside of the insulation. To maintain the insulation value, inset a piece of 1 inch thick, 6 pcf fiberglass board with a foil/scrim/kraft (FSK) jacket at these supports.

3.04 SEALING

- A. Where ductwork is not continuously welded, soldered or gasketed, make seams and joints airtight with sealants.
- B. Install the sealants in accordance with the sealant manufacturer's instructions and recommendations.
- C. Seal all ductwork seams, joints, fastener penetrations and fittings connections with sealants in accordance with SMACNA Seal Classifications as required by SMACNA Duct Pressure Classification. All ductwork, regardless of pressure classification, shall have a minimum Seal Class B.
- D. Completely fill all voids when liquid sealing ductwork. Several applications may be necessary to fill voids caused by shrinkage or runout of sealant.

3.05 DUCT-MOUNTED DEVICES AND ACCESS DOORS

- A. Install all dampers, coils, airflow measuring stations, humidifiers and other duct-mounted devices, specified in other sections of the specifications or as shown and provide transformations to dimensions as required. Install devices in accordance with manufacturer's recommendations. Install dampers and coils a minimum of 4 feet away from changes indirection or transitions. Allow five (5) equivalent diameters of straight ductwork upstream and one (1) equivalent diameter of straight ductwork downstream of airflow measuring devices.
- B. Install access doors in ductwork, plenums and where specified and as shown. Provide access doors for inspection and cleaning automatic dampers, at fire dampers, and elsewhere as indicated. Provide minimum 18 x 18 inch size for shoulder access and as indicated. Install access doors in the bottom of the ductwork unless they are inaccessible in this location; then install the access doors in either the side or top of the ductwork, whichever is more accessible.
- C. Provide fire damper at locations indicated, and where outlets pass through fire rated components and where required by authorities having jurisdiction. Install with required perimeter mounting angles, sleeves, breakaway, duct connections, corrosion resistant springs, bearings, bushings and hinges.
- D. Demonstrate re-setting of fire dampers to authorities having jurisdiction and Engineer.
- E. Provide flexible connections immediately adjacent to equipment in ducts associated with motorized equipment. Cover connections to medium pressure fans with leaded vinyl sheet, held in place with metal straps.
- F. Pilot Ports: Locate pilot ports for measuring airflow in each main supply duct at the downstream end of the straightest run of the main and before the first branch take-off. Form pilot ports by drilling 7/16 inches holes in the duct, lined up perpendicular to airflow on maximum 8-inch centers and at least three to a duct, evenly spaced. Holes to be plugged with plastic plugs. Provide access to these for future rebalancing.

3.06 CONTROL DAMPER INSTALLATION

- A. Duct openings shall be free of any obstruction or irregularities that might interfere with blade or linkage rotation or actuator mounting. Duct openings shall measure 1/4" larger than damper dimensions and shall be square, straight, and level.
- B. Individual damper sections, as well as entire multiple section assemblies, must be completely square and free from racking, twisting, or bending. Measure diagonally from upper corners to opposite lower corners of each damper section. Both dimensions must be equal ±1/8".
- C. Follow manufacturer's instructions for field installation of control dampers. Unless specifically designed for vertical blade application, dampers must be mounted with blade axis horizontal.
- D. Install extended shaft or jackshaft per manufacturer's instructions. (Typically, a sticker on the damper face shows recommended extended shaft location. Attach shaft on labeled side of damper to that blade.)
- E. Damper blades, axles, and linkage must operate without binding. Before system operation, cycle damper after installation to assure proper operation. On multiple section assemblies, all sections must open and close simultaneously.
- F. Provide a visible and accessible indication of damper position on the drive shaft end.
- G. Support ductwork in area of damper when required to prevent sagging due to damper weight.
- H. After installation of low-leakage dampers with seals, caulk between frame and duct or opening to prevent leakage around perimeter of damper.
- Dampers that are to be installed with air flow measuring stations shall be installed in duct runs with a minimum amount of straight duct upstream and downstream of the damper to allow accurate flow readings by the air flow measuring station. The Contractor shall verify with the manufacturer the length of straight duct runs required.

3.07 SMOKE DAMPER INSTALLATION

- A. Install dampers in accordance with manufacturer's UL Installation Instructions, labeling, and NFPA 90A at locations indicated on the Drawings.
- B. Dampers shall be accessible to allow inspection, adjustment, and replacement of components. Access doors in ductwork, plenums, walls, ceilings, or other general building construction shall be provided. Coordinate with other trades.
- C. Where a damper is installed within a duct, a smoke detector shall be installed in the duct within 5 feet of the damper with no air outlets or inlets between the detector and the damper. The detector shall be listed for the air velocity, temperature and humidity anticipated at the point where it is installed. Other than in mechanical smoke control systems, dampers shall be closed upon fan shutdown where local smoke detectors require a minimum velocity to operate.
- D. Where a damper is installed above smoke barrier doors in a smoke barrier, a spot-type detector listed for releasing service shall be installed on either side of the smoke barrier door opening.
- E. Where a damper is installed within an unducted opening in a wall, a spot-type detector listed for releasing service shall be installed within 5 feet horizontally of the damper.
- F. Where a damper is installed in a corridor wall or ceiling, the damper shall be permitted to be controlled by a smoke detection system installed in the corridor.

G. Where a total-coverage smoke detector system is provided within areas served by an HVAC system, dampers shall be permitted to be controlled by the smoke detection system.

3.08 DUCTWORK AND EQUIPMENT LEAK TESTING

- Leak test each ductwork system within ten working days of ductwork installation and before ductwork is insulated and concealed.
- B. All HVAC ductwork shall be tested. Follow general procedures and use apparatus as outlined in the SMACNA HVAC Air Duct Leakage Test Manual.
- C. Test all ductwork at 100 percent of the pressure classifications indicated.
- D. Air testing during erection shall include separate leakage air tests of air riser, horizontal distribution system, and, after all ductwork is installed and the central stations apparatus is erected, leakage testing of the whole system.
- E. Use Appendix C in the SMACNA HVAC Air Duct Leakage Test Manual to determine allowable leakage rates for each duct section tested.
- F. All devices, including access doors, airflow measuring devices, sound attenuators, damper casings, sensors, test ports, etc. that are furnished and/or installed in duct systems shall be included as part of the duct system leakage allowance. All joints shall be inspected and checked for audible leakage, repaired, if necessary, and retested. Duct leakage shall be limited to the following:

Average Size of Run Diameter or Equivalent	*A/100 ft. Run
12 inches or less	10
20 inches or less	15
30 inches or less	25
40 inches or less	30
50 inches or less	30
* (A) = Permissible loss in cfm	

G. Total system leakage shall not exceed 10 percent of the scheduled design capacity of the system when tested as per SMACNA testing methods.

3.09 DUCTWORK AND EQUIPMENT LEAK TESTING - GREASE EXHAUST AND WATER LEAK PROOF DUCTWORK

- A. Prior to use, covering or concealment of any ductwork perform a leakage test in the presence of the Owner and Authority Having Jurisdiction.
- B. Perform a light test or other approved test to determine that all welded or brazed joints are liquid tight.
- C. Light test shall be performed by passing a lamp having a power rating of not less than 100 watts through the entire section of duct to be tested.
 - 1. The lamp shall be open so as to emit light in all directions.
- D. Repair any visible light leakage.

3.10 PAINTING

A. Upon completion of the installation, remove all protecting materials, thoroughly remove all scale and grease and leave in a clean condition for painting. Ductwork to be painted shall be as shown on the Drawings. Painting shall be in accordance with the requirements of the "Painting" Specification Section.

3.11 DUCTWORK MATERIAL SCHEDULE

AIR SYSTEM	DUCTWORK MATERIAL
Supply, Outside Air & Exhaust Ductwork	Galvanized Steel
Kitchen Exhaust	Black Iron
Shower Room Exhaust	Aluminum
Ductwork Exposed to Weather	Aluminum
Clothes Dryer Exhaust	Rigid Metal

END OF SECTION 233113

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. Provide exhaust fans, as specified herein, of sizes and capacities scheduled and in locations shown on drawings.

1.02 REFERENCE CODES AND STANDARDS

- A. AMCA 99 Standards Handbook
- B. AMCA 210 Laboratory Methods of Testing Fans for Rating
- C. AMCA 300 Reverberant Room Method for Sound Testing of Fans
- D. ASHRAE Handbook, HVAC Applications Volume "Sound and Vibration Control"
- E. UL listed and labeled.

1.03 SUBMITTALS

- A. Shop Drawings Show fan layout, housing, materials, gauges, dimensions, weights and installation details
- B. Product data Manufacturer's fan performance (data includes cfm, rpm, bhp, motor nameplate data, tip speed, outlet velocity and static pressure) and sound performance (data includes sound power level ratings by octave bands) as tested in accordance with AMCA Standards 210 and 300.
- C. Fan performance curves Submit curves for all fans with system performance shown, and for plus or minus 10 percent and plus or minus 20 percent change in fan rpm. Curves shall include plotted rpm, horsepower, cfm, static pressure, and fan surge line and operating point.
- D. Certified AMCA Ratings Submit ratings for air and sound performance.
- E. UL Listing Submit listing if specified.

1.04 QUALITY ASSURANCE

- A. Factory balance each fan statically and dynamically, test run before shipment, and key fan wheel to fan shaft. Fans shall operate quietly and without pulsation or vibration. Conduct sound power level tests for each type fan at the factory in accordance with AMCA 300.
- B. Fans shall operate in the stable range of their performance curves.
- C. The fan external static pressures shown in the schedules are those required by the ductwork and apparatus, and do not include the internal and intake fan losses, inlet vanes or integral outlet dampers, inlet screens, outlet velocity heads or drive losses.
- D. Factory performance test each fan assembled in or as part of apparatus specified to be performance tested. Test shall display scheduled performance characteristics, using certified, calibrated testing instruments provided by the manufacturer of the apparatus.
- E. All fan performance ratings shall be based up on factory tests performed in accordance with AMCA 210. One fan of each type specified shall have actual factory performance tests performed prior to shipment. All fans shall be certified by AMCA and carry its seal.

PART 2 - PRODUCTS

2.01 CENTRIFUGAL DOWNBLAST FANS

- A. Roof mounted exhaust fans shall be of the downblast direct drive type.
- B. The fan housing shall fan housing shall consist of the motor cover, shroud, curb cap and lower windband, and shall be constructed of heavy-gauge aluminum. Housing shall have a rigid internal support structure and leakproof design. The fan shroud shall be one-piece with a rolled bead for extra strength, which directs exhaust air downward. The low windband shall be one piece with formed edges for added strength and the curb cap shall include prepunched mounting holes to ensure correct attachment to the roof.
- C. The fan wheel shall be centrifugal, non overload, backward-inclined, constructed of aluminum and shall include a wheel cone carefully matched to the inlet cone for precise running tolerances. Wheels shall be statically and dynamically balanced.
- D. Motors shall be permanently lubricated and carefully matched to the fan loads. Motors shall be readily accessible for maintenance. Motors shall be mounted on true vibration isolators, out of the airstream. Each vibration isolator shall be sized to match the weight of each fan.
- E. A NEMA 1 disconnect switch shall be provided as standard. Factory wiring shall be provided from motor to the handy box.
- F. All fans shall bear the AMCA Certified Ratings Seal for both sound and air performance.
- G. Each fan shall bear a permanently affixed manufacturer's nameplate containing the model number and individual serial number for future identification.
- H. Fans shall be manufactured by Greenheck or approved equal.

2.02 ELECTRONIC COMMUTATION MOTORS - FOR DRYER EXHAUST FANS

- A. Motor to be an electronic commutation (EC) motor specifically designed for fan applications as noted on contract drawings. AC induction type motors are not acceptable.
- B. Motors shall be permanently lubricated with heavy-duty ball bearing to match the fan load and prewired to the specific voltage and phase.
- C. Internal motor circuitry shall convert AC power supplied to the fan to DC power to operate the motor.
- D. Motor shall be speed controllable down to 20% of fully speed (80% turndown). Speed shall be controlled by a 0-10 VDC signal.
- E. Motor shall be a minimum of 85% efficient at all speeds.
- F. Motors shall be Vari-Green Motor as manufactured by Greenheck or approved equal.

2.03 CONSTANT PRESSURE CONTROLS- FOR DRYER EXHAUST FANS

 Control to be a packaged constant pressure controls designed to regulate fan speed based on demand.

- B. Control shall include a Proportional Integral Derivative (PID) feedback loop and shall have all components prewired to labeled terminal strips. System shall include the appropriate pressure tap and preset pressure transducer.
- C. Fan shall be direct drive including an electronic commutation (EC) motor.
- D. Indoor installations shall include pressure tap in duct and control box with integral pressure transducer.
- E. Control package shall be Vari-Green Constant Pressure Control as manufactured by Greenheck or approved equal.

PART 3 - EXECUTION

3.01 GENERAL

- A. Install fans, including all necessary structural supports and bracing as scheduled and located on the contract drawings in accordance with manufacturer's instructions and approved submittals.
- B. Connect duct to fans to allow for straight and smooth air flow.
- C. Provide flexible connections (minimum of 4") between fan and duct.
- D. Install fan level: +/- 5 degrees vertical. Final installation shall be free of all leaks from both fan and associated ductwork.

3.02 START-UP, TESTING, DEMONSTRATION

- A. Start-up fans after checkout to insure proper alignment and phased electrical connections.
- B. Test fans individually and as part of system.
- C. Insure fans are properly interlocked with supply fans and with control system.
- D. Demonstrate operation to Owner and instruct maintenance personnel in operation of equipment.

END OF SECTION 233416

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

- A. This Section describes the air terminals as specified herein, with capacities, distribution patterns and connection sizes as scheduled on the Drawings.
- B. Products listed in Part 2 of this Section include:
 - 1. Grilles and Registers.
 - 2. Ceiling Diffusers.

1.02 RELATED WORK

A. Section 233113: Sheet Metal Work

1.03 REFERENCES

- A. ADC 1062 GRD Test Code for Grilles, Registers and Diffusers
- B. ASHRAE 70 Method of Testing for Rating the Airflow Performance of Outlets and Inlets.
- C. ASHRAE 113 Method of Testing Room Air Diffusion
- D. ASTM C423 Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
- E. ARI 880 Air Terminals
- F. ARI 885 Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets.
- G. NFPA 90A Installation of Air Conditioning and Ventilation Systems
- H. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- Mechanical Code of New York State

1.04 QUALITY ASSURANCE

 Air Terminals will not be accepted until acoustical test results have been submitted and approved.

1.05 SUBMITTALS

- A. Product data Submit catalog cuts and installation instructions for all products specified, including standard color samples.
- B. Submit published manufacturer's performance data for all of the different types of diffusers, registers and grilles, based on testing in accordance with ASHRAE Standard 70, latest edition.
- C. Performance data For each size and type of air terminal, submit the following:
 - 1. Inlet static pressure in inches w.g.
 - 2. Maximum and minimum airflow in cfm.
 - 3. Throw in feet at maximum cfm (and 25 percent of cfm) for terminal velocities of 50 and 100 fpm.

H2M architects + engineers

DIFFUSERS, REGISTERS AND GRILLES 233713-1 4. Noise Criteria (NC) curve at maximum air terminal cfm rating with blades in full-open and closed positions.

PART 2 - PRODUCTS

2.01 CEILING DIFFUSERS

- A. Architectural Ceiling Diffusers:
 - Furnish and install architectural ceiling diffusers of the sizes and capacities as shown on the Drawings.
 - 2. Manufacture the diffuser from corrosion-resistant steel or extruded aluminum as indicated on the Drawings.
 - 3. Construct the units of a stamped outer core and with the inner core having a plaque style face. Construct the face with a double skinned inner face panel with a hemmed edge. Manufacture the inner core assembly to be removable using a spring clip arrangement that permits quick, easy installation and removal.
 - 4. Manufacture diffusers with trim to allow for with face panel flush with the ceiling line into ceiling grids or for surface mount in other ceiling types.
 - 5. Provide an opposed blade radial volume damper, with an operating arm to adjust the damper without removing the core. Unit collar height; 1 ¼" in height.
 - 6. Provide an equalizing grid for field installation for each diffuser.
 - 7. Manufacturer: Nailor Industries Inc., Model Series UNI or approved equal.
 - 8. Coordinate color with Owner.

2.02 RETURN GRILLES

- A. Furnish and install return grilles of the type and size as shown on the Drawings. Construct the grilles with 45 degree deflection fixed blades and frames that have reinforced mitered corners.
- Provide an opposed blade damper operable from the face of the grille for grilles connected to ductwork.
- C. Manufacture grilles with trim to allow for recessed mounting into ceiling grids or for surface mount in other ceiling types. Provide concealed mounting using concealed mounting straps or concealed screw holes in neck. Countersunk screw holes in the frame face are not acceptable or frame face-mounting screws.
- D. Construct the units of extruded aluminum or corrosion resistant steel as shown on the Drawings.
- E. Manufacturer: Nailor Industries Inc, Model Series 6145H-O or approved equal.
- F. Coordinate color with Owner.

2.03 HEAVY DUTY ALUMINUM RETURN GRILLES

- A. Furnish and install heavy duty return grilles of the type and size as shown on the Drawings. Construct the grilles with 0 degree deflection aluminum blades spaced on ½" centers and a heavy duty aluminum welded frame.
- B. Provide an opposed blade damper operable from the face of the grille for grilles connected to ductwork.
- C. Manufacture grilles with trim to allow for recessed mounting into ceiling grids or for surface mount in other ceiling types. Provide concealed mounting using concealed mounting straps or

H2M architects + engineers

DIFFUSERS, REGISTERS AND GRILLES

- concealed screw holes in neck. Countersunk screw holes in the frame face are not acceptable or frame face-mounting screws.
- D. Construct the units of extruded aluminum or corrosion resistant steel as shown on the Drawings.
- E. Nailor Industries Inc, Model Series 51FH-HD-OA or approved equal.
- F. Coordinate color with Owner.

2.04 SUPPLY GRILLES

- A. Furnish and install supply grilles of the type and size as shown on the Drawings. Construct the grilles with a dual set of streamlined shaped, roll-formed, corrosion-resistant blades that are adjustable, and spaced on 3/4" centers and frame with reinforced mitered corners.
- B. Manufacture grilles with trim to allow for recessed mounting into ceiling grids or for surface mount in other ceiling types. Provide concealed mounting using concealed mounting straps or concealed screw holes in neck. Countersunk screw holes in the frame face are not acceptable nor are frame face-mounting screws.
- C. Construct the units of extruded aluminum or corrosion resistant steel as shown on the Drawings.
- D. Manufacturer: Nailor Industries Inc., Model Series 61DH-O or approved equal.
- E. Coordinate color with Owner.

2.05 TRANSFER GRILLES

- A. Furnish and install supply grilles of the type and size as shown on the Drawings. Grilles shall be sight proof.
- B. Construct the units of extruded aluminum or corrosion resistant steel as shown on the Drawings.
- C. The grille shall have inverted "V" shaped blades and frames. The grille shall be sight-proof.
- D. Manufacturer: Nailor Industries Inc., Model Series 61DGS or approved equal.
- E. Coordinate color with Owner.

2.06 LINEAR DIFFUSERS

- A. Furnish and install linear slot diffusers and accessories of the size and type shown on the drawings. Mechanical contractor shall coordinate installation with General Contractor and other subcontractors as required.
- B. The linear slot diffuser shall utilize heavy wall extruded aluminum frames and be capable of supporting the ceiling system. Material shall be minimum wall thickness 0.06" (1.52). Diffuser frames shall be supplied with integral spacer bars and hanger brackets, spaced approximately on 24" (610) centers. In hard ceiling installations, provide support clips by the manufacturer that allow the diffusers to be secured to the ceiling diffuser opening framing channels.

- C. The linear slot diffuser shall be complete with factory end border configurations as shown or indicated. Where exposed end caps are required, they shall be factory installed architectural mitered picture frame type. Flanges/butt type end caps are not acceptable.
- D. Provide alignment strips and spline clips by the manufacturer to secure joints and ceiling tees to the linear diffuser as required. Mitered corner sections shall be supplied by the manufacturer in one-piece construction.
- E. The air pattern controller shall be dual type on 24" (610) centers and fully adjustable to permit various air pattern configurations, as well as allow throttling, as required for air volume reduction or complete shut-off without adding any blank-off devices. Pattern controllers shall be minimum 20 ga. (1.01) corrosion-resistant steel. One-piece pattern controllers are not acceptable.
- F. Linear slot diffusers shall incorporate vertical jet throw pattern controllers.
- G. All diffusers shall have a single slot, unless shown otherwise, and shall be capable of being used for supply, return or exhaust air.
- H. Supply air engineered plenum boots shall be minimum 22 ga. (0.85) coated steel and of the same manufacturer as the linear slot diffuser. Lengths and inlet sizes shall be as indicated on the plans and schedules. Where required, plenums shall be insulated with either internal matt faced fiberglass insulation or external foil back insulation, as specified on drawings or schedules. Return hood/sight baffles shall be provided as shown.
- I. Pattern controllers and integral spacers shall be painted flat black.
- J. Performance of the linear slot diffuser shall be based upon cataloged data obtained from tests conducted in accordance with ASHRAE Standard 70, latest edition. Pattern controllers shall be field adjusted after diffuser installation and set in their normal operating condition. Air test and balancing of linear slot diffusers shall be in accordance with the testing and balancing portion section of the specifications.
- K. Provide manufacturers submittal drawings and published performance data.
- L. Manufacturer: Nailor Industries Inc., Continuous Flowline Series Model FLV15 or approved equal.

2.07 LINEAR SLOT SUPPLY AND RETURN DIFFUSERS

- A. Furnish and install linear slot diffusers of the type and size as shown on the plans and air distribution schedules.
- B. The maximum length of a single section shall be 72" long. All sizes larger than 72" shall be provided in continuous multiple sections. Alignment strips shall be provided for joining continuous diffuser sections together.
- C. The frame borders and end caps shall be extruded aluminum with extruded aluminum spacers.
- D. The linear slot shall be supplied in 1 to 10 slots wide as specified.
- E. Pattern deflectors shall have an aerodynamic 'ice tong' shape that can be adjusted to regulate the volume and direction of the airflow. The maximum length of the deflectors shall be 36", longer sizes shall be provided in multiple sections. The pattern deflector finish shall be black.

- F. Provide inactive sections with blank-offs, end caps, 90 degree mitered corners, etc. as necessary to provide a continuous appearance in areas with multiple section assemblies.
- G. Manufacturer of Linear Slot Diffusers shall be Nailor Industries Inc., Model Series 5000 or approved equal.
- H. Coordinate color with owner.

2.08 LINEAR SLOT DIFFUSER PLENUMS

- A. Furnish and install plenums for linear slot diffusers of the sizes and capacities as shown on the plans and air distribution schedule.
- B. The plenums shall be manufactured from corrosion-resistant steel and shall include a side inlet for connection to the duct.
- C. The width shall fit a 1, 2, 3, or 4 slot linear diffuser as specified and the length shall be in standard nominal lengths of 20", 24", 30", 36", 48", and 60".
- D. When continuous sections are required, the end caps shall be folded up for uninterrupted airflow.
- E. Models 5310I, 5375I, and 5350I shall have internal insulation.
- F. Manufacturer of Linear Slot Diffuser Plenums shall be Nailor Industries Inc., Model Series 5300 or approved equal.

PART 3 - EXECUTION

3.01 DIFFUSER, REGISTER AND GRILLE APPLICATION

A. See the Drawings for types, sizes, materials and installation requirements.

3.02 INSTALLATION

- A. Install diffusers, grilles and registers in locations shown on the Drawings.
- B. Consult the Drawings for type of ceiling in which the terminals are to be installed and match air outlet edge trim to the requirements of the ceiling type in which they are installed.
- C. Install equalizing grids flush with take-off collar connection to supply duct with vanes perpendicular to air flow approaching diffuser.
- D. Install in accordance with manufacturer's published recommendations as well as applicable sections of SMACNA manual and as specified above.
- E. Install ceiling mounted grilles and registers with the blade deflection facing away from the line of sight.
- F. Coordinate with other work, including ductwork and ductwork accessories, as necessary to interface installation of air outlets and inlets with other work

END OF SECTION 233713

PART 1 - GENERAL

1.01 PROVISIONS

- A. Requirements of the General Mechanical Requirements of Division 23 and General Requirements of Division 1 applies to all work under this Section.
- Throughout the specifications, types of materials may be specified by manufacturer's name and catalogue number in order to establish standards of quality and performance and not for the purpose of limiting competition.

1.02 WORK INCLUDED

- A. Provide the following equipment as specified herein and in locations shown on drawings:
 - Kitchen Hood and its appurtenances.

1.03 RELATED WORK

A. Section 233113: Sheet Metal Work

1.04 REFERENCES

- A. NFPA 96 Ventilation Control and Fire Protection of Commercial Cooking Operations
- B. NFPA 17A Standard for Wet Chemical Extinguishing Systems
- C. UL Underwriters Laboratories, Inc. (UL)

1.05 QUALITY CONTROL

- A. The Kitchen Hood shall be constructed as UL listed and UL labeled, and shall bear the National Sanitation Foundation seal of Approval. The Kitchen Hood shall be built in accordance with NFPA # 96, and ASHRAE recommendations. The hood manufacturer shall provide on request, the necessary data that confirms compliance with above mentioned code authorities.
- B. The Restaurant Fire Suppression System shall be constructed as UL listed and labeled and shall be constructed in accordance with NFPA # 96 and NFPA #17A.
- C. All wiring and electrical equipment shall comply with NFPA 70, NEC.

1.06 SUBMITTALS

A. Submit shop drawings and product data to Engineer. Provide manufacturer's data of the Hood design for this project. The data for the Hood shall also contain the data for the fire suppression system. Incomplete documents will be rejected.

PART 2 - PRODUCTS

2.01 COOKING EQUIPMENT KITCHEN HOOD

- A. Acceptable manufacturers:
- B. Captive Aire ND-2 Series with PSP Accessory or approved equal.
- C. The exhaust only canopy hood shall be rated for all types of cooking equipment. The hood shall have the size, shape and performance specified on drawings.

- D. Construction shall be type 430 stainless steel with a #3 or #4 polish where exposed. Individual component construction shall be determined by the manufacturer and ETL. Construction shall be dependent on the structural application to minimize distortion and other defects. All seams, joints and penetrations of the hood enclosure to the lower outermost perimeter that directs and captures grease-laden vapor and exhaust gases shall have a liquid-tight continuous external weld in accordance with NFPA 96. Hood shall be wall type with a minimum of four connections for hanger rods. Corner hanging angles have a 5/8" x 1-1/2" slot pre-punched at the factory, allowing hanging rods to be used for quick and safe installation.
- E. Ventilator shall be furnished with U.L. classified high efficiency stainless steel baffle filters, supplied in size and quantity as required by ventilator. The filters shall extend the full length of the hood and the filler panels shall not be more than 6" in width.
- F. The hood manufacturer shall supply complete computer generated submittal drawings including hood sections view(s) and hood plan view(s). These drawings must be available to the engineer, architect and owner for their use in construction, operation and maintenance.
- G. Exhaust duct collar to be 4" high with 1" flange. Duct sizes, CFM and static pressure requirements shall be as shown on drawings. Static pressure requirements shall be precise and accurate; air velocity and volume information shall be accurate within 1-ft increments along the length of the ventilator.
- H. U.L. incandescent light fixtures and globes shall be installed and pre-wired to a junction box. The light fixtures shall be installed with a maximum of 4'0" spacing on center and allow up to a 100 watt standard light bulb.
- I. The hood shall have:
 - 1. A double wall insulated front. The insulation shall have a flexural modulus of 475 El, meet UL 181 requirements and be in accordance with NFPA 90A and 90B.
 - 2. An integral front baffle to direct grease laden vapors toward the exhaust filter bank.
 - 3. A built-in wiring chase provided for outlets and electrical controls on the hood face and shall not penetrate the capture area or require an external chaseway.
 - 4. Removable grease cup for easy cleaning.
- J. The hood shall be ETL Listed as "Exhaust Hood Without Exhaust Damper", ETL Sanitation Listed and built in accordance with NFPA 96. The hood shall be listed for 600°F cooking surfaces at 200 CFM/ft. The hood shall be ETL Listed as "Exhaust Hood Without Exhaust Damper".
- K. Refer to drawings for additional accessories.

2.02 ANSUL R-102 RESTAURANT FIRE SUPPRESSION SYSTEM

- A. The restaurant fire suppression system shall be an automatic fire suppression system using a wet chemical agent for grease related fires.
- B. The system shall be pre-engineered in accordance with UL guidelines.
- C. The system shall be installed and serviced by personnel trained by the manufacturer.
- D. The system shall be capable of protecting cooking appliances by utilizing either dedicated appliance protection and/or overlapping appliance protection.
- E. The system shall consist of a regulated release assembly that includes a regulated release mechanism and a wet chemical storage tank housed within a single enclosure. Nozzles,

blow-off caps, detectors, cartridges, agent, fusible links, and pulley elbows shall be provided in the quantities needed for fire suppression system arrangements. Additional equipment shall include remote manual pull station, mechanical and electrical gas valves, pressure switches, and electrical switches for automatic equipment and gas line shut-off.

F. Wet Chemical Agent:

1. The extinguishing agent shall be an aqueous solution of organic salts with a pH range between 7.8 - 8.2, designed for flame knockdown and foam securement of grease related fires.

G. Agent Tank:

 The agent tanks shall be installed in a stainless steel enclosure or wall bracket. The tank shall be constructed of stainless steel. The tank shall include an adaptor/tube assembly containing a burst disc union.

H. Regulated Release Mechanism:

- The regulated release mechanism shall be a spring-loaded, mechanical/pneumatic type capable of providing the expellant gas supply to the agent tank(s). It shall contain a factory installed regulator.
- 2. It shall have automatic actuation by a fusible link detection system and remote manual actuation by a mechanical pull station.
- 3. The regulated release mechanism shall contain a release assembly, regulator, expellant gas hose, and agent storage tank housed in a stainless steel enclosure with cover. The enclosure shall contain knock-outs for conduit. The cover shall contain an opening for a visual status indicator.
- 4. The regulated release mechanism shall be compatible with mechanical gas shut-off devices; or, when equipped with a field or factory-installed switch, it shall be compatible with electric gas line or appliance shut-off devices.

I. Regulated Actuator Assembly:

1. When more than two agent tanks are required, the regulated actuator shall be available to provide expellant gas for additional tanks. It shall be connected to the cartridge receiver outlet of the regulated release mechanism providing simultaneous agent discharge. The regulator actuator assembly shall contain a regulated actuator, regulator, expellant gas hose, and agent tank housed in a stainless steel enclosure with cover. The enclosure shall contain knockouts to permit installation of the expellant gas line.

J. Discharge Nozzles:

 Each discharge nozzle shall be tested and listed with the R-102 system for the specific application. Nozzle tips shall be stamped with the flow number designation. Each nozzle shall have a metal or rubber blow-off cap to keep the nozzle tip orifice free of cooking grease build-up.

K. Distribution Piping:

 Shall be Schedule 40 black iron, chrome-plated, or stainless steel pipe conforming to ASTM A120, A53, or A106.

L. Detectors:

1. Shall be the of the fusible link style designed to separate at a specific temperature.

M. Cartridges:

Shall be a sealed steel pressure vessel containing either carbon dioxide or nitrogen gas.
 The cartridge seal shall be designed to be punctured by the releasing device supplying the required pressure to expel wet chemical agent from the storage tank.

N. Agent Distribution Hose:

 Kitchen appliances manufactured with or resting on casters (wheels/rollers), which have the Fire Suppression System hard piped, shall include a UL Listed agent distribution hose as a component of the suppression system. Hose assembly shall include a restraining cable kit.

O. Pull Station Assembly:

- The Fire Suppression System shall include a remote pull station for manual system actuation. The pull station shall be designed to include a built-in guard for pull handle protection. The pull station shall be red in color.
- P. The Ansul system shall be manufactured by Tyco Fire Suppression & Building Products or approved equal.

2.03 KITCHEN HOOD CENTRIFUGAL UTILITY SET EXHAUST FANS

- A. Utility set exhaust fan shall be suitable for use with a Type I kitchen hood serving cooking equipment that produces grease laden vapors. Fan shall be UL762 Listed for restaurant duty.
- B. Fan shall have a vented motor cover.
- C. Fan housing shall be continuously welded.
- D. Fan shall have a clean out door.
- E. Fan shall have a grease drain.
- F. Provide exhaust fan model BI-CARM by CaptiveAire or approved equal.

2.04 KITCHEN HOOD CONTROLS

- A. EMS Series control system by CaptiveAire.
- B. Controls shall be listed by ETL (UL 508A).
- C. The Energy Management System (EMS) shall be capable of saving energy during idle cooking periods. The EMS shall be designed to automatically reduce exhaust and supply airflow quantities while ensuring hood performance is maintained. The EMS shall use high and low speeds that shall be adjusted by variable frequency drives. A temperature switch in the exhaust duct shall control airflow set points and modulate the fans during cooking operation to maximize energy savings. A 100% airflow override button shall be supplied with an adjustable timer.
- D. The control interface shall include (1) fan switch, (1) hood light switch, (1) 100% airflow override push button and indicator lights. Indicator lights shall include a "power" light, a "fans on" light, and a "100% airflow override" light. The control interface shall be screen printed on stainless steel and be able to be installed on the face of the hood, face of the utility cabinet, or on the face of the control enclosure.
- E. The control enclosure shall be NEMA 1 rated and listed for installation inside of the exhaust hood utility cabinet. The control enclosure may be constructed of stainless steel or painted steel.
- F. Variable frequency drives shall allow full adjustment of high speed and low speed airflows for proper kitchen balance. Drives shall contain motor thermal overload protection and control inputs for up to 7 preset speeds. Acceleration and deceleration times shall be fully adjustable as well as fan speed at each of the 7 different inputs. Drives shall also allow for a minimum and maximum frequency set-point. Drives are capable of controlling up to 5 HP each.

- G. Adjustable temperature switch shall be mounted in the exhaust hood riser. One sensor shall be installed per exhaust fan. The temperature sensor shall be of the digital Resistance Temperature Detector (RTD) type. Temperature probe shall be constructed of Stainless Steel. Temperature switch shall be factory set at 130°F for 600°F cooking applications and 90°F for 400°F cooking applications. The temperature sensor shall be fully modulating and shall adjust on temperature changes. The riser mounted temperature sensor shall constantly monitor the exhaust air temperature and work in conjunction with a panel mounted temperature controller to modulate the system based on the temperature.
- The timer shall contain one instantaneous contact and one delayed contact. Time shall be adjustable from .05 seconds to 30 days. Timer is energized with the 100% Airflow Override button. When button is depressed, time starts and fans go to high speed. Upon timeout, fans return to low speed or speed dictated by temperature switch.
- The EMS shall be provided with a factory pre-wired panel capable of controlling up to four inverter duty motors. The control panel shall be factory pre-wired to shut down the supply fans in a fire condition.

2.05 ROOF MOUNTED, BELT DRIVE, UPBLAST CENTRIFUGAL EXHAUST FAN

- A. Spun aluminum centrifugal roof exhausters are engineered to discharge grease laden vapors. fumes and other contaminants vertically away from the building.
- B. All models shall be ETL Listed and comply with UL705 (electrical) and UL762 Standards and CSA Std C22.2, No 113. Fan shall bear the AMCA certified ratings seal for sound and air performance.
- C. Housing: The fan windband shall be constructed of heavy gauge aluminum and shall be spun on an automatic lathe to provide consistent dimensions. Horizontal and vertical internal supports shall be used to securely fasten the windband to the discharge apron to provide rigidity for hinging and added strength to reduce shipping damage. The discharge apron shall have a rolled bead for added strength.
- Base: The base shall be constructed of galvanized steel for improved rigidity. Base corners shall be welded to provide strength and support for hinging and cleaning and to prevent leakage into the building.
- Wheel: The fan wheel shall be centrifugal backward inclined and non-overloading. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel blades shall be aerodynamically designed to minimize turbulence, increase efficiency and reduce noise. The wheel blades shall be welded to the wheel inlet cone. In the event that balancing weights are required they shall be riveted to the blades or wheel. The wheel inlet shall overlap the fan base inlet for maximum performance and efficiency. The wheel shall be firmly attached to the motor shaft with two set screws.
- F. Motor and motor Compartment: Motors shall be heavy duty ball bearing type, mounted out of the airstream and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge galvanized steel and isolated from the fan structure with vibration isolators. The motor compartment shall be cooled by outside air drawn through an extruded aluminum conduit tube. To seal the conduit tube passage and prevent noise silicone rubber grommets shall isolate the conduit tube from the fan housing. The motor compartment shall be of a two-piece construction with the top cap having quick release clips to provide quick and easy access to the motor compartment.
- G. Shaft and Bearings: Shafts shall be precision ground and polished. Heavy duty, pre-lubricated bearings shall be selected for a minimum (L50) life in excess of 200,000 hours of operation at

- maximum cataloged operating speed. They shall be designed for and individually tested specifically for use in air handling applications.
- H. Belts and Drives: Belts shall be oil and heat resistant, non-static type. Drives shall be cast type, precision machined and keyed and secured attached to the fan and motor shafts. Drives shall be sized for a minimum of 150% of the installed motor horsepower. Fan operating speed shall be factory set using adjustable pitch motor pulleys.
- I. Grease Spout: A grease spout made of aluminum tubing shall be welded to the fan housing. The weld shall be factory tested to ensure it will not leak.
- J. Nylon Washers: To provide a tight seal all fasteners in the fan housing shall be backed with nylon washers.
- K. Safety Disconnect Switch: A safety disconnect switch shall be standard on all NCA-FA units with open drip proof motors. Switches shall be installed in a NEMA3R enclosure and mounted to exterior of windband for easy access.
- L. Provide exhaust fan model NCA-FA by CaptiveAire.

2.06 INLINE DIRECT GAS FIRED HEATED MAKE UP AIR UNIT

- A. A Modular Packaged Heating, Cooling and ventilating unit(s), as indicated on the drawings shall be furnished. Direct Fired Gas Unit(s) shall be tested in accordance with ANSI Standard Z83.4a-2001/CSA 3.7a-2001, and shall bear the ETL label. Orientation shall be horizontal, down or side discharge. Unit(s) shall be factory assembled, tested and shipped as a complete packaged assembly, for outdoor mounting, consisting of the following:
 - 1. Gas burner
 - 2. Centrifugal blower (forward-curved double width/double inlet)
 - 3. Motor starter with thermal overload protection
 - 4. Motor and drive assembly
 - 5. Fuel burning and safety equipment
 - 6. Temperature control system
 - 7. Gas piping
 - 8. Pre-piped and charged condenser(s)

B. Housing:

- 1. Unit housing shall be constructed of 20 gauge G-90 galvanized steel. The wall panels and roof panels shall be fabricated by forming double-standing, self-locking seams that require no additional support. The floor and wall panels shall be caulked air tight with a silicone caulk. All casing panels shall be attached with sheet metal screws or rivets, which can be removed to field service large components. The unit base shall be suitable for curb or flat mount. Housing construction should be suitable for outdoor installation.
- 2. An observation port shall be located on the exterior of the unit for observation of the main flame and pilot flame. All controls, gas valves, modulating controls and electrical components shall be mounted within the burner vestibule. The burner vestibule shall be an integral part of the unit and not extend outside the exterior casing of the unit and not exposed to the main air stream. The vestibule full-size door shall provide easy access to controls and gas-train components. Blower door shall provide easy access to blower, motor and drives. Access doors shall be provided on both front and backside of unit providing full access to every part of the unit.
- 3. Internal ridged board 1" x 1.5" foil face installation shall be installed on roof, walls and base of casing.
- C. Base:

1. The base shall be constructed of galvanized steel for improved rigidity. Base shall be structurally reinforced to accommodate the blower assembly and burner.

D. Blower:

- 1. Blower(s) shall be forward-curved, centrifugal, Class I or II (depending on application requirements), double width, double inlet, constructed G-90 galvanized steel. Unit shall have a heavy-duty, solid-steel shaft. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel blades shall be aerodynamically designed to minimize turbulence, increase efficiency and reduce noise. The wheel blades shall be securely attached to the wheel inlet ring. The wheel shall be firmly attached to the fan shaft with setscrews and keys. The blower assembly shall be isolated from the fan structure with vibration isolators.
- 2. Blower capacity shall be as noted on the drawings.
- 3. All blowers shall be tested and set at rated speed after being installed in the factory-assembled unit.

E. Motor and Motor Compartment:

 Motors shall be heavy-duty ball bearing type and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge galvanized steel and shall be designed to provide easy adjustment of the belt tension. Blower motor shall be Open Drip Proof.

F. Shaft and Bearings:

1. Shafts shall be precision ground and polished. Heavy duty, pre-lubricated bearings shall be selected for a minimum (L50) life in excess of 200,000 hours of operation at maximum cataloged operating speed. They shall be designed for, and individually tested, specifically for use in air handling applications.

G. Belts and Drives:

 Belts shall be oil and heat resistant, non-static, grip-notch type. Drives shall be cast type, precision machined and keyed, and secured attached to the fan and motor shafts. Fan operating speed shall be factory set using adjustable pitch motor pulleys. All drives shall be a minimum of 2 grooves above 2 HP.

H. Burner:

- 1. The gas burner shall be direct-fired, draw-through type, sized to provide the output capacity noted on the drawings using natural gas.
- 2. The burner shall burn over its entire length at all times when the system is in operation.
- 3. The burner shall have non-clogging, 4302B stainless-steel combustion baffles attached to a ductile aluminum gas-supply section with no moving parts to wear out or fail. The burner shall be capable of 92% combustion efficiency with a maximum turndown ratio of up to 30 to 1.
- 4. The gas burner shall be furnished with a pilot package arranged so that the pilot flame lights the burner with instantaneous ignition. Pilot assembly includes a flame rod, spark rod and pilot, which is automatically ignited by ignition transformer. A flame-rod rectification system shall be used to prove pilot and main flame.
- Rear access doors will provide complete access to burner and pilot assembly.
- 6. Burner profile plates shall be self-adjusting to operate across the complete CFM range of each model heater. Every unit shall be designed for Variable Air Volume capabilities.

I. Cooling Equipment:

- 1. All cooling equipment should conform to local code requirements. All gas manifold components shall be piped and wired at the factory.
- 2. Components shall include:
 - a. 14 SEER minimum condenser
 - b. Thermal Expansion Valve

- c. Filter/Dryer
- d. Hard Start Kit for Condenser
- e. Insulated Suction Lines
- f. Multiple Stages where required
- g. Pre Charged System
- h. R-410A Refrigerant

J. Gas Equipment:

- 1. All gas equipment should conform to local code requirements. All gas manifold components shall be piped and wired at the factory.
- 2. Components shall include:
 - a. Pilot-gas shut-off valve
 - b. Pilot-gas regulator
 - c. Pilot-gas valve
 - d. Main-gas shut-off valve
 - e. Main-gas regulator
 - f. Two solenoid valves
 - g. Modulating-gas valve
 - h. Burner on gas equipment

K. Safety Controls:

- 1. Safety controls shall include:
 - a. Motor starter with adjustable overloads
 - b. Air-flow safety switch
 - c. Electronic flame-safety relay
 - d. High-temperature limit switch
 - e. Main-gas regulator
 - f. Two safety shutoff valves
 - q. Modulating-gas valve
 - h. Stainless Steel Burner
 - i. Adjustable burner ON/OFF inlet air duct-stat to shut off heat when inlet air is sufficiently warm to maintain space temperature
 - j. Non-Fused Disconnect
 - k. Casing insulation shall be 1" x 1.5" density with a foil face
 - I. Low gas-pressure switch

L. Accessories shall include, but not be limited to, the following:

- 1. Inlet Dampers: Manufacturer shall provide and install on unit, when possible, a two-position, motor-operated damper with internal end switch to energize the blower-starter circuit, when damper is 80% open. Blades shall be a maximum of 6" wide 16-gauge G-90 galvanized steel and shall be made to guarantee the absence of noticeable vibration at design air velocities. Damper blades are to be mounted on friction-free synthetic bearings. Damper edges shall have PVC coated polyester fabric mechanically locked into blade edge. Jamb seals used are flexible metal, compression type.
- Fresh-Air Inlet Hood/Filter Combination: Shall be constructed of G-90 galvanized steel with bird screen and (2") cleanable filters supported by internal slides mounted in the inlet face of the hood.
- 3. Curb: 20" curb shall be constructed of 18-gauge aluminized steel as a completed welded assembly.
- 4. Cooling Coil Section: Cooling coil section shall be field bolted directly to discharge of blower section. Coil section to be designed to fit onto common curb with main unit. Base of coil section to be constructed with double pitch stainless steel drain pan for coil, same as main unit. Casing and roof to be 20-gauge G-90 galvanized construction. Inside of section to be fully insulated with foil back insulation. DX or chilled water coil to meet scheduled requirements.

M. Temperature Control Systems:

Discharge Temperature Control: Use for building exhaust-air replacement to maintain a constant discharge temperature of supply air. The burner flame modulates to compensate for outdoor temperatures. The optional manual SUMMER-OFF/WINTER selector switch and exhaust system interlock controls the heater-blower operation. Supplied with optional remote-control panel with temperature selector dial and SUMMER-OFF/WINTER selector.

N. Wiring and Electrical:

- 1. Each condenser shall have a separate circuit enabling the supply fan motor to accept signals from a VFD without interfering with condenser operation.
- 2. Unit(s) shall be complete with all items such as relays, starters, switches, safety controls, conduit and wire as previously mentioned, and as required for proper operation. All factory-mounted controls shall be factory pre-wired to the unit control panel. A safety disconnect switch shall be standard on all units and shall be sized according to the unit.
- O. Unit(s) shall be operated, tested and set at the factory using job-site conditions for electrical and gas input. All operating and safety controls shall be tested and set at the factory. Adjustable or fixed sheaves shall be set for proper RPM at specified conditions. Gas-pressure regulator shall be set for specified burning rate at specified inlet pressure.
- P. The supplier shall furnish as built wiring connection and control-circuit diagrams, dimension sheets and a full description of the unit(s). Service manuals, showing service and maintenance requirements, shall be provided with each unit.
- Q. Modular Packaged Cooling Unit with Direct-Fired Heated for 100% Outdoor Air applications shall be model A3-D.500-G18 by CaptiveAire.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install kitchen hood in locations shown on drawings.
- B. Installation to be in accordance with manufacturer's published recommendations as well as applicable sections of SMACNA manual and as specified above.
- C. Provide all steel structural support screws, bolts, nuts, inserts, and material required for installation of the Hood against the wall and for attaching exhaust and supply ducts to the Hood.
- D. Install complete fire suppression system for each hood.
- E. Provide all interlocks between suppression system, exhaust fans, and make-up air fans. Electrical contractor shall provide all relays between fire suppression system and fire alarm panel.

3.02 EXHAUST FANS

- Ensure enough clearances are around unit as recommended by the manufacturer and NFPA standard.
- B. Connect duct to fans to allow for straight and smooth airflow.
- C. Provide hard connection to duct work. The fan shall be connected to the ductwork by flanges securely bolted. Do not use flexible connectors. Connections shall be made as per NFPA 96. Use 1500 deg F rated gaskets.

3.03 INLINE MAKE UP AIR UNIT

- A. Ensure enough clearances are around unit as recommended by the manufacturer and NFPA standard.
- B. Avoid transitions and turns near the outlet of the fan.

3.04 TESTING

- A. Check work for satisfactory installation and performance.
- B. Check duct connections for leakage or condensation. Correct any deficiencies.
- C. Test the performance of kitchen exhaust system. Adjust dampers for proper direction of air flow. Conduct final test of hood and hood fire suppression system in the presence of the Engineer.

1.01 DESCRIPTION OF WORK

A. Outdoor, roof curb mounted, electronically controlled, heating and cooling unit utilizing hermetic scroll compressor(s) with crankcase heaters for cooling duty and gas combustion for heating duty. Units shall discharge supply air vertically or horizontally as shown on contract drawings.

1.02 RELATED SECTIONS

- A. Section 233113 Sheet Metal Work.
- B. Division 26.

1.03 SUBMITTALS

- A. Shop Drawings: Submit drawings for each size of factory fabricated roof curb.
- B. Product Data: Manufacturer's catalog sheets, brochures, performance charts, standard schematic drawings, specifications and installation instructions for each size unit.
- C. Contract Closeout Submittals Operation and Maintenance Data: Deliver 2 copies, covering the installed products, to the Director's Representative.

1.04 QUALITY ASSURANCE

A. Regulatory Requirements:

- Unit shall be factory tested and the design, construction and installation shall be in accordance with the following: ARI Standard 210, NFPA, UL, ASHRAE 15, Safety Code for Mechanical Refrigeration, and all State and Local codes or regulations having jurisdiction.
- 2. Unit shall be listed by ETL as a total package.
- 3. Unit shall be rated in accordance with AHRI Standard 210/240 and 340/360.
- 4. Electrical components shall be UL listed.
- 5. Gas heat equipped units shall be designed to conform with ANSI Standard Z21.47, Gas-Fired Central Furnaces.
- 6. Roof curb shall be designed to NRCA criteria per Bulletin B-1986.
- 7. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 8. Unit shall meet ASHRAE 90.1 minimum efficiency requirements.
- 9. 3 phase units shall be Energy Star certified.

1.05 PRODUCT DELIVERY

- A. Deliver each unit as an integral factory packaged assembly.
- B. Unit shall be stored and handled per manufacturer's recommendations.
- C. Unit shall only be stored or positioned in the upright position.

1.06 MAINTENANCE

A. Maintenance Service: A fully equipped authorized service organization capable of guaranteeing response within 8 hours to service calls shall be available 24 hours a day, 7 days a week to service the completed Work.

B. Extra Materials: Provide with each unit, one spare set of air filters. Suitable box and label spare filters as to their usage.

PART 2 - PRODUCTS

2.01 GAS HEAT/ELECTRIC COOLING PACKAGED ROOFTOP UNITS

A. General

1. Units shall be manufactured by Carrier in an ISO 9001 certified facility. Carrier units are convertible single packages with a common footprint cabinet and common roof curb for all 3 through 12-1/2 ton models. All 6-1/2 through 12-1/2 ton units have two compressors with independent R-410A refrigeration circuits to provide 2 stages of cooling. The units were designed for light commercial applications and can be easily installed on a roof curb, slab, or frame. All units are self-contained and assembled on rigid full perimeter base rails allowing for 3-way forklift access and overhead rigging. Every unit is completely charged with R-410A, wired, piped, and tested at the factory to provide a quick and easy field installation. All units are convertible between side and down airflow. Independent economizer designs are used on side and down discharge applications, as well as all tonnage sizes.

B. Description

1. Units shall be factory assembled, single package, (Gas/ Elect), designed for outdoor installation. They shall have built in field convertible duct connections for down discharge supply/return or horizontal discharge supply/return and be available with factory installed options or field installed accessories. The units shall be factory wired, piped and charged with R-410A refrigerant and factory tested prior to shipment. All unit wiring shall be both numbered and color coded. The cooling performance shall be rated in accordance with DOE and AHRI test procedures. Units shall be CSA certified to ANSI Z21.47 and UL 1995/CAN/CSA No. 236-M90 standards.

C. Unit Cabinet

1. Unit cabinet shall be constructed of galvanized steel with exterior surfaces coated with a non-chalking, powder paint finish, certified at 1000 hour salt spray test per ASTM-B117 standards. Indoor blower sections shall be insulated with up to 1" thick insulation coated on the airside. Either aluminum foil faced or elastomeric rubber insulation shall be used in the unit's compartments and be fastened to prevent insulation from entering the air stream. Cabinet doors shall be hinged with toolless access for easy servicing and maintenance. Full perimeter base rails shall be provided to assure reliable transit of equipment, overhead rigging, fork truck access and proper sealing on roof curb applications. Disposable 2" filters shall be furnished as standard and be accessible through hinged access door. Fan performance measuring ports shall be provided on the outside of the cabinet to allow accurate air measurements of evaporator fan performance without removing panels or creating bypass of the coils. Condensate pan shall be slide out design, constructed of a non corrosive material, internally sloped and conforming to ASHRAE 62-B9 standards. Condensate connection shall be a minimum of 3/4" I.D. female and be rigid mount connection.

D. Outdoor (Condenser) Fan Assembly

1. The outdoor fans shall be of the direct drive type, discharge air vertically, have aluminum blades riveted to corrosion resistant steel spider brackets and shall be dynamically balanced for smooth operation. The outdoor fan motors shall have permanently lubricated bearings internally protected against overload conditions and staged independently. A cleaning window shall be provided on two sides of the units for coil cleaning.

E. Refrigerant Components

1. Compressors:

- a. Shall be fully hermetic type, direct drive, internally protected with internal high-pressure relief and over temperature protection. The hermetic motor shall be suction gas cooled and have a voltage range of + or - 10% of the unit nameplate voltage.
- b. Shall have internal spring isolation and sound muffling to minimize vibration and noise, and be externally isolated on a dedicated, independent mounting.

2. Coils:

- a. Evaporator coils shall have aluminum plate fins mechanically bonded to seamless internally enhanced copper tubes with all joints brazed. Special Phenolic coating shall be available as a factory option.
- b. Evaporator coils shall be of the direct expansion, draw-thru design.
- c. Condenser coils shall have aluminum plate fins mechanically bonded to seamless internally enhanced copper tubes with all joints brazed or Micro-Channel aluminum tube, aluminum fins. Special Phenolic coating shall be available as a factory option.
- d. Condenser coils shall be of the draw-thru design.
- 3. Refrigerant Circuit and Refrigerant Safety Components shall include:
 - a. Independent fixed-orifice or thermally operated expansion devices.
 - b. Solid core filter drier/strainer to eliminate any moisture or foreign matter.
 - c. Accessible service gage connections on both suction and discharge lines to charge, evacuate, and measure refrigerant pressure during any necessary servicing or troubleshooting, without losing charge.
 - d. The 6-1/2 through 12-1/2 ton unit shall have two independent refrigerant circuits, equally split in 50% capacity increments.

4. Unit Controls:

- a. Unit shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-volt transformer side.
- b. Unit shall incorporate a lockout circuit which provides reset capability at the space thermostat or base unit should any of the following standard safety devices trip and shut off compressor:
 - 1) Loss-of-charge/Low-pressure switch.
 - 2) High-pressure switch.
 - 3) Freeze-protection thermostat, evaporator coil. If any of the above safety devices trip, an LED (light-emitting diode) indicator shall flash a diagnostic code that indicates which safety switch has tripped.
- c. Unit shall incorporate "AUTO RESET" compressor over temperature, over current protection.
- d. Unit shall operate with conventional thermostat designs and have a low voltage terminal strip for easy hook-up.
- e. Unit control board shall have on-board diagnostics and fault code display.
- f. Standard controls shall include anti-short cycle and low voltage protection, and permit cooling operation down to 0 °F.
- g. Control board shall monitor each refrigerant safety switch independently.
- h. Control board shall retain last 5 fault codes in non-volatile memory, which will not be lost in the event of a power loss.

F. Gas Heating Section

1. Heat exchanger and exhaust system shall be constructed of aluminized steel and shall be designed with induced draft combustion with post purge logic, energy saving direct spark ignition, and redundant main gas valve. The heat exchanger shall be of the tubular type, constructed of T1-40 aluminized steel for corrosion resistance and allowing minimum mixed air entering temperature of 40 °F. Burners shall be of the in-shot type, constructed of aluminum-coated steel. All gas piping shall enter the unit cabinet at a single location, through either the side or bottom, without any field modifications. An integrated control

board shall provide timed control of evaporator fan functioning and burner ignition. Heating section shall be provided with the following minimum protection:

- a. Primary and auxiliary high-temperature limit switches.
- b. Induced draft pressure sensor.
- c. Flame proving controls.
- d. All two stage gas units shall have two independent stages of capacity (70% or 75% 1st stage, 100% 2nd stage) 3 through 5 ton and (60% 1st stage, 100% 2nd stage) 6-1/2 through 12-1/2 ton.

G. Unit Operating Characteristics

1. Unit shall be capable of starting and running at 125 °F outdoor temperature, exceeding maximum load criteria of AHRI Standard 340/360. The compressor, with standard controls, shall be capable of operation down to 0 °F outdoor temperature. Unit shall be provided with fan time delay to prevent cold air delivery before heat exchanger warms up. (Gas heat only)

H. Electrical Requirements

 All unit power wiring shall enter unit cabinet at a single factory provided location and be capable of side or bottom entry to minimize roof penetrations and avoid unit field modifications. Separate side and bottom openings shall be provided for the control wiring.

I. Standard Limited Warranties

1. Compressor - 5 Years, Heat Exchanger - 10 Years, Stainless Steel Heat Exchanger - 15 Years, Elect. Heat Elem. - 5 Years, Parts - 1 Year.

J. Factory Installed Options:

- 1. Hot Gas Reheat When the RCB detects a need for dehumidification (24VAC) at "HUM" via the field supplied dehumidistat connected to RHTB-1 and RHTB-2, and there is not a call for cooling, it energizes the HGR, which energizes the SOL 3, SOL 2, and de-energizes SOL 1. The unit then operates with circuit #1 in reheat mode and circuit #2 in cooling mode. When the room thermostat calls for first stage cooling while there is still a call for dehumidification, no operational change is made. The call for cooling is ignored and the unit continues to operate with circuit #1 in reheat mode and circuit #2 in cooling mode. When the room thermostat calls for second stage cooling, the RCB senses a signal through "Y1" & "Y2" and de-energizes the HGR, which de-energizes SOL 3 and SOL 2, and energizes SOL 1. Both circuits operate in the cooling mode. Indoor blower operation is initiated upon a call for first stage cooling, second stage cooling or dehumidification.
- 2. Electronic Enthalpy Automatic Economizer Outdoor and return air dampers that are interlocked and positioned by a fully-modulating, spring-return damper actuator. The maximum leakage rate for the outdoor air intake dampers shall not exceed 2% when dampers are fully closed and operating against a pressure differential of 0.5 IWG. A unit-mounted potentiometer shall be provided to adjust the outdoor and return air damper assembly to take in outdoor air to meet the minimum ventilation requirement of the conditioned space during normal operation. During economizer operation, a mixed-air temperature control shall modulate the outdoor and return air damper assembly to prevent the supply air temperature from dropping below 55 °F. Changeover from compressor to economizer operation shall be provided by an integral electronic enthalpy control that feeds input into the basic module. The outdoor intake opening shall be covered with a rain hood that matches the exterior of the unit. Water eliminator/filters shall be provided. Simultaneous economizer/compressor operation is also possible. Dampers shall fully close on power loss. Available with barometric relief or power exhaust.
- 3. Powered Convenience Outlet Unit is provided with an internally powered 120VAC GFCI outlet with cover on the corner of the unit housing the compressors.
- 4. Coil Guard Designed to prevent condenser coil damage
- 5. Breaker An HACR breaker can be factory installed on gas heat units or cooling units with electric heat

6. Stainless Steel Heat Exchanger - For applications in a corrosive environment, this option provides a full stainless steel heat exchanger assembly.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Roof Curbs:

- Install curbs in complete accordance with the manufacturer's printed instructions, and as indicated.
- 2. Deliver roof curbs to construction contractor for installation.

B. Air Conditioners:

- 1. Install equipment on roof curbs in complete accordance with the manufacturers' printed instructions, and as indicated.
- 2. Provide all piping, electrical and ductwork connections to equipment through roof curb openings under units.

3.02 FIELD QUALITY CONTROL

- A. Preliminary Requirements: Employ the services of a Company Field Advisor of the rooftop air conditioner manufacturer for the following:
 - 1. Inspect air conditioner installations prior to start-up.
 - 2. Supervise initial start-up of machine.
 - 3. Instruction of State Personnel.
 - 4. Service.
- B. Pre-Start-Up, Start-Up and Instruction: Upon completion of the installation of the air conditioner, to the satisfaction of the Company Field Advisor, start-up and preliminary testing shall be accomplished under the Company Field Advisor's supervision. When all necessary adjustments have been made and air conditioner is properly operating, the Company Field Advisor shall instruct State Personnel in the operation and maintenance of the air conditioner and accessories.

1.01 SYSTEM DESCRIPTION

A. The Air Conditioner or heat pump system shall be a Mitsubishi Electric split system with Variable Speed Inverter Compressor technology. The system shall consist of a horizontal discharge, single phase outdoor unit, a matched capacity indoor section that shall be equipped with a wired wall mounted, and/or wireless wall mounted controller.

1.02 QUALITY ASSURANCE

- A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL) and shall bear the ETL label.
- B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
- C. The units shall be rated in accordance with Air-conditioning Refrigeration Institute's (ARI) Standard 210 and bear the ARI Certification label.
- D. The units shall be manufactured in a facility registered to ISO 9001 and ISO 14001.
- E. A dry air holding charge shall be provided in the indoor section.
- F. A pressure charge of R410A refrigerant sufficient for up to twenty-five (25) feet of refrigerant tubing shall be provided in the outdoor condensing unit.

1.03 DELIVERY, STORAGE, AND HANDLING

- A. Unit shall be stored and handled according to the manufacturer's recommendations.
- B. The wireless controller shall be shipped inside the carton with the indoor unit able to withstand 105 degree F storage temperatures and 95% relative humidity without adverse effect.

1.04 WARRANTY

- A. The units shall have a manufacturer's parts and defects warranty for a period five (5) year from date of installation. The compressor shall have a warranty of seven (7) years from date of installation. If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty does not include labor.
- B. Manufacturer shall have over 30 years of continuous experience in the U.S. market.

1.05 SUBMITTALS

A. Submit manufacturer's product data including capacity of unit, electrical requirements, airflow, sound pressure data, indoor and outdoor unit measurements, weight, control schematics, and wiring diagrams.

PART 2 - PRODUCTS

2.01 WALL MOUNTED INDOOR UNIT

A. General

1. The indoor unit shall be factory assembled, wired and tested. Contained within the unit shall be all factory wiring and internal piping, control circuit board and fan motor. The unit,

H2M architects + engineers

DUCTLESS SPLIT SYSTEM AIR CONDITIONER 238126-1 in conjunction with the wired wall-mounted, wireless wall-mounted or wireless handheld controller, shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be purged with dry air before shipment from the factory.

B. Unit Cabinet

 The cabinet shall be formed from high strength molded plastic with smooth finish, flat front panel design with access for filter. Cabinet color shall be white. The unit shall be wall mounted by means of a factory supplied, pre-drilled, mounting plate.

C. Fan

1. The indoor unit fan shall be high performance, double inlet, forward curve, direct drive type fan with a single motor. The fans shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings. The indoor fan shall consist of three (3) speeds. The fan shall have a selectable Auto fan setting that will adjust the fan speed based on the difference between controller set-point and space temperature.

D. Vane

1. There shall be a motorized horizontal vane to automatically direct air flow in a horizontal and downward direction for uniform air distribution. The horizontal vane shall close the outlet port when operation is stopped. There shall also be a set of vertical vanes to provide horizontal swing airflow movement.

E. Filter

1. Return air shall be filtered by means of a removable washable filter.

F. Coil

- 1. The evaporator coil shall be of nonferrous construction with pre-coated aluminum strake fins on copper tubing. All tube joints shall be brazed. The coils shall be pressure tested at the factory. A condensate pan and drain shall be provided under the coil.
- 2. A drain pan level switch, designed to connect to the control board, shall be provided and installed on the condensate pan to prevent condensate from overflowing.
- 3. A condensate mini-pump shall be provided to provide a means of condensate disposal.

2.02 OUTDOOR UNIT

A. General

- 1. The outdoor unit shall be compatible with the associated indoor unit. The connected indoor unit shall be of the same capacity as the outdoor unit.
- 2. The outdoor unit shall be equipped with an electronic control board that interfaces with the indoor unit to perform all necessary operation functions.
- 3. The outdoor unit shall be capable of cooling operation down to 0°F ambient temperature without additional low ambient controls. A wind baffle shall be provided with the unit.
- 4. The outdoor unit shall be completely factory assembled, piped, wired, and tested.

B. Cabinet

- The casing shall be constructed from galvanized steel plate, finished with an electrostatically applied, thermally fused acrylic or polyester powder coating for corrosion protection.
- 2. Mounting feet shall be provided and shall be welded to the base of the cabinet and be of sufficient size to afford reliable equipment mount and stability.
- 3. Easy access shall be afforded to all serviceable parts by means of removable panel sections.
- 4. The fan grill shall be of ABS plastic.

C. Fan

- 1. Unit shall be furnished with a DC fan motor.
- 2. The fan motor bearings shall be permanently lubricated.
- 3. The outdoor unit shall have horizontal discharge airflow. The fan shall be mounted in front of the coil, pulling air across it from the rear and dispelling it through the front. The fan shall be provided with a raised guard to prevent external contact with moving parts.

D. Coil

- 1. The condenser coil shall be of copper tubing with aluminum fins. The coil shall be protected with an integral metal guard.
- Refrigerant flow from the condenser shall be controlled by means of an electronic linear expansion valve (LEV) metering device. The LEV shall be control by a microprocessor controlled step motor.
- 3. All refrigerant lines between outdoor and indoor units shall be of annealed, refrigeration grade copper tubing, ARC Type, meeting ASTM B280 requirements, individually insulated in twin-tube, flexible, closed-cell, CFC-free (ozone depletion potential of zero), elastomeric material for the insulation of refrigerant pipes and tubes with thermal conductivity equal to or better than 0.27 BTU-inch/hour per Sq Ft / °F, a water vapor transmission equal to or better than 0.08 Perm-inch and superior fire ratings such that insulation will not contribute significantly to fire and up to 1" thick insulation shall have a Flame-Spread Index of less than 25 and a Smoke-development Index of less than 50 as tested by ASTM E84 and CAN / ULC S-102.

E. Compressor

- The compressor for wall mounted units shall be a Frame Compliant Scroll compressor with Variable Speed Inverter Drive Technology. The compressor recessed units shall be a DC twin-rotor rotary compressor with Variable Speed Inverter Drive Technology.
- 2. The compressor shall be driven by inverter circuit to control compressor speed. The compressor speed shall dynamically vary to match the room load for significantly increasing the efficiency of the system which shall result in significant energy savings.
- 3. To prevent liquid from accumulating in the compressor during the off cycle, a minimal amount of current shall be automatically, intermittently applied to the compressor motor windings to maintain sufficient heat to vaporize any refrigerant. No crankcase heater is to be used.
- 4. The outdoor unit shall have an accumulator and high pressure safety switch. The compressor shall be mounted to avoid the transmission of vibration.

PART 3 - EXECUTION

3.01 GENERAL

- Install all equipment, piping, and controls in accordance with manufacturer's installation instructions.
- B. Install refrigerant piping as per manufacturer's instructions and specification.
- C. Mount the outdoor condensing unit on a concrete equipment pad.
- D. Support the indoor unit as per the manufacturer's instructions.
- E. Mount the controller. Coordinate exact location with the owner.
- F. Install the drain line. Pitch drain line in the direction of flow.

- G. Install new filter on indoor unit.
- H. Clean all equipment after installation.

1.01 DESCRIPTION OF WORK

- A. Electric Unit Heaters.
- B. Electric Cabinet Unit Heaters.
- C. Electric Ceiling Heaters.
- D. Electric Wall Heaters.

1.02 REFERENCES

 A. Electric unit heaters shall meet the requirements of the National Electric Code (NEC) and shall be UL listed.

1.03 SUBMITTALS

- A. Submit under provisions of Section 013300 SUBMITTALS.
- B. Submit manufacturer's product data and installation instructions to Engineer.
- C. Submittal data shall include capacity and size of each heater and wiring instructions.

PART 2 - PRODUCTS

2.01 ELECTRIC UNIT HEATERS

- A. Electric unit heater shall be Model MUH Architectural Series as manufactured by QMark or approved equal. Heater shall be suitable for horizontal or vertical mount. Refer to equipment schedule for mounting type.
- B. Heater to be of the KW rating, voltage and phase specified in the schedule.
- C. Unit Casing: Unit shall have heavy gauge die-formed steel casing with a corrosion resistant finish. Top of casing shall have two threaded holes for threaded rod suspension. Bottom of casing shall have a hinged panel for service access to wiring and controls.
- D. Heating Elements: Aluminum-finned, copper clad steel sheath heating element. Elements shall have kilowatt rating as specified. Provide automatic reset linear thermal cut-out, capillary type, to provide protection over entire length of element areas.
- E. Fan Delay Control: Fan control shall delay fan start up of the fan motor until the heating elements have warmed up. It shall maintain motor operation air heating elements have been de-energized to dissipate residual heat.
- F. Motor and Fan: The motor shall be totally enclosed, continuous duty, with automatic resetting, thermal-overload protection. Propeller fan shall be directly connected to the motor shaft and be statically balanced. Motor mounted with rubber vibration absorbing material.
- G. Electrical: All units shall have built-in contactors and low voltage control circuit transformers to provide single-source power connection. Built-in fuse blocks and factory supplied fuses shall be installed on all models with a 208-volt single-phase power supply. Factory mounted disconnect switches shall be provided. A wiring diagram and grounding lug shall be included in each control compartment.

- H. Air Deflectors: Removable and adjustable horizontal air deflectors shall be furnished on all models.
- Thermostat: Each unit shall be furnished with a remote wall mounted, low voltage thermostat, I. range 40°F to 80°F. Thermostat shall be UL listed.
- Supports: Stainless steel hanger rods, double nuts, and ceiling/wall bracket.
- K. Provide other accessories as described on the contract drawings.

2.02 ELECTRIC CEILING HEATERS

- A. Ceiling mounted electric automatic fan forced heaters shall be Model EFF as manufactured by QMark or approved equal. The heaters shall be UL listed and be designed for ceiling surface, recess, or T-bar mounting. Refer to equipment schedule for mounting type.
- B. Heating Assembly: The heating assembly shall consist of a fan panel upon which is mounted all of the operational parts of the heater.
- C. Heating Element: The heating element shall be of the non-glowing design consisting of 80/20 NiCh resistance wire and closed in a steel sheath to which plate fins are copper brazed. It shall be warranted for 5 years.
- D. Fan and Fan Motor: The fan shall be five bladed aluminum. The fan motor shall be totally enclosed.
- E. Fan Delay Switch: Fan controls hall be of bi-metallic, snap action type and shall activate fan after heating element reaches operating temperature. The fan shall continue to operate after thermostat is satisfied and until the heating element is cool.
- F. Thermal Cutout: A thermal cutout shall be built into the system to shut off the heater in the event of overheating.
- G. Disconnect Switch: A double-pole single throw disconnect switch shall be mounted on the back box for positive disconnect or power supply. It will be completely concealed behind the faceplate.
- Back Box: The back box shall be designed for duty as a recessed rough-in box. The back box shall be 20-gauge galvanized steel and shall contain knockouts through which power leads are brought.
- Faceplate: The louvered faceplate shall be of 14-gauge cold-rolled steel, phosphatized, then electrostatically painted by a baked enamel process. A 1/4 inch mesh screen shall be installed beneath the faceplate to deter the insertion of foreign objects. The faceplate shall be secured to the heating unit with tamper-resistant screws.
- J. Provide other accessories as described on the contract drawings.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install unit in accordance with manufacturer's published installation instructions.
- Do not install horizontal unit heaters closer than 12 inches to combustible materials in any direction.

C. Do not install vertical unit heaters closer than 18 inches from ceiling and 24 inches horizontally from combustible materials in any direction. The bottom of the unit must be a minimum of 8 feet above the floor.

1.01 SECTION INCLUDES

- A. Excavation and backfill for electrical work.
- B. Demolition of existing electrical systems.
- C. Primary power wiring and distribution system.
- D. Secondary power wiring and distribution system.
- E. Lighting, including lamps.
- F. Wiring devices.
- G. Electrical control systems and interlock wiring.
- H. Wiring for built-in equipment.
- I. Motor Control Centers.
- J. Distribution panels and switches.
- K. Engine generator system and automatic transfer switch.
- L. Sound acoustical generator enclosure.
- M. Generator, automatic transfer switch, and generator enclosure substitution procedures.
- N. Instrumentation and Controls.
- O. Snow Melting System.

1.02 RELATED WORK

- A. Foundations and pads required for equipment furnished under this division of specifications.
- B. Field painting, except such painting as is required to maintain shop coat painting and factory finish painting.
- C. Flashing and sealing of conduits through outside walls.
- D. Cutting and patching for electrical work, except for errors and omissions under this Division.

1.03 QUALITY ASSURANCE

- A. It is understood that the rights and benefits given the Owner by the guarantees found in the technical specifications are in addition to and not in derogation of any rights or benefits found in the special and general provisions of the contract.
- B. Electrical equipment provided under this Division shall be turned over in operating condition. Instruction on further operation and maintenance shall be included in the operating and maintenance instructions.

1.04 REFERENCES

- A. Perform work in accordance with standards listed below. Where these specifica-tions are more stringent, they take precedence. In case of conflict, obtain a decision from the Engineer.
 - 1. NFPA-70: National Electrical Code
 - 2. NFPA-101: Life Safety Code
 - 3. New York State Energy Code
 - 4. IBC New York State
 - 5. Applicable New York State Administrative Code
 - 6. Applicable Town Ordinances.
 - 7. Electric utility rules and regulations.
 - 8. Telephone utility rules and regulations.

1.05 PERMITS AND FEES

- A. The Contractor shall obtain and pay for all permits, construction charges, fees, licenses, certificates, inspections and other use charges required in connection with the work.
- B. Such permits include, but are not limited to:
 - 1. Transportation and disposal of debris.
 - 2. Temporary Electrical Services and Permanent Electrical Service.
 - 3. Telephone Service.
 - 4. Electrical Inspectors, Inc., or a pre-approved electrical inspection agency.
 - 5. Road opening permits.

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT

A. All materials and equipment used in carrying out these specifications shall have UL listing and label. Specifications and drawings indicate name, type, or catalog numbers of materials and equipment to be used as standards. Proposals shall be based on these standards. Contractor may use materials and equipment equivalent to those speci-fied, subject to Engineer's approval.

PART 3 - EXECUTION

3.01 COORDINATION

- A. Carefully examine specifications, drawings and project site to be thoroughly familiar with items which require electrical connections and coordination. Electrical drawings are dia-grammatic and shall not be scaled for exact sizes.
- B. Notify other Contractors of any deviations or special conditions necessary for the installation of work. Interferences between work of various contractors to be resolved prior to installation. Work installed not in compliance with specifications and drawings and without properly checking and coordinating as specified above shall, if necessary, be removed and properly reinstalled without additional cost to the Owner. Engineer to be mediating authority in all disputes arising on project.
- C. Equipment shall be installed in accordance with manufacturer's recommendation. Where conflicts occur between contract documents and these recommendations, a clarification shall be requested of the Engineer for decision before preceding with such work.
- D. Insofar as it is possible to determine in advance, advise masonry tradesmen to leave proper chases and openings. Place all outlets, anchors, sleeves, and supports prior to pouring

- concrete or installation of masonry work. Should the Contractor neglect doing this, any cutting and/or patching required to be done is at this Contractor's expense.
- E. FIRE ALARM For any facilities that utilize an existing fire alarm system, the contractor shall coordinate with the owner and fire alarm monitoring company prior to removing or disabling any devices. It shall be the contractor's responsibility to provide fire watch as per the latest addition of the IFC of New York State. The contractor shall provide fire watch for all areas of a facility while occupied and unoccupied when any device or part of the fire alarm system is de-activated or put into "test mode".

3.02 CUTTING AND PATCHING

- A. Repair or replace routine damage caused by cutting in performance of work under this Division.
- B. Correct unnecessary damage caused due to installation of electrical work, brought about through carelessness or lack of coordination.
- C. Holes cut through floor slabs to be core drilled with drill designed for this purpose. All openings, sleeves, and holes in slabs to be properly sealed, fire proofed and waterproofed.
- D. Repairs to be performed with materials which match existing materials and to be installed in accordance with appropriate sections of these specifications.

3.03 TESTS

- A. On completion of work, installation shall be completely operational and entirely free from ground, short circuits, and open circuits. Perform a thorough operational test in presence of the Engineer. Balance all circuits so that feeders to panels are not more than 10% out of balance between phases with all available load energized and operating. Furnish all labor, materials and instruments for above tests.
- B. Furnish Engineer with a copy of such tests including identification of each circuit and readings recorded, also the main service ground resistance test as described in Section 260526 of these specifications. Test information to include ampere readings of all panels and major circuit breakers, isolation resistance reading of motors and transformers.

3.04 IDENTIFICATION OF EQUIPMENT

- A. Properly identify the following:
 - 1. Distribution panels.
 - Disconnect switches.
 - 3. Transfer switches.
 - 4. Individually mounted circuit breakers.
 - 5. Relays.
 - 6. Pilot lights and control switches.
 - 7. Service entrance equipment and main circuit breaker.
 - Generator
- B. Use permanently attached black phenolic plates with 1/4-inch white engraved lettering on the face of each, attached with two sheet metal screws.
- C. Panelboard identification plates shall indicate panel by name.

3.05 INSTALLATION

- A. The Contractor shall carefully move and replace existing equipment, appliances and all related items, as required to conduct proposed work.
- B. Install and conduct all work per applicable NEC, State and local codes.

1.01 SECTION INCLUDES

A. Electrical demolition.

1.02 SUBMITTALS

- A. Submit under provisions of Section 013300.
- B. Shop Drawings: Indicate demolition and removal sequence and location of salvageable items; location and construction of temporary work.

1.03 REGULATORY REQUIREMENTS

- A. Conform to applicable code for demolition work, safety of structure and dust con-trol.
- B. Obtain required permits from authorities.
- C. Notify affected utility companies before starting work and comply with their requirements.
- Do not close or obstruct egress width to exits.
- E. Do not turn off electric equipment without authorization from Owner.
- F. Conform to procedures applicable when discovering hazardous or contaminated materials.
- G. Obtain a utilities mark-out of all buried underground utilities for telephone, electric, gas, sewer and water, including all customer owned utilities.

1.04 SCHEDULING

A. Schedule Work to coincide with new construction.

PART 2 - PRODUCTS

2.01 NOT USED.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify field circuiting arrangements at Independent Fire Station.
- B. Verify that abandoned wiring and equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation. Report discrepancies to the Engineer before disturbing existing installation.
- D. Beginning of demolition means installer accepts existing condition.

3.02 PREPARATION

A. Coordinate utility service outages with Utility Company.

B. Provide power, wiring and connections to maintain all existing power, control and telemetry systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.

3.03 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Remove, relocate, and extend existing installations to accommodate new construction, as indicated on drawings.
- B. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.
- C. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets which are not removed.
- D. Repair adjacent construction and finishes damaged during demolition and extension work.
- Provide caps and filler plates/plugs for all openings in equipment and enclosures after removal of conduits.
- F. Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- G. Remove demolished materials from site as work progresses.
- H. Completely remove and dispose of all electrical power, control, and telemetry feeds including conduits, conductors, boxes and supports not scheduled to remain after new construction is tested and operational.
- I. Where existing devices and equipment are called to be removed, Contractor shall maintain circuit continuity to all existing devices and equipment remaining on that circuit. Contractor shall provide all required conduit, conductors and boxes as required.

3.04 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Remove temporary work.

1.01 SECTION INCLUDES

- A. Wires and cables.
- B. In general, the wires and cables included under this Section shall include, but not be limited to, the following:
 - 1. 600V power and control cable
 - 2. Instrumentation wires
 - 3. Communication cables
- C. All conductors to be continuous from origin to panel or equipment termination without splices.

1.02 REFERENCES

- A. ANSI/NFPA 70 National Electric Code.
- B. NECA Standard of Installations.

1.03 SUBMITTALS

A. Submit product data under provisions of Section 013300.

1.04 QUALITY ASSURANCE

- A. Products used in the work of this Section shall be produced by manufacturers regularly engaged in the manufacturing, installing and servicing of similar items with a history of successful production acceptable to the Engineer as specified herein and in accordance with the General Conditions.
- B. Contractor shall submit the following information pertaining to the manufacturer(s):
 - 1. Complete literature, performance, and technical data describing the proposed equipment and listing of items made by the manufacturer.
 - 2. Location of closest service office from which this equipment shall be serviced.
 - 3. Location of closest parts inventory for item installation.

1.05 COORDINATION

A. Coordination:

- 1. Coordinate wire and cable required with the equipment being furnished by others for the satisfactory operation of the equipment or system.
- 2. Review installation procedures under other sections and contracts and coordinate them with the work specified herein.
- 3. Notify other prime contractors in advance of the installation of the work included to provide them with sufficient time for installation and coordination of interrelated items that are included in their contracts and that must be installed in conjunction with the work included in this Section.

1.06 PROJECT CONDITIONS

A. Verify that embedded conduit, in masonry and concrete, is installed as shown on the Drawings prior to the work being enclosed by others.

H2M architects + engineers

- B. The Contractor shall be present at all concrete pours made by the General Contractor.
- C. Conductor sizes are based on copper at 75°C.
- D. Wire and cable routing shown on Drawings is approximate unless dimensioned or specifically called for such as where conduit is to be embedded in concrete or masonry. Route wire and cable as required to meet project conditions and shall be routed above ceilings, directly under joists, in pipe trenches, where available, and in masonry. Where exposed conduit is permitted, it shall be run to maximize wall space.
- E. Field verify destination location to determine cable routing.
- F. Where wire and cable routing is not shown for proposed destination, determine exact routing and lengths required. Routing shall be reviewed with the Engineer.

PART 2 - PRODUCTS

2.01 CONDUCTORS

- A. Install products in accordance with manufacturer's recommendations.
- B. Single copper conductors with 600-volt insulation.
- C. Minimum size of feeder conductors and grounds shall be No. 12 AWG.
- D. Insulation: No. 12 AWG and No. 10 AWG, provide ANSI/NFPA 70, Type THWN-2.
- E. Use solid conductor for feeder and branch circuits, 10 AWG and smaller.
- F. All conductors shall include complete set of manufacturer's markings for insulation and conductor size.
- G. Manufacturers shall be ANACONDA, TRIANGLE, ROME, or approved equal.
- H. Provide white colored neutral conductors; provide black, color coded phase conductors; provide green colored ground conductors.

2.02 4-PAIR CATEGORY 6 UNSHIELDED TWISTED PAIR CABLE

- A. Manufacturers: Subject to compliance with project requirements, manufacturers offering Products which may be incorporated in the Work include the following:
 - 1. Belden Corporation, Carmel, IN (800) 246-2673.
 - 2. Avaya, Basking Ridge, NJ (800) 344-02232.
 - 3. Berk-Tek, Incorporated, New Holland, PA (800) 237-5835.
 - 4. CommScope, Hickory, NC (800) 982-1708.
 - 5. Draka Comteg, Franklin, MA (888) 541-7100.
 - 6. General Cable, Highland Heights, KY (800) 424-5666.
 - 7. Mohawk/CDT Leominster, MA (978) 537 9961.
 - 8. NORDX/CDT, Worcester, MA (800) 331-0779.
 - 9. Superior Essex, Atlanta, GA. (800) 685-4887.
 - 10. Tyco Electronics, Harrisburg, PA (800) 522-6752.
- B. Conductors: 4 twisted pair 24 AWG, solid copper w/ RJ-45 connector ends

H2M architects + engineers

- 1. Individually insulated plenum rated conductors under common plenum rated sheath unless entire cable is installed within conduit/EMT or if area where cable is installed is not considered a return air plenum according to any applicable codes.
- 2. Complies with individual characteristics established in ANSI/TIA/EIA-568-B, and all addendums for Category 6E cable performance specification.
- 3. Overall Nominal Diameter: .365 x .165 in.
- 4. Nominal Impedance: 100 ohms plus or minus 15 percent.
- 5. Certified capable of performing to minimum 350 MHz.
- C. Mechanical Characteristics
 - 1. Operating temperature: -20°C to +80°C
 - 2. Bulk cable weight: 29 lbs./1000 ft.
 - 3. Maximum recommended pulling tension: 45 lbs.
 - 4. Minimum bend radius: 1 in.
- D. Flame test: UL1666 Riser
- E. Electrical Characteristics:
 - 1. Nom. Mutual Capacitance @ 1 KHz 15.0 pF/ft
 - 2. Maximum Capacitance Unbalance (pF/100 m) 49.2 pF/100 m
 - 3. Nominal Velocity of Propagation 70 %
 - 4. Maximum Delay (ns/100 m) 510 @ 100MHz ns/100 m
 - 5. Maximum Delay Skew (ns/100m) 25 ns/100 m
 - 6. Maximum Conductor DC Resistance @ 20 Deg. C 9 Ohms/100 m
 - 7. Maximum DCR Unbalance @ 20 Deg. C 3 %
 - 8. Max. Operating Voltage UL 300 V RMS

2.03 MECHANICAL CONNECTORS

- A. Conductor tapping connectors shall be BURNDY Servit split bolt, Series KS and KS3, or approved equal.
- B. Split bolt connectors shall use BURNDY Type SC Servit cover on indoor applica-tions.
- C. Terminal lugs shall be BURNDY Universal Terminal Series. Terminal lugs shall be sized for proper ampacity and proper number of conductor holes. Each conductor shall occupy only one hole on a terminal lug.
- D. Conductor tapping connectors for multiple conductors shall be BURNDY Series V-Tap with V-Tap covers, and V-Blok mounting platforms.

2.04 BELOW GRADE EXTERIOR SPLICES

- A. Manufacturer: 3M or approved equal
- B. Model: 72-N series for inline splices
- C. Model: 90-B1 for WYE splices
- D. Splices shall be weatherproof, made with epoxy resin UL listed for dierect burial.
- E. For use with all exterior pull boxes and hand holes where splices are made.
- F. Provide all connectors and crimp couplings as required.

H2M architects + engineers

PART 3 - EXECUTION

3.01 INSTALLATION

A. General:

- 1. Make terminations in accordance with cable manufacturers instructions for the particular type of wire and cable.
- 2. Splices are not allowed in the underground duct and manhole systems. If splices are required, the Contractor shall obtain approval in writing from the Engineer prior to splicing.
- 3. All splices shall be in made in terminal boxes.
- B. Wire and Cable Sizes: The sizes of wire and cable shall be as shown on the Contract Drawings, or if not shown, as approved by the Engineer. Minimum size wire shall be No. 12 AWG for all power, lighting and receptacle circuits. Wires for control circuits shall be No. 14 AWG minimum. Wire for instrumentation circuits shall not be smaller than No. 16 AWG. If due to field routing the voltage drop exceeds 2.5%, the size of conductors shall be increased such that 2.5% is the maximum voltage drop incurred.
- C. Number of Wires: The number of wires indicated on the Contract Drawings for the various control, indications, and metering circuits were determined for general schemes of control and for particular indication and metering systems. Coordinate wiring schemes with equipment schematics.
- D. Wiring Identification: All wiring shall have a unique wire number and be labeled at both ends. Wire numbers shall correspond with the equipment terminal wire numbers. Where no wire numbers are indicated, the Contractor shall assign wire numbers. Wire numbers shall not be duplicated.
- E. Cable Identification Tags: The Contractor shall furnish all labor and materials and affix in a permanent way to each cable in manholes, cable compartments and vaults, junction boxes, pull boxes and points of termination, a laminated plastic tag, bearing clearly printed, the cable number indicated on the Contract Drawings or some other approved identification number or symbol. All cables shall be temporarily tagged with its full ID number immediately after it has been pulled.
- F. Wiring Supplies: Only electrical wiring supplies manufactured under high standards of production and meeting the approval of the Engineer shall be used. Friction tape shall be in accordance with ASTM D69.
- G. Training of Cable: Furnish all labor and material required to train cables around cable vaults within buildings and in manholes in any outdoor underground duct system. Sufficient length of cable shall be provided in each manhole and vault so that the cable can be trained and racked in an approved manner. In training or racking, the radius of bend of any cable shall be not less than the manufacturer's recommendation.
- H. Connections at Control Panels, Limit Switches and Similar Devices:
 - 1. Where stranded wires are terminated at panels, and/or devices connections shall be made by solderless lug, crimp type ferrule or solder dipped.
 - 2. Where enclosure sizes and sizes of terminals at limit switches, solenoid valves, float switches, pressure switches, temperature switches, and other devices make 7-strand, No. 12 AWG, wire terminations impractical, the Contractor shall terminate external circuits in an adjacent junction box of proper size and shall install No. 14 AWG stranded wires to the junction box in a conduit.

H2M architects + engineers

I. Pulling Temperature: Cable shall not be flexed or pulled when the temperature of the insulation or of the jacket is such that damage will occur due to low temperature embrittlement. When cable will be pulled with an ambient temperature within a three day period prior to pulling of 40°F or lower, cable reels shall be stored during the three day period prior to pulling in a protected storage with an ambient temperature not lower than 55 degrees F and pulling shall be completed during the work day for which the cable is removed from the protected storage.

J. Color Coding:

Conductor jacket shall be color coded as follows:

AC POWER

208Y/120 Volt, 3f
Phase A - Blue
Phase B - Black
Phase C - Red
Neutral - White
Ground - Green

- 2. DC Power
 - a. Positive Lead RED
 - b. Negative Lead BLACK
- 3. Instrumentation Signal
 - a. Pairs Black and White
 - b. Triads Black, Red and White
- 4. Equipment Ground GREEN

K. Instrumentation Cable Installation:

- 1. Where instrumentation cables are installed in panels, etc., arrange wiring to provide maximum clearance between cables and other conductors. Instrumentation cables shall not be installed in same bundle with conductors of other circuits.
- 2. Grounding of cable shield shall be accomplished at one point only, unless otherwise required by instrumentation systems manufacturer.
- 3. Special instrument cable shall be as specified or recommended by the vendor of the equipment or instruments requiring such wiring. Installation, storage, terminations, etc., shall be per manufacturer's recommendations.

3.02 IDENTIFICATION

- A. Identify wire and cable under provisions of Section 260553.
- B. Identify each conductor with its circuit number.

3.03 FIELD QUALITY CONTROL

- A. Perform field inspection and testing under provisions of Section 014523.
- B. Inspect wire and cable for physical damage and proper connection.
- C. Measure tightness of bolted connections and compare torque measurements with manufacturer's recommended values.
- D. Field Testing:

H2M architects + engineers

- Wires and cables shall be tested before being connected to motors, devices or terminal blocks.
- 2. If tests reveal defects or deficiencies, the Contractor shall make the necessary repairs or shall replace the cable as directed by the Engineer, without additional cost to the Owner.
- All tests shall be made by and at the expense of the Contractor who shall supply all testing equipment.
- E. Continuity Tests: All cables, wires and shields shall be tested for continuity. Testing for continuity shall be by test light or buzzer.
- F. Insulation-Resistance Tests:
 - 600V power and control cables and wires shall be tested for their insulation-resistance values. Test shall utilize a megohmeter with applied voltage to be 1000VDC for one (1) minute. Insulation-resistance test shall be performed on each conductor with all other conductors grounded. The resistance value shall be 20 megohms or greater.

1.01 SECTION INCLUDES

- A. Grounding electrodes and conductors.
- B. Equipment grounding conductors.
- C. Bonding.

1.02 REFERENCES

A. ANSI/NFPA 70 - National Electric Code.

1.03 REGULATORY REQUIREMENTS

- A. Conform to requirements of ANSI/NFPA 70.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc.

PART 2 - PRODUCTS

2.01 COMPONENTS

- A. Ground clamps: OZ ELECTRICAL MANUFACTURING COMPANY, Type "CG", or equal by STEEL CITY or APPLETON.
- B. Raceways, conductors, outlet boxes, pull and junction boxes to be furnished in accordance with applicable sections of these specifications.
- C. Rod Electrode: Copper, 3/4-inch diameter, 10 feet long.
- D. Wire: Copper, sized to meet NFPA 70 requirements.

PART 3 - EXECUTION

3.01 INSTALLATION

A General

- Clean all conductive surfaces on equipment to be grounded, to assure good electrical continuity.
- 2. Effectively bond all grounding conductors to grounding rod electrodes, equipment enclosures and ground busses.
- 3. Locate all grounding attachments away from areas subject to physical damage. Provide protective covering as required.
- 4. Install service entrance building ground as per NEC and Con Edison requirements.
- 5. Service entrance shall be bonded to street side of first flange or coupling of incoming main water line with heavy duty ground clamp. Bonding conductor to be sized in accordance with NFPA 70.
- 6. Building steel shall be bonded to ground bus on main service with a conductor the same size as in B.1 below.
- 7. Install new service grounds and grounding systems for new service as per Con Edison and NEC requirements.
- 8. Generators shall have a dedicated grounding system for a separately derived system for switching neutrals.

H2M architects + engineers

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS 260526-1

B. Feeder/Branch Circuits:

- 1. All circuits shall have a separate green grounding conductor in conduit sized in accordance with NFPA 70. Minimum size of conductor shall be No. 12 AWG.
- 2. Flexible conduit will not be approved as achieving continuity of ground. All flexible conduit to have a jumper wire sized to ampacity of branch breaker and to be connected to conduit system on both ends; this applies to fixtures, motors, controls, etc.

3.02 TEST

A. Test ground on main service. Ground system resistance shall be no greater than 10 ohms using test equipment similar to a "Biddle" test. Test data to be submitted to the Engineer for approval and such approved test data to become a part of the Record Documents.

1.01 SECTION INCLUDES

A. System of supporting devices and hangers for support or bracing for conduit, electrical equipment, safety switches, fixtures, panelboards, outlet boxes, junction boxes and cabinets.

1.02 REFERENCES

A. ANSI/NFPA 70 - National Electric Code.

1.03 REGULATORY REQUIREMENTS

- A. Conform to requirements of ANSI/NFPA 70.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc.

PART 2 - PRODUCTS

2.01 EQUIPMENT REQUIREMENTS

- A. Provide appropriate corrosion-resistant supporting devices and hangers for electrical equipment, as manufactured by ERICO PRODUCTS, INC., CADDY FASTENERS, STEEL CITY, MINERALLAC or equivalent.
 - 1. "Z" purlin clips.
 - 2. Conduit clips.
 - 3. Beam clamps (universal and vertical flange).
 - 4. Beam clamps (set screw type).
 - 5. Combination push-in conduit clips.
 - 6. Combination conduit hanger clamps.
 - 7. Flexible conduit clips.
 - 8. Special combination conduit clips.
 - 9. One hole steel straps.
 - 10. Conduit hangers.
- B. Provide materials, sizes and types of anchors, fasteners and supports to carry the loads of equipment, wire in conduit and conduit.

2.02 CHANNEL SUPPORT SYSTEM

- A. Channel systems and supports shall be manufactured by KINDORF/THOMAS & BETTS, or approved equal.
- B. Channels shall be 1-1/2" x 1-1/2".
- C. Channels and all associated accessories and bolts shall be hot dipped galvanized.
- D. Channels shall have 9/16" bolt holes on 1-1/2" centers.
- E. Provide end caps for all channels.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Secure conduits to within 3 feet of each outlet box, junction box, cabinet, fitting, etc., and at intervals not to exceed 10 feet in accordance with currently effective edition of the National Electric Code.
- B. In seismic zones, support conduits 1 inch and smaller at 6 foot intervals.
- C. Install clamps secured to structure for feeder and other conduits routed against structure. Use drop rods and hangers to support conduits run apart from the structure.
- D. Provide and install suitable angle iron, channel iron or steel metal framing with accessories to support or brace electrical equipment including safety switches, fixtures, panelboards, etc.
- E. Paint all supporting metal not otherwise protected, with rust inhibiting primer and then with a finish coat if appropriate to match the surrounding metal surfaces. Prepainted or galvanized support material is not required to be painted or repainted.
- F. Do not use chains, perforated iron, baling wire or tie wire for supporting conduit runs. Use of clips to support conduit to top of t-bar ceiling grid will not be permit-ted.
- G. Obtain permission from Engineer before drilling or cutting structural members.
- H. Install surface mounted cabinets and panelboards with a minimum of four anchors.
- I. Do not fasten supports to pipes, ducts, mechanical equipment and conduit.
- J. Install products in accordance with manufacturer's instructions.

1.01 SECTION INCLUDES

- A. Conduit system with associated couplings, connectors and fittings. Conduits to be mechanically and electrically continuous from outlet to outlet and from outlets to cabinets, pull or junction boxes.
 - 1. Conduit Use Rigid Galvanized Conduit:
 - a. All exterior above grade circuits.
 - 2. Conduit Use PVC Sch. 80
 - a. All exterior below grade circuits.
 - b. Transition to RGC shall be made below grade for all conduit extending above grade.
 - 3. Conduit Use Electrical Metallic Tubing (EMT) Conduit:
 - a. All interior above grade circuits.
 - 4. Conduit Use Metal Clad (MC) Cable:
 - a. All 15 and 20 amp branch circuits concealed in walls or ceilings.
 - 5. Conduit Use Flexible Liquid-tight Metal Conduit:
 - a. Connecting motors, generators and other equipment subject to vibration, maximum length 3 feet.
 - b. Passing through building expansion joints.
 - 6. Surface mounted raceway (Wiremold)
 - a. For use in finished areas on block walls and plaster walls, only.
 - b. Wiremold shall not be permitted in any area on the first floor of the building.
 - c. Wiremold shall be permitted in the following spaces, only: KITCHEN R204, MEETING HALL R205 (as required), MEMBER'S ROOM R206 (as required)
 - 7. J-Hooks
 - a. For use above finished ceilings for telephone, PA, CAT 6 data and fire alarm cable only.
- B. Device Boxes: Provide each fixture switch, receptacle and other wiring device with a box of appropriate size and depth for its particular location use unless indicated otherwise.
- C. Pull boxes, junction boxes and wire troughs

1.02 REFERENCES

- A. ANSI C80.1 Rigid Steel Conduit, Zinc Coated.
- B. ANSI/NFPA 70 National Electric Code.
- C. NECA Standard of Installation.
- D. ANSI/NEMA FB 1 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit and Cable Assemblies.
- E. NEMA TC 3 PVC Fittings for use with Rigid PVC conduit and tubing.
- F. ANSI C80.3 Electrical Metallic Tubing, Zinc Coated.
- G. ANSI/NEMA OS1 Sheet-steel outlet boxes, device boxes, covers and box supports.
- H. NEMA 250 Enclosures for electrical equipment (1000 volts maximum).

1.03 SUBMITTALS

A. Submit product data under provisions of Section 013300.

1.04 REGULATORY REQUIREMENTS

- A. Furnish products listed and classified by Underwriters Laboratories, Inc.
- B. Conform to requirements of ANSI/NFPA 70.

1.05 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of Section 017839.
- B. Accurately record actual routing of all conduits.

1.06 FIELD SAMPLES

- A. Provide under provisions of Section 014523.
- B. Provide field sample of conduit two each at 2 feet in length.
- C. Provide field sample of expansion/deflection fitting, two each.

1.07 DELIVERY, STORAGE AND HANDLING

- Deliver, store, protect, and handle products in accordance with manufacturers' recommendations.
- B. Accept conduit on site. Inspect for damage.
- Protect conduit from corrosion and entrance of debris by storing abovegrade. Provide appropriate covering.

1.08 PROJECT CONDITIONS

- A. Verify all conduit routings by field measurements.
- B. Verify routing and termination locations of conduit prior to rough-in.
- C. Conduit routing is shown on Drawings in approximate locations unless dimensioned. Route as required to complete wiring system. Provide all required sweeps, boxes and fittings.

PART 2 - PRODUCTS

2.01 RIGID GALVANIZED CONDUIT

- A. Rigid conduit shall be hot dipped, galvanized, or electro-galvanized steel by Wheatland, Triangle, Republic or approved equal.
- B. Associated couplings, connectors and fittings shall be as manufactured by THOMAS & BETTS CORP., O.Z. GEDNEY CO., EFCOR or approved equal. Catalog numbers used below are those of THOMAS & BETTS CORP. based on 3/4-inch size and are consid-ered standards by which equivalents are to be judged.

H2M architects + engineers

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS 260533-2

- C. ERICKSON couplings, Series 676 or approved equal, shall be used where neither length of conduit can be rotated.
- D. Conduit connectors shall be threaded type. Set screw and compression type connections ARE NOT acceptable.
- E. Sealing fitting locknuts shall be Series 142SL.
- F. Steel or malleable iron insulated bullet hub, Series 370-379, complete with sealing "O" ring. DO NOT use "die cast" material.
- G. Entrance ells shall be Series 1491 or approved equal.
- H. Combination coupling shall be Series 531 for connecting rigid galvanized conduit to electrical metallic tubing.

2.02 PVC CONDUIT

- A. PVC conduit shall be manufactured by WHEATLAND, TRIANGLE REPUBLIC or approved equal.
- B. Description: NEMA TC 2; Schedule 80 PVC.
- C. Fittings and Conduit Bodies: NEMA TC3.

2.03 ELECTRICAL METALLIC TUBING (EMT)

- A. Electrical metallic tubing shall be WHEATLAND, TRIANGLE, REPUBLIC, or approved equal.
- B. Associated couplings, connectors and fittings shall be as manufactured by THOMAS & BETTS CORP., O.Z. GEDNEY CO., EFCOR, or approved equal. Catalog numbers used below are those of THOMAS & BETTS CORP. based on 3/4-inch size and are considered standards by which equivalents are to be judged.
- C. EMT connectors shall be TC-2125C compression type with threaded locknut. Set screw connectors will not be acceptable.
- EMT couplings shall be TK-2125C compression type. Set screw connectors will not be acceptable.

2.04 METAL CLAD CABLE (MC)

- A. Metal clad cable shall be manufactured by BICCGENERAL or approved equal.
- B. Associated couplings, connectors and fittings shall be as manufactured by THOMAS & BETTS CORP., O.Z. GEDNEY CO., EFCOR or approved equal.
- C. Conductors shall be types THHN and THWN. Ground wire shall be sized as per NEC with green THHN/THWN insulation. All conductors shall be cabled and wrapped in polyester tape. All conductors shall be rated for 600 VAC.
- D. Armor material shall be Aluminum Interlocked Armor.

2.05 SURFACE MOUNTED RACEWAY (WIREMOLD)

- A. Manufacturer: Wire Mold shall be manufactured by LEGRAND or approved equal.
- B. Model: 700 Series One-Piece Steel Surface Raceway.
- C. Paint wire mold to match existing wall color.
- D. UL5 and ADA compliant.
- E. UL and cUL Listed.

2.06 DUCT SEAL

- A. RectorSeal or approved equal.
- B. Model #: 81881

2.07 J-HOOKS

- A. For use above finished ceilings for telephone, PA, CAT 6 data and fire alarm cable only. All exposed telephone, PA, CAT 6 data and fire alarm cable shall be in conduit.
- B. Erico Caddy HP J. Hook Series or approved equal.
- C. Provide wire retainers for all.
- D. Provide mounting hardware and accessories as required.
- E. Spacing of J-Hooks and supports shall not exceed 5'-0" on center.

2.08 FLEXIBLE LIQUID-TIGHT METAL CONDUITS AND FITTINGS

- A. Liquid-tight flexible metal conduit shall be ANACONDA or approved equal.
- B. Description: Interlocked steel construction with PVC jacket.
- C. Provide flexible liquid-tight conduits and fittings as manufactured by THOMAS & BETTS CORP., O.Z. GEDNEY CO. or approved equal. Catalog numbers used below are those of the THOMAS & BETTS CORP., based on 3/4" size and are to be considered as standards by which equivalents are to be judged. All conduit shall be liquid-tight flexible type, UL type UA, or suitable for exposure to continuous or intermittent moisture.
- D. Flexible liquid-tight connectors shall be Series 5333 or approved equal.

2.09 OUTLET AND DEVICE BOXES

- A. Acceptable Manufacturers: Raco, General Electric or approved equal.
- B. Sheet Metal Outlet Boxes All concealed boxes shall be NEMA OSI, galvanized steel:
 - 1. Luminare and Equipment Supporting Boxes: Rated for weight of equipment supported. Provide 1/2" male fixture stubs where required.
- C. Concrete Ceiling Boxes: Concrete type.

H2M architects + engineers

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS 260533-4 D. Cast Boxes: All exposed surface mounted boxes shall be NEMA FB1, Type FD, cast feralloy. Provide gasketed cover by box manufacturer.

2.10 PULL BOXES

A. Hand Hole

- 1. Manufacturer shall be Quazite or approved equal.
- Provide Tier 22 traffic loaded pull boxes and Tier 22 loaded covers. Covers shall have logo "LIGHTING".
- 3. Hand Hole Model Number: PG1118BG18.
 - a. Hand Hole shall have two (2) mouseholes and shall have an open botton.
 - b. Hand Hole shall be gasketed.
- 4. Cover Model Number: PG1118HH0029
 - a. Cover shall be gasketed.
 - b. Cover shall be bolted.
- 5. Minimum dimensions shall be 11"W x 18"L x 18"D.
- 6. Grout around all conduits entering/exiting the hand hole.
- Hand Holes shall not be installed in roadways where they may be subject to vehicular traffic.
- 8. Site plan shows minimum required Hand Holes. Provide and install additional Hand Holes as required by NEC and utility requirements.

B. Pull Boxes

- 1. All pull boxes used for this project shall be minimum B-36 style or specifically approved equal for all customer installed power and control circuits, unless specifically noted as "hand hole". Manufacturer shall be Coastal Pipeline or approved equal. All pull boxes shall be approved by Con Edison.
- 2. Provide AASHTO HS20-44 Highway Loading rated pull box and cover. Cover shall have logo "ELECTRIC". Manufacturer shall be B+R Cast Iron Products, Inc. or approved equal. Model #: Q-8-7 or approved equal.
- 3. Minimum dimensions shall be 42"W x 33"L x 36"D.
- 4. Grout around all conduits entering/exiting the pull box.
- 5. Site plan shows minimum required Pull Boxes. Provide and install additional Pull Boxes as required by NEC and utility requirements.

2.11 JUNCTION BOXES

- A. Acceptable Manufacturers: RACO, GENERAL ELECTRIC or approved equal.
- B. Sheet metal boxes: NEMA OS1, galvanized steel.
- C. Covers: Galvanized steel.

2.12 WIRE TROUGH

- A. Wireways shall be manufactured by Square D, Class 5100, General purpose or approved equal.
- B. Wireway shall be completely enclosed with removable covers.
- C. Construction: 16 Gauge Galvanized Steel. 8-inch and 12-inch wire trough shall be 14-gauge galvanized steel.
- D. Finish: ANSI-49 epoxy paint applied by cathodic electro-deposition paint process over a corrosion resistant phosphate preparation.

H2M architects + engineers

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS 260533-5 E. UL listed.

2.13 EXTERIOR WIRE TROUGH

- A. Wireways shall be manufactured by SQUARE D, Class 526, rain tight.
- B. Wireway shall be completely enclosed with removable covers.
- C. Construction: Wireway shall be constructed of Type 304 stainless and shall have stainless steel screw clamps, and oil resistant gaskets.
- D. All hardware, bolts, brackets, and supports shall be constructed of Type 304 stainless steel.

2.14 ELECTRICALLY CONDUCTIVE CORROSION-RESISTANT THREAD COMPOUND

A. KOPR-SHIELD or approved equal.

PART 3 - EXECUTION

3.01 INSTALLATION OF CONDUITS

- A. Minimum size of conduits shall be 3/4-inch.
- B. Minimum conduit depth shall be 24" below grade, measured to the top of the conduit on exterior underground installations.
- C. Conduit joints shall be cut square, threaded, reamed smooth, and drawn up tight so con-duit ends will butt in couplings, connectors and fittings.
- D. All threaded conduits and fittings shall have KOPR-SHIELD compound applied to all threads prior to assembly.
- E. Make bends or offsets with standard ells or field bends with an approved bender.
- F. Run concealed conduits in direct line with long sweep bends or offsets. Run exposed conduits parallel to and at right angles to building lines. Group multiple conduit runs in banks.
- G. Secure conduits to all boxes and cabinets with double locknuts and bushings so system will be electrically continuous from service to all outlets.
- H. Install conduit in accordance with NECA Standard of Installation.
- Cap ends of conduits to prevent entrance of water and other foreign material during construction.
- J. Complete all conduit systems before pulling conductors.
- K. Support conduits under provisions of Section 260529.
- L. Provide approved expansion joints or fittings and bonding jumpers where conduits in concrete pass through building expansion joints.
- M. Provide cable supports in conduits rising vertically in accordance with the National Electric Code, Article 300-19.

H2M architects + engineers

- N. Provide No. 12 AWG copper pull wires or nylon cord in all empty conduits. Steel wire not acceptable as pull wire.
- O. Install conduit to preserve fire resistance rating of partitions and other elements.
- P. Ground and bond conduit under provisions of Section 260526.
- Q. Where neither length of conduit can be rotated, ERICKSON couplings Series 676 shall be used.
- R. In areas where enclosed and gasketed fixtures and weatherproof devices are specified, where rigid conduit enters a sheet metal enclosure, junction box and outlet box, and not terminated in a threaded hub, a steel, or malleable iron nylon insulated bullet hub, com-plete with recessed sealing "O" ring, shall be used, Series 370-379. DO NOT use die cast material.
- S. In concrete slabs block up conduit from forms and securely fasten in place. All conduits in slabs shall be installed below concrete slab.
- T. Where conduits running overhead pass through building expansion joints, install flexible liquid tight conduit of same size with sufficient slack to allow conduits on either side of expansion joint to move a minimum of 3-inches in any direction. Pro-vide supports as required on each side of expansion joint, all in accordance with seismic requirements of specific area.
- U. Failure to route conduit through building without interfering with other equipment and construction shall not constitute a reason for an extra charge. Equipment, conduit and fixtures shall fit into available spaces in building and shall not be introduced into building at such times and manner as to cause damage to structure. Equipment requiring servicing shall be readily accessible.
- V. Arrange supports to prevent misalignment during wiring installation.
- W. Support conduit using coated steel or malleable iron straps, lay-in adjustable hangers, clevis hangers, and split hangers.
- X. Group related conduits; support using conduit rack. Construct rack using steel channel; provide space on each for 25 percent additional conduits.
- Y. Do not support conduit with wire or perforated pipe straps. Remove wire used for temporary supports.
- Do not attach conduit to ceiling support wires.
- AA. Arrange conduit to maintain headroom and present neat appearance.
- AB. Route exposed conduit parallel and perpendicular to walls.
- AC. Route conduit installed above accessible ceilings parallel and perpendicular to walls.
- AD. Route conduit in and under slab from point-to-point.
- AE. Do not cross conduits in slab.
- AF. Maintain adequate clearance between conduit and piping.
- AG. Maintain 12-inch clearance between conduit and surfaces with temperatures exceeding 104°F (40°C).

H2M architects + engineers

- AH. Bring conduit to shoulder of fittings; fasten securely.
- Al. Use conduit hubs with sealing locknuts to fasten conduit in damp and wet locations.
- AJ. Install no more than equivalent of three 90-degree bends on interior locations between boxes. Use conduit bodies to make sharp changes in direction, as around beams. Use factory elbows for bends in metal conduit larger than 2-inch size.
- AK. Avoid moisture traps; provide junction box with drain fitting at low points in conduit system.
- AL. Do not use dissimilar strap or clamp supports. Provide dielectric tape, fittings, straps, and bushings where dissimilar metals are used.
- AM. Where fittings for liquid-tight flexible conduit are brought into an enclosure with a knockout, a gasket assembly, consisting of one piece "O" ring, with a Buna-R seal-ing material, Series 5200, shall be installed on outside of box. Fittings shall be made of either steel or malleable iron only, and shall have insulated throats or insulated bushings.
- AN. A copper ground wire sized in accordance with NEC shall be installed on the inside of the conduit as a jumper around flexible conduit to assure a continuity of ground.
- AO. Install a copper jumper across all flexible conduit including lighting fixtures, controls and other utilization equipment.
- AP. Install liquid-tight flexible conduit in such a manner as to prevent liquids from running on surface toward fittings.
- AQ. Allow sufficient slack conduit to reduce the effect of vibration.
- AR. Complete all conduit systems before pulling the conductors.
- AS. Support in accordance with requirements of National Electric Code.

3.02 INSTALLATION OF BOXES

- A. Install boxes concealed in finished walls.
- B. Locate boxes to prevent moisture from entering or accumulating within them.
- C. Support boxes independently of conduit, as required by the National Electric Code.
- D. Provide 4" x 1-1/2" octagonal, 4" x 1-1/2" square or 4" x 2-1/8" square ceiling outlet boxes.
- E. Where required to hang a specific fixture, provide a fixture stud of the no-bolt, self-locking type on ceiling outlets.
- F. Provide 2-1/2" x 3-3/4" one gang masonry boxes for switches and receptacles installed concealed in concrete block walls. For increased cubic capacity, provide 3-1/2" x 3-3/4" one gang masonry boxes. Where more than two conduits enter the box from one direction, provide 4" square boxes with square cut device covers not less than 1" deep specifically designed for this purpose. Use round edge plaster rings only if the block walls are to be plastered. Use sectional or gang-type outlet boxes only in drywall construction.

- G. Provide 4-11/16" square outlet boxes with square cut device corners for block walls or round edge plaster rings for plastered walls for telephone outlets. Single gang device boxes are not acceptable.
- H. Provide fittings with threaded hubs for screw connections and with the proper type covers for switches and receptacles served by exposed conduit. Use pressed steel outlet only for ceiling fixture outlets.
- Provide condulets with threaded hubs and covers and with proper configurations for all changes
 of direction of exposed conduits. Standard conduit ells may be used if they do not interfere or
 damage or mar the appearance of the installation.
- J. Use boxes of sufficient cubic capacity to accommodate the number of conductors to be installed, in accordance with the National Electric Code.
- K. Effectively close unused openings in boxes with metal plugs or plates.
- L. Set boxes so that front edges are flush with finished surfaces.
- M. Support boxes from structural members with approved braces.
- N. Install blank device plates on outlet boxes left for future use.
- O. Provide bushings in holes through which cords or conductors pass.
- P. Install boxes so that the covers will be accessible at all times.
- Q. Electrical boxes may be installed in vertical fire resistive assemblies classified as fire/smoke and smoke partitions without affecting the fire classification, provided such openings occur on one side only in each framing space and that openings do not exceed 16 square inches. All clearance between such boxes and the gypsum board shall be completely filled with joint compound or approved fire-resistive compound. The wall shall be built around outlet boxes larger than 16 square inches so as not to interfere with the wall rating.

3.03 INSTALLATION OF PULL BOXES, JUNCTION BOXES AND WIRE TROUGHS

- A. Provide junction boxes as shown on Drawings and otherwise where required, sized according to number of conductors in box or type of service to be provided. Minimum junction box size 4-inch square and 2-1/8 inches deep. Provide screw covers for junction boxes.
- B. Install boxes in conduit runs wherever necessary to avoid long runs or too many bends. Do not exceed 100-foot runs without pull boxes. Install pull boxes at all 90-degree bends.
- C. Rigidly secure boxes to walls or ceilings. Conduit runs will not be considered adequate support.
- D. Install boxes with covers in accessible locations. Size boxes in accordance with the National Electric Code.
- E. Do not install pull boxes or junction boxes for joint use of line voltage and signal or low voltage controls unless all conductors are insulated for the highest voltage being used in the same box.
- F. Coordinate installation of exterior pull boxes with General contractor to establish elevations of finished grades and pavements. All castings shall have chimney adjustment of + 6".

3.04 CONDUIT LOCATIONS

- A. Route all conduit concealed in walls or above finished ceilings. Provide boxes and conduits concealed in walls for all power and controls.
- B. Surface mounted conduits will only be allowed on existing block walls on first floor where conduit runs cannot be concealed. Surface mounted conduits shall only be permitted for vertical runs. All horizontal runs shall be installed above finished ceilings where finished ceilings exist
- C. Surface mounted raceway (wiremold) conduit will only be allowed on finished block walls or on plaster walls, as detailed in Section 1.01 of this Specification. All horizontal runs shall be installed above finished ceilings, where drop ceilings are located.
- D. All conduit and wiremold shall be primed and painted to match existing adjacent wall color.
- E. J-Hooks are only permitted to be used above finished ceilings for telephone, PA, CAT 6 data and fire alarm cable.

1.01 SECTION INCLUDES

- A. Nameplates and labels.
- B. Wire and cable markers.
- C. Conduit markers.

1.02 REFERENCES

A. ANSI/NFPA 70 - National Electrical Code.

1.03 SUBMITTALS

- A. Submit under provisions of Section 013300.
- B. Product Data: Provide catalog data for nameplates, labels and markers.
- C. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by Underwriters Laboratories, Inc. Include instructions for storage, han-dling, protection, examination, preparation and installation of product.

1.04 REGULATORY REQUIREMENTS

- A. Conform to requirements of ANSI/NFPA 70.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and shown.

PART 2 - PRODUCTS

2.01 NAMEPLATES AND LABELS

- A. Nameplates: Engraved three-layer laminated plastic, white letters on black background.
- B. Locations:
 - 1. Distribution panelboards.
 - 2. Transfer Switches.
 - 3. Generator Enclosure.
- C. Letter Size:
 - 1. Use 1/4 inch (6 mm) letters for identifying all control pilot lights.
- D. Labels: Embossed adhesive tape, with 3/16" (5mm) white letters on black background. Use for identifying existing equipment, distribution panels, switchboards, disconnect switches, and individual electrical devices.

2.02 WIRE MARKERS

- A. Manufacturers:
 - 1. 3M ELECTRICAL SPECIALTY DIV., Product Scotch Code.
 - 2. THOMAS & BETTS CORP., Product E-Z Code.
 - 3. Substitutions shall be permitted only after receiving written approval from the Engineer.

H2M architects + engineers

IDENTIFICATION FOR ELECTRICAL SYSTEMS

- B. Description: Epoxy film tape type wire markers.
- C. Locations: Each conductor at panelboards, auxiliary gutters, pull boxes, outlet and junction boxes, circuit breakers and each load connection.
- D. Legend:
 - 1. Power and Lighting Circuits: Branch circuit or feeder number indicated on drawings.
 - 2. Control Circuits: Control wire number indicated on interconnection diagrams on drawings.

2.03 CONDUIT MARKERS

- A. Manufacturers:
 - THOMAS & BETTS CORP.
 - 2. Substitutions shall be permitted only after receiving written approval from the Engineer.
- B. Description: Self-sticking vinyl; black letters on orange background.
- C. Location: Furnish markers for each conduit longer than 6 feet (1.8 m).
- D. Spacing: 20 feet (6 m) on center.

2.04 UNDERGROUND WARNING TAPE

- A. Manufacturers:
 - THOMAS & BETTS CORP., Model NAF-0700.
 - 2. Substitutions shall be permitted only after receiving written approval from the Engineer.
- B. Description: 6 inch (150 mm) wide plastic tape, detectable type, colored red with suitable warning legend describing buried electrical lines.

PART 3 - EXECUTION

3.01 PREPARATION

A. Degrease and clean surfaces to receive nameplates and labels.

3.02 APPLICATION

- A. Install nameplate and label parallel to equipment lines.
- B. Secure nameplate to equipment front using screws, rivets or adhesive.
- C. Secure nameplate to inside surface of door on panelboard that is recessed in fin-ished locations.
- D. Apply conduit markers at 20 foot (6 m) intervals.
- E. Identify underground conduits using underground warning tape. Install one tape per trench at 3 inches (75 mm) below finished grade.

3.03 ELECTRICAL EQUIPMENT IDENTIFICATION

A. The Contractor shall identify all existing circuits in existing distribution panels, switchboards and disconnect switches to remain.

H2M architects + engineers

IDENTIFICATION FOR ELECTRICAL SYSTEMS 260553-2

- B. Label all circuits identifying the load served including all individual circuit breakers.
- C. Label all new circuit breakers and switches used for new feeder and branch circuits.
- D. Contractor shall furnish a minimum of 5 custom engrave three-layer laminated plastic labels with up to 20 words per label as directed by the engineer/owner in addition to the required labels for all pilot devices, switches, controls and timers.

1.01 SECTION INCLUDES

Surge protection device.

1.02 RELATED SECTIONS

1.03 STANDARDS

- A. The specified suppressor shall be designed, manufactured, tested and installed in compliance with:
 - 1. American National Standards Institute and Institute of Electrical and Electronic Engineers (ANSI/IEEE C62.11, C62.41 and C62.45).
 - 2. Federal Information Processing Standards Publication 94 (FIP PUB 94).
 - 3. National Electrical Manufacturer Association (NEMA LS-1).
 - 4. National Fire Protection Association (NFPA 20, 70, 75 and 78).
 - 5. Underwriters Laboratories (UL 1449).
 - 6. CAN/C22.2 No. 8-M1986; CSA Electrical Certification Notice No. 516.
 - 7. The system individual units shall be UL listed under UL 1449 Standard for Transient Voltage Surge Suppressions (TVSS) and the surge ratings shall be permanently affixed to the TVSS.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. MCG ELECTRONICS, INC., Deer Park, New York.
- B. Approved equal.

2.02 MANUFACTURED UNITS

A. Surge suppression shall be series Surge Free Model No. 160M-120Y.

2.03 SYSTEM REQUIREMENTS

- A. The specified surge protective device shall provide effective high energy surge diversion for application ANSI/IEEE C62.41-1991 Location Category C3 environments. Testing per ANSI/IEEE C62.45-1992 using ANSI/IEEE C62.41 Category C3 waveforms and amplitudes. UL 1449 listing. The specified surge protective device shall provide:
 - 1. 160,000 transient amps, per phase of surge protection.
 - 2. Peak surge current ratings must be independently tested and verified.
 - 3. All mode protection, L-N, L-G, L-L, N-G.
 - 4. Integral disconnect with safety dead front.
 - 5. Each MOV protected from over-current, thermal overload and monitored individually.
 - 6. Self diagnostics with comprehensive LED bar graph on front panel showing the exact % level of protection available.
 - 7. Audible fault alarm with silence switch.
 - 8. Event counter, indication of time and date of last event (battery backup for time and date).
 - 9. Remote alarm relay contacts (surge protected), Form C.
 - 10. Micro-Z low impedance installation cable.
 - 11. Twenty year warranty on entire system.
 - 12. LIFETIME "NO NONSENSE" WARRANTY ON FIELD REPLACEABLE POWER MODULES AND FUSES.

B. Environmental Requirements:

- Magnetic Fields: Connection shall be made using low impedance Micro-Z cabling provided with the suppressor for maximum magnetic field cancellation. Unit shall be shunt-installed with no series connected elements.
- 2. Operating Temperature: Operating temperature range shall be -40° to +71° C (-40° to +160° F).
- 3. Storage Temperature: Storage temperature range shall be -40° to +185° F.
- 4. Relative Humidity: Operation shall be reliable in an environment with 0% to 95% non-condensing relative humidity.
- 5. Operating Altitude: The system shall be capable of operation up to an altitude of 13,000 feet above sea level.
- 6. Operating Voltage: Maximum continuous operating voltage shall be no less than 115% and no greater than 140% of the nominal rated line voltage.
- 7. Power Frequency: The power frequency range shall be 47 to 63 Hertz.

C. Electrical Requirements:

1. Unit Operating Voltage Requirements:

Voltage:	Description:	Joules (8/20us):	Vpeak L-N (20kV, 10kA):	Vpeak L-N (8/20us):
120/208 VAC	3phase, 4W + gnd, wye	10,300	800V	704V

- 2. Unit shall be installed in parallel with the protected equipment. No series connected protective elements shall be used.
- 3. The maximum surge current capacity per phase of the specified system, based on the standard IEEE 8/20 microsecond waveform, shall be at least: 1 Event at 160 kA. The surge life (8/20us) shall be at least 10,000 @ 6 kA occurrences. The transient suppression capability shall be bi-directional and suppress both positive and negative impulses.
- 4. The suppressor shall be capable of interrupting a 100 kA, short circuit current delivered from the AC power line. The interrupt capability must be confirmed and documented by a recognized independent testing laboratory.
- 5. The suppressor shall be designed so as to minimize the internal surge path impedance. Direct point-to-point internal wiring is inherently inductive and not acceptable. Connection to the power service shall be constructed for best performance.
- 6. Equipment shall be as manufactured by MCG Electronics, Inc.: Model: 160M-Family or engineering department approved equal with supporting test data.

D. Protection System Components:

- 1. Replaceable modules: The suppressor shall be constructed using field replaceable protection modules. The suppressor shall have individually fused and monitored 40mm Metal Oxide Varistors (MOV's), including neutral to ground protection mode. Each module will provide five times (5X) redundant protection, with three modules per each phase and five fuses per module. The status of each module shall be locally monitored with a green LED that becomes red in a fault condition. The transient peak rating of the fuse shall be coordinated with the Ipeak handling capability of the MOV so that the surge path capability is not limited by the series fusing. In addition, each MOV shall incorporate a thermal disconnect means to remove a shorted MOV safely from the protection system.
- 2. Self-Diagnostics: Red, green and yellow solid state LED indicators shall be provided on the hinged front cover to indicate protection status. An illuminated green LED indicates power is present at the protector on all phases, and an illuminated red LED shall indicate that one or more of the modules have reduced protection. An illuminated yellow LED shall

- indicate a suppression event. Both front panel and internal LEDs are required to provide power and fault indications in the event of even the loss of a single fuse or MOV. Relay operation shall be in a fail-safe operating mode (i.e., continuously energized so that power failure, reduced protection, or a break in the remote monitoring line will cause a fault indication at the remote monitor).
- 3. Remote Alarm Capability: Relay alarm contacts shall be provided for remote alarm monitoring capability of unit status. Form C normally open and normally closed contacts shall be provided with voltage and current limiting protection.
- 4. Audible Alarm: The specified system shall be equipped with an audible alarm which shall be activated when any one or more of the modules has a reduced protection condition. A mute option shall be provided for the audible alarm.
- 5. Advanced Diagnostic LED Display: A front panel, microprocessor controlled LED display, in the form of a bar graph, will indicate the protection status of each MOV on each phase including neutral to ground. A event counter will display number of suppressed transient events with a time and date stamp.
- 6. Integral Disconnect: Unit shall be provided with dead front disconnect to remove power from protector for maintenance access. The disconnect should not be accessed from the front panel unless the unit meets the minimum clamp voltage requirements.
- 7. NEMA 12 Enclosure: 14 gauge steel, with stainless steel hardware.

PART 3 - EXECUTION

3.01 INSTALLATION AND MAINTENANCE

- A. The unit shall be factory installed in the motor control center by the Motor Control Center manufacturer, in accordance with the manufacturer's printed instruction to maintain warranty. All local and national codes must be observed.
- B. Units shall be installed as close as possible to the load side lugs of the transfer switch to which it is connected using low impedance Micro-Z cabling.
- C. A 3-pole disconnect shall be provided to insure safety of maintenance personnel.

3.02 TWENTY YEAR WARRANTY

A. Manufacturer to provide twenty (20) year warranty to cover repair or replacement with a new device. Manufacturer to provide no cost replacement of fused protection modules for the life of the suppressor.

1.01 SECTION INCLUDES

A. Distribution panel boards.

1.02 REFERENCES

- A. ANSI/NFPA 70 National Electric Code.
- B. NECA Standard of Installation.
- C. NEMA AB1 Molded Case Circuit Breakers.
- D. NEMA PB1 Panel Boards.
- E. NEMA PB1.1 Instructions for Safe Installation, Operation and Maintenance of Panel Boards Rated 600 Volts or Less.
- F. NEMA ICS2 Industrial Control Devices, Controllers and Assemblies.
- G. NEMA KS1 Enclosed Switches.

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Indicate outline and support point dimensions, voltage, main bus ampacity, integrated short circuit ampere rating, and circuit breaker arrangement and sizes.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. New Panelboards
 - 1. Panel Boards shall be manufactured by Siemens.
 - 2. Approved equal.

2.02 PANELBOARD REQUIREMENTS

- A. Provide panel boards of circuit breaker, dead-front safety type, UL labeled, and meeting all applicable requirements of the National Electrical Manufacturers Association.
- B. Provide panel boards with lugs (both main lugs and branch circuit lugs) suitable and UL approved for both aluminum and copper conductors.
- C. Provide electrically isolated neutral bars.
- D. Provide separate ground bars complete with lugs or connectors on bar.
- E. Provide key operated door and door lock. Door shall prevent access to operate circuit breakers.
- F. Provide panel boards with sequence phased bus bars or distributed phase bussing for voltage and phase as indicated on drawings.

H2M architects + engineers

- G. Refer to drawings for numbers of branch circuits, their ratings, number of poles, arrangements, etc.
- H. Provide typed circuit directory cards.
- I. Provide front filler plates for unused breaker knockouts.
- Refer to drawings for Ratings and Features.
- K. All bus bars, including ground bars shall be tin-plated copper.
- L. All circuit breakers shall be bolt-on type.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Ground separate ground bars to panel boxes and to the main service entrance ground bus with a code-sized grounding conductor installed in the same conduit as the phase and neutral conductors under provisions of Section 260526.
- B. Install all circuits using a common neutral bus bay in accordance with the National Electric Code. Balance all circuits to achieve not greater than 7% unbalanced neutral current in panel feeders.
- C. Provide six circuit breaker handle lock-on devices for each lighting and miscellaneous power panel board for installation by the contractor on circuits as directed by the Engineer to prevent unauthorized personnel from turning off circuits to controls, unit heaters, autodial alarm system, etc. Provide spare lock-on devices over to the Engineer.
- D. Install panel boards in accordance with NEMA PB 1.1.
- E. Install panel boards plumb.
- F. Height: 6 feet (2 m) to top of panel board.
- G. Provide typed circuit directory for each branch circuit panel board. Handwritten circuit directory cards will not be accepted. Revise directory to reflect circuiting changes required to balance phase loads.
- H. Provide a typed circuit directory in accordance with NEC sections 110.22 and 408.4. Circuits shall be labeled with detailed information describing the switches function and equipment location.
- For all existing circuits terminated to a new panelboard, contractor shall trace out and update
 the circuit directory in accordance with NEC sections 110.22 and 408.4. Include all costs for this
 work in base bid.
- J. Revise directory to reflect circuiting changes required to balance phase loads.
- K. Provide engraved plastic nameplates under the provisions of Section 260553.
- L. Panel Boards shall be factory installed in the motor control center by the manufacturer of Motor Control Center where indicated on drawings.

3.02 FIELD QUALITY CONTROL

- A. Maintain proper phasing for multi-wire branch circuits.
- B. Visual and Mechanical Inspection: Inspect for physical damage, proper alignment, anchorage, and grounding. Check proper installation and tightness of connections for circuit breakers, fusible switches, and fuses.

1.01 SECTION INCLUDES

A. Switches, timers, receptacles, device plates and other wiring devices as indicated on Drawings.

1.02 REFERENCES

- A. ANSI/NFPA 70 National Electric Code.
- B. NEMA WD1 General Purpose Wiring Devices.

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Provide manufacturer's catalog information showing dimensions, colors and configu-ration.

1.04 REGULATORY REQUIREMENTS

A. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and shown.

PART 2 - PRODUCTS

2.01 SWITCHES

- A. Manufacturers: HUBBELL, BRYANT, GENERAL ELECTRIC.
- B. Single pole, 20 amp, 120/277 VAC, NEMA WD-1, heavy duty, UL20.
- C. Device Plate: Stainless steel.

2.02 RECEPTACLES

- A. Manufacturers: HUBBELL, BRYANT, GENERAL ELECTRIC.
- B. 20 amp, 125 VAC, NEMA WD-1, heavy duty.
- C. 20 amp, 125 VAC, NEMA WD-1, heavy duty, ground fault circuit interrupter.
- D. Duplex type.
- E. Device Plate: Stainless steel.

2.03 TIMER SWITCH

- A. Acceptable Manufacturers: Intermatic Model No.: FF2H or approved equal.
- B. Operator: twist knob
- C. Dedicated back box single gang
- D. Nameplate: 2.5-inch rectangle white nameplate with black engraved logo "Exhaust Fan", unless noted otherwise on drawings.
- E. 20 Amp Rated, 1 HP

2.04 MANUAL MOTOR RATED THERMAL SWITCH

- A. Acceptable Manufacturers: SQUARE D, Class 2510, Type KG1A, Type KG2C (3-pole, 600V) or approved equal.
- B. Contractor shall coordinate voltage, phase and current rating with equipment.

2.05 CONTACTORS

- A. Manufacturers: Square D, Model No. LO1000V02.
- B. 4 pole, 30 amp, open type contactor.
- C. Electrically held coil, 120VAC.
- D. Quantity required: as per drawings

2.06 ELECTRIC CORD REEL

- A. Manufacturers: HUBBELL, Model No. HBL45123CO20 or approved equal.
- B. Ratings: 120V, 20A, 3 conductors.
- C. Cord length: 45' SJ cord.
- D. Coordinate female plug end with Fire District prior to ordering.

2.07 DATA OUTLETS

- A. Provide combination telephone/data jacks compatible with RJ-45 cable connections.
- B. Provide "decora" type with matching vinyl cover plate.
- C. Colors shall be selected by the District.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Mounting:
 - Mount all switches 46-inches above finished floor to center line of switch unless noted otherwise.
 - 2. Mount all receptacles 18-inches above finished floor to center line of receptacle unless noted otherwise.
 - 3. Install switches with OFF position down.
- B. Polarity: Properly wire all receptacles so that the hot wire, the neutral wire and the ground wire connect to the proper terminal on all receptacles.
- C. Grounding: Install all devices in boxes specified under Section 260533 and install a No. 12 green ground wire from device grounding terminal to the outlet box in accordance with the National Electric Code.
- D. Install device plates on switch, receptacle and blank outlets in full contact with wall surface.

3.02 FIELD QUALITY CONTROL

- A. Inspect each wiring device for defects.
- B. Operate each wall switch with circuit energized and verify proper operation.
- C. Verify that each receptacle device is energized.
- D. Test each receptacle device for proper polarity.
- E. Test each GFCI receptacle device for proper operation.

1.01 SECTION INCLUDES

- A. Disconnect switches.
- B. Fuses.
- C. Enclosed Circuit Breakers.

1.02 REFERENCES

- A. NEMA KS-1 Enclosed Switches.
- B. ANSI/UL 198C High Intensity Capacity Fuses, Current Limiting Types.
- C. ANSI/UL 198E Class R Fuses.
- D. FS W-S 865 Switch, Box (Enclosed), Surface Mounted.
- E. NEMA AB1 Molded Case Circuit Breakers.

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Include outlet drawings with dimensions and equipment ratings for voltage, capacity, horsepower and short circuit current ratings.

1.04 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.01 DISCONNECT SWITCHES

- A. Disconnect switches shall be GENERAL ELECTRIC, heavy-duty Type TH or approved equal.
- B. 75°C conductor ratings.
- C. Ratings: 600VAC
- D. Quick-break, quick-make, load interrupter enclosed knife switch with externally operable handle interlocked to prevent opening front cover with switch in ON position. Handle lockable in OFF position.
- E. Suitable for use as service entrance equipment.
- F. UL listed for Class R 200,000 RMS amps, symmetrical IC.
- G. Class R fusing kit.
- H. Enclosures: Refer to drawings.

H2M architects + engineers

ENCLOSED SWITCHES AND CIRCUIT BREAKERS 262816-1

2.02 FUSES

- A. Fuses shall be Littlefuse KLNR Class RK1 or approved equal.
- B. Fuses shall be rated for 600 volts AC.
- C. Interrupting Rating: 200,000 RMS amps.

2.03 MOLDED CASE CIRCUIT BREAKERS

- A. Install molded case circuit breakers for Main Circuit Breaker, Generator Circuit Breaker and Panel Circuit Breakers.
- B. Molded Case Circuit Breaker:
 - Manufacturer: SIEMENS
 - a. 125 Amp, 3 Pole Type ED6.
 - b. 250 Amp, 3 Pole Type HFD6.
 - c. 400Amp, 3 Pole Type HJD6.
 - d. 600Amp, 3 Pole Type HLD6.
 - 2. AIC Rating: 65,000
 - 3. Thermal magnetic with interchangeable trip
- C. Enclosure
 - 1. Manufacturer: SIEMENS
 - 2. Rating: NEMA 1 (for interior use) or NEMA 4X Stainless Steel (for exterior use).
 - External Throw.
 - 4. Suitable for Service Entrance Equipment (where applicable).

2.04 ELEVATOR MOTOR DISCONNECT SWITCH ("DS1")

- A. COOPER BUSSMAN POWER MODULE SWITCH OR APPROVED EQUAL
 - 1. Provide Power Module Switch in a single NEMA enclosure with all necessary relay(s), control transformer and other options (as listed below), and as shown on drawings.
 - 2. The Power Module Switch shall have an ampere rating as shown on the Contract Drawings, and shall include a horsepower rated fusible switch with shunt trip capabilities. The amp rating of the switch shall be based upon elevator manufacturer requirements and utilize Class J Fuses (provide separately). It shall include as an accessory, a 100VA control power transformer with primary and secondary fuses.
 - 3. The coil of the isolation relay shall be 120Vac. A normally open dry contact shall be provided by the Fire Alarm Safety System to energize the isolation relay and activate the shunt trip solenoid.
 - 4. The module shall contain the following options:
 - a. Key to test switch.
 - b. "ON" Pilot Light (green, Red or White).
 - c. Isolated Full Capacity Neutral Lug.
 - d. 1P NC Mechanically Interlocked Auxiliary Contact (for open/closed switch status).
 - e. Fire Alarm Voltage Monitoring Relay (Needed to comply with NFPA 72).
 - f. NEMA 3R Enclosure.
 - g. Provide all control wiring as required between disconnect switches and elevator controls as required by the elevator installer.

2.05 EXTRA MATERIALS

A. Provide one complete set based on number of poles of spare fuses for each fused disconnect switch. Provide to Owner.

PART 3 - EXECUTION

3.01 INSTALLATION REQUIREMENTS

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Removed temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Provide switches/enclosed circuit breakers at locations as indicated on drawings.
- D. Refer to disconnect switch schedule on drawings for ampacity ratings, fuse sizes, number of poles and enclosure ratings.
- E. Install fuses in fusible devices.
- F. Install engraved nameplates on each switch and enclosed circuit breaker identifying the following:
 - 1. Switch designated.
 - 2. Load served.
 - 3. Power origination.
 - 4. Fuse size as indicated on drawings.

3.02 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit breaker trip ranges.

1.01 - SECTION INCLUDES

A. Magnetic motor starters.

1.02 - REFERENCES

- A. NFPA 70 National Electrical Code.
- B. NECA "Standard of Installation," published by National Electrical Contractors Association.
- C. NEMA ICS 2 Industrial Control Devices, Controllers and Assemblies.
- D. NEMA ICS 6 Enclosures for Industrial Controls and Systems.
- E. NEMA KS 1 Enclosed Switches.

1.03 - SUBMITTALS

- A. Refer to drawing for starter sizes on schedules.
- B. Product Data: Provide catalog sheets showing voltage, controller size, ratings and size of switching and overcurrent protective devices, short circuit ratings, dimensions, and enclosure details.
- C. Test Reports: Indicate field test and inspection procedures and test results.

1.04 - QUALITY ASSURANCE

A. Perform Work in accordance with NECA Standard of Installation.

1.05 - QUALITY ASSURANCE

A. Perform work in accordance with NEMA ICS 2.3.

1.06 - REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and indicated.

PART 2 - PRODUCTS

2.01 - MANUFACTURERS

- A. Franklin Control Systems.
- B. Substitutions: Under provisions of Section 016100.

2.02 - AUTOMATIC CONTROLLERS

- A. Manufacturer: Franklin Control Systems, Model BAS-1P
- B. Motor starters shall be NEMA rated.

H2M architects + engineers

COMBINATION MOTOR CONTROLLERS 262914-1

- C. Coil operating voltage: Coordinate voltage required with equipment to be installed and associated contactor(s).
- D. Overload Relay: NEMA ICS; melting alloy overload.
- E. Enclosure: As shown in contract drawings.

2.03 - PRODUCT OPTIONS AND FEATURES

- A. Auxiliary Contacts:
 - Fault Output
 - 2. Status Output
- B. Motor running and overload indication lights.
- C. Selector Switches: Hand-off-automatic selector switch.
- D. Manual reset push button for overload.

PART 3 - EXECUTION

3.01 - INSTALLATION

- Install enclosed controllers size as indicated, on starter schedule, in accordance with manufacturer's instructions.
- Install enclosed controllers plumb in locations indicated on drawings. Provide supports in accordance with Section 260526.
- Select and install overload heater elements in motor controllers to match installed motor characteristics.
- D. Provide engraved plastic nameplates for each starter.
- E. Provide neatly typed label inside each motor controller door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor and voltage/phase rating.

1.01 SECTION INCLUDES

A. Automatic transfer switch.

1.02 REFERENCES

- A. NFPA 70 National Electrical Code.
- B. NEMA ICS 1 General Standards for Industrial Control and Systems.
- C. NEMA ICS 2 Standards for Industrial Control Devices, Controllers, and Assemblies.
- D. NEMA ICS 6 Enclosures for Industrial Controls and Systems.

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Submit product data for transfer switches showing overall dimensions, electrical connections, electrical ratings, environmental restrictions, voltage, short circuit ratings, enclosure details and all accessories.
- C. Submit manufacturer's installation instructions. Include instructions for storage, handling, protection, examination, preparation, installation and starting of product.
- D. Submit manufacturer's operation and maintenance manual as part of shop drawing submittal.

1.04 OPERATION AND MAINTENANCE DATA

- A. Submit operation and maintenance data under provisions of Section 017823.
- B. Include instructions for operating equipment.
- C. Include instructions for operating equipment under emergency conditions.
- D. Identify operating limits which may result in hazardous or unsafe conditions, whether switch is being operated automatically or manually.
- E. Document ratings of equipment and each major component.
- F. Include manufacturer's recommended routine preventative maintenance schedule.
- G. List any special tools, maintenance materials and recommended spare parts.

1.05 EXTRA SERVICES

- A. The supplier shall include as a part of the package a 5-year warranty and 5-year planned maintenance agreement at no additional cost to the Owner. The agreement shall include, as a minimum, one service call per year. The services must be performed by the authorized distributor of the equipment furnished and may not be subcontracted. The following services shall be performed once a year.
 - 1. Check switches for loose, bare or broken wiring (replace as needed).
 - 2. Test transfer switch operation, time delays and manual operators.
 - 3. Test transfer switch operations and plant exerciser.

H2M architects + engineers

TRANSFER SWITCH (WALL MOUNT) 262917-1

B. Manufacturer's Instructions: The manufacturer's instructions shall indicate application conditions and limitations of use stipulated by product testing agency specified under regulatory requirements. Include instructions for storage, handling, protection, examination, preparation, installation and starting of product.

1.06 REGULATORY REQUIREMENTS

A. Conform to all applicable national, state, city or local codes for standby electrical systems.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. Transfer switch shall be ONAN Model OTPC.
- B. Transfer switch shall be supplied and warranted for 5 years, including a five-year planned maintenance agreement by the single system source supplier. No exceptions.
- C. Proposal for any substitute equipment shall provide complete submittal data, as specified to the Engineer for approval or disapproval. Physical dimensions of transfer switches are based on ONAN Model OTPC. Substitute equipment shall be field verified for adequate equipment spacing relative to other equipment to be installed in the same locations.
- D. It is intended that all products specified herein be of standard ratings, therefore, the ampere ratings, withstand and closing ratings, etc., shall be the manufacturer's next available larger size of rating until the specifications are exactly met.

2.02 AUTOMATIC TRANSFER

- A. Description: NEMA ICS 2; automatic transfer switches.
- B. The switches shall be mechanically held, electrically operated and shall be interlocked mechanically and electrically to insure that normal power and emergency power mixing is impossible. The automatic transfer switches shall be suitable for use with emergency sources.

2.03 AUTOMATIC TRANSFER SWITCH

- A. Sequence of Operation: Automatic switching shall occur from normal power to emergency power when there is a phase reversal or when any phase of the normal power drops between an adjustable voltage range of 75 to 98% voltage and to automatically restore the load to normal when all phases are between an adjustable voltage range of 75 to 98% normal voltage or phase rotation is corrected.
- B. Main switch contacts shall be high-pressure silver alloy in order to improve interrupting and withstand capabilities. Main contacts shall be rated for 600 volts AC minimum. Contact assemblies shall have arc chutes for positive arc extinguishment. Arc chutes shall have insulating covers to prevent interphase flashover.
- C. Transfer switches shall be equipped with transparent protective covers over all live parts of the switch. These covers are to serve as protection to operators or service personnel from contact with live parts, and from contact with arcing by-products if the switches operate with the door open. Barriers shall be transparent to allow for visual inspection for contact position and for damage.

- D. Automatic transfer switches utilizing components of molded case circuit breakers are not acceptable.
- E. All transfer switches and accessories shall be UL listed and labeled, tested per UL Standard 1008 and CSA approved.
- F. Solid state undervoltage sensors shall simultaneously monitor all phases of both sources. Pick-up and drop-out setting shall be adjustable between 75 and 98% of system voltage. Voltage sensors shall allow for adjustment to sense partial loss of voltage on any phase. Voltage sensors shall have field calibration of actual supply voltage to nominal system voltage. Switches that do not monitor all three phases of both normal and emergency sources will not be acceptable.
- G. Provide frequency sensing relay which will not permit transfer to emergency power until the generator set is operating at 60 Hz.
- H. Control wiring shall be terminated interlocking, plug-type connectors. Operating current for the transfer shall be obtained from the source to which the load is to be transferred.
- The controls shall include latching diagnostic indicators to pinpoint the last successful step in the sequence of control functions, and to indicate the present status of the control functions in real time, as follows:
 - 1. Source 1 OK.
 - 2. Start Generator Set.
 - 3. Source 2 OK.
 - 4. Transfer Timing.
 - 5. Transfer Complete.
 - 6. Retransfer Timing.
 - 7. Retransfer Complete.
 - 8. Timing for Stop.

2.04 RATINGS

- A. Ratings shall be as follows:
 - 1. Voltage: 120/208, 3-Phase, 4-Wire.
 - 2. Switched Poles: 4, (overlapping neutral not acceptable).
 - 3. Load Inrush Rating: Combination Load.
- 3. All automatic transfer switches shall meet the following withstand ratings as a minimum. In order to protect the system under current or possible future conditions, whether protected by circuit breakers or current limiting fuses, the transfer switches must meet both of the following molded case circuit breaker and current limiting fuse withstand and closing ratings as a minimum. Ratings are stated in symmetrical RMS amperes for three phase faults.
 - 1. Transfer Amperage: 600
 - 2. WCR @ 208 Volts W/Molded Case C/B'S: 60,000
 - 3. WCR @ 208 Volts W/Current Limit Fuses: 200,000
- C. Transfer switches shall be continuously rated in ambient temperatures of -40 to +122 degrees C, relative humidity up to 95% (non-condensing), and altitudes up to 10,000 feet.

2.05 AUTOMATIC SEQUENCE OF OPERATION

A. Initiate Time Delay to Start Alternate Source Engine Generator: Upon initiation by normal source monitor.

H2M architects + engineers

TRANSFER SWITCH (WALL MOUNT) 262917-3

- B. Time Delay to Start Alternate Source Engine Generator: 0 to 15 seconds, adjustable.
- C. Engine Start: Automatic controls shall signal the engine-generator set to start upon a signal from normal source sensors, after time delay to start has terminated.
- D. Initiate Transfer Load to Alternate Source: Upon initiation by normal source monitor and permission by alternate source monitor.
- E. Time Delay Before Transfer to Alternate Power Source: 2 to 120 seconds, adjustable.
- F. Initiate Retransfer Load to Normal Source: Upon permission by normal source monitor.
- G. Time Delay Before Retransfer to Normal Power: 0 to 30 minutes, adjustable; bypass time delay in the event of the alternate source failing.
- H. Time Delay Before Engine Shut Down: 0 to 10 minutes, adjustable, of unloaded operation; factory set at 5 minutes.
- I. Engine Exerciser: An Exerciser shall, once a week, start the generator set, transfer building load to the generator sets and after a set period of time, transfer the building load back to normal power. It shall be readily accessible and easy to start. Exercisers shall be furnished with load/no load selector switches. Provide bypass exerciser controls if the normal source fails during the exercise period.

2.06 ENCLOSURE

A. Enclosures: Transfer switch enclosure shall be NEMA 1. All controls which will be located on cabinets shall be key operated. Manual operating handles and all control switches, (other than key-operated switches) shall be accessible to authorized personnel only by opening the key-locking cabinet doors. Transfer switches with manual operating handles and/or non key-operated control switches located on the outside of the cabinet do not meet this specification and are not acceptable.

2.07 ACCESSORIES

- A. Indicating Lights: Mounted in cover of enclosure to indicate the following. Source light for AC power loss shall be 30.5 mm heavy duty oiltight press-to-test by SIEMENS.
 - 1. NORMAL SOURCE AVAILABLE.
 - 2. EMERGENCY SOURCE AVAILABLE.
 - 3. NORMAL SWITCH POSITION.
 - 4. EMERGENCY SWITCH POSITION...
- B. Test Switches: Mounted in enclosure of MCC by MCC manufacture to simulate failure of normal source. Switches to be keyed operated. Provide TEST/NORMAL/RETRANSFER positions. Retransfer position to provide immediate Retransfer to normal, bypassing time delay.
- C. Emergency Kill Switch Pushbutton (Maintained): When depressed shall shut down generator. This switch shall be in series with new exterior emergency kill switch. One kill switch shall be installed at generator. One kill switch shall be installed at ATS.
- D. Transfer Switch Main Shaft Auxiliary Contacts: Two normally open; two normally closed. Wired to terminal block for easy access for indication of switch position. Rated at 10 Amps continuous and 250 VAC maximum.

- E. Transfer switches are to be equipped with permanently attached operating handles and quick-break, quick-make mechanisms suitable for normal operation under load. Loose manual operating handles that need to be field attached for operation will not be acceptable.
- F. All transfer switches shall be provided with a field adjustable time delay during the switching in both directions, during which time the load is isolated from both power sources, to allow load residual voltage to decay before closure to opposite source. The delay feature shall have an adjustable range of 0 to 7.5 seconds. Phase angle monitor/inphase type monitors are not acceptable.
- G. Provide generator 20 light remote annunciator located inside the Chief's office. Interface generator set controls with battery charger and all status conditions. Provide all power, control wiring including conduits. Coordinate exact mounting location with district prior to installation.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Installation of transfer switches shall be in accordance with manufacture requirements. Provide applicable U.L. labeling for installed system.

3.02 POWER OUTAGE

A. After the transfer switch is installed, the Contractor shall be responsible to inspect the installation and field verify that the switch has been installed per manufacturer's recommendations. Owner's operating personnel shall be instructed on the use and service requirements of the transfer switch by the manufacturer. A minimum of two (2) hours manufacturers training is required.

3.03 DEMONSTRATION

A. Demonstrate operation of transfer switch under provisions.

1.01 SECTION INCLUDES

- A. Packaged engine generator set.
- B. Exhaust piping, fittings, silencer and insulation.
- C. Control panels.
- D. Battery and charger.
- E. Vibration isolation.

1.02 SUBSTITUTIONS OF ENGINE GENERATOR, AUTOMATIC TRANSFER SWITCH AND GENERATOR ENCLOSURE

- A. Bidders considering substitute engine generator systems, transfer switches and generator enclosure manufacturers not listed in the specifications shall provide complete submittal data for review and acceptance, as indicated in the specifications, no later than 10 days after the bid date. No substitute equipment manufacturers will be considered accepted or reviewed after this date.
- B. If substitute equipment is submitted within 10 days after the bid date and additional product data is required to determine if the proposed equipment is equal, said additional product data shall be submitted no later than 10 days. No further product data will be accepted after this date.
- C. All proposed substitutions shall be submitted by the bidder. Any proposed substitutions submitted directly by supplier and/or manufacturers will not be reviewed or returned.
- D. Failure to comply with the required submittal and substitution requirements as described in Specification Section 016000 will result in rejection of the substitution, without further review.
- E. Acceptance of Substitute Equipment: If accepted, the contractor shall be responsible for all additional costs for generator concrete foundation, any necessary revisions to the plans and specifications, drawings and project documentation; and changes related to equipment spacing, pad sizes, mounts, electrical wiring, ventilation equipment, fuel, exhaust components, etc., as well as any engineering costs, resulting from said substitution. If a brand name other than that specified is proposed for use, the supplier must provide a locally available system for the Owner and Engineer to review and inspect, as well as witness testing to show compliance with the specifications. Also, the supplier must furnish a list of completed installations, including name, address and telephone number of at least five comparable installations which can prove the proposed products have operated satisfactorily for three years.

1.03 REFERENCES

- A. NEMA AB1 Molded Case Circuit Breakers.
- B. NEMA MG1 Motors and Generators.
- C. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
- D. ANSI/NFPA 70 National Electric Code.
- E. NFPA 110 Emergency Standby Systems.

H2M architects + engineers

- F. NFPA 30 Flammable and Combustible Liquids Code.
- G. NFPA 37 Installation of Stationary Engines.
- H. NFPA 101 Life Safety Code.

1.04 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Shop Drawings: Indicate electrical characteristics and connection requirements. Show plan and elevation views with overall and interconnection point dimensions, fuel consumption rate curves at various loads, ventilation and combustion air requirements, electrical diagrams including schematic and interconnection diagrams.
- C. Product Data: Provide data showing dimensions, weights, ratings, interconnection points and internal wiring diagrams for engine, generator, control panel, battery, battery rack, battery charger, exhaust silencer, vibration isolators, radiator and derating schedules, operating performance, exhaust flow data, and cooling system data. Submit generator alternator output curves, deration curves and temperature data on the complete genset individual components.
- Test Reports: Indicate results of performance testing including 0.8 power factor test at 100 percent load.
- E. Prototype Test Reports: Submittals will not be received without submission of prototype test reports. No exceptions.
- F. Manufacturer's Installation Instructions: Indicate applica-tion conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, installation and starting of product. Provide typical system interconnection wiring diagrams.
- G. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.
- H. Manufacturer's Field Reports: Submit under provisions of Section 017900. Indicate procedures and findings.

1.05 OPERATION AND MAINTENANCE DATA

- A. Submit under provisions of Section 017700.
- B. Operation Data: Include instructions for normal operation.
- C. Maintenance Data: Include instructions for routine maintenance requirements, service manuals for engine, oil sampling and analysis for engine wear, and emergency maintenance procedures.

1.06 QUALITY ASSURANCE

A. Perform work in accordance with NFPA 110.

1.07 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum ten years experience, and with an authorized distributor offering 24-hour parts and service availability within 50 miles of the project. The manufacturer shall fabricate the

H2M architects + engineers

NATURAL GAS ENGINE GENERATOR SYSTEMS

- engines, generators and control panel. Automatic transfer switches and generator enclosures shall be supplied, warranted and serviced by a single system source supplier.
- B. Supplier: Authorized distributor of specified manufacturer with minimum six years documented experience with specified products and factory-trained service technicians. The supplier must be factory authorized to perform warranty service on the entire system, including but not limited to, the engines, generators, control panels and automatic transfer switches. The supplier must show proof of factory trained service technicians on all components.
- C. The complete engine generator system shall be standard of a single manufacturer. It shall be factory built, tested and shipped by this single manufacturer.

1.08 REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70 and NFPA 110.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and indicated.

1.09 EXTRA SERVICES

- A. The single source supplier shall provide as part of the package a 5-year warranty and 5-year planned maintenance agreement at no additional cost to the Owner. This warranty shall cover the generator system, transfer switches and generator enclosures. Agreement shall include, as a minimum, one service call per year. The services must be performed by the authorized distributor of the equipment furnished, and may not be subcontracted. The following services shall be performed once a year.
 - 1. Replace engine-lubricating oil and remove used oil from premises.
 - 2. Replace oil and fuel filters.
 - 3. Check coolant system for proper levels and condition. Replace coolant filters and add corrosion inhibitor as needed.
 - 4. Check air filter.
 - 5. Check and clean crankcase breathers.
 - 6. Check turbocharger free-spin and end play.
 - 7. Check and adjust belts as required.
 - 8. Check engine for loose, bare or broken wiring. Replace as needed.
 - 9. Check entire equipment for fuel or water leaks.
 - 10. Check condition of batteries and report any action necessary for recharging or replacing.
 - 11. Start and run all engines, check temperatures and pressures.
 - 12. Test engine safety shutdown systems.
 - 13. Test all transfer switches operation and time delays.
 - 14. Submit a report of this inspection to the Owner and advise of any further work required.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. ONAN CORPORATION, Minneapolis, Minnesota, or specifically approved equal.
- B. Proposal for any substitute equipment shall provide complete submittal data, as specified in Section 016000 - Product Requirements and specified herein, to the Engineer for approval or disapproval. The supplier must submit detailed sizing calculations for each generator to verify models are capable of picking up the entire loads with voltage dips as herein specified.

- C. Approval of Substitute Equipment: Design has been based on ONAN Model Generators. If substitute equipment is approved, the contractor shall be responsible for the charges of any necessary revisions to the plans and specifications, drawings, and project documentation; and charges related to equipment spacing, enclosure sizes, foundation sizes, mounts, electrical wiring, ventilation equipment, fuel, exhaust components, etc., as well as any engineering costs. If a brand name other than that specified is proposed for use, the supplier must provide a locally available generator system for the Owner and engineer to review and inspect, as well as witness testing to show compliance with the specifications. Also, the supplier must furnish a list of completed installations, including name, address and telephone number of at least five comparable installations which can prove the proposed products have operated satisfactorily for three years.
- D. It is intended that all products specified herein be of standard ratings, therefore, the KW and KVA, starting KVA and maximum allowable voltage dip, ratings, etc., shall be the manufacturer's next size or rating to exactly meet the specifications. No exceptions.

2.02 SYSTEM REQUIREMENTS

A. The engine generator shall start and provide continuous power to the loads with 100 percent block loading at the time of transfer.

2.03 NATURAL GAS ENGINE GENERATOR SET

- A. Rating: The AC engine generator set, ONAN Model C150 N6 and shall be rated by the manufacturer for standby operation at 150 KW/188 KVA at 0.8 PF, 60 Hz, 1800 RPM for use at 120/208 volts, 3 phase, 4 wire. Ratings shall be at an elevation of 2,900 feet above sea level, and at 104 degrees F.
 - 1. Voltage regulation shall be +/- 1.0 percent of rated voltage for any constant load between no load and rated load.
 - 2. Frequency regulation shall be isochronous under varying from no load to 100% rated load.
 - 3. Random Voltage Variation: The cyclic variations in RMS voltage shall not exceed +/- 1.0% of rated speed for constant loads from no load to rated load, with constant ambient and operating temperature.
 - 4. Random Frequency Variation: Speed variations for constant loads from no load to rated load shall not exceed +/- 0.25% of rated speed, with constant ambient and operating temperature.
 - 5. Telephone Harmonic Distortion: The sum of AC voltage waveform harmonics, from no load to full linear load, shall not exceed 5% of rated voltage (L-N, L-L, L-L-L) and no single harmonic shall exceed 3% of rated voltage.
 - 6. Telephone Influence Factor: TIF shall be less than 50 per NEMA MG1-22.43.
 - The natural engine generator set shall be capable of picking up 100% of nameplate KW and power factor in one step with the engine generator set at operating temperature, in accordance with NFPA Standard 110, Paragraph 5-13.2.6.
 - 8. The engine generator shall start and provide power to the loads in the following step starting sequence with a maximum instantaneous voltage dip of 11% and a maximum frequency dip of 8%.
 - 9. The generator shall at a minimum provide the performance based upon the load characteristics and steps stated in the "Load Summary Report" below:

Step	Description	Load	Volt/Phase	Motor	Load	Starting
No.		(kW)		HP	Туре	Method
1	Interior Lighting	4.75	120/1	-	Lighting	-
1	Comm. Systems	3.42	120/1	-	Misc.	-

Step	Description	Load	Volt/Phase	Motor	Load	Starting
No.	Description	(kW)	VOIDI Hase	HP	Type	Method
1	Charge Reel #1	1.92	120/1	_	Batt.	-
'	Ondrge (Corn)	1.02	120/1		Charge	
1	Charge Reel #2	1.92	120/1	-	Batt.	_
	Griange 1 (GG) #2	1.02	120/1		Charge	
1	Charge Reel #3	1.92	120/1	-	Batt.	-
		1.02	120, 1		Charge	
1	Charge Reel #4	1.92	120/1	_	Batt.	_
			,		Charge	
1	Charge Reel #5	1.92	120/1	-	Batt.	-
	3				Charge	
1	General Receptacles	16.2	120/1	-	Recept.	-
1	Restaurant Range Fan	.29	120/1	.25	Motor	Capacitor
1	Water Heater "WH1"	.49	120/1	.33	Motor	Capacitor
1	Toaster	2	120/1	-	Recept.	-
1	Water Cooler	.5	120/1	_	A/C	-
1	Fire Alarm Control	.54	120/1	_	Recept.	_
	Panel				•	
1	Vehicle Exhuast Fan "VEF-1"	2.73	208/3	3	Motor	Across the line
1	Circ. Pump "CP1"	.07	120/1	.04	Motor	Capacitor
1	Circ. Pump "CP2"	.07	120/1	.04	Motor	Capacitor
1	Gas Detection "GD-1" & "GD-2"	.5	120/1	-	Recept.	-
1	Existing Air Filter 1	1.2	208/1	1	Motor	Capacitor
1	Existing Air Filter 2	1.2	208/1	1	Motor	Capacitor
	Exhaust Fan "EF-4"	.53	120/1	.03	Motor	Capacitor
1	Exhaust Fan "EF-3"	.61	120/1	.23	Motor	Capacitor
1	Exhaust Fan "EF-2"	.47	120/1	.23	Motor	Capacitor
1	Exhaust Fan "EF-1"	.36	120/1	.11	Motor	Capacitor
1	Exhaust Fan	.17	120/1	.03	Motor	Capacitor
	"EF-EL-1"	'				
1	Circ. Pump "CP-5"	.86	120/1	.68	Motor	Capacitor
1	Exhaust Fan	.14	120/1	.05	Motor	Capacitor
	"EF-DC"					' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
1	Generator Block Heater	1.5	120/1	-	Misc.	-
2	Air Scrubber "AS-1"	.57	120/1	.5	Motor	Capacitor
2	Existing Air Filter 3	1.2	208/1	1	Motor	Capacitor
2	Existing Air Filter 4	1.2	208/1	1	Motor	Capacitor
2	Refrigerator 1	.2	120/1	-	A/C	-
2	Refrigerator 2	.5	120/1	-	A/C	-
2	Freezer	.85	120/1	-	A/C	_
2	Refrigerator 3	.52	120/1	_	A/C	_
2	Bar Fridge	.5	120/1	_	A/C	_
2	Relocated Ice Maker	.5	120/1	<u> </u>	A/C	
3	RTU-1 Compressors	6.72	208/3		A/C	_
3	RTU-1 Combustion	.14	208/3	.19	Motor	Across the
	Fan	. 14	200/3	.18	IVIOLOI	line
	I dii		l .]	I	iii lo

H2M architects + engineers

Step No.	Description	Load (kW)	Volt/Phase	Motor HP	Load Type	Starting Method
3	RTU-1 Indoor Fan	1.67	208/3	2.27	Motor	Across the line
3	RTU-1 Outdoor Fan	.97	208/3	1.41	Motor	Across the line
3	RTU-2 Compressor	3.09	208/3	-	A/C	-
3	RTU-2 Indoor Fan	1.48	208/3	2.02	Motor	Across the line
3	RTU-2 Combustion Fan	.14	208/3	.19	Motor	Across the line
3	RTU-2 Outdoor Fan	.29	208/3	.39	Motor	Across the line
3	Sump Pump	.75	120/1	.5	Motor	Capacitor
3	Blender	1	120/1	-	Recept.	-
3	Hand Dryer 1	.79	120/1	1.11	Motor	Capacitor

1						
4	DSCU-1 Compressor	3.3	208/1	-	A/C	-
4	DSCU-1 Fan Motor	0.07	208/1	.11	Motor	Capacitor
4	DSCU-2 Compressor	1.28	208/1	-	A/C	-
4	DSCU-2 Fan Motor	.07	208/1	.11	Motor	Capacitor
4	DSEU-1 Fan Motor	.05	208/1	.07	Motor	Capacitor
4	DSEU-2 Fan Motor	.04	208/1	.05	Motor	Capacitor
4	DSCU-3 Compressor	1	208/1	-	A/C	-
4	DSCU-3 Fan Motor	.09	208/1	.05	Motor	Capacitor
4	DSEU-3 Fan Motor	.17	208/1	.1	Motor	Capacitor
4	Dishwasher w/ Booster Heater	15.52	208/3		Recept.	-
4	DSCU-4 Compressor	1.5	208/1		A/C	-
5	DSCU-4 Fan Motor	.07	208/1	.11	Motor	Capacitor
5	DSEU-4 Fan Motor	.05	208/1	.07	Motor	Capacitor
5	Garage Door Motor #1	1.24	120/1	.75	Motor	Capacitor
5	Garage Door Motor #2	1.24	120/1	.75	Motor	Capacitor
5	Hand Dryer 2	.79	120/1	1.11	Motor	Capacitor
6	Hand Dryer 3	.79	120/1	1.11	Motor	Capacitor
6	Decon Washing Machine	.99	208/1	.8	Motor	Capacitor
6	RTU-3 Compressor	3	208/3	-	A/C	-
6	RTU-3 Indoor Fan	2.09	208/3	2.77	Motor	Across the line
6	RTU-3 Combustion Fan	.12	208/3	.19	Motor	Across the line
6	RTU-3 Outdoor Fan	1.01	208/3	1.37	Motor	Across the line
6	Kitchen Exhaust Fan "EXH-1"	2.73	208/3	3	Motor	Across the line

6	Make-up Air "SUP-2"	1.02	208/3	1	Motor	Across the line
6	Hand Dryer 4	.79	120/1	1.1	Motor	Capacitor
6	RTU-4 Compressor	3	208/3	-	A/C	-
6	RTU-4 Combustion Fan	.14	208/3	.19	Motor	Across the line
6	RTU-4 Indoor Fan	1.67	208/3	2.27	Motor	Across the line
6	RTU-4 Outdoor Fan	.24	208/3	.39	Motor	Across the line
7	Elevator (Solid State Starting)	16.95	208/3	20	Motor	Solid State

- B. The generator as a packaged unit (engine, alternator and controls) provide a minimum of 920 SKVA sustaining a minimum of 90% of rated no load voltage with the specified 920 SKVA load at near zero power factor applied to the generator.
- C. The alternator performance shall be designed to provide a minimum of 620 locked rotor KVA at a maximum voltage dip of 30%.
- D. The following performance verifications shall be provided for substitute generators.
 - 1. Submit five copies of generator sizing program based upon the specified step/starting sequence and associated voltage/frequency dips and required starting KVA.
 - 2. As part of the substitution requirements the contractor shall enter all design step/starting sequence loads into the manufacturer's generator sizing program in the presence of the engineer to verify model proposed by substitute manufacturer meets the specified requirements for ambient temperature, site altitude, voltage dip, frequency dip, and starting KVA.

2.04 AC GENERATOR, REGULATOR AND EXCITER UNIT

- A. The AC generator, exciter and voltage regulator shall be designed and manufactured by the engine generator set manufacturer as a complete generator system.
- B. The AC generator shall be synchronous, four pole, revolving field, dripproof construction, single prelubricated sealed bearing, air cooled by a direct drive centrifugal blower fan and directly connected to the engine with flexible drive discs. The armature shall have skewed laminations of insulated electrical grade steel, two-thirds pitch windings in order to minimize field heating and voltage harmonics. The rotors shall have amortissuer (damper windings) layer wound mechanically wedged winding construction. The rotors shall be dynamically balanced. The exciters shall be brush-less, three phase, with full wave silicon diodes mounted on the rotating shaft and a surge suppressor connected in parallel with the field winding. Field discharge resistors shall not be acceptable. Systems using three wire solid state devices (such as SCRs or transistors) mounted on the rotor shaft shall not be acceptable.
- C. All insulation system components shall meet NEMA MG1 standard temperature limits for Class H insulation system. Actual temperature rise measured by resistance method at full load shall not exceed 105 degrees C to provide additional allowance for internal hot spots. The main generator and exciter insulation systems must be suitably impregnated for operation in severe environments for resis-tance to sand, salt and sea spray.
- D. Generator shall be a Permanent Magnet Generator (PMG). Permanent magnet generators shall provide excitation power to the auto-matic voltage regulator for immunity from voltage distortion caused by nonlinear SCR controlled loads on the generator. The PMG's shall sustain

H2M architects + engineers

main field excita-tion power for optimum motor starting and to sustain short circuit current for selective operation and coordination of system overcurrent devices.

2.05 ENGINE GENERATOR SET CONTROLS

- A. The generator sets shall be provided with microprocessor-based control systems which are designed to provide automatic staring, monitoring, and control functions for the generator set. The control systems shall also be designed to allow local monitoring and control of the generator sets, and remote monitoring and control as described in this specification. The controls shall be mounted on the generator sets, and shall be vibration isolated and prototype tested to verify the durability of all components in the system under vibration conditions encountered. The controls shall be UL-508 labeled, CSA282-M1989 certified, and meet IEC-8528 part 4. All switches, lamps and meters shall be oil-tight and dust-tight, and the enclosure doors shall be gasketed. There shall be no exposed points in the controls (with the door open) that operate in excess of 50 volts. The controls shall meet or exceed the requirements of Mil-Std 461C part 9, and IEC Std. 801.2, 801.3 and 801.5 for susceptibility, conducted and radiated electromagnetic emissions. The entire controls shall be tested and meet the requirements of IEEE587 for voltage surge resistance. The generator set mounted controls shall include the following features and functions:
 - The generator control panel shall provide a network interface for future use. This network interface shall communicate all the generator status, control, display messages, troubleshooting and safety features as described below. Software shall be available for interfacing PLC Software with generator control panel communications. This interface and software development will be performed by another contract.
 - 2. Three position control switch labeled RUN/OFF/AUTO. In the RUN position the generator set shall automatically start, and accelerate to rated speed and voltage. In the OFF position the generator set shall immediately stop, bypassing all time delays. In the AUTO position the generator set shall be ready to accept a signal from a remote device to start and accelerate to rated speed and voltage.
 - 3. Red "mushroom-head" push-button EMERGENCY STOP switch. Depressing the emergency stop switch shall cause the generator set to immediately shut down, and be locked out from automatic restarting.
 - 4. Push-button RESET Switch: The RESET switch shall be used to clear a fault and allow restarting the generator set after it has shut down for any fault condition.
 - 5. Generator Set AC Output Metering: The generator set shall be provided with a metering set with the following features and functions:
 - a. 2.5-inch, 90 degree scale analog voltmeter, ammeter, frequency meter, and kilowatt (KW) meter. These meters shall be provided with a phase select switch and an indicating lamp for upper and lower scale on the meters. Ammeter and KW meter scales shall be color coded in the following fashion: readings from 0-90% of generator set standby rating: green; readings from 90-100% of standby rating: amber; readings in excess of 100%: red.
 - b. Digital metering set, 0.5% accuracy, to indicate generator RMS voltage and current, frequency, output current, output KW, KW-hours and power factor. Generator output voltage shall be available in line-to-line and line-to-neutral voltages, and shall display all three phase voltages (line to neutral or line to line) simultaneously.
 - 6. Generator Set Alarm and Status Message Display: The generator set shall be provided with alarm and status indicating lamps to indicate non-automatic generator status, and existing alarm and shutdown conditions. The lamps shall be high-intensity LED type. The lamp condition shall be clearly apparent under bright room lighting conditions. The generator set control shall indicate the existence of the following alarm and shutdown conditions on a digital display panel:
 - a. Low Oil Pressure (alarm)
 - b. Low Oil Pressure (shutdown)
 - c. Oil Pressure Sender Failure (alarm)

H2M architects + engineers

- d. Low Coolant Temperature (alarm)
- e. High Coolant Temperature (alarm)
- f. High Coolant Temperature (shutdown)
- g. Engine Temperature Sender Failure (alarm)
- h. Fail to Crank (shutdown)
- i. Overcrank (shutdown)
- j. Overspeed (shutdown)
- k. Low DC Voltage (alarm)
- I. Low Coolant Level (alarm or shutdown-selectable)
- m. High DC Voltage (alarm)
- n. Weak Battery (alarm)
- o. Low Fuel-Daytank (alarm)
- p. High AC Voltage (shutdown)
- q. Low AC Voltage (shutdown)
- r. Under Frequency (shutdown)
- s. Over Current (warning)
- t. Over Current (shutdown)
- u. Short Circuit (shutdown)
- v. Ground Fault (alarm)
- w. Over Load (alarm)
- x. Emergency Stop (shutdown)
- y. In addition, provisions shall be made for indication of two customer-specified or future alarm or shutdown conditions. These two alarm conditions shall be interfaced with leak detection/overfill alarm panel for overfill and leak detection. Labeling of the customer specified or future alarm or shutdown conditions shall be of the same type and quality as the above specified conditions. The non-automatic indicating lamp shall be red, and shall flash to indicate the generator set is not able to automatically respond to a command to start from a remote location.
- 7. Engine Status Monitoring: The following information shall be available from a digital status panel on the generator set control:
 - a. Engine Oil Pressure (psi of kPA)
 - b. Engine Coolant Temperature for left and right block temperatures (degrees F or C; both)
 - c. Engine Oil Temperature (degrees F or C)
 - d. Engine Speed (rpm)
 - e. Number of Hours of Operation (hours)
 - f. Number of Start Attempts
 - g. Battery Voltage (DC volts)
- 8. Control Functions: The control system shall provide for the following functions:
 - a. The control system provided shall include a cycle cranking system, which allows for user selected crank time, reset time, and number of cycles. Initial settings shall be for 3 cranking periods of 15 seconds each, with 15 second rest period between cranking periods.
 - b. The control system shall include an idle mode control, which allows the engine to run in idle mode in the RUN position only. In this mode, the alternator excitation system shall be disabled.
 - c. The control system shall include an engine governor control, which functions to provide steady state frequency regulation as noted elsewhere in this specification. The governor control shall include adjustments for gain, damping, and ramping function to control engine speed and limit exhaust smoke while the unit is starting. The governor control shall be suitable for use in paralleling applications without component changes.
 - d. The control system shall include time delay start (adjustable 0-300 seconds) and time delay stop (adjustable 0-600 seconds) functions.

H2M architects + engineers

- e. The control system shall include sender failure monitoring logic for speed sensing, oil pressure, and engine temperature which is capable of discriminating between failed sender or wiring components, and an actual failure condition.
- 9. Alternator Control Functions: The generator set control shall include the following alternator control functions:
 - a. The generator set shall include an automatic voltage regulation system which is matched and prototype tested with the governing system provided. It shall be immune from misoperation due to load-induced voltage waveform distortion and provide a pulse width modulated output to the alternator exciter. The voltage regulation system shall be equipped with three-phase RMS sensing and shall control build up of AC generator voltage to provide a linear rise and limit overshoot. The systems shall include a torque-matched characteristic, which shall reduce output voltage in proportion to frequency below a threshold of [58-59] HZ. The voltage regulator shall include adjustments for gain, damping and frequency roll-off. Adjustments shall be broad range, and made via digital raise-lower switches, with an alphanumeric LED readout to indicate setting level.
 - b. The voltage regulation system shall include provisions for reactive load sharing and electronic voltage matching for paralleling applications. Motorized voltage adjust pot is not acceptable for voltage matching.
 - c. Controls shall be provided to monitor the output current of the generator set and initiate an alarm when load current exceeds 110% of the rated current of the generator set on any phase for more than 60 seconds. The controls shall shut down and lock out the generator set when output current level approaches the thermal damage point of the alternator.
 - d. Controls shall be provided to monitor the KW load on the generator set, and initiate an alarm condition when total load on the generator set exceeds the generator set rating for in excess of 5 seconds.
 - e. Controls shall include a load shed control, to operate a set of dry contacts (for use in shedding customer load devices) when the generator set is overloaded.
 - f. An AC over/under voltage monitoring system which responds only to true RMS voltage conditions shall be provided. The system shall initiate shutdown of the generator set when alternator output voltage exceeds 110% of the operator-set voltage level for more than 10 seconds, or with no intentional delay when voltage exceeds 130%. Under voltage shutdown shall occur when the output voltage of the alternator is less than 85% for more than 10 seconds.
 - g. A battery monitoring system shall be provided which initiates alarms when the DC control and starting voltage is less than 10 VDC or more than 14VDC. During engine starting, the low voltage limit shall be disabled, and if DC voltage drops to less than 10 volts for more than two seconds a "weak battery" alarm shall be initiated.
 - h. The control system shall include a ground fault monitoring relay. The relay shall be adjustable from 100-1200 amps, and include adjustable time delay of 0-1.0 seconds. The relay shall be for indication only, and not trip or shut down the generator set. Note bonding and grounding requirements for the generator set, and provide relay which will function correctly in system as installed.
- 10. Control Interfaces for Remote Monitoring: All control and interconnection points from the generator set to remote components shall be brought to a separate connection box. No field connections shall be made in the control enclosure or in the AC power output enclosure. Provide the following features in the control system:
 - a. Form "C" dry common alarm contact set rated 2A @ 30VDC to indicate existence of any alarm or shutdown condition on the generator set.
 - b. One set of contacts rated 2A @ 30VDC to indicate generator set is ready to load. The contacts shall operate when voltage and frequency are greater than 90% of rated condition.

- A fused 10 amp switched 24VDC power supply circuit shall be provided for customer use. DC power shall be available from this circuit whenever the generator set is running.
- d. A fused 20 amp 24VDC power supply circuit shall be provided for customer use. DC power shall be available from this circuit at all times from the engine starting/control batteries.
- e. The control shall be provided with provisions for connection of remote monitoring equipment as described herein or shown on the drawings.

2.06 ENGINES

- A. The natural gas / propane (dual fuel) engine shall be manufactured by Cummins Engine Company and designed specifically for generator set duty. The dual fuel engine shall be 4 cycle, natural gas or propane fueled, direct injection, 1800 RPM, with forged steel crankshaft and connecting rods. Minimum engines shall be 543 cubic inches. Engines shall have a minimum of 6 cylinders. The cylinder blocks shall be cast iron with replaceable wet liners and have four valves per cylinder. The engines shall be turbocharged and aftercooled.
 - Engine shall be capable of running on either natural gas or propane. Transfer between fuel sources shall be automatic and shall not require operator intervention. All required accessories/modifications shall be made by the factory. Both natural gas and propane connections shall be made to the new genset.
- B. Fuel Cnsumption at full load shall be as follows:

Natural Gas: 1,915 scfh
 Propane: 783 scfh

- C. Two cycle engines will not be acceptable.
- D. Electronic governor systems shall provide automatic isochronous frequency regulation. The engine governing systems shall not utilize any exposed operating linkage.
- E. The engines shall be cooled by a unit-mounted closed loop radiator system including belt-driven pusher fan, coolant pump and thermostat temperature control. The cooling systems shall be rated for full rated load operation in 113 degrees F (45 degrees C) ambient condition. The cooling capability of the generator sets shall be demonstrated by prototype tests on a representative generator set model conducted by the generator set manufacturer; calculated data from the radiator manufacturer only is not sufficient. Radiators shall be provided with a duct adapter flange permitting the attachment of an air discharge duct to direct the radiator air outside according to the manufacturer's instructions.
- F. Rotating parts shall be guarded against accidental contact per OSHA requirements.
- G. The maximum radiator cooling air shall not exceed 8,800 scfm. The alternator shall be cooled by direct drive blower. The maximum allowable static restriction shall not exceed 0.5 inches of water. The entire cooling air system is based on the above data. All costs incurred if an alternate manufacturer is purchased shall be the responsibility of the electrical contractor. These costs shall include costs to all other trades as well as any associated engineering fees.

2.07 ENGINE ACCESSORY EQUIPMENT

- A. The engine generator sets shall include the following accessories:
 - 1. Electric starters capable of three complete cranking attempts without overheating, before overcrank shutdown (75 seconds).

- 2. Positive displacement, mechanical, full pressure, lubrication oil pumps. Full flow lubrication oil filters with replaceable spin-on canister elements and dipstick oil level indicators. Provide bypass oil filters.
- 3. Replaceable heavy duty dry element air cleaners with restriction indicators and safety element.
- 4. Engine mounted battery charging alternators, 100 ampere and solid-state voltage regulators.
- 5. Anti-condensation heater for alternator.

2.08 BASES

A. The engine-generator set shall be mounted on a heavy duty steel base to maintain proper alignment between components. The engine-generator set shall incorporate battery trays with battery holddown clamps on the base rails. Provisions for stub up of electrical connections shall be within the footprint of the generator set base rails and within the basetanks as specified in the housing section of the specification. Vibration isolators, spring type, shall be provided to be mounted under the generator set base.

2.09 GENERATOR SETS CIRCUIT BREAKERS

- A. Generator main circuit breaker shall be solid state UL listed, molded case type, rated as listed below. Circuit breakers shall be mounted in a separate NEMA 1 enclosure and be shipped completely wired to the gensets. No exceptions. Enclosures shall include neutral blocks for field connection.
- B. Solid State circuit breakers shall be 100% rated: Refer to drawings for sizes.
- C. Circuit breaker (CB) shall be long time current and instantaneous pickup with solid state trip unit. CB shall have visible mechanical fault indicator and push button trip.
- D. Circuit breakers shall be rated at 65,000 AIC.
- E. Provide auxiliary contacts on breaker position.

2.10 EXHAUST SYSTEMS

A. One exhaust silencer shall be provided for the generator set. The silencer shall be super critical grade.

2.11 ACCESSORIES

- A. Vibration isolators: Spring type.
- B. Starting and control Batteries: One (1) 12 volt starting batteries each genset, lead acid type sized to accommodate 45 seconds of cranking at an ambient of 0 degrees F without being recharged.
- C. Battery Chargers: One 10 amp voltage regulated battery charger shall be provided for each engine-generator set and shall be installed in the genset. Input AC voltage and DC output voltage shall be as required. Chargers shall be equipped with float, taper and equalize charge settings. Operational monitors shall provide visual output along with individual form C contacts rated at 4 amps, 120 VAC, 30 VDC for remote indication of:
 - 1. Loss of AC Power red light.
 - 2. Low Battery Voltage red light.
 - 3. High Battery Voltage red light.

H2M architects + engineers

- 4. Power ON green light (no relay contact).
- D. Block Heaters: Thermostatically controlled jacket water heater shall be supplied for each genset with a minimum size shall be 1,500 watts. Input voltage of heaters shall be 120 VAC 1 phase.
- E. Provide generator 20 light remote annunciator located inside the Chief's Office. Interface generator set controls with battery charger and fuel tank alarms for all status conditions. Provide all power, control wiring including conduits.

2.12 ENCLOSURE

- A. The generator set shall be provided with a factory-installed Level II sound attenuated housing which allows the generator set to operate at full rated load in the ambient conditions previously specified. The enclosure shall reduce the sound level of the generator set while operating at full rate load to a maximum of 71.3 dBA at any location 7 meters from the generator set in a free field environment. Housing materials used shall be aluminum. Fiberglass and plastic are not acceptable. Acoustical materials used shall be oil and water resistant. No foam materials shall be used.
- B. The enclosure shall include hinged doors for access to both sides of the engine and alternator, and the control equipment and a hinged rear see-through control door. Key-locking and padlockable door latches shall be provided for all doors. Door hinges shall be stainless steel.
- C. The enclosure shall be provided with an exhaust silencer which is mounted inside of the enclosure, and allows the generator set package to meet specified sound level requirements. Silencer and exhaust shall include a rain cap and rain shield.
- D. All sheet metal shall be primed for corrosion protection and finish painted with the manufacturers standard color using a two step electrocoating paint process, or equal meeting the performance requirements specified below. Metal part surfaces shall be prepared, primed and painted. The painting process shall result in a coating which meets the following requirements:
 - 1. Primer thickness, 0.5-2.0 mils. Top coat thickness, 0.8-1.2 mils.
 - 2. Gloss, per ASTM D523, 80% plus or minus 5%. Gloss retention after one year shall exceed 50%.
 - 3. Crosshatch adhesion, per ASTM D3359, 4B-5B.
 - 4. Impact resistance, per ASTM D2794, 120-160 inch pounds.
 - 5. Salt spray, per ASTM B117, 1000+ hours.
 - 6. Humidity, per ASTM D2247, 1000+ hours.
 - 7. Water Soak, per ASTM D2247, 1000+ hours.
- E. Painting of hoses, clamps, wiring harnesses, and other non-metallic service parts will not be acceptable. Fasteners used shall be corrosion resistant, and designed to minimize marring of the painted surface when removed for normal installation or service work. The enclosure shall be built and tested by the engine generator manufacturer.

2.13 SOURCE QUALITY CONTROL

- A. To provide proven reliability of the system, three series of tests shall be performed: prototype model tests, production model tests and field tests. The manufacturer shall provide documentation demonstrating satisfactory prototype and production test results. Generator sets that have not been prototype tested and factory tested at 0.8 PF will not be acceptable.
- B. Generator Set Factory Production Tests and Evaluation: These tests and evaluations must have been performed on a prototype generator set representative of the Model specified. A summary

H2M architects + engineers

- of the generator set testing results shall be submitted for review. The manufacturer's standard series of components development tests on the generator system, engine and other major components shall also be performed and available for review, but shall not be acceptable as a substitute for prototype testing on the complete representative generator set prototype.
- C. Torsiograph Analysis and Test: The manufacturer of the generator set shall verify that the engine generator set, as configured, is free from harmful torisional stresses. The analysis shall include correlation of empirical data from tests on a representative prototype. The empirical data must include spectrum analysis of the torsional transducer output within the operating speed range of the engine generator set. Calculations based on engine and generator separately are not acceptable.
- D. Temperature Rise Test: Complete thermal evaluation of a prototype generator rotor and starter must include actual measurement of internal generator and exciter temperatures by embedded detector method, and measurement of average temperature rise by resistance method. No position measured any place in the windings may exceed the temperature rise limits of NEMA for the particular type of insulation system used. Resistance method temperature rise data shall be confirmed by a full load test on the generator set prototype to include conducted and radiated heat from the engine.
- E. Short Circuit Test: A test on a prototype generator set shall have demonstrated that the generator set is designed to withstand the mechanical forces associated with a short circuit condition. With the generator set operating at rated load and speed, the generator terminals must be short circuited on all three phases for a duration of 20 seconds. At the conclusion of this test, the generator set must be capable of full load operation.
- F. Endurance Run Test: A minimum of 500 continuous hours of endurance testing with a representative generator set prototype operating as defined by the manufacturer's standby rating shall have been performed. Endurance testing shall be used to verify structural soundness and durability.
- G. Maximum Power Test: With the prototype generator set at normal operating temperature and with all power consuming auxiliaries in place, the maximum power available at rated speed shall be determined with the governor set at its fuel stop. The generator set shall maintain this power for a minimum of two minutes.
- H. Linear Vibration Test: A test for in-line motion of components occurring along a repeatable path shall meet the manufacturer's acceptance criteria.
- I. Cooling System Test: A cooling system test shall demonstrate the ability of the generator set cooling system to maintain normal operating temperature while operating at full rated load and power factor at the highest ambient temperature (122°F) of the system rating. Cooling air requirements, radiator air flow and maximum allowable restriction at radiator discharge, shall be verified by this test.
- J. Maximum Motor Starting KVA: Motor starting KVA shall be determined by test, based on a sustained RMS recovery voltage of at least 90 percent of no load voltage with the specified load KVA at near zero power factor applied to the generator set.
- K. Transient Response, Steady State Speed Control and Voltage Regulation: Prototype generator set tests shall demonstrate consistent performance as follows; stable voltage and frequency at all loads from no load to full rated load, consistent frequency backwidth with steady state load, maximum voltage and frequency kp on load acceptance and rejection and restoration to steady state after sudden load changes. Transient response is a complete generator set (engine, generator, exciter, and regulator) performance criteria and cannot be established on generator data alone.

H2M architects + engineers

L. Generator Set Factory Production Tests: On the equipment to be shipped, an 8-hour test shall be performed at rated load and 0.8 PF. These tests shall include certified data to document the following: run at full load, maximum power, voltage regulation, transient and steady state governing, single step load pickup and safety shutdowns. Provide a factory certified test record of the production testing. Certified test record shall be sealed by a licensed professional engineer.

2.14 WARRANTY

A. Provide a 5-year manufacturer's limited warranty, including 100% parts and labor, ONAN Option L031. The complete electrical power system, including but not limited to, generator set, controls, associated switches, enclosures, and accessories, as provided by the single source manufacturer, shall be warranted by the manufacturer against defects in materials and workmanship for a period of five (5) years from the date of system startup. Coverage shall include parts, labor, travel expenses, and labor to remove/reinstall the equipment, per ONAN's standard published limited warranty. Supplier must be factory authorized to perform warranty service on the entire system, including, but not limited to, the engine, the generator, the control panels, and the automatic transfer switches.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install engine generator and all appurtenances in accordance with manufacturer's recommendations.
- B. Enclosure manufacturer shall install all exhaust components as shown on the drawings and as required to comply with NFPA 37 and local codes and regulations. Components shall be sized to assure full load operation without excessive backpressure sized as per manufacturer's recommendations with actual site dimensions when installed as shown on the drawing. Make provisions as required for pipe expansion and contraction.
- C. Coordinate installation of anchor bolts with generator enclosure manufacturer.
- D. Installation shall comply with applicable State and local codes as required by the authority having jurisdiction. Install equipment in accordance with manufacturer's instructions and instructions included in the listing or labeling of UL listed products.

3.02 FIELD QUALITY CONTROL

- A. Initial startup and field acceptance tests are to be conducted by the authorized representative of the system manufacturer who supplies the equipment.
- B. Test data shall be collected and recorded on the following: time of day, coolant temperature, operating oil pressure, battery charging rate, cranking time, crank-to-rated frequency time, voltage and frequency overshoot, load assumption-to-steady state voltage and frequency stabiliza-tion time, operating voltage, frequency, current, kilowatts and power factor. All data shall be taken every fifteen (15) minutes.
- C. Procedure: Generator manufacturer shall conduct a six (6) hour load bank test at 1.0 power factor for each generator set. Contractor shall provide load bank for testing generator set at 100% load. Contractor is not permitted to use load bank specified as part of the testing requirements. Load bank test shall test generator at full nameplate KW rating. Generator manufacturer's representative shall record test data, as described in (B) above. Test data shall

H2M architects + engineers

be tabulated and typed for submission and approval by the engineer for final acceptance. No handwritten field notes will be allowed.

END OF SECTION 263214

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Interior and exterior luminaries and accessories.
- B. Emergency lighting and units.

1.02 REFERENCES

- A. NEMA WD 6 Wiring Devices Dimensional Requirements.
- B. NFPA 70 National Electric Code.
- C. NFPA 101 Life Safety Code.
- LM-79-08, IESNA Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products
- E. LM-80-08, IESNA Approved Method for Measuring Lumen Maintenance of LED Light Sources

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 013300.
- B. Shop Drawings: Indicate dimensions and components for each luminaire that is not a standard product of the manufacturer.
- C. Product Data: Provide dimensions, ratings, performance data and installation instructions.
- D. Submit manufacturer's installation instructions. Indicate application conditions and limitations of use stipulated by Product testing agency specified under Regulatory Requirements. Include instructions for storage, handling, protection, examination, preparation and installation of Product.
- E. All foot candle calculations and photometrics must be provided with substitute products. Photometrics shall include a room by room analysis showing walls, room names and room numbers. Calculation points shall be 2 feet on center, measured at 30" above the floor. Maintained foot candle levels shall meet or exceed those listed in Section 2.03A of specification 265000. On each drawing, provide a table showing the Room Name, Room Number, Maximum Light Level, Minimum Light Level, Average Light Level, Min:Max Ratio, and IES File Light Fixtrure Model Number.
- F. All substitute LED light fixtures and LED retrofit lighting kits must be Design Lights Consortium (DLC) qualified.
- G. All substitute LED replacement lamps must be listed by Energy Star as Certified Light Bulbs.

1.04 REGULATORY REQUIREMENTS

- A. Conform to requirements of ANSI/NFPA 70.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc.

1.05 1.06 - EXTRA PRODUCTS

- A. Section 017800 Closeout Submittals.
- B. LED Fixtures: At completion of installation, deliver to Owner.
- C. Refer to light fixture schedule drawings for quantities.

PART 2 - PRODUCTS

2.01 LIGHTING UNITS

- A. Refer to LIGHTING FIXTURE SCHEDULE on drawings for fixture manufacturer, catalog number, and fixture description.
- B. Provide electronic energy saving ballasts. Where dimming is shown on drawings, provide dimmable type ballasts.
- C. Incandescent and high intensity discharge recessed lighting fixtures are to be furnished with thermal cut outs as required by NEC.
- All fixtures equipped with emergency battery packs shall have test light and switch accessible and visible from the room floor.

2.02 LIGHTING FIXTURE NOTES

- A. MOUNTING: Electrical Contractor is responsible for reviewing all mounting arrangements prior to ordering any products. Electrical Contractor is responsible for ordering all of the proper fixtures, mounting hardware and miscellaneous fasteners to complete project. Fixtures to be secured to the structure from a minimum of two points, at opposing ends of the fixture when ceiling recessed or surface mounted. Four points shall be secured where necessary for the fixture to be parallel and tight to underside of ceiling. All recessed fixtures to fit tight to ceiling to eliminate all light leaks. Trim kits, when not secured internally to fixture, shall be secured to structure at a minimum of two points.
- B. MOUNTING: Prior to submitting and ordering any light fixture, Contractor is responsible for verifying adequate mounting clearances for all light fixtures that are to be recessed into a grid type ceiling. Where new ceilings are to be installed, contractor shall coordinate with ceiling installers for exact mounting heights and required mounting spaces.
- C. FINISHES: All exposed portions (permanent or adjustable) of fixtures to be finished by the manufacturer in a finish as specified.
- D. Fixtures shall come pre-assembled and complete with all sockets (incandescent to be spring supported), lamp ends, ballasts, transformers, fixture ends, trim rings, plates, and low density mounting kits (as required) for a complete installation.

E. LENSES:

- 1. Minimum 0.125" thick and to be virgin acrylic.
- 2. Low voltage Tempered glass, to enclose lamp.
- F. LAMPS: SYLVANIA, PHILLIPS or GENERAL ELECTRIC, as selected by the Electrical Contractor. Note, all lamps for one project to be furnished by the same manufacturer unless otherwise specified. At the end of the project, the Electrical Contractor shall turn over to the Owner one lamp envelope from each type installed. The Contractor shall be responsible for

- replacing all lamps which burn out during construction and up to ninety (90) days after Owner occupancy of the building.
- G. VOLTAGE: As noted on the LIGHTING FIXTURE SCHEDULE. Contractor is responsible for field verifying available voltage(s) and ordering fixtures, ballasts, and transformers accordingly.
- H. ORDERING: It is solely the responsibility of the Contractor to order fixtures, lamps, mounting brackets and accessories so that the fixtures will be installed and operating upon Owner Occupancy opening. Contractor is responsible for all delays because of his/her lack of effort to order the products in a timely manner.
- I. SHIPPING: The light fixture manufacturer shall mark the fixture type as indicated on the contract drawings and/or shop drawings on the respective carton when shipping luminaries. The Contractor shall be responsible for checking each carton immediately upon receipt for verification that fixtures are undamaged and no contents are missing. All discrepancies must be reported to shipper and manufacturer immediately; otherwise the Contractor shall be responsible for items which are lacking or damaged.

2.03 REQUIRED LIGHT LEVELS

A. Requirements for maintained horizontal foot-candles for each location within each building are listed below. Confirm designated use of each "Location" with owner and engineer prior to beginning calibration work:

Location	Required Maintained Horizontal Foot-Candles		
Offices [on desks]	35		
Meeting Rooms	35		
Apparatus Bays	40		
Locker rooms and toilets	20		

2.04 WARRANTY

A. All light fixtures shall have a 5-year manufacturer's warranty. Warranty shall begin on date of substantial completion.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install fixtures in accordance with manufacturer's instructions.
- B. Mount fixtures in locations as shown on drawings and as called for in schedule on electrical drawings. Determine type of ceiling to be installed in each space from drawings and schedules and furnish fixtures suitable for the exact type.
- C. Joints in fixture wiring shall be made using wire nuts, pre-insulated Scotch locks, or other approved mechanical means of connection.
- D. Adjustable type fixtures shall be adjusted by the Contractor to illuminate intended area to satisfaction of the Engineer.
- E. Surface fixtures in or on plastered or drywall ceilings shall be supported from pieces of support channel spanning across main support channels and shall not depend on ceilings for support.

- F. Coordinate fixture locations to clear diffusers, ductwork, piping, etc.
- G. Maintain integrity of enclosures on all enclosed and gasketed fixtures. Minimize number of enclosure penetrations and make such penetrations water and dust tight with appropriate gasketing and fittings.
- H. Fixtures are to fit tight against construction to eliminate light leaks.
- Recessed downlights are to be provided with adjustable mounting bars/frames for drywall or lay-in ceilings as required. Fixtures shall be securely fastened to the ceiling framing member by mechanical means such as bolts, screws, rivets, or listed clips identified for use with the type of ceiling framing members and fixtures.
- J. Support recessed fixtures 2 foot x 2 foot and larger using a minimum of four independent wire hangers, one on each corner, of same gauge as ceiling suspension system supported from building structure independent of ceiling framing. Install earthquake clips to secure recessed grid-suspended luminaries in place.
- K. Wall-mounted fixtures shall be mounted plumb with building lines and installed with proper box and cover hardware.
- L. Surface-mounted fixtures are to cover mounting hardware. Use a canopy that is no longer than the length and width of the fixture and at a height that is no higher than required to mount the fixture absolutely vertical. Fixtures shall be plumb and shall align with building lines and with each other. Support surface mounted luminaries on grid ceiling directly from building structure. Secure to prevent movement.
- M. Stem-mounted fixtures are to be mounted to be absolutely vertical or horizontal. Install suspended luminaries using pendants supported from swivel hangers or in accordance with details shown in drawings. Provide pendant length required to suspend luminaire at indicated height. Support stem-mounted fixtures directly from the building structure.
- N. Install recessed luminaries using accessories and firestopping materials to meet regulatory requirements for fire rating. In fire rated ceilings, recessed luminaries must carry one-hour UL fire rating classification.
- O. Install all accessories specified with each fixture. Install recessed luminaries to permit removal from below.
- P. Bond products and metal accessories to branch circuit equipment grounding conductor.
- Q. At completion of installation and before turning over to owner, clean and remove all dirt and smudges from all lighting fixtures including lenses, louvers and reflectors.
- R. Relamp luminaries that have failed at completion of project.

END OF SECTION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Main Circuit Breaker/Current Transformer/Meter Cabinet and Meter Pan.
- B. Secondary conduits, conductors, excavation, concrete and backfill.

1.02 REFERENCES

A. ANSI/NFPA 70 - National Electric Code.

1.03 SUBMITTALS

A. Submit product data under provisions of Section 013300.

PART 2 - PRODUCTS

2.01 METERING EQUIPMENT

- A. Meter pans, meter, current transformers and ground fault circuit protection shall be on Con Edison's approved lists of manufacturers and models.
- B. CT Cabinets, Current Transformers and Ground Fault Protection shall be factory installed into motor control center manufacturer's structures as per Con Edison specifications.

2.02 PULL BOXES

- A. Provide pull boxes including property line pull boxes as per Con Edison requirements for both primary and secondary services.
- B. Provide Con Edison approved property line pull box for all secondary services above 400 amperes.

2.03 CABLE

- A. Install new secondary service conductors in conduit.
- B. Primary service conductors shall be 15 KV, copper size 1/0, type TR-XLPE with 220 mils insulation thickness as per ConEd requirements.
- C. Secondary service conductors shall be installed per Con Edison requirements.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Coordinate secondary service installation with Con Edison prior to beginning work.
- B. Contractor shall file application for new electrical service and pay related fees. Contractor shall coordinate with owner for all information related to the service application.

END OF SECTION

PART 1 - GENERAL

1.01 1.01 - SECTION INCLUDES

A. Temporary electric service for construction.

1.02 REFERENCES

A. ANSI/NFPA 70 - National Electric Code.

1.03 SUBMITTALS

- A. Submit under provisions of Section 013300.
- B. Shop Drawings: Indicate locations where temporary electric service will be located and routed.

1.04 REGULATORY REQUIREMENTS

- A. Obtain required permits from authorities.
- B. Notify affected utility companies before starting work and comply with their require-ments.
- C. Do not close or obstruct egress width to exits.
- D. Do not turn off electric equipment without authorization from Owner and Engineer. Provide 72 hours advance notification.

PART 2 - PRODUCTS

2.01 TEMPORARY ELECTRIC SERVICE

- A. Temporary service shall be available during the entire contract period and during all phases of work, day and night for the fire station.
- B. Temporary service shall be installed and maintained per NEC, OSHA, IBC New York State and Con Edison requirements.
- C. The temporary electrical service shall be sized correctly for all of the new and existing loads.
- D. All existing equipment shall be protected against damage caused by the installation, operation and removal of the temporary service. Any equipment or items damaged shall be replace at no cost to the Owner.
- E. Provide temporary lighting for fire station. Minimum foot candle for temporary lighting: 30fc, measured at floor surface. The Contractor shall set up light to minimize glare.
- F. Provide wiring, utility poles, metering equipment, distribution panel and other equipment for temporary light and power to fire station. Contractor shall pay all fees required for temporary service and complete all required applications. Contractor shall pay all application and construction fees required for temporary service and complete all required applications. Contractor shall pay for all electrical consumption for temporary service.
- G. Provide Owner with three (3) keys to all distribution panels for temporary power for distribution to General Contractor and Village Personnel.

H2M architects + engineers

TEMPORARY ELECTRICAL UTILITY SERVICES AND CONTROLS 267174-1

- H. Wiring for temporary light, controls and power shall include a distribution panel for 3 phase, 4 wire, 120/208 volt, 200 AMP service. Feeders in building shall have branch circuits of #12 conductors minimum. Contractor shall pay all application and construction fees required for temporary service and complete all required applications
- I. Provide 20 amp branch circuits with fused ground type receptacle outlet for single phase power.
- J. Where distribution panels are provided for temporary power provide four (4) 20 amp circuits with #12 AWG SO cord pigtails with 20 amp plugs with strain relief. Provide one (1) 30 amp circuit with #10 AWG SO cord pigtail with 30 amp plug with strain relief.
- K. Provide lamps and fuses, including replacements required.
- L. Provide new materials for temporary light and power.
- M. Provide ground fault protection (such as portable plug-in type ground fault circuit interrupters) on single phase 20 amp receptacle outlets.
- N. Provide receptacle outlets, portable cord connectors and attachment plugs with standard NEMA configurations.
- Install all temporary light and power materials in accordance with National Electrical Code and OSHA requirements.
- P. Upon completion of the project, remove all temporary electric light and power work and restore all affected finishes, connections and sitework.

PART 3 - EXECUTION

3.01 EXAMINATION

- Verify existing system voltage characteristics and match to existing system voltage characteristics.
- B. Verify that the temporary service is sized to accommodate all loads.
- C. Determine locations and routings for temporary electric wires, cables and conduits with Engineer and Owner.

3.02 TEMPORARY POWER

- A. Temporary wiring and power shall be installed so as not to be a hazard and shall be protected from damage. Separate circuits shall be provided for light and power. Over-current protective devices and switches shall be provided. All equipment, tools, metal cabinets and boxes shall be grounded.
- B. Disable existing power only to make final connections or when new service is to be installed.
- C. Remove and dispose of all temporary power and control feeds after receiving written approval from Engineer. Restore all finishes to original specified conditions.

END OF SECTION

H2M architects + engineers

PART 1-GENERAL

1.01 SECTION INCLUDES

- A. Fire Alarm Control Panels (FACP).
- B. Remote Annunciator.
- C. Addressable Manual Fire Alarm Stations.
- D. Addressable Area Smoke Detectors.
- E. Addressable Duct Mounted Smoke Detectors.
- F. Remote for Smoke Alarms.
- G. Heat Sensors.
- H. Audio/Visuals.
- Visual Devices.
- J. Pull Stations.
- K. Door Hold/Release
- L. Addressable Carbon Monoxide Detectors
- M. IP / Cellular Digital Communicator

1.02 RELATED SECTIONS

A. Section 260533 - Raceways and Boxes for Electrical Systems.

1.03 REFERENCES

- A. NFPA 70 National Electrical Code.
- B. NFPA 72 National Fire Alarm Code.
- C. NFPA 101 Life safety code.

1.04 WORK INCLUDED

- A. Furnish and install as described in these specifications and as indicated on the drawings, fire alarm and smoke detection equipment with battery backup.
 - 1. All equipment shall be UL listed under category UOJZ as an integrated control system; equipment listed under category UOXX as a control unit accessory shall not be acceptable. The installation shall meet the applicable requirements of NFPA 72 and New York State Code, as well as those standards set by the authorities having jurisdiction.
 - All panels and peripheral devices shall be the standard product of a single manufacturer and shall display the manufacturer's name on each component. The catalog numbers specified under this section constitute the type, product quality, material and desired operating features.
 - 3. Provide all labor, materials and services to perform all operations required for the complete installation and related work shown on the drawings and as specified herein.

- 4. All electrical work and equipment shall meet the requirements of NFPA 70 and 72.
- 5. Existing fire alarm system to be disconnected and removed in its entirety once new system is installed, operational and tested. Contractor to patch and paint all openings as a result of removed equipment. Contractor to provide and install new ceiling tiles to match existing where damaged or holes are left from removed equipment.

1.05 SUBMITTALS

- A. Submit product data as required by Section 013300.
 - 1. Two copies of all submittals shall be submitted to the Architect/Engineer for review.
 - 2. All references to manufacturer's model numbers and other pertinent information herein is intended to establish minimum standards of performance, function and quality.
 - 3. Equivalent equipment (compatible UL-Listed) from other manufacturers may be substituted for the specified equipment as long as the minimum standards are met, and upon approval of the Architect/Engineer.

B. Shop drawings:

- 1. Provide a list (bill of materials) of all types of equipment and components provided.
- Provide annunciator layout and system wiring diagram showing each device and wiring connection required, including existing equipment. Provide a description of operation of the system. Provide system ampere load and time calculations to substantiate compliance with battery back-up (24 hours in non-alarm condition followed by 5 minutes in alarm, after normal power loss)
- 3. Sufficient information, clearly presented shall be included to determine compliance with drawings and specifications.
- 4. Include manufacturer's printed product data with name(s), model numbers, ratings, power requirements, equipment layout, device arrangement, complete wiring point-to-point diagrams, and conduit layouts.

C. Manuals:

- 1. Submit simultaneously with the shop drawings, complete operating and maintenance manual listing the manufacturers name(s) including technical data sheets.
- 2. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
- 3. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate the equipment and system.
- 4. Indicate application conditions and limitations of use stipulated by product testing agency.
- 5. Include instructions for storage, handling, protection, examination, preparation, installation, and starting of products

D. Test Reports and Certifications:

- 1. Indicate satisfactory completion of required tests and inspections.
- 2. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer indicating that the proposed supervisor of installation and the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include names and addresses in the certification.
- 3. Contractor shall provide Engineer with a complete set of drawings (including all floors, crawl spaces, closets, open spaces) showing a complete survey of all new fire equipment devices and appliances prior to submission to Fire Marshal. Contractor shall provide Engineer with a complete list of all HVAC equipment to remain, including their associated CFM ratings and all associated duct smoke detectors. Upon approval from Engineer, Contractor shall submit complete package, with New York professional engineer's stamp, to Fire Marshal as per local requirements. The Contractor shall have a licensed New York State Professional Engineer stamp all drawings and applications, including submittals for approval from H2M. Pay for all fees to obtain permits and approval.

1.06 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of Section 017839.
- B. Record actual locations of initiating devices, signaling appliances, and end-of-line devices as they are installed.

1.07 OPERATION AND MAINTENANCE DATA

- A. Submit under provisions of Section 017839.
- B. Minimum maintenance, inspection and testing must be in accordance with provisions in NFPA 72: National Fire Alarm and Signaling Code Fire Code. A preventive maintenance schedule shall be provided by the Contractor that shall describe the protocol for preventative maintenance. The schedule shall include:
 - Systematic examination, adjustments and cleaning of all detectors, manual fire alarm stations, control panels, power supplies, relays and all accessories of the fire alarm system.
 - Each circuit in the fire alarm system shall be tested semiannually.
 - 3. Each smoke detector shall be tested in accordance with the requirements of NFPA 72 Chapter 7.

1.08 QUALIFICATIONS

- A. Manufacturer: Company specializing in manufacturing the products specified in this section with minimum ten (10) years documented experience, and with service facilities within fifty (50) miles of project location.
- B. Installer: Company specializing in installing the products specified in this section with minimum three (3) years documented experience, and certified by the State of New York as fire alarm installer.

1.09 PERMITTING

- A. The Contractor shall submit to the local Fire Marshal all necessary drawings, equipment specifications, and applications required for a complete Fire Marshal approved system.
- B. The Contractor shall have a licensed New York State Professional Engineer stamp all drawings, complete all applications, and pay for all fees to obtain permits and approvals.

PART 2 - PRODUCTS

2.01 2.01 - MANUFACTURERS

A. SILENT KNIGHT (OR APPROVED EQUAL)

2.02 GENERAL

A. All equipment and components shall be new, and the manufacturer's current model. The materials, appliances, equipment and devices shall be tested and listed by a nationally recognized approval agency for use as part of a protected premises protective signaling (fire alarm) system.

- B. All equipment and components shall be installed in strict compliance with manufacturers' recommendations. Consult the manufacturer's installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning equipment installation.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., detectors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.
- D. All equipment locations shall comply with ADA requirements for mounting heights and accessibility.

2.03 CONDUIT AND WIRE

A. Conduit:

- Conduit shall be in accordance with the National Electric Code (NEC), local and state requirements.
- 2. All wiring shall be installed using plenum rated cable. Refer to the conduit specification for additional conduit requirements.
- 3. Cable must be separated from any open conductors, as per NEC Article 760-29.
- 4. Wiring for 24 volt control, alarm notification, emergency communication and similar power-limited auxiliary functions may be run in the same conduit as initiating and signaling line circuits. All circuits shall be provided with transient suppression devices and the system shall be designed to permit simultaneous operation of all circuits without interference or loss of signals
- 5. Conduit shall enter the Fire Alarm Control Panel, Remote Annunciator Panel and/or backboxes where conduit entry is designated and permitted by the FACP manufacturer.
- 6. Conduit shall be 3/4 inch (19.1 mm) minimum.
- 7. In finished areas where conduit cannot be concealed, surface mounted raceway is to be used and shall be painted to match wall color.

B. Wire:

- 1. All fire alarm system wiring shall be new.
- Wiring shall be in accordance with local, state and national codes (e.g., NEC Article 760), and as recommended by the manufacturer of the fire alarm system. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG (1.02 mm) for Initiating Device Circuits and Signaling Line Circuits, and not less than 14 AWG (1.63mm) for Notification Appliance Circuits. All wiring shall be of the type recommended by the manufacturer.
- 3. All wire and cable shall be listed and/or approved by a recognized testing agency for use with a protective signaling system.
- 4. All wire and cable shall have a fire resistance rating suitable for the installation as indicated in NFPA 70, and shall test free from grounds or crosses between conductors.
- 5. Wiring used for the multiplex communication loop shall be twisted and shielded and installed in conduit unless specifically excepted by the fire alarm equipment manufacturer. The system shall permit use of IDC and NAC wiring in the same conduit with the communication loop
- All field wiring shall be completely supervised.
- C. Terminal Boxes, Junction Boxes and Cabinets:
 - 1. All boxes and cabinets shall be UL listed for their use and purpose.
- D. Circuits shall be arranged to serve like categories (manual, smoke, horn, strobe). Mixed category circuitry shall not be permitted except on signaling line circuits connected to addressable reporting devices.

2.04 SEQUENCE OF OPERATIONS

- A. Basic Addressing and Circuiting Guidelines
 - The addressable fire alarm system shall provide an individual multiplex data address for each addressable manual fire alarm station, addressable area smoke detector, addressable duct smoke detector, addressable heat detector, Monitor Zone Addressable Module (MZAM), Control Zone Addressable Module (CZAM) or Signal Zone Addressable Module (SZAM).
 - 2. The FACP shall provide NFPA Standard 72A, Style 4 (Class B, two wire) addressable data communications circuits to provide connection of and communication with the addressable devices, as required by these Specifications and/or as shown on the Drawings. Each addressable data communications circuit shall provide the capability of communicating with up to ninety nine (99) addressable devices.

B. Fire Alarm System Sequence of Operation

- The FACP central processing unit (CPU) shall provide for the monitoring of addressable. smoke sensors. Each smoke sensor shall be individually monitored for its normal output voltage level, which is a function of accumulating environmental factors such as dirt and dust. The normal output voltage level shall be digitized and transmitted to the FACP CPU every four (4) seconds. The FACP CPU shall maintain a moving average of these normal voltage outputs in an individual sensor average file. When smoke enters the sensor, the output voltage rises in direct proportion to the density of the smoke and the alarm condition of each smoke sensor is determined at the FACP CPU by comparing the current actual value with the sensor's normal average value combined with the alarm threshold programmed for that sensor. The alarm threshold may be individually programmed for each smoke sensor as a sensitivity percentage (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0% and 3.7%) above its normal average value. The sensitivity percentage for each sensor may also be programmed to change as a function of the time of day and day of week. When an individual sensor's normal average value rises to a fixed, preset level due to excess accumulation of dirt and dust, a system trouble condition shall be generated and a "sensor dirty" message shall be displayed, for that sensor, on the FACP LCD display and entered into the system historical trouble log. If the sensor is not cleaned and further accumulation occurs that would degrade proper sensor operation, a second system trouble condition shall be generated and a "sensor excessively dirty" message shall be displayed and entered into the system historical trouble log.
- 2. Operation of any manual fire alarm station or activation of any smoke sensor, area smoke detector, duct smoke detector, or heat detector throughout the building shall automatically:
 - a. Sound all horns (except the exterior sprinkler horn/strobe) throughout the building with an individual Temporal '3' Code. The alarm signals may be silenced during the alarm condition by operation of the FACP alarm silence switch. Subsequent alarm conditions shall re-sound the alarm horns.
 - b. Flash all alarm strobe lights (except the exterior sprinkler horn/strobe) throughout the building. The alarm strobe lights shall be turned off when the system is reset.
 - c. Display a general alarm indication and system status summary (numbers of alarm, supervisory and/or trouble conditions) on the FACP liquid crystal display (LCD). Pressing the alarm acknowledge key shall display, for thirty (30) seconds, the individual device or circuit display, to include the "alarm" status and custom label (up to forty characters and spaces) for the addressable device or circuit of alarm initiation on the liquid crystal display (LCD). At the end of the thirty (30) second period, the general alarm indication and system status summary shall again be displayed. The individual device/circuit display may be recalled at any time by repressing the alarm acknowledge key or until the alarm condition is reset to normal.
 - d. Enter the alarm condition custom label with time and date of occurrence into the FACP historical alarm log for future recall.
 - e. Shutdown all fans over 1000 CFM.

- f. Release Magnetic Door Hold Opens.
- g. Activate circuit for to initiate alarm to central station. The Central station monitoring shall be furnished by owner.
- 3. Operation of any carbon monoxide detector the building shall automatically:
 - a. Sound the integral sounder base on the carbon monoxide detector in alarm only, with an individual Temporal '4' Code. The alarm signals shall only be silenced when carbon monoxide detector is no longer in alarm.
 - b. Display/sound an alarm indication and system status summary (numbers of alarm, supervisory and/or trouble conditions) on the FACP liquid crystal display (LCD) stating "Carbon Monoxide Alarm". Pressing the alarm acknowledge key shall display, for thirty (30) seconds, the individual device or circuit display, to include the "alarm" status and custom label (up to forty characters and spaces) for the addressable device or circuit of alarm initiation on the liquid crystal display (LCD). At the end of the thirty (30) second period, the general alarm indication and system status summary shall again be displayed. The individual device/circuit display may be recalled at any time by repressing the alarm acknowledge key or until the alarm condition is reset to normal.
 - c. Enter the alarm condition custom label with time and date of occurrence into the FACP historical alarm log for future recall.
 - d. Shutdown all fans over 1000 CFM.
 - e. Release Magnetic Door Hold Opens.
 - f. Activate circuit for to initiate alarm to central station stating "Carbon Monoxide Alarm". The Central station monitoring shall be furnished by owner.

2.05 MAIN FIRE ALARM CONTROL PANEL

- A. The fire alarm control panel (FACP) shall be the Silent Knight 6820 analog/ addressable control panel.
- B. The following FACP hardware shall be provided:
 - The FACP must have a 6 amp power supply and be capable of expansion to a maximum of 54 total amps via bus connected expander modules that supervise low battery, loss off AC and loss of communication.
 - 2. The FACP must have Drift Compensation sensitivity capabilities on detectors and be capable of supporting 99 detectors and 99 analog addressable modules and expandable to a maximum of 396 detectors and 396 modules. This shall be accomplished via four signaling line circuits (SLC) capable of supporting a minimum of 99 detectors and 99 addressable module devices each. The communication protocol on the SLC loop must be digital.
 - 3. The FACP must support a minimum of six programmable "Flexputs". The panel must have a built in 80 character LCD annunciator with the capability of having an additional eight supervised remote annunciators connected in the field.
 - 4. The FACP must have a built in UL approved digital communicator. The communicator must allow local and remote up/downloading of system operating options, event history, and detector sensitivity data.
 - 5. The FACP must automatically test the smoke detectors in compliance with NFPA standards to ensure that they are within listed sensitivity parameters and be listed with Underwriters Laboratories for this purpose.
 - 6. The FACP must compensate for the accumulation of contaminants that affect detector sensitivity. The FACP must have maintenance alert feature (differentiated from trouble condition), detector sensitivity selection, auto-programming mode (Jumpstart) and the ability to upgrade the core operating software on site or over the telephone.
 - 7. The FACP shall have a Jumpstart feature that can automatically enroll all properly connected accessories into a functional system within 60 seconds of powering up the panel. Panels that do not have these capabilities will not be accepted.

- 8. The main communication bus (S-Bus RS485) shall be capable of class A or class B configuration with a total Bus length of 6.000 feet.
- 9. Cabinet: Lockable steel enclosure. Arrange unit so all operations required for testing or for normal care and maintenance of the system are performed from the front of the enclosure. If more than a single unit is required to from a complete control unit, provide exactly matching modular unit enclosures. The system cabinet shall be red and can be either surface or flush mounted. The cabinet door shall be easily removable to facilitate installation and service
- 10. The main control must have a built in annunciator with an 80-character LCD display and feature LED's for General alarm, Supervisory, System trouble, System Silence and Power. When in the normal condition the LCD shall display time and date based on a 200 year clock which is capable of automatic daylight savings time adjustments. All controls and programming keys are silicone mechanical type with tactile and audible feedback. Keys have a travel of .040 inches. No membrane style buttons will be permissible. The annunciator must be able to silence and reset alarms through the use of a keypad entered code, or by using a firefighter's key. The annunciators must have twenty levels of user codes that will allow the limitation of operating system programming to authorized individuals.
- 11. The fire system shall be able to support up to eight I/O modules (SK5880) that shall be used to drive remote LED graphic style displays and accommodate up to eight dry contact type switch inputs. The I/O modules shall each drive up to 40 LEDs without requiring external power connections. The I/O module inputs shall be supervised and be suitable for alarm and trouble circuits as well as reset and silence switches. The system shall also support up to 40 LED drivers that reside on the two-wire SLC loop. These driver boards shall contain 80 LED outputs that are powered by an external power source.
- 12. An audible system trouble sounder shall be an integral part of the control unit. Provisions shall also be provided for an optional supervised remote trouble signal.
- 13. The entire system shall operate on 24 VDC, filtered switch mode power supply with the rated current available of 6 Amps. The FACP must have a battery charging circuit capable of complying with the following requirements:
 - a. Twenty Four (24) hours of battery standby with five (5) minutes of alarm signaling at the end of this twenty four (24) hour period (as required per NFPA 72 remote station signaling requirements) using rechargeable batteries with automatic charger to maintain standby gel-cell batteries in a fully charged condition. Battery shall be sized for all devices shown on the drawings plus 20% additional expansion.
 - b. The power supply shall comply with U.L. Standard 864 for power limiting.
 - c. The FACP will indicate a trouble condition if there is a loss of AC power or if the batteries are missing or of insufficient capacity to support proper system operation in the event of AC failure. A "Battery Test" will be performed automatically every minute to check the integrity of the batteries. The test must disconnect the batteries from the charging circuit and place a load on the battery to verify the battery condition.
 - d. In the event that it is necessary to provide additional power one or more of the model 5895XL or 5496 Distributed Power Modules shall be used to accomplish this purpose.
 - e. The FACP shall be capable to be networked to the existing data network via a Silent Knight Gateway. See Section 2.31 for additional information.

2.06 PERIPHERAL DEVICES

- A. Manual Fire Alarm Stations (Model #: SK-Pull-SA) shall be addressable, single action type, with a key operated test-reset lock in order that they may be tested, and so designed that after actual emergency operation, they cannot be restored to normal except by use of a key. The reset key shall be so designed that it will reset manual station and open FACP without use of another key.
- B. An operated station shall automatically condition itself so as to be visually detected, as operated, at a minimum distance of fifty feet, front or side.

- C. Manual stations shall be constructed of red LEXAN or die cast metal with clearly visible operating instructions on the front of the stations in raised letters.
- D. Stations shall be suitable for surface mounting on matching backbox, or semi-flush mounting on a standard single-gang box, and shall be installed within the limits defined by the Americans with Disabilities Act (ADA) dependent on manual station accessibility or per local requirements
- E. Protective Shield shall be STI Model 1100 with tamperproof, clear LEXAN shield and red frame that easily fits over manual pull stations. When shield is lifted to gain access to the station a battery powered piercing warning horn shall be activated. The horn shall be silenced by lowering and realigning the shield. The horn shall provide 85dB at 10 feet and shall be powered by a 9 VDC battery.

2.07 SMOKE SENSORS

- A. Smoke detectors shall be Silent Knight (Model SK-PHOTO) ceiling mounted, addressable photoelectric smoke detectors.
- B. The combination detector head and twist lock base shall be U.L. listed compatible with the Silent Knight 6820 fire alarm control panel.
- C. The base shall permit direct interchange with Silent Knight's SK-Ion ionization smoke detector, SK-Acclimate multi-criteria smoke detector or the SK-Heat detector. The base shall be the appropriate twist lock base B210LP.
- D. The smoke detector shall have a flashing status LED for visual supervision. When the detector is actuated, the flashing LED will latch on steady at full brilliance. The detector may be reset by actuating the control panel's reset switch.
- E. The sensitivity of the detector shall be capable of being selected and measured by the control panel without the need for external test equipment.
- F. It shall be possible to perform a sensitivity test of the detector without the need of generating smoke. The test method shall simulate the effects of products of combustion in the chamber to ensure testing of the detector circuits. Detectors shall have completely closed back to restrict entry of dust and air turbulence and have a 30 mesh insect screen.
- G. Electronics of the unit shall be shielded to protect against false alarms from E.M.I. and R.F.I.

2.08 MULTI-CRITERIA DETECTOR WITH CARBON MONOXIDE SENSING AND INTEGRAL SOUNDER BASE.

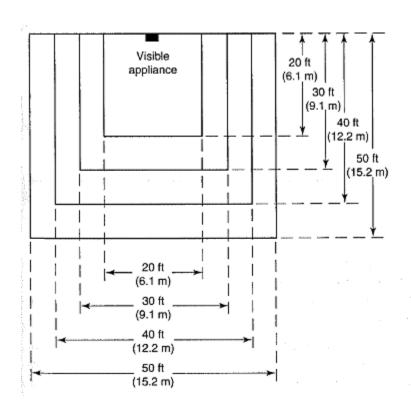
- A. Carbon Monoxide Detector (with integral fire detection) shall be Silent Knight (Model SK-FIRE-CO), addressable carbon monoxide detector.
- B. Each carbon monoxide shall be provided with a sounder base (Model B200S, sold separately).
- C. When a carbon monoxide sensor is in alarm, that carbon monoxide sounder base only shall sound a 'Temporal 4' code pattern.

2.09 DUCT SMOKE SENSORS

A. Interior Duct Smoke Detectors (sensors) shall be Silent Knight (Model SK-Duct) with the Model SK-Photo Smoke detectors. Exterior Duct Smoke Detectors shall have a weatherproof enclosure (Model DH400OE-1) and shall be compatible with SK-Photo Smoke detectors.

- B. Photoelectric type, with sampling tube of design and dimensions as recommended by the manufacturer for the specific duct size and installation conditions where applied.
- C. Duct Housing shall have a transparent cover to monitor for the presence of smoke. Cover shall secure to housing by means of four (4) captive fastening screws.
- D. For maintenance purposes, it shall be possible to clean the duct housing sampling tubes by accessing them through the duct housing front cover.
- E. Each duct sensor shall have a Remote Test Station with an alarm LED and test switch.
- F. All duct smoke detectors installed above a finished ceiling shall have a remote LED installed flush with the ceiling below the unit.

2.10 HEAT SENSORS


- A. Heat Sensors shall be Silent Knight (model SK-Heat) ceiling mounted, addressable fixed temperature at 135 degrees Celsius.
- B. The combination heat detector and twist lock base shall be U.L. listed compatible with the Silent Knight 6820 fire alarm control panel.
- C. The base shall permit direct interchange with the Silent Knight SK-Ion smoke detector, SK-Acclimate smoke detector and the SK-Photo photoelectric smoke detector. The base shall be appropriate twist lock base B210LP.
- D. The heat detector shall have a flashing status LED for visual supervision. When the detector is actuated, the flashing LED will latch on steady at full brilliance. The detector may be reset by actuating the control panel's reset switch.
- E. Electronics of the unit shall be shielded to protect against false alarms from E.M.I. and R.F.I.
- F. Weather Proof Heat Detectors (Honeywell Model 302-EPM-194 or approved equal) Shall be installed with a remotely located addressable module. Module shall be located as stated on drawings.

2.11 ANNUNCIATION (NOTIFICATION) DEVICES

- A. The visual and audio/visual signaling devices shall be compatible with the 6820 as stated in the installation manuals and be Listed with Underwriters Laboratories Inc. per UL 1971 and/or 1638.
- B. The visual and audio/visual signaling devices shall be wall mounted to meet ADA requirements.
- C. Each indicating appliance circuit shall be electrically supervised for opens, grounds and short circuit faults, on the circuit wiring, and shall be so arranged that a fault condition on any indicating appliance circuit or group of circuits will not cause an alarm to sound. The occurrence of any fault will light the trouble LED and sound the system trouble sounder, but will not interfere with the proper operation of any circuit which does not have a fault condition.
- D. The notification appliance (combination audio/visual units only) shall produce a peak sound output of 90dba or greater as measured in an anechoic chamber.
- E. The notification appliance (combination audio/visual units and visual only units) shall provide field selectable flash intensities of 15cd, 30cd, 75cd, 110cd. The appliance shall be capable of meeting the candela requirements of ADA. Provide, adjust and install audio/visual units and

visual units to meet the requirements of NFPA 72, defined in Room Spacing for Wall-Mounted Visible Appliances Table and Figure below:

		Minimum Required Light Output [Effective Intensity (cd)]					
Maximum Room Size		One Light	Two Lights per Room (Located on	Four Lights per Room (One Light per Wall)			
ft	mt	per Room	Opposite Walls)	per mau)			
20 × 20	6.10 × 6.10	15	NA	NA			
28×28	8.53×8.53	30	Unknown	NA			
30×30	9.14×9.14	34	15	NA			
40×40	12.2×12.2	60	30	15			
45×45	13.7×13.7	75	Unknown	19			
50×50	15.2×15.2	94	60	30			
54×54	16.5×16.5	110	Unknown	30			
55 × 55	16.8×16.8	115	Unknown	28			
60×60	18.3×18.3	135	95	30			
63×63	19.2×19.2	150	Unknown	37			
68×68	20.7×20.7	177	Unknown	43			
70×70	21.3×21.3	184	95	60			
80×80	24.4×24.4	240	135	60			
90×90	27.4×27.4	304	185	95			
100 × 100	30.5 × 30.5	375	240	95			
110×110	33.5×33.5	455	240	135			
120 × 120	36.6 × 36.6	540	305	135			
130 × 130	39.6×39.6	635	375	185			

- F. The appliance shall be polarized to allow for electrical supervision of the system wiring. The unit shall be provided with terminals with barriers for input/output wiring and be able to mount a single gang or double gang box or double workbox with the use of an adapter plate.
- G. Power supplies and batteries shall be sized to accommodate 110 cd at each strobe.
- H. Sprinkler horn/strobe shall be Wheelock #MTWPB-24MCCH-NW or approved equal that is compatible with the 6820. Sprinkler horn/strobe shall have a blue lens.

2.12 MAGNETIC DOOR HOLDERS

- A. The magnetic door holders shall be compatible with the 6820 as stated in the installation manuals and be listed with Underwriters Laboratories Inc. per UL 228.
- B. The magnetic door holders shall be equipped for surface mounting as indicated and are complete with matching doorplate. Unit shall operate from a 120VAC, 24VAC. 24VDC source and develops a minimum of 25 lbs. holding force.

2.13 REMOTE LCD ANNUNCIATOR

- A. The fire system shall be capable of supporting up to eight remote annunciators. Remote Annuciators shall be Silent Knight (Model 5860).
- B. LCD Remote annunciators shall have the same control and display layout so that they match identically to the built in annunciator.
- C. Remote annunciators shall be capable of operating at a distance of 6000 feet from the main control panel on unshielded non-twisted cable.
- D. Under normal conditions the LCD shall display a "SYSTEM IS NORMAL" message and the current time and date.
- E. Should an abnormal condition be detected the appropriate LED (Alarm, Supervisory or Trouble) shall flash. The unit audible signal shall pulse for alarm conditions and sound steady for trouble and supervisory conditions.
- F. The LCD shall display the following information relative to the abnormal condition of a point in the system:
 - 1. 40 character custom location label.
 - 2. Type of device (e.g smoke, pull station, heat)
 - 3. Point status (e.g. alarm, trouble)
 - 4. Operator keys shall be key switch enabled to prevent unauthorized use. The key shall only be removable in the disabled position. Acknowledge. Silence and Reset operation shall be the same as the FACP.

2.14 GRAPHIC MAP

A. Contractor shall provide and install a weather proof map of the facility. Map shall be on 24" by 36" laminated paper, minimum. Contractor shall program descriptions for detection devices to include room number, name and device address. Contractor shall coordinate with Village for exact descriptions prior to programming. Map shall be provided with and installed in a weatherproof lockable enclosure, with a clear display window (41" x 42-1/4" x 2", minimum) (Displays 260 Model ODNBCB12BK or approved equal) located adjacent to each remote annunciator and fire alarm control panel. Village will provide contractor with a drawing of the facility in AutoCAD 2000 format.

2.15 DISTRIBUTED POWER MODULE

- A. The contractor shall supply (where required) a power module (model 5895XL) compatible with the 6820 fire alarm control panel.
- B. The power module must have 6 amps of output power, six notification circuits rated at 3 amps each, and two form C relay circuits rated at 2.5 amps at 24 volts DC. The six notification circuits shall have the same functionality as the notification circuits on the main panel.
- C. The 5895XL shall be capable of being connected via a RS-485 system bus (SBUS) at a maximum distance of 6000 feet from the main control panel. The power module shall contain an additional RS-485 bus that is completely compatible with all 6820 add on modules including 5860 Remote Annunciators, 5824 serial/parallel modules and addressable devices. The power module will also act as a bus repeater so that additional RS-485 (modules) devices can be connected at a maximum distance of 6000ft. from the power module.
- D. The 6820 shall be capable of supporting up to eight (8) of the Distributed Power Modules in any combination.
- E. The power module's RS-485 bus shall be electrically isolated providing ground loop isolation and transient protection.

2.16 DIGITAL COMMUNICATOR

- A. IP / Cellular Digital Communicator shall be Honeywell (Model: IPGSM-4G).
- B. Digital communicator shall communicate with central station via both IP networked and cellular connections (IP primary, cellular backup).
- C. Fire alarm control panel shall be provided with Digital Alarm Communicator Transmitter (DACT) compatible with the IP / Cellular Digital Communicator.
- D. The digital communicator must be capable of reporting all zones or points of alarm, supervisory, and trouble as well as all system information such as loss of AC, low battery, ground fault, loss of supervision to any remote devices with individual and distinct messages to a central station or remote station.
- E. The communicator must also be capable of up/downloading all system programming options, event history, and sensitivity compliance information to a PC on site or at a remote location.
- F. The communicatior must be capable of reporting via SIA and Contact ID formats. The communicator shall have a delayed AC loss report function which will provide a programmable report delay plus 10-25 min random component to help ease traffic to the central station during a power outage.
- G. Controls that use external modems for remote programming and diagnostics shall not be accepted.
- H. Digital communicators that communicate via POTS telephone lines or mesh radio networks shall not be accepted.
- I. Controls that use External modems for remote programming and diagnostics shall not be accepted.

2.17 DRY CONTACTS

A. The FACP will have three form "C" dry contacts, one will be dedicated to trouble conditions, the other two will be programmable for alarm, trouble, notification, pre-alarm, manual pull, aux. 1 or aux. 2. The trouble contact shall be normal in an electrically energized state so that any total power loss (AC and Backup) will cause a trouble condition. In the event that the Microprocessor on the FACP fails the trouble contacts shall also indicate a trouble condition.

2.18 GROUND FAULT DETECTION

A. A ground fault detection circuit, to detect positive and negative grounds on all field wiring. The ground fault detector shall operate the general trouble devices as specified but shall not cause an alarm to be sounded. Ground fault will not interfere with the normal operation, such as alarm, or other trouble conditions.

2.19 OVER CURRENT PROTECTION

A. All low voltage circuits will be protected by microprocessor controlled power limiting or have self restoring polyswitches for the following: smoke detector power, main power supply, indicating appliance circuits, battery standby power and auxiliary output.

2.20 TEST FUNCTIONS

- A. A "Lamp Test" mode shall be a standard feature of the fire alarm control panel and shall test all LED's and the LCD display on the main panel and remote annunciators.
- B. A "Walk Test" mode shall be a standard feature of the fire alarm control panel. The walk test feature shall function so that each alarm input tested will operate the associated notification appliance for two seconds. The FACP will then automatically perform a reset and confirm normal device operation. The event memory shall contain the information on the point tested. the zone tripped, the zone restore and the individual points return to normal.
- C. A "Fire Drill" mode shall allow the manual testing of the fire alarm system notification circuits. The "Fire Drill" shall be capable of being controlled at the main annunciator, remote annunciators and via a remote contact input.
- D. A "Bypass Mode" shall allow for any point or nac circuit to be bypassed without effecting the operation of the total fire system.

2.21 REMOTE INPUT CAPABILITIES

A. The control panel shall have provisions for supervised switch inputs for the purpose of Alarm reset and Alarm and trouble restore.

2.22 NOTIFICATION APPLIANCE MAPPING STRUCTURE

A. All notification circuits and modules shall be programmable via a mapping structure that allows for a maximum of 250 output groups. Each of these groups shall have the ability to be triggered by any of the panels 125 Zones. A zone may trigger from groups individually, or may contain a global trigger for manual pull stations, fire drills and two different system alarms. Additionally each Zone will individually control the cadence pattern of each of the Groups that it is "Mapped" to so that sounders can indicate a variety of conditions. The Zone shall be capable of issuing a different cadence pattern for each of the Groups under it's control. The mapping structure must also allow a group to be designated to "ignore cadence" for use with strobes and other continuous input devices. Zones shall have eight different output categories; Detector alarm,

Trouble, Pre-alarm, Manual pull, Zone auxiliary one and Zone Auxiliary two. Each of the categories shall have the ability to control from 1 to 8 output groups with a cadence pattern. The patterns are; March code, ANSI 3.41, Single Stroke Bell Temporal, California code, Zone 1 coded, Zone 2 coded, Zone 3 coded, Zone 4 coded, Zone 5 coded, Zone 6 coded, Zone 7 coded, Zone 8 coded, Custom output pattern 1, Custom output pattern 2, Custom output pattern 3, Custom output pattern 4, and Constant. This mapping/cadence pattern shall be supported by all system power supplies and Notification Expander Modules.

2.23 ON BOARD PROGRAMMER

A. The FACP shall have an on board programmer which will allow for all system functions and options to be programmed via the on board annunciator keypad. Any panel that does not have this capability will not be accepted.

2.24 DOWNLOADING SOFTWARE

- A. The fire alarm control panel must support up/downloading of system programming from a PC under Windows7, Windows 8, Windows 98, Windows XP, Windows N/T, or Windows Vista. The FACP must also be able to download the detector sensitivity test results and a 1000 event system event buffer to the PC.
- B. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator and shall not require an external modem to be connected to the panel. The downloading software shall contain a code that will block unauthorized persons from accessing the panel via direct connection or over the phone lines.

2.25 FACILITY MANAGEMENT SOFTWARE

- A. The FACP must support a facility management software capable of providing off site access to FACP data that is necessary to manage fire system operation. A software package capable of uploading the detector sensitivity test results and the 1000 event system event buffer to the PC shall be required as part of the bid package.
- 3. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator. The facility management package must be separate from the downloader package and must not be capable of affecting programmed system options.

2.26 SERVICE REMINDER

A. The FACP shall be capable of automatically generating textual service reminder and the main and remote annunciator LCD's to inform the user of required testing or service. The service reminder shall not interfere with the normal operation of the FACP.

2.27 ENGLISH LANGUAGE DESCRIPTIONS

A. The FACP shall provide the ability to have a text description of each system device, input zone and output group on the system. The use of individual lights to provide descriptions will not be acceptable.

2.28 ADDRESSABLE NOTIFICATION MODULE (INDIVIDUAL ADDRESSABLE MODULE)

A. The contractor shall furnish and install where indicated on the plans, addressable notification modules, Silent Knight model SK-Control. The modules shall be U.L. listed compatible with Silent Knight's 6820 fire alarm control panel. The notification module must provide one class A (Style Z) or class B (Style Y) notification output with one auxiliary power input. The notification

module must be suitable for mounting in a standard 4 square electrical box and must include a plastic cover plate. The notification module must provide an LED that is visible from the outside of the cover plate. The notification module must be fully programmable for such applications as required by the installation. The SK-Control shall reside on the SLC loop and can be placed up to 10,000ft.from the control or 5815XL SLC loop module.

2.29 REMOTE POWER SUPPLIES

- A. The Remote Power Supplies for Notification appliances shall be the Silent Knight Models 5496 and/or 5895XL. The 5496 and 5895XL Intelligent Power Supplies shall hang on the main S-Bus and be programmed through the 6820 control. The 5496 will support 6 amps of 24 volt DC power with 4 notification circuits rated at 3 amps each. The 5895XL will support 6 amps of 24 volt DC power, with 6 Flexput circuits, rated at 3 amps each. Two additional 5815 SLC loop expanders shall be capable of being installed in the cabinet, to allow an additional 396 points. The power supply will also regenerate the S-Bus for an additional 6000'.
- B. The remote power supply model 5495 or 5499 may also be used on the system. These power supplies support 6amps or 9amps of 24VDC power with 4 notification circuits rated at 3amps each. These power boosters may also be activated from another notification circuit from either the fire alarm control or the Distributed Power Modules.
- C. Provide all 120Volt wiring in conduit and as required.

2.30 REMOTE CRTS AND PRINTERS (SERIAL/PARALLEL INTERFACE)

A. The fire system shall be capable of supporting up to two serial / parallel interfaces (SK5824) that are capable of driving standard computer style printers. The interface shall be programmable as to what information is sent to it and shall include the ability to print out Detector Status by point, Event History by point and System Programming.

2.31 SILENT KNIGHT GATEWAY

- A. The FACP shall include provision for networked system via the existing data network. Gateway module (Silent Knight IFPN-GW-KIT), shall include a NEMA 1 lockable enclosure and shall be mounted adjacent to the FACP.
- B. IFP-Net-3 software shall be provided on a CD and left in the Gateway module enclosure for future use.
- C. The Gateway Module shall provide future provisions for:
 - 1. Autonavigation shall automatically locate and zoom to the device related to an alarm or event based on the priority of the event.
 - 2. System Administrator-definable security profiles allow for extremely flexible definitions for operator accounts.
 - 3. Standard mouse control which uses "point and click" operations.
 - Dynamically generated sizable key map.
 - 5. New and Acknowledged Event boxes display all off-normal events, simultaneously with graphic screens.
 - 6. Operator log with response tracking.
 - 7. History Manager records operator, event, and response (with time and date stamp) to disk.
 - 8. Powerful search filters for custom reporting of all events.
 - Screen database with screens for all sites.
 - 10. Administrator-definable macros for device communication.
 - 11. Definable function keys, functional buttons, and navigational buttons.
 - 12. Floor plans can be zoomed in and out to any level.
 - 13. Devices can be placed at any zoom level.

- 14. Import vector .wmf, .bmp, .jpg or .gif
- 15. Full linked multimedia (text, audio, video, and bitmaps) to any device, all-definable by the administrator.
- 16. Device pull-downs and proximity displays for device-specific information and functions.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. No installation shall begin without approved plans from the engineer. All submittals shall be stamped by a N.Y. State Professional Engineer.
- B. The entire system shall be installed in a workmanlike manner, in accordance with approved manufacturer's wiring diagrams. The Contractor shall furnish all conduit, wiring, outlet boxes, junction boxes, cabinets and similar devices necessary for the complete installation.
- All penetrations of floor slabs and fire walls shall be fire stopped in accordance with all local fire codes.
- D. End of Line Devices (Resistors/Diodes/Capacitors): Shall be furnished as required for mounting as directed by the manufacturer.
- E. All wiring shall be color coded throughout, to National Electrical Code standards and a minimum of No. 18 AWG., unless otherwise noted. All wiring shall be of the type recommended by the manufacturer.
- F. All wires shall test free from grounds or crosses between conductors.
- G. Fire alarm system terminal and junction locations shall be identified in accordance with NFPA Standard 70, Section 760-3. Terminal and junction boxes shall be painted red and stenciled in white letters "FIRE ALARM", preventing unintentional interference with the fire alarm system wiring during testing, servicing and additional modifications to the system.
- H. The system shall be arranged to receive power from two/three-wire, 30 Ampere, 120 volt, 60 cycle alternating current supply through fused cut-out. All low voltage operation shall be provided from the FACP(s).
- I. All final connections between system equipment and the wiring shall be made under the supervision of a trained manufacturer's technical representative.
- J. The contractor shall submit to the Authority Having Jurisdiction (AHJ), all necessary drawings and equipment specifications required for a complete AHJ approved system. Drawings shall be prepared by the Contractor.
- K. The Contractor shall have a licensed New York State Professional Engineer Stamp all submittals, drawings and applications. Pay for all fees to obtain all necessary permits.
- L. All junction boxes housing relays must be labeled with P-Touch type labeler with relay point number and device it serves, i.e. (0001-Smoke 1).
- M. Contractor to review points list prior to programming with Owner. Contractor only to program approved points list. Any changes to program not previously approved by Owner will be done at Contractor's expense.

3.02 CLEAN UP

- A. Upon completion of the installation, all debris created by the installation shall be removed from the premises or disposed of as directed by the Owner.
- B. It shall be the responsibility of the installing contractor to assure that construction debris does not adversely affect any sensing devices installed as part of this project. Should it be deemed necessary by the engineer, owner or AHJ, the installing contractor shall be responsible for the clearing of all devices prior to final acceptance.

3.03 TESTS

- A. Prior to the final acceptance test, the Contractor and a trained manufacturer's technical representative shall test the completed system for proper operation. The system shall be demonstrated to perform all of the functions as below listed in 3.04. Any system, equipment or wiring failures discovered during said test shall be repaired or replaced before requesting scheduling of the final acceptance test.
- B. The system shall be tested for final acceptance in the presence of the Owner's representative, Architect's representative, Engineer's representative, the local Code enforcement official, Contractor's representative and the Manufacturer's representative.
- C. At least 50% of the test shall be performed while on battery back-up only.
- D. During the final acceptance test:
 - 1. Every manual fire alarm station shall be tested.
 - 2. Every smoke detector shall be tested using Silent Knight tester or equivalent device.
 - 3. Every audible alarm signaling device shall be sounded.
 - 4. Every visual alarm signaling device shall be lit or flashed.
 - 5. Every system control function shall be tested for its proper operation.
 - 6. All supervised circuits shall be opened at two (2) locations to test for proper supervision.
- E. Upon successful completion of all final acceptance tests, the Contractor's and Manufacturer's representatives shall each author and sign a letter confirming the successful completion of testing. Two (2) copies of each letter shall be forwarded to the Owner's representative, the Architect's representative, the Engineer's representative and the local Code enforcement official.
- F. All final acceptance testing shall be done at a time convenient to the local Code enforcement official and the Owner's representatives and all testing costs shall be born by the Contractor as part of this Contract.

3.04 DOCUMENTATION AND TRAINING

A. The Contractor shall provide the services of a trained manufacturer's employee for 2 training periods of four (4) hours each, during normal business hours, to instruct the Owner's designated personnel on the operation and maintenance of the entire system.

3.05 MAINTENANCE AND TESTING AGREEMENT

A. The equipment manufacturer shall provide to the Owner a price quotation for a one (1) year and five (5) fire alarm system maintenance and testing agreement to begin after one (1) year warranty expires. System Supplier shall have a local service organization with a minimum of 20 factory trained technicians. Technicians shall be NICET Level 2 certified.

B. The equipment manufacturer shall make available a fully equipped service organization, capable of guaranteeing an on-site service response time within eight (8) hours to a service request call. Said service shall be available twenty-four (24) hours per day and seven (7) days per week.

3.06 SERVICE AND MAINTENANCE

- A. The equipment manufacturer shall make available a fully equipped service organization, capable of guaranteeing an on-site service response time within eight (8) hours to a service request call. Said service shall be available twenty-four (24) hours per day and seven (7) days per week.
- B. The equipment manufacturer shall make available, to the Owner, a price quotation for a one (1) year maintenance and testing agreement, to take effect on the date of final acceptance.

3.07 DEMONSTRATION

- A. Provide systems demonstration under provisions of Section 016500.
- B. Provide instruction as required for operating the system. "Hands-on" demonstration of the operation of all system components and the entire system including program changes and functions shall be provided
- C. Demonstrate normal and abnormal modes of operation and required responses to each.
- D. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" to the Owner at the time of demonstration.
- E. Contractor to provide O&M manuals for the fire alarm equipment on disk format.

3.08 FAN SHUT DOWN

- A. The contractor shall provide fan shutdown for all equipment shown on the drawings. All ducted equipment, with a rating of 2000 CFM or greater shall have return duct smoke detectors, remote LED indicators and fan shutdown control. All ducted equipment, shown on the drawings, rated 15,000 CFM of greater shall have supply and return duct smoke detectors, remote LED indicators and fan shutdown control.
- B. All fan reset control shall be independent of fire alarm panel reset control.
- C. Provide all control modules; independent reset control modules and duct smoke detectors as required. Provide all required power and control wiring including motor starters.
- D. Contractor shall submit control drawings for architect/engineer approval.

3.09 ELEVATOR RECALL

A. The contractor shall provide all new elevator controls as required to provide elevator recall and interface with new fire alarm control panel. Contractor shall engage the services of a qualified elevator contractor to provide controls that upon activation of elevator recall smoke detector adjacent to elevator on first floor and/or elevator recall smoke detector in elevator pit, elevator shall recall to second floor. Upon activation of elevator recall smoke detector located adjacent to elevator on second floor and/or elevator recall smoke detector located at the top of the shaft, elevator shall recall to the first floor and remain there until manually reset or if the fire department override key is used.

- B. Provide all new controls, accessories, wiring, conduit and control modules as required.
- C. Provide all new controls to interface elevator control panel, fire alarm controls, wiring and programming panel, and smoke detectors.
- D. Contractor shall submit control wiring drawings for architect/engineer review.

3.10 GUARANTEE

A. The Contractor shall guarantee all material and installation to be free from inherent mechanical and electrical defects for one (1) year. Manufacturer shall make available to the Owner a local service department, which shall stock standard parts on the premises. Maintenance is to be provided during normal working hours, at no cost to the owner, for a period of twelve (12) months from the date of acceptance of the installation, unless damage is caused by misuse, abuse or accident.

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Clearing and protection of vegetation.
- B. Removal and disposal of existing paving and site features.
- C. Removal of existing debris.

1.02 RELATED REQUIREMENTS

- A. Section 312200 Grading: Grading areas of site as a result of removal operations.
- B. Section 312323 FILL: Filling holes, pits, and excavations generated as a result of removal operations.

PART 2 PRODUCTS -- NOT USED

PART 3 EXECUTION

3.01 SITE CLEARING

- Verify limits of clearing and disturbance, existing plant life to be removed and existing site conditions.
- B. Minimize production of dust due to clearing operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.

3.02 VEGETATION

- A. Do not remove or damage vegetation beyond the limits indicated on drawings.
- B. In areas where vegetation must be removed but no construction will occur other than paving, remove vegetation with minimum disturbance of the subsoil.
- C. Restoration: If vegetation outside removal limits or within specified protective areas is damaged or destroyed due to subsequent construction operations, replace at no cost to Owner.

3.03 DEBRIS

- A. Remove debris, junk, and trash from site.
- B. Leave site in clean condition, ready for subsequent work.
- C. Clean up spillage and wind-blown debris from public and private lands.

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Removal of subsoil.
- Rough grading and cutting, filing and rough contouring the site for placement of topsoil or pavement base for final grading.
- C. Finish grading.

1.02 RELATED REQUIREMENTS

- A. Section 311000 SITE CLEARING.
- B. Section 312316 EXCAVATION
- C. Section 312323 FILL: Filling and compaction.
- D. Section 329219 SEEDING: Finished ground cover.

PART 2 PRODUCTS

2.01 MATERIALS

- A. Topsoil: See Section 312323 FILL.
- B. Seed: See Section 329219 SEEDING.
- C. Other Fill Materials: See Section 312323 FILL.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that survey bench mark and intended elevations for the Work are as indicated.

3.02 PREPARATION

- A. Identify required lines, levels, contours, and datum.
- B. Stake and flag locations of known utilities.
- C. Locate, identify, and protect from damage above- and below-grade utilities to remain.
- D. Protect site features to remain, including but not limited to bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs, from damage by grading equipment and vehicular traffic.

3.03 ROUGH GRADING

- A. Remove topsoil from areas to be further excavated, re-landscaped, or re-graded, without mixing with foreign materials.
- Do not remove topsoil when wet.
- C. Remove subsoil from areas to be further excavated, re-landscaped, or re-graded.

D. Do not remove wet subsoil, unless it is subsequently processed to obtain optimum moisture content.

- E. When excavating through roots, perform work by hand and cut roots with sharp axe.
- F. See Section 312323 for filling procedures.
- G. Stability: Replace damaged or displaced subsoil to same requirements as for specified fill.

3.04 SOIL REMOVAL

- A. Stockpile topsoil to be re-used on site; remove remainder from site.
- B. Stockpile subsoil to be re-used on site; remove remainder from site.
- Stockpiles: Use areas designated on site; pile depth not to exceed 8 feet (2.5 m); protect from erosion.

3.05 FINISH GRADING

- A. Before Finish Grading:
 - 1. Verify subgrade has been contoured and compacted.
 - Remove debris, roots, branches, stones, in excess of 1/2 inch (13 mm) in size. Remove soil contaminated with petroleum products.
- B. Where topsoil is to be placed, scarify surface to depth of 3 inches (75 mm).
- C. In areas where vehicles or equipment have compacted soil, scarify surface to depth of 3 inches (75 mm).
- D. Place topsoil in areas where seeding are indicated.
- E. Place topsoil where required to level finish grade.
- F. Place topsoil to thickness as scheduled.
- G. Place topsoil during dry weather.
- H. Remove roots, weeds, rocks, and foreign material while spreading.
- I. Near plants spread topsoil manually to prevent damage.
- J. Fine grade topsoil to eliminate uneven areas and low spots. Maintain profiles and contour of subgrade.
- K. Lightly compact placed topsoil.

3.06 TOLERANCES

- A. Top Surface of Subgrade: Plus or minus 0.10 foot (1-3/16 inches) (30 mm) from required elevation.
- B. Top Surface of Finish Grade: Plus or minus 0.04 foot (1/2 inch) (13 mm).

SECTION 312200 - GRADING H2M

3.07 REPAIR AND RESTORATION

- A. Existing Facilities, Utilities, and Site Features to Remain: If damaged due to this work, repair or replace to original condition.
- B. Trees to Remain: If damaged due to this work, trim broken branches and repair bark wounds; if root damage has occurred, obtain instructions from Architect as to remedy.
- C. Other Existing Vegetation to Remain: If damaged due to this work, replace with vegetation of equivalent species and size.

3.08 CLEANING

- A. Remove unused stockpiled topsoil and subsoil. Grade stockpile area to prevent standing water.
- B. Leave site clean and raked, ready to receive landscaping.

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Excavating for building volume below grade, footings, pile caps, slabs-on-grade, paving, and site structures.
- B. Trenching for utilities outside the building to utility main connections.

1.02 RELATED REQUIREMENTS

- A. Section 312200 Grading: Grading.
- B. Section 312318 Trenching: Excavating for utility trenches outside the building to utility main connections.
- C. Section 312323 Fill: Fill materials, filling, and compacting.

1.03 SUBMITTALS

- A. See Section 013300 SUBMITTAL PROCEDURES, for submittal procedures.
- Field Quality Control Submittals: Document visual inspection of load-bearing excavated surfaces.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that survey bench mark and intended elevations for the work are as indicated.

3.02 PREPARATION

- A. Identify required lines, levels, contours, and datum locations.
- B. See Section 312200 for additional requirements.
- C. Locate, identify, and protect utilities that remain and protect from damage.
- D. Notify utility company to remove and relocate utilities as indicated on drawings or per Architect/Engineer.
- E. Protect bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.
- F. Protect plants, lawns, and trees to remain.

3.03 EXCAVATING

- A. Excavate to accommodate new structures and construction operations.
- B. Notify Architect/Engineer of unexpected subsurface conditions and discontinue affected Work in area until notified to resume work.

- C. Slope banks of excavations deeper than 4 feet (1.2 meters) to angle of repose or less until shored.
- D. Do not interfere with 45 degree bearing splay of foundations.
- E. Cut utility trenches wide enough to allow inspection of installed utilities.
- F. Hand trim excavations. Remove loose matter.
- G. Remove lumped subsoil, boulders, and rock up to 1/3 cu yd (0.25 cu m) measured by volume.
- H. Correct areas that are over-excavated and load-bearing surfaces that are disturbed; see Section 312323.
- Grade top perimeter of excavation to prevent surface water from draining into excavation.
- J. Remove excavated material that is unsuitable for re-use from site.
- K. Stockpile excavated material to be re-used in area designated on site .
- Remove excess excavated material from site.

3.04 FIELD QUALITY CONTROL

- A. See Section 014523 TESTING and INSPECTION SERVICES, for general requirements for field inspection and testing.
- B. Provide for visual inspection of load-bearing excavated surfaces before placement of foundations.

3.05 PROTECTION

- A. Prevent displacement of banks and keep loose soil from falling into excavation; maintain soil stability.
- B. Protect bottom of excavations and soil adjacent to and beneath foundation from freezing.

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Excavate trenches for piping and utilities outside building.
- B. Compacted bedding and backfill around and over piping and utilities to subgrade elevations.
- C. Backfilling and compaction.

1.02 REFERENCES

- A. ASTM C136/C136M Method for Sieve Analysis of Fine and Coarse Aggregates.
- B. ASTM D1557- Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10 lb (4.54 kg) Rammer and 18-inch (457 mm) Drop.

1.03 SUBMITTALS

- A. Submit under provisions of Section 013300 SHEET METAL WORK.
- B. Test Reports: Submit a sieve analysis for bedding to be used.

1.04 QUALITY ASSURANCE

- A. Do not excavate wet or frozen materials without written approval from the Architect/Engineer.
- B. Do not backfill over or with wet or frozen materials.
- C. Provide safety barricades around open excavations.

1.05 FIELD MEASUREMENTS

A. Verify that survey benchmark and intended elevations for the work are as shown on plans.

1.06 COORDINATION

- A. Coordinate trenching with installation of pipe or conduit.
- B. Coordinate trenching with installation and removal of sheeting.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Bedding: Washed; free of silt, clay, loam, friable or soluble materials, or organic matter; graded in accordance with ANSI/ASTM C33-71a Size No. 67; within the following limits:

Sieve Size	Percent Passing
1"	100
3/4"	99
1/2"	63
No. 4	6

B. Subsoil: Reused, excavated material, free of lumps, rocks larger than 3 inches (75 mm) in size, debris and contaminants.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify fill materials to be reused are acceptable.
- B. Verify items to be buried during backfilling process have been inspected prior to backfilling.

3.02 PREPARATION

- A. Identify required lines, levels, contours, and datum.
- B. Maintain and protect existing utilities remaining which pass through work area.
- C. Protect plant life, lawns, rock outcropping and other features remaining as a portion of final landscaping.
- D. Protect bench marks, existing structures, fences, sidewalks, paving and curbs from excavation equipment and vehicular traffic. Any item damaged by the contractor shall be promptly repaired at the contractor's expense.
- E. Protect above and below-grade utilities which are to remain.
- F. Cut out soft areas of subgrade not capable of insitu compaction. Backfill with subsoil fill and compact to density equal to or greater than requirements for subsequent backfill material.

3.03 EXCAVATION

- A. Excavate subsoil required for piping.
- B. Cut trenches to the dimensions shown on the plans.
- C. Excavation shall not interfere with normal 45 degree bearing splay of foundations.
- D. Hand trim excavation. Hand trim for bell and spigot pipe joints. Remove loose matter.
- E. Remove lumped subsoil, boulders, and rock.
- F. For trenches made in solid rock, excavate to a depth of 1 foot (300 mm) below the proposed pipe invert.
- G. Correct unauthorized excavation at no cost to Owner in accordance with Section 312317 -BACKFILLING.
- H. Stockpile excavated material in area designated on site and remove excess material not being used from site. Remove excavated material from site.
- I. All trenches deeper than 5 ft (1.5 m) shall require sheeting.

3.04 INSTALLATION - BEDDING

A. Support pipe and conduit during placement and compaction of bedding fill.

- B. For trenches made in solid rock, place an additional 1 foot (300 mm) of bedding under pipe or conduit.
- C. Place bedding to the dimensions and limits as shown on the plans.
- D. Place bedding material against and to 1 foot (300 mm) over the top of the pipe or conduit in 6 inch (150 mm) compacted layers.
- E. All bedding material shall be compacted to 95 percent maximum dry density in accordance with ASTM D1557. Maintain optimum moisture content to attain required density.
- F. Place bedding simultaneously on both sides of the pipe or conduit.

3.05 BACKFILLING

- A. Backfill trenches to contours and elevations with unfrozen materials.
- B. Backfill to the dimensions and limits shown on the plans with reused subsoil.
- C. Do not backfill over porous, wet, frozen or spongy subgrade surfaces.
- D. Place and compact material in continuous layers not exceeding 6 inches (150 mm) compacted depth.
- E. Employ a placement method that does not disturb or damage conduit or pipe.
- F. All backfilled materials shall be compacted to 95 percent of maximum dry density in accordance with ASTM D1557. Maintain optimum moisture content to attain required density.
- G. Remove temporary sheeting as backfilling progresses.

3.06 TOLERANCES

- A. Maximum Variation From Top Surface of Backfilling Under Paved Areas: 1/4 inch (13 mm).
- B. Maximum Variation From Top Surface of General Backfilling: 1 inch (25 mm).

3.07 FIELD QUALITY CONTROL

- Field testing is to be performed under provisions of 014523 TESTING and INSPECTION SERVICES.
- B. Tests and analysis of fill material are to be performed in accordance with ASTM D1557.
- C. If tests indicate work does not meet specified requirements, remove work, replace and retest at no cost to Owner.
- D. Unless additional testing is required by the Engineer, compaction tests shall be taken every 100 feet (30 m), at the springline of the pipe and every 2 vertical feet (610 mm) of backfill.

3.08 CLEANING

- A. Remove surplus backfill materials from site.
- B. Leave fill material stockpile areas completely free of excess fill materials.

3.09 PROTECTION

A. Recompact fills subjected to vehicular traffic.

SECTION 312323 - FILL H2M

PART 1 GENERAL

1.01 SECTION INCLUDES

 Filling, backfilling, and compacting for building volume below grade, slabs-on-grade, paving, and site structures.

- B. Backfilling and compacting for utilities outside the building.
- C. Filling holes, pits, and excavations generated as a result of removal (demolition) operations.

1.02 RELATED REQUIREMENTS

- A. Section 015000 PIPING SPECIALTIES: Slope protection and erosion control.
- B. Section 312316 EXCAVATION: Removal and handling of soil to be re-used.

1.03 REFERENCE STANDARDS

- A. <u>ASTM D1556/D1556M</u> Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method; 2015.
- B. <u>ASTM D1557</u> Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN m/m3)).
- ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.
- D. <u>ASTM D2487</u> Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
- E. <u>ASTM D6938</u> Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).

1.04 QUALITY ASSURANCE

A. Do not backfill wet or frozen materials.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. When necessary, store materials on site in advance of need.
- B. When fill materials need to be stored on site, locate stockpiles where indicated.
 - 1. Separate differing materials with dividers or stockpile separately to prevent intermixing.
 - 2. Prevent contamination.
 - 3. Protect stockpiles from erosion and deterioration of materials.

PART 2 PRODUCTS

2.01 FILL MATERIALS

- A. General Fill (Type D): Subsoil excavated on-site.
 - Graded
 - 2. Free of lumps larger than 3 inches (75 mm), rocks larger than 2 inches (50 mm), and debris, no more than 15% passing No. 200 sieve; no more than 30% retained on 3/4" sieve.

SECTION 312323 - FILL H2M

3. Conforming to ASTM D2487 Group Symbol CL.

B. Topsoil: .

- Graded.
- 2. Free of roots, rocks larger than 1/2 inch (12 mm), subsoil, debris, large weeds and foreign matter.
- 3. Acidity range (pH) of 5.5 to 7.5.
- 4. Containing a minimum of 5 percent and a maximum of 25 percent inorganic matter.
- 5. Conforming to ASTM D2487 Group Symbol OH.
- C. Type C Sand: Natural river or bank sand; washed, free of silt, clay, friable or soluble materials, or organic matter; graded in accordance with ANSI/ASTM C136, within the following limits:

Screen Size	Percent Passing
No. 4 (4.75 mm)	100%
No. 14 (1.18 mm)	10-100%
No. 50 (0.30 mm)	5-90%
No. 100 (0.15 mm)	4-30%
No. 200 (0.075 mm)	0-1%

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that survey bench marks and intended elevations for the Work are as indicated.
- B. Identify required lines, levels, contours, and datum locations.
- C. See Section 312200 Grading for additional requirements.

3.02 PREPARATION

- A. Cut out soft areas of subgrade not capable of compaction in place. Backfill with general fill.
- B. Compact subgrade to 95% maximum dry density in accordance with ANSI/ASTM D1557.
- C. Until ready to fill, maintain excavations and prevent loose soil from falling into excavation.

3.03 FILLING

- A. Fill to contours and elevations indicated using unfrozen materials.
- B. Fill up to subgrade elevations unless otherwise indicated.
- C. Employ a placement method that does not disturb or damage other work.
- D. Systematically fill to allow maximum time for natural settlement. Do not fill over porous, wet, frozen or spongy subgrade surfaces.
- E. Maintain optimum moisture content of fill materials to attain required compaction density.
- F. Soil Fill: Place and compact material in equal continuous layers not exceeding 8 inches (200 mm) compacted depth.

SECTION 312323 - FILL H2M

G. Slope grade away from building minimum 2 inches in 10 feet (50 mm in 3 m), unless noted otherwise. Make gradual grade changes. Blend slope into level areas.

- H. Correct areas that are over-excavated.
 - 1. Other areas: Use general fill, flush to required elevation, compacted to minimum 97 percent of maximum dry density.
- I. Compaction Density Unless Otherwise Specified or Indicated:
 - 1. Under paving, slabs-on-grade, and similar construction: 92 percent of maximum dry density.
- J. Reshape and re-compact fills subjected to vehicular traffic.

3.04 TOLERANCES

- A. Top Surface of General Filling: Plus or minus 1 inch (25 mm) from required elevations.
- Top Surface of Filling Under Paved Areas: Plus or minus 1 inch (25 mm) from required elevations.

3.05 FIELD QUALITY CONTROL

- A. See Section 014523 TESTING and INSPECTION SERVICES, for general requirements for field inspection and testing.
- B. Perform compaction density testing on compacted fill in accordance with ASTM D1556/D1556M, ASTM D2167, or ASTM D6938.
- C. Proof roll compacted fill at surfaces that will be under slabs-on-grade.

3.06 CLEANING

A. Remove unused stockpiled materials, leave area in a clean and neat condition. Grade stockpile area to prevent standing surface water.

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Wood Sheeting.
- B. Steel Sheeting
- C. Sheeting box.

1.02 RELATED SECTIONS

- A. Section 312316 Excavation.
- B. Section 312323.13 Backfilling.
- C. Section 312333 Trenching.

1.03 REFERENCES

 Occupational Safety and Health Standards - Excavations; Final Rule (29 CFR Part 1926) -OSHA Standards.

1.04 QUALITY ASSURANCE

A. Perform all work of this section in accordance with OSHA Standards and approved shop drawings.

1.05 COORDINATION

- A. Coordinate work under provisions of Section 013100.
- B. Coordinate work with all other sections requiring temporary sheeting and bracing.

PART 2 - PRODUCTS

2.01 MATERIALS

- A. Wood Sheeting: Hardwood species of size and dimensions capable of being driven to the required depths and capable of supporting excavation sides and soil pressures when braced; free from wormholes, wind shakes, loose knots, decayed or unsound portions or defects which would impair its strength or tightness; 2 3 inches thick minimum.
- B. Steel Sheeting: ASTM A328, corrugated "Z" shape cross-section; of size and dimensions capable of being driven to the required depths and capable of supporting excavation sides and soil pressures when braced; structurally sound; special shapes for corner construction and transition points.

Property	Method	Characteristic Value
Compressive Strength (ksi)	ASTM D695	66.54
Compressive Strength via CLC (ksi)	ASTM D6641	73.07
Compressive Modulus (Mpsi)	ASTM D695	3.88
Tensile Strength (ksi)	ASTM D638	64.77
Tensile Modulus (Mpsi)	ASTM D638	3.86
Flexural Strength (ksi)	ASTM D790	88.19
Flexural Modulus (Mpsi)	ASTM D790	3.35

H2M architects + engineers

EXCAVATION SUPPORT AND PROTECTION 314116-1

Izod (ft. lb. /in)

SBS (psi)

Property	Method	Characteristic Value
Compressive Strength (ksi)	ASTM D695	21,44
Compressive Strength via CLC (ksi)	ASTM D6641	21.09
Compressive Modulus (Mpsi)	ASTM D695	1.24
Tensile Strength (ksi)	ASTM D638	7.78
Tensile Modulus (Mpsi)	ASTM D638	1.02
Flexural Strength (ksi)	ASTM D790	14.43
Flexural Modulus (Mpsi)	ASTM D790	1.11
Izod (ft. lb. /in)	ASTM d256	4.33
SBS (psi)	ASTM D2344	1843

ASTM d256

ASTM D2344

42.50

3727

C. Sheeting Boxes: Steel, of size and dimensions capable of supporting excavation sides and soil pressures; structurally sound.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify existing soil substrate and site conditions and elevations are as indicated on the plans.
- B. Verify elevations and grades are as indicated on the plans.
- C. Verify proposed locations of excavations are as indicated on the plans.
- D. Monitor excavation support and protection systems daily during excavation progress and for as long as excavation remains open. Promptly correct bulges, breakage or other evidence of movement to ensure that systems are stable.
- E. Promptly repair damages to adjacent facilities caused by installing excavation support and protection systems.

3.02 PREPARATION

- A. Excavate to a depth no greater than 4 feet from existing grade.
- B. Assemble and drive the sheeting in accordance with approved shop drawings.

3.03 INSTALLATION - SHEETING

- A. Drive sheeting in place to thoroughly support both sides of the excavation using a sheeting hammer. Use a steam or pneumatic hammer for steel sheeting.
- B. Water jetting of sheeting will not be permitted. Do not loosen adjacent ground which might result in collapse.
- C. Install walls and braces or shores tight and in accordance with approved shop drawings prepared by the contractor's engineer.

3.04 INSTALLATION - SHEETING BOX

- A. Place box in trench utilizing a means which will not damage structural integrity of the box.
- B. Excavate ahead of the sheeting box only enough to advance the sheeting box and only immediately prior to moving the sheeting box.
- C. Backfill on both sides of the sheeting box as it is moved.

3.05 REMOVAL OF SHEETING

- A. Remove sheeting only as backfilling progresses.
- B. Carefully remove sheeting such that compacted backfill is not displaced. Add additional backfill to the areas vacated by the sheeting.
- C. All sheeting is to be removed from the site once its use is no longer required.
- D. Removing sheeting in stages to avoid disturbing underlying soils or damaging structures, pavements, facilities and utilities.

3.06 CLEANING

- A. Clean work under provisions of Section 017423.
- B. Clean site of any debris and sheeting materials at completion of the work.

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Aggregate base course.
- B. Paving aggregates.

1.02 REFERENCE STANDARDS

- A. ASTM C136/C136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; 2019.
- B. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN m/m3)); 2012, with Editorial Revision (2015).
- C. NYSDOT Standard Specifications Section 703-02.
- D. ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; 2017, with Editorial Revision (2018).

1.03 DELIVERY, STORAGE, AND HANDLING

- A. Aggregate Storage, General:
 - Separate differing materials with dividers or stockpile separately to prevent intermixing.
 - Prevent contamination. 2.
 - Protect stockpiles from erosion and deterioration of materials.

PART 2 PRODUCTS

2.01 MATERIALS

A. Aggregate Base Course: Angular, crushed, recycled concrete; free of shale, clay, friable materials and debris; graded in accordance with ANSI/ASTM C136 within the following limits:

Sieve Size	Percent Passing
1 1/2 inches	100
1 inch	90-100
1/2 inch	65-85
3/8 inch	55-75
No. 4	40-55
No. 8	30-45
No. 16	22-36
No. 30	16-27
No. 40	12-19
No. 100	7-13
No. 200	3-7

- B. Material retained on the 1/2 inch (13 mm) sieve is coarse aggregate.
- C. Coarse aggregate shall not have more than 10 percent by weight of flat or elongated pieces. A flat or elongated piece is defined as being three times greater in the largest dimension as compared to its least dimension.

D. The portion of the aggregate base course which passes the No. 40 (0.30 mm) screen shall have a plasticity index of one as tested in accordance with ASTM D4318.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that survey bench marks and intended elevations for the work are as indicated.
- B. Verify substrate has been inspected, gradients and elevations are correct, and is dry.

3.02 PREPARATION

- A. Correct irregularities in substrate gradient and elevation by scarifying, reshaping, and re-compacting.
- B. Do not place aggregate on soft, muddy, or frozen surfaces.

3.03 INSTALLATION

- A. Place aggregate in maximum 3 inch (75 mm) layers and roller compact to 95% maximum dry density in accordance with ANSI/ASTM D1557.
- B. Level and contour surfaces to elevations and gradients indicated.
- C. Add small quantities of fine aggregate to coarse aggregate as appropriate to assist compaction.
- D. Add water to assist compaction. If excess water is apparent, remove aggregate and aerate to reduce moisture content.
- E. Use mechanical tamping equipment in areas inaccessible to compaction equipment.

3.04 TOLERANCES

- A. Flatness: Maximum variation of 1/4 inch (6.4 mm) measured with 10 foot (3 m) straight edge.
- B. Scheduled Compacted Thickness: Within 1/4 inch (6.4 mm).
- C. Variation From Design Elevation: Within 1/2 inch (12.8 mm).

3.05 CLEANING

A. Remove unused stockpiled materials, leave area in a clean and neat condition. Grade stockpile area to prevent standing surface water.

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Asphaltic concrete paving; wearing, binder or base course.

1.02 RELATED SECTIONS

A. Section 321123 - Aggregate Base Course.

1.03 REFERENCES

- A. Al MS-2 Mix Design Methods for Asphalt Concrete and Other Hot Mix Types.
- B. Al MS-8 Asphalt Paving Manual.
- C. ASTM D242 Mineral Filler for Bituminous Paving Mixtures.
- D. ASTM D546 Test Method for Sieve Analysis of Mineral Filler for Road and Paving Materials.
- E. NYSDOT Standard Specificatuons Section 702.

1.04 SUBMITTALS

- A. Supplier: Submit name of asphalt supplier to be used on the project prior to placement of any asphalt on the project.
- B. Design Data: Submit asphalt mix design for each asphalt type to be used.

1.05 DELIVERY, STORAGE AND HANDLING

- A. Deliver, store and handle products to the site under provisions of Section 016500.
- B. Deliver asphalt in sealed, metal containers covered with suitable material to protect the asphalt from the elements.
- C. Lightly lubricate the inside surface of the container with a thin oil or soap solution before loading asphalt.
- D. All containers must be cleaned of all foreign materials prior to loading.

1.06 ENVIRONMENTAL REQUIREMENTS

- A. Do not place asphalt when base surface temperature is less than 40 degrees F, or if surface is wet or frozen.
- B. Do not place asphalt when precipitation is occurring.
- C. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for oil-based materials and 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.01 EQUIPMENT

- A. Rollers: Minimum weight of 10 tons; equipped with lubricating devices for the roller wheels.
- B. Pavers: Equipped with a vibratory device.

2.02 ACCESSORIES

- A. Tack Coat: Homogeneous, medium curing, liquid asphalt.
- B. Wheel Lubricant: Oil-water mixture containing maximum 10 percent lubricating oil.

2.03 MIXES

A. Use dry material to avoid foaming. Mix uniformly.

B. Binder Course: NYSDOT Type 3; 4.5 to 6.5 percent of asphalt cement by weight in mixture in accordance with the following gradation refer to plans for thickness.

Percent Passing
100
95-100
70-90
48-74
32-62
15-39
8-27
4-16
2-8

C. Wearing Course: NYSDOT Type 6; 5.8 to 7.0 percent of asphalt cement by weight in mixture in accordance with the following gradatio. Refer to plans for thickness.

Sieve Size	Percent Passing
1 inch	100
1/2 inch	95-100
1/4 inch	65-85
1/8 inch	36-65
No. 20	15-39
No. 40	8-27
No. 80	4-16
No. 200	3-6

2.04 SOURCE QUALITY CONTROL

- A. Obtain asphalt materials from same source throughout the project.
- B. Provide asphalt in accordance with the approved mix design for each type of asphalt.
- C. Test samples in accordance with AI MS-2.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify existing conditions and substrate.
- B. Verify that compacted subbase is dry and ready to receive work of this section.
- C. Verify gradients and elevations of base are correct.
- D. Verify that all castings are properly installed and are at the correct elevations.
- E. Beginning of installation means installer accepts existing conditions.

3.02 PREPARATION

- A. Apply tack coat at uniform rate of 0.03 to 0.07 gal/sq. yd. to contact surfaces of castings, curbs, gutters and any asphalt or concrete material.
- B. Do not apply tack coat to wet or frozen surfaces.
- C. Coat top surfaces of castings with oil to prevent bond with asphalt pavement.

3.03 INSTALLATION

- A. Install work in accordance with AI MS-8 and NYSDOT Standard Specifications.
- B. Maintain asphalt temperature between 250 and 325 degrees F during placement.
- C. Place asphalt within 24 hours of applying tack coat.
- D. Place asphalt to compacted thicknesses as identified on plans. If a multiple course pavement is to be used, place top course within 24 hours of placing bottom course. If more than 24 hours elapse, a tack coat will be required to be placed over the entire surface of the bottom course prior to any additional paving.
- E. Utilize the vibratory device on the paver at all times.
- F. Compact pavement by rolling. Do not displace or extrude pavement from position. Hand compact in areas inaccessible to rolling equipment.
- G. Compact pavement to a minimum of 94% maximum density.
- H. Develop rolling with consecutive passes to achieve even and smooth finish, without roller marks.
- I. Seal all joints between new pavement and existing pavement with asphalt cement.

3.04 TOLERANCES

- A. Maximum Variation From Flatness: 1/8 inch measured with 10 foot straight edge.
- B. Maximum Variation From Scheduled Compacted Thickness: 1/8 inch.
- C. Maximum Variation from True Elevation: 1/4 inch.

3.05 PROTECTION

- A. Protect finished work under provisions of Section 015000.
- B. Immediately after placement, protect pavement from mechanical injury until project is accepted by the Owner.

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Painted pavement delineation.
- B. Painted pavement symbols.

1.02 RELATED SECTIONS

A. Section 321216 - Asphaltic Concrete Paving.

1.03 REFERENCES

A. New York State Department of Transportation Standard Specifications.

1.04 SUBMITTALS

- A. Submit under provisions of Section 013300.
- B. Product Data: Provide data on paint.

1.05 DELIVERY, STORAGE AND HANDLING

- A. Deliver, store and handle products to the site under provisions of Section 016500.
- B. Deliver all materials to the site in their original containers.
- C. Store all materials in a cool, dry place.
- D. Do not expose paint to open flames or temperatures which may ignite the paint.
- E. Store all materials such that the paint is not contaminated.

1.06 ENVIRONMENTAL REQUIREMENTS

- A. Do not apply paint when the ambient temperature is below 40 degrees F.
- B. Do not apply paint to wet or frozen surfaces or when precipitation is occurring.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Paint: Flexible, non-skinning paint; homogeneous, conforming to the requirements of Section 640 of the New York State Department of Transportation Standard Specifications; color as indicated on the plans or directed by Engineer.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify that pavement is ready to receive work of this section.
- B. Beginning of application means applicator accepts existing conditions.

H2M architects + engineers

PAVEMENT MARKINGS -TRAFFIC PAINT 321728-1

3.02 PREPARATION

- A. Remove all dirt, grease, oil or other foreign matter from pavement which might affect the bond between the pavement and the paint.
- B. Remove all temporary pavement markings without causing damage to the pavement.

3.03 APPLICATION

- A. Apply paint with spray type striping machines to achieve a dry film thickness of 14 mils to 16 mils at the locations and to the dimensions as indicated on the plans.
- B. Symbols may be rolled or brushed onto the pavement as long as a dry film thickness of 14 mils to 16 mils is achieved.
- C. All stripes and symbols shall have clean, sharp edges.

3.04 TOLERANCES

A. Maximum offset from true position: 1 inch.

3.05 CLEANING

A. Clean adjacent areas which received paint during work of this section.

3.06 PROTECTION

- A. Protect finished work under provisions of Section 015000.
- B. Protect painted markings from damage or discoloration until project is accepted by the Owner.

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Seeding.
- B. Mulch, fertilizer and other accessories.
- C. Maintenance.

1.02 REFERENCES

A. Not Used

1.03 DEFINITIONS

A. Weeds: Include Dandelion, Jimsonweed, Quackgrass, Horsetail, Morning Glory, Rush Grass, Mustard, Lambsquarter, Chickweed, Cress, Crabgrass, Canadian Thistle, Nutgrass, Poison Oak, Blackberry, Tansy Ragwort, Bermuda Grass, Johnson Grass, Poison Ivy, Nut Sedge, Nimble Will, Bindweed, Bent Grass, Wild Garlic, Perennial Sorrel and Brome Grass.

1.04 SUBMITTALS

A. Product Data: Provide data on seed mixtures and lime.

1.05 QUALITY ASSURANCE

A. Seed: Provide seed mixture in containers showing percentage of seed mix, year of production, net weight, date of packaging, and location of packaging.

1.06 REGULATORY REQUIREMENTS

A. Comply with applicable regulatory agencies.

1.07 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect and handle products to site under provisions of Section 016500.
- B. Deliver grass seed mixture in original sealed containers. Seed in damaged packaging is not acceptable.
- Deliver materials in waterproof bags showing weight, chemical analysis and name of manufacturer.

1.08 ENVIRONMENTAL REQUIREMENTS

- A. Do not sow immediately following rain, during windy periods or if ground is frozen.
- B. Do not sow when the ambient temperature is expected to drop below 40 degrees F or rise above 90 degrees F during the time in which the seed will establish itself.
- C. Typical Planting Season: April 1st through May 15th or September 1st through October 15th.

1.09 COORDINATION

A. Coordinate with grading and placement of topsoil.

H2M

PART 2 - PRODUCTS

2.01 MATERIALS

A. Seed: Dry, fresh, re-cleaned seed of the latest crops and of the following proportions:

Seed Species (% by weight)	lbs/1.000 ft2	lbs/acre
65% Creeping red fescue	2.0-2.6	85-114
20% Perennial ryegrass	0.6-0.8	26-35
15% Fine fescue	0.4-0.6	19-26

B. Topsoil: Fertile, agricultural soil, typical for locality, capable of sustaining vigorous plant growth, taken from drained site; friable loam; free of subsoil, clay or impurities, plants, weeds, roots, grass, stone and foreign matter; acidity range (pH) of 5.8 to 6.5; containing a minimum of 2.75 percent and a maximum of 25 percent organic matter. Topsoil may be reused from on-site if it meets these requirements

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify existing substrate and site conditions under provisions of 013100 PROJECT MANAGEMENT AND COORDINATION.
- B. Verify that prepared soil base is ready to receive the work of this section.
- C. Beginning of installation means installer accepts existing conditions.

3.02 PREPARATION

- A. Seed Bed: Scarify soil to a depth of 6 inches in compacted areas. Smooth out unsightly variations, bumps, ridges, and depressions which will hold water. Remove stones, litter, or other objectionable material.
- B. Eliminate uneven areas and low spots. Remove and dispose of debris, roots, branches and stones in excess of 1/2 inch in size. Remove and dispose of subsoil contaminated with petroleum products.
- C. Scarify subsoil to depth of 6 inches where topsoil is scheduled to be placed. Scarify in areas where equipment used for hauling and spreading topsoil has compacted subsoil.

3.03 APPLICATION

- A. Do not seed areas in excess of that which can be mulched on same day.
- B. Roll seeded area with roller not exceeding 100 lbs per foot of width.
- C. Immediately following seeding and compacting, apply mulch at a rate of 92 lbs per 1,000 square feet. Maintain clear of shrubs and trees.
- D. Apply water with a fine spray immediately after each area has been mulched. Saturate to 4 inches of soil. Discontinue watering if washing begins to occur.

- E. Identify seeded areas with stakes and string around area periphery. Set string height to 24 inches. Space stakes at 8 feet on center.
- F. Cover seeded slopes where grade is 30 percent or greater with erosion fabric. Roll fabric onto slopes without stretching or pulling.
- G. Lay fabric smoothly on surface, bury top end of each section in 6 inch deep excavated topsoil trench. Provide 12 inch overlap of adjacent rolls. Backfill trench and rake smooth, level with adjacent soil.
- H. Secure outside edges and overlaps at 36 inch intervals with stakes.
- I. Lightly dress slopes with topsoil to ensure close contact between fabric and soil.
- J. At sides of ditches, lay fabric laps in direction of water flow. Lap ends and edges minimum 12 inches.

3.04 MAINTENANCE

- A. Maintain grass until job is accepted by the Owner or until the grass exhibits a vigorous growing condition, as determined by at least 2 cuttings, whichever occurs last.
- B. Mow grass at regular intervals to maintain at a maximum height of 2-1/2 inches. Do not cut more than 1/3 of grass blade at any one mowing.
- C. Neatly trim edges and hand clip where necessary.
- D. Immediately remove clippings after mowing and trimming.
- E. Water to prevent grass and soil from drying out.
- F. Immediately reseed areas which show bare spots.

3.05 PROTECTION

A. Protect seeded areas with warning signs and temporary fencing during maintenance period.

END OF SECTION 329219

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. PVC drainage pipe.
- B. Fittings and accessories.

1.02 RELATED SECTIONS

A. Section 312318 - Trenching.

1.03 REFERENCES

- A. ASTM D2321 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and other Gravity Flow Applications.
- B. ASTM D2729 Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings.
- C. ASTM D2855 Recommended Practice for Making Solvent-Cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings.
- D. ASTM D3034 Standard Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings.
- E. ASTM D3212 Standard Specifications for Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals.

1.04 SUBMITTALS

- A. Submit under provisions of Section 013300 Submittal Procedures.
- B. Product Data: Provide data on pipe, fittings and accessories.

1.05 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of Section 017700.
- B. Accurately record actual locations of pipe runs, connections and invert elevations.
- Identify and describe unexpected variations to subsoil conditions or discovery of uncharted utilities.

1.06 REGULATORY REQUIREMENTS

A. Conform to applicable codes for materials and installation of the work of this section.

1.07 FIELD MEASUREMENTS

A. Verify that field measurements are as indicated on the plans and as required by the manufacturer.

1.08 COORDINATION

A. Coordinate pipe installation with trenching and installation of drainage structures.

PART 2 - PRODUCTS

2.01 COMPONENTS

- A. Pipe: ASTM D3034 SDR35 PVC with gasketed, bell and spigot, push-on joint conforming to ASTM D3212.
- B. Joint Lubricant: Manufacturer's standard.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify existing conditions and substrate.
- B. Verify that trench cut is ready to receive work and excavations, dimensions and elevations are as indicated on the plans.
- C. Inspect all pipe and fittings before installation. Remove defective pipe from site.

3.02 PREPARATION

- A. Remove large stones or other hard matter which could damage piping or impede consistent backfilling or compaction.
- B. Excavate under provisions of Section 312316. Excavate sufficient clearance at each bell or coupling to allow uniform bearing along the pipe barrel.

3.03 INSTALLATION

- A. Install pipe and accessories in accordance with ASTM D2321.
- B. Lift or roll pipe into position. Do not drop or drag pipe over prepared bedding.
- C. Shore pipe to required position; retain in place until after compaction of adjacent fills. Ensure pipe remains in correct position and to required slope.
- D. Lay pipe to slope gradients noted on the plans, with maximum variation from true slope of 1/8 inch in 10 feet.
- Repair surface damage to any pipe protective coating in accordance with manufacturer's recommendations.
- F. Backfill under provisions of Section 312323.
- G. Construct cleanouts at locations shown and as detailed on the drawings. Use PVC wyes, bends and pipe as appropriate. Extend cleanout pipe to grade and terminate with plug.

3.04 TOLERANCES

- A. Maximum Variation from Intended Invert Elevation: 1/2 inch.
- B. Maximum Offset of Pipe from True Alignment: 1 inch.

3.05 FIELD QUALITY CONTROL

- A. Perform field inspection under provisions of Section 014523.
- B. Request inspection prior to and immediately after placing aggregate cover over pipe.

3.06 PROTECTION

- A. Protect finished work.
- B. Protect pipe from damage or displacement until backfilling operation is in progress.

END OF SECTION 334124.24

STORMWATER REPORT

FOR

SMALL PROJECT SWPPP'S

INDEPENDENT FIRE COMPANY

Village and Town of Mount Kisco

Westchester County, New York

H2M Project No: MKIV1803

October 2021

Prepared for:

Village and Town of Mount Kisco 104 Main Street Mount Kisco, New York 10594

Prepared by:

H2M architects + engineers 2 Executive Boulevard Suite 401 Suffern, New York 10901 845-357-7238

architects + engineers

TABLE OF CONTENTS

STORMWATER REPORT

1.	EROSION AND SEDIMENT CONTROL	1
	A. PROJECT DESCRIPTION AND SCOPE	1
	B. SOILS	2
	C. CONSTRUCTION SCHEDULE	2
	D. TEMPORARY AND PERMANENT EROSION AND SEDIMENT CONTROL PRACTICES	3
	E. MAINTENANCE AND INSPECTION	3
	F. SOLID WASTE MANAGEMENT	4
	G. CHEMICAL STORAGE AND SPILL PREVENTION/RESPONSE	5
	H. STORMWATER DISCHARGES FROM INDUSTRIAL ACTIVITY	5
2.	POST-CONSTRUCTION STORMWATER MANAGEMENT	5
	A. SOIL TESTING RESULTS AND LOCATIONS	8
	B. OPERATIONS AND MAINTENANCE PLAN	8

APPENDICES

Appendix A	Location Map
	FEMA FIRMette
	NYS DEC Environmental Resources Map
	US Fish and Wildlife Service Wetlands Map
	Historic Sites Map
Appendix B	Soils Report
	Soil Boring Report
Appendix C	Stormwater Inspection Report
Appendix D	Application Form and Notice of Intent (NOI)
	EAF Part 1, and SEQRA "Negative Declaration"
Appendix E	Signatory Requirements
	Contractor & Subcontractor Certification Statements
	Long Term Contact Information
Appendix F	Pre & Post Development Drainage Reports
Appendix G	WQv, RRv, Rain Garden and Coliform Calculations
	Design Storm Figures per NYS Design Manual
Appendix H	Pre & Post Development Drainage Area Map
	Engineering Plans

STORMWATER REPORT Independent Fire Station

Village and Town of Mount Kisco Westchester County, New York

1. EROSION AND SEDIMENT CONTROL

This Stormwater Report has been prepared with attention to the specifications put forth in the New York State Department of Environmental Conservation SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-20-001). The site does not require a full SWPPP; and is prepared in accordance with the NYC DEP Requirements for Small Project SWPPP's. Appendix C of the General Permit lists the site inside of the New York City Watershed East of Hudson. This requires the Water Quality Volume be calculated in accordance with Section 10.3 of the New York State Stormwater Design Manual. Erosion and sediment control practices were designed in conformance with the New York State Standards and Specifications for Erosion and Sediment Control.

A. PROJECT DESCRIPTION AND SCOPE

The Independent Fire Station is an existing developed emergency service responder station which is proposed for a site development project to expand the station size and capabilities. The site currently consists of two buildings on a 0.71-acre lot. The proposed additions are to the existing two-story fire house. There is also a two-story ambulance station to the northwest of the fire house. The station is located on Lexington Avenue within the Town and Village of Mount Kisco, Westchester County, NY (see location map in Appendix A). The proposed area of disturbance encompasses less than 5,000 square feet of the site and can be seen on the Engineering Plans in Appendix H.

The project scope includes expansions off the south and west sides of the existing fire station as shown on the detailed engineering drawings included as Appendix H. The additions will include a new geal lockers, unisex bathrooms, equipment storage and ready rooms for emergency responders.

The primary potential source of pollution from construction activity associated with this project is sediment resulting from soil disturbance and stormwater runoff. Fuel from equipment used during construction activities and/or stored on-site is another potential source of pollution from this project.

Endangered or Threatened Species: The project site is not in the vicinity of Rare Animals and/or Rare Plants according to the NYSDEC Environmental Resource Mapper (see map Appendix A).

Wetlands and Surface Waters: According to the NYSDEC Environmental Resources mapper and the US Fish and Wildlife Service National Wetlands Inventory mapper, there are no wetlands or surface waters on the project site (see map Appendix A). However, DEC wetland "K-12" is located approximately 1,000 feet from the site. Freshwater emergent wetland "PEM1Cx" is located 665 feet from the site.

Historic Places: According NYS Historic Preservation Office Cultural Resource Information System (CRIS), there are no historic sites located within 100 feet of the proposed construction site (see map Appendix A).

Floodplain/Floodway: According to FEMA FIRM Panel No. 36119C0153F, dated 9/28/2007, the project site is not located within a mapped floodplain or floodway (see map Appendix A).

B. SOILS

According to the Soil Survey of Westchester County, New York (USDA-NRCS, Web Soil Survey), the soils found at the project site are comprised of 0.59 acres of ChB (Charlton fine sandy loam, 3 to 8 percent slopes), 0.01 acres of Uf (Urban land), and 0.13 acres of UhB (Urban land-Charlton complex, 3 to 8 percent slopes). Soils at this site belong to Hydrologic Soil Group B and D. A soils report for this site is included in Appendix B of this report.

C. CONSTRUCTION SCHEDULE

The following general construction schedule provides the anticipated sequence of the proposed construction activities that may result in soil disturbance. Stabilization of disturbed areas shall be performed as the project progresses in order to minimize the potential for contamination of stormwater runoff.

Sequence of Construction

- 1) Pre-construction meeting at least 48-hours before the start of construction activities. Attendees to include owner, engineer, town representatives, contractor and DEP.
- 2) Installation of silt fencing, inlet protection, in accordance with the New York State Standards and Specifications for Erosion and Sediment Control. Adjust erosion and

- sediment control measures throughout project as needed to accommodate construction phasing to maintain effectiveness of erosion and sediment control measures.
- 3) Clearing of the project site areas indicated for development and removal of existing site features as necessary for the installation of the proposed improvements.
- 4) Excavation for foundation work.
- 5) Construction of new addition.
- 6) Grading for new rain garden. Final grading of all disturbed areas to finished grade.
- 7) Installation of new aggregate base course in areas of new pavement and asphalt resurfacing. Installation of new concrete curb, concrete sidewalk, and concrete pad.
- 8) Seeding of disturbed areas and other final landscaping measures.
- 9) Following final stabilization of disturbed areas, removal of remaining temporary erosion and sediment controls.
- 10) Silt removal and cleaning of inlets protected during construction.

D. TEMPORARY AND PERMANENT EROSION AND SEDIMENT CONTROL PRACTICES

Temporary and permanent erosion and sediment control measures shall be installed and maintained by the general contractor (or subcontractor) in accordance with the engineering plans and details, and the New York State Standards and Specifications for Erosion and Sediment Control (NYS Soil and Water Conservation Committee, 2016). Descriptions for these measures are identified in the engineering plans and details in Appendix H.

E. MAINTENANCE AND INSPECTION

Installation and maintenance of all temporary erosion and sediment control measures will be the responsibility of the general contractor. The general contractor shall ensure that a copy of the approved SWPPP is present on-site and that all sub-contractors are aware of the terms of the approved SWPPP and have signed the proper Certification Form.

The contractor shall have a trained contractor (as defined by GP-0-20-001) inspect the erosion and sediment control practices and pollution prevention measures within the active work area daily to ensure that they are being maintained in effective operating conditions at all times. If deficiencies are identified, the contractor shall begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame. The trained contractor may stop conducting the maintenance inspections in accordance with the provisions of Part IV.B of GP-0-20-001.

A qualified inspector shall conduct regular site inspections of all erosion and sediment control practices and pollution prevention measures, post construction stormwater management practices, areas of disturbance, points of discharge to surface waters within or immediately adjacent to the construction site, and points of discharge from the construction site. Specifically, the qualified inspector shall inspect all sediment barriers, inlet protection and silt fencing; catch basins and field inlets for accumulation of sediments; any un-stabilized, disturbed areas, mulch, and permanent vegetative controls; and staging areas and storage areas for construction materials, waste materials, and construction chemicals. The inspector shall notify the general contractor of any necessary repairs to damaged or ineffective measures, and any necessary corrective action, including, but not limited to the removal of sediment, stabilization of disturbed areas, or placement of additional measures to ensure proper functioning of the erosion and sediment control practices. The general contractor shall be responsible for immediate implementation of the corrective actions. The inspections shall be conducted at least once every seven days. The qualified inspector may reduce the frequency of or stop conducting the inspections in accordance with the provisions of Part IV.C.3 of GP-0-20-001. The qualified inspector shall prepare an inspection report for each inspection. An example SWPPP inspection form is provided in Appendix C. All inspection reports shall be maintained on site with the SWPPP.

F. SOLID WASTE MANAGEMENT

Construction debris and waste expected to be generated during the project include concrete compounds, wood, cardboard, metals, masonry, PVC, packing material, and domestic waste (*i.e.* beverage containers, coffee cups, plastic bags and wrappers, etc.). Temporary waste containers (*i.e.* roll-off containers) of sufficient size and number shall be placed within the equipment/material storage areas, to be determined by the general contractor, and accessible on the project site in order to facilitate disposal of construction debris. Waste containers shall have lids or shall be covered during periods of rain to prevent accumulation of water within the containers and to prevent loss of debris from wind. Waste containers shall have watertight bottoms. Waste containers shall not be cleaned or hosed out on the project site. Solid waste containers shall be removed bi-weekly or more frequently as needed. No on-site disposal of any construction materials shall be permitted.

Work areas shall be maintained in an orderly and clean manner to prevent windblown litter from exiting the site. Littering on the project site shall be prohibited. Trash receptacles shall be placed in locations where workers congregate for lunches and breaks. Litter shall be bagged before placement in large waste containers.

Potential toxic and hazardous materials, if any, shall not be disposed of in solid waste containers and shall be segregated in separate containers for transport to an approved off-site receiving area.

G. CHEMICAL STORAGE AND SPILL PREVENTION/RESPONSE

The general contractor is responsible for proper storage of potentially hazardous chemicals onsite and enforcement of proper spill prevention and control measures. Proper storage, clean-up, and spill reporting instructions will be present in the project trailer and will be posted in a conspicuous and accessible location.

Potentially hazardous chemicals and materials that may be used on site include solvents, adhesives, lubricants, gasoline, diesel fuel, asphalt and concrete compounds. All chemicals shall be stored in their original containers, and according to manufacturer's specifications. Materials shall be stored in covered storage with an impervious lined bottom to prevent leaching of chemicals into the ground. The storage shall be secured to prevent unauthorized entry during non-working hours. An ample supply of appropriate absorbent spill clean-up material will be kept in or near the storage area. The storage area is to be kept clean and well-organized.

In the event of a chemical spill, the contractor should contain the spill in accordance with the manufacture's recommended methods and must report the spill to the NYS Spill Hotline (1-800-457-7362) within 2 hours of discovery.

H. STORMWATER DISCHARGES FROM INDUSTRIAL ACTIVITY

There are no stormwater discharges associated with industrial activity at the construction site (i.e., asphalt plants and/or concrete plants) proposed as part of this project.

2. POST-CONSTRUCTION STORMWATER MANAGEMENT

Pre-Development Conditions

A Pre-Development Drainage Area Map is provided in Appendix H identifying watershed boundaries, flow paths and design points. In the existing condition the site is developed and almost completely impervious (I > 80%). As mentioned in the Part 1, the site has two exiting buildings as well as two sheds and generators. The site consists of two watersheds. Watershed Area #1 is 0.63 acres; site runoff and pipe flow direct stormwater to the back westernmost corner of the property where runoff exits the site via a small concrete headwall. Watershed Area #2 is 0.13 acres and consists of any runoff which discharges to Lexington Avenue at the front of the project site.

Post-Development Conditions

A Post-Development Drainage Area Map is provided in Appendix H identifying watershed boundaries, flow paths, design points and SMP's. In the developed condition, the site's impervious area will decrease slightly (226 square feet). The decrease in impervious areas is due the removal of a paved section of the rear parking lot and installation of a small rain garden.

The post-development site consists of three watershed areas. Similar to Watershed Area #1, Watershed #1A is 0.60 acres; site runoff and pipe flow direct stormwater to the back westernmost corner of the property where runoff exits the site via a small concrete headwall. Watershed Area #1B collects rooftop runoff from the majority of the new addition and discharges to a small rain garden before connection to Watershed #1A.

As previously mentioned, the site lies in the NYC Watershed East of Hudson; however, the site's sub-watershed is the New Croton Reservoir watershed. In accordance with Section 18-39 (c) (1) there must be an analysis of coliform runoff. The site is fully developed (over 80% impervious) with no existing SMP's and will be decreasing in impervious area by approximately 0.7%. This reduction, coupled with the proposed rain garden will reduce the coliform runoff for the site. The coliform calculations are provided in Appendix G.

Stormwater Calculations

Stormwater runoff from watershed areas in the pre and post-development conditions and the post-construction stormwater management practices have been modeled for the 1, 10 and 100-year, 24-hour storm events using the Hydraflow Hydrographs. Time of Concentration (Tc) values for pre and post-development conditions were determined using the TR-55 methodology. When Tc values are equal to or less than 6 minutes, this value is assigned as is standard practice. Runoff rates have been calculated using the SCS Unit Hydrograph method.

A summary comparing pre- and post-development runoff rates and volumes for the different storm events is provided in Table 01 on the following page.

Table 01 - Stormwater Modeling Summary

Study	Watershed	Ru	Runoff Volume (cf)		Peak Runoff (cfs)		
Point	ID	1-Yr	10-Yr	100-Yr	1-Yr	10-Yr	100-Yr
Pre-Development Condition							
1	WS#1	4,043	8,746	16,965	1.34	2.78	5.19
2	WS#2	997	1,999	3,715	0.32	0.61	1.10
Post-Development Condition							
	WS#1A	3,850	8,329	16,158	1.27	2.65	4.94
1	WS#1B	168	384	771	0.06	0.13	0.24
	Total*	4,018	8,714	16,928	1.33	2.78	5.19
2	WS#2	954	1,950	3,662	0.31	0.60	1.09
1	Change +/-	- 25	-32	-37	-0.01	0	0
-	Change %	-0.6%	-0.4%	-0.2%	-0.7%	0%	0%
2	Change +/-	-43	-49	-53	-0.01	-0.01	-0.01
	Change %	-4.3%	-2.5%	-1.4%	-3.1%	-1.6%	-0.9%

^{*}Total taken after combination of WS#1A and WS#1B

Water Quality Volume (WQv) & Runoff Reduction Volume (RRv)

In most cases WQv and RRv is calculated in accordance with Section 4.2 of the Design Manual. However, because the site is located inside the East of the Hudson Watershed, a phosphorus limited watershed, a more conservative approach is taken. The WQv and RRv calculation is instead taken from Section 10.3 of the Design Manual. As per Section 10.3, WQv is defined as the volume of runoff generated from the 1-year, 24-hour design storm over the post-developed watershed as opposed to 90^{th} percentile rain event. The contributing area for DEP Small Practice SWPPP's is any new impervious areas (A=118 square feet or 0.0027 acres). The one-year storm event number P_{1yr} =2.78 in is taken from Figure 4.2 of the Design Manual results in a larger, more conservative WQv than using the 90% Rainfall Event Number $P_{90\%}$ =1.5 inches from Figure 4.1. The RRv and WQv can be found below:

$$WQv = \frac{\left[\left(P_{1yr}\right)(Rv)(A)\right]}{12}$$

$$RRv_{min} = \frac{\left[\left(P_{1yr}\right)(Rv)(A)(S)\right]}{12}$$

Where:

 P_{1vr} - 1-Year 24-Hour Storm Number = 2.78 in.

 R_v - 0.05 + 0.009 (I), where I is percent impervious cover = 0.95

A - Contributing Impervious Area = 0.0027 acres

S – Weighted Soil Reduction Factor = 0.40

 $WQv = 25.96 \text{ ft}^3 \text{ or } 0.0006 \text{ ac-ft}$

 $RRv_{min} = 10.38 \text{ ft}^3 \text{ or } 0.0002 \text{ ac-ft}$

In order for the site to meet WQv and RRv requirements, a small rain garden is proposed on the west side of the new addition. The rain garden will collect runoff from the rooftop. This contributing area includes a small portion of previously pervious grass area which will now be impervious. The rain garden is sized to retain more than the required WQv and RRv. Any additional runoff will enter a domed riser and continue to Study Point 1. Calculations for the Rain Garden, WQv and RRv_min can be found in Appendix G.

Channel Protection Volume (CPv), Overbank Flood Control (Qp) and Extreme Flood Control (Qf)

According to Part I.C.2.c of the General Permit, CPv, Qp and Qf is not required for any areas that do not increase the discharge rate from the project site. Since the proposed improvements either reduce or do not increase the discharge rate for any study points on the site, this requirement is not necessary.

A. SOIL TESTING RESULTS AND LOCATIONS

Test boring locations and the reported boring log information from soil testing performed for this site are provided in Appendix B.

B. OPERATIONS AND MAINTENANCE PLAN

General Maintenance Information

Upon completion of construction the Owner will be responsible for inspection, maintenance and repair of the site. The catch basins and drain inlets shall be inspected at least twice annually. Debris, trash, sediment and other waste material found within the systems should be removed and disposed of at suitable disposal/recycling sites and in compliance with applicable local, state, and federal waste regulations by the entity responsible.

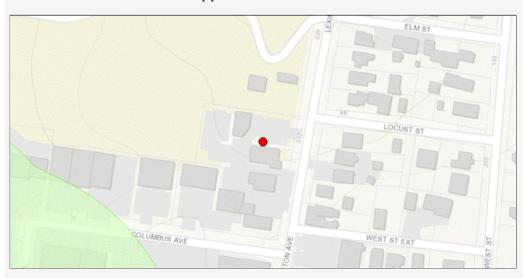
Rain Garden

The rain garden should be weeded (min. Spring and Fall) and remulched as necessary. Vegetation should be pruned to keep plants healthy. Garden should be inspected for sediment accumulations or heavy organic matter where runoff enters the garden and removed as necessary. The top few inches of planting soil should be removed and replaced when water ponds for more than 48 hours. Any areas of settlement or grade change should be regraded as originally designed. The overflow orifice should be inspected every 3-4 months for sediment accumulation as well as before any large storm events.

Appendix A

Location Map

FEMA FIRMette


NYS DEC Environmental Resource Map

US Fish and Wildlife Service Wetland Map

Historic Sites Map

Environmental Resource Mapper

The coordinates of the point you clicked on are:

UTM 18 Easting: 606240.360 **Northing:** 4561376.933

Longitude/Latitude Longitude: -73.733 Latitude: 41.197

The approximate address of the point you clicked on is: 322 Lexington Ave, Mount Kisco, New York, 10549

County: Westchester Town: Mount Kisco Village: Mount Kisco

USGS Quad: MOUNT KISCO, NY-CONN

DEC Region

Region 3:

(Lower Hudson Valley) Dutchess, Orange, Putnam, Rockland, Sullivan, Ulster and Westchester counties. For more information visit http://www.dec.ny.gov/about/607.html.

Old or Potential Records (Not displayed on the map)

Common Name: Rattlebox

Scientific Name: Crotalaria sagittalis Date Last Documented: 1915-09-26

Location: Mount Kisco NYS Protected: Endangered

If your project or action is within or near an area with a rare animal, a permit may be required if the species is listed as endangered or threatened and the department determines the action may be harmful to the species or its habitat.

If your project or action is within or near an area with rare plants and/or significant natural communities, the environmental impacts may need to be addressed.

The presence of a unique geological feature or landform near a project, unto itself, does not trigger a requirement for a NYS DEC permit. Readers are advised, however, that there is the chance that a unique feature may also show in another data layer (ie. a wetland) and thus be subject to permit jurisdiction.

Please refer to the "Need a Permit?" tab for permit information or other authorizations regarding these natural resources.

Disclaimer: If you are considering a project or action in, or near, a wetland or a stream, a NYS DEC permit may be required. The Environmental Resources Mapper does not show all natural resources which are regulated by NYS DEC, and for which permits from NYS DEC are required. For example, Regulated Tidal Wetlands, and Wild, Scenic, and Recreational Rivers, are currently not included on the maps.

FISH A WILDLIPE SERVICE

U.S. Fish and Wildlife Service

National Wetlands Inventory

MKIV 1803

October 19, 2018

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

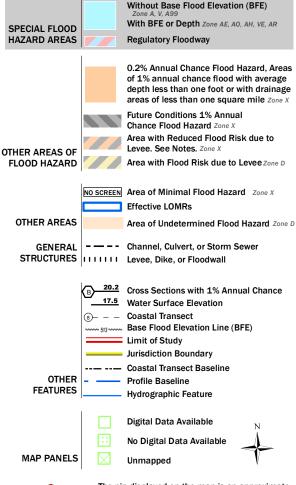
Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Other

Riverine


This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT


9

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/22/2018 at 8:57:46 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B

Soils Report Soils Boring Report

NATURAL S

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Westchester County, New York

MKIV1803

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Westchester County, New York	13
ChB—Charlton fine sandy loam, 3 to 8 percent slopes	13
Uf—Urban land	14
UhB—Urban land-Charlton complex, 3 to 8 percent slopes	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o)

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

å

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Westchester County, New York Survey Area Data: Version 16, Jun 11, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 16. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
ChB	Charlton fine sandy loam, 3 to 8 percent slopes	0.6	80.2%		
Uf	Urban land	0.0	1.2%		
UhB	Urban land-Charlton complex, 3 to 8 percent slopes	0.1	18.5%		
Totals for Area of Interest	'	0.8	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The

Custom Soil Resource Report

delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Westchester County, New York

ChB—Charlton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2wh0n

Elevation: 0 to 1,440 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Charlton and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Charlton

Setting

Landform: Hills, ground moraines, ridges

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope

Down-slope shape: Linear, convex Across-slope shape: Convex

Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or

schist

Typical profile

Ap - 0 to 7 inches: fine sandy loam

Bw - 7 to 22 inches: gravelly fine sandy loam C - 22 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

Minor Components

Sutton

Percent of map unit: 8 percent Landform: Ground moraines, hills

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Paxton

Percent of map unit: 5 percent

Landform: Drumlins, hills, ground moraines

Landform position (two-dimensional): Backslope, summit, shoulder

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Leicester

Percent of map unit: 1 percent

Landform: Drainageways, depressions

Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: Yes

Chatfield

Percent of map unit: 1 percent

Landform: Hills, ridges

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope

Down-slope shape: Convex

Across-slope shape: Linear, convex

Hydric soil rating: No

Uf—Urban land

Map Unit Setting

National map unit symbol: bd7j Elevation: 50 to 2.400 feet

Mean annual precipitation: 46 to 50 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 115 to 215 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Minor Components

Udorthents

Percent of map unit: 5 percent Hydric soil rating: No

Riverhead

Percent of map unit: 2 percent Hydric soil rating: No

Chatfield

Percent of map unit: 2 percent Hydric soil rating: No

Udorthents, wet substratum

Percent of map unit: 2 percent Hydric soil rating: No

Unadilla

Percent of map unit: 2 percent Hydric soil rating: No

Sutton

Percent of map unit: 2 percent Hydric soil rating: No

UhB—Urban land-Charlton complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2wh1l

Elevation: 0 to 710 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 50 percent

Charlton and similar soils: 25 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 0 inches to manufactured layer

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Custom Soil Resource Report

Available water supply, 0 to 60 inches: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydrologic Soil Group: D Hydric soil rating: Unranked

Description of Charlton

Setting

Landform: Ground moraines, ridges, hills

Landform position (two-dimensional): Backslope, shoulder, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear, convex Across-slope shape: Convex

Parent material: Coarse-loamy melt-out till derived from gneiss, granite, and/or

schist

Typical profile

Ap - 0 to 7 inches: fine sandy loam

Bw - 7 to 22 inches: gravelly fine sandy loam C - 22 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

Minor Components

Leicester

Percent of map unit: 8 percent

Landform: Hills, depressions, drainageways, ground moraines Landform position (two-dimensional): Toeslope, footslope

Landform position (three-dimensional): Base slope

Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Chatfield

Percent of map unit: 7 percent

Landform: Hills, ridges

Custom Soil Resource Report

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope

Down-slope shape: Convex

Across-slope shape: Linear, convex

Hydric soil rating: No

Udorthents

Percent of map unit: 5 percent

Landform: Ridges

Landform position (three-dimensional): Tread

Down-slope shape: Linear, convex Across-slope shape: Linear, convex

Hydric soil rating: No

Sutton

Percent of map unit: 5 percent Landform: Ground moraines, hills

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

SUBSURFACE INVESTIGATION

PROPOSED BUILDING ADDITIONS INDEPENDENT FIRE STATION VILLAGE OF MOUNT KISCO Village of Mount Kisco, Westchester County, New York

May 1, 2018 File No. 26.0091286.01

PREPARED FOR:

Village of Mount Kisco c/o H2M Architects/Engineers 2700 Westchester Avenue, Suite 415 Purchase, New York 10577

Melick-Tully & Associates, A Division of GZA

117 Canal Road | South Bound Brook, NJ 08880 732-356-3400

GZA has 32 Offices Nationwide www.melick-tully.com www.gza.com

Copyright© 2018 GZA GeoEnvironmental, Inc.

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

117 Canal Road T: 732.356.3400

Eugene M. Gallagher, Jr., P.E., Principal Robert E. Schwankert, P.E., Principal Mark R. Denno, P.E., Principal Christopher P. Tansey P.E., Associate Principal Todd E. Horowitz, P.E., Associate Principal

May 1, 2018 File No. 26.0091286.01

Village of Mount Kisco c/o H2M Architects/Engineers 2700 Westchester Avenue, Suite 415 Purchase, New York 10577

Mr. Cole Podolsky, LEED, AP Attention:

Project Designer

Report **Subsurface Investigation Proposed Building Additions Independent Fire Station** Village of Mount Kisco, Westchester County, New York

Introduction

This report presents the results of a subsurface investigation performed by Melick-Tully and Associates, a Division of GZA GeoEnvironmental, Inc. and affiliated with GZA GeoEnvironmental of New York (MTA) for additions to the existing Independent Fire Station. The Independent Fire Station is located at 322 Lexington Avenue in the Village of Mount Kisco, Westchester County, New York, as shown on the Site Location Map, Plate 1.

Proposed Construction

Plans provided to us indicate that the existing Independent Fire Station would be improved by constructing two additions on the north and south sides of the existing firehouse. The southern addition would be an irregularly shaped structure approximately 20 feet by 80 feet in outside plan dimensions. The northern addition would be a rectangular structure approximately 17 feet by 60 feet in overall plan dimensions. We understand that the additions would be two-story, slab-on-grade structures. Structural loading was not provided to us at the time of this report; however, we believe that the additions would impose light to moderate foundation loads and light to moderate floor slab loads.

Grading plans were not provided to us at this time; however, we understand that the additions would be located close to the level of the existing floor slab at Elevation +316.5 feet, requiring cuts of approximately 1 to 2 feet in the northern addition area and fills on the order of 1 foot or less in the southern addition area to reach the proposed floor slab subgrade level.

Purpose and Scope of Work

The purpose of our services was to:

- 1) explore the subsurface soil, rock and groundwater conditions as close as practical to the boring locations identified by H2M within the proposed building addition areas;
- 2) estimate the relevant geotechnical engineering properties of the encountered materials;
- 3) evaluate the site foundation requirements considering the anticipated structural loads and encountered subsurface conditions;
- 4) recommend an appropriate type of foundation for support of the proposed additions and provide geotechnical-related foundation design and installation criteria, including an estimate of the Site Class as defined by the Building Code of New York State, 2017 Edition, for seismic design purposes;
- 5) provide recommendations for the support and the need for subdrainage of the ground level floor slabs;
- 6) estimate the post-construction settlements of the recommended floor and foundation systems;
- 7) provide estimated soil parameters requested in your RFP including but not limited to equivalent soil pressures, subgrade moduli, internal angles of friction, and unit weights of soil;
- 8) recommend pavement improvements including milling and resurfacing or full depth replacement; and
- 9) discuss appropriate earthwork considerations consistent with the proposed construction and encountered subsurface conditions.

To accomplish these purposes, a subsurface exploration program consisting of three supervised test borings was performed at the site. Your original RFP requested that four borings be performed; however, our discussions with representatives of the firehouse indicate that the boring identified as IB-4 located adjacent to the southeast corner of the existing firehouse was underlain by an existing water line too close to the proposed boring location to risk damaging the line. The borings were advanced using truck-mounted, hollow-stem auger drilling equipment and

extended to depths of approximately 32 to 42 feet below the existing surface grades. The approximate locations of

the explorations are shown on the Plot Plan, Plate 2.

All work was performed under the direct technical observation of a representative from MTA. Our representative

located the explorations in the field using the existing site features, maintained continuous logs of the borings as the

work proceeded, and supervised the soil sampling operations. Closely spaced soil samples were obtained from the

borings using the general procedures of the Standard Penetration Test.

Detailed descriptions of the materials encountered in the explorations are shown on the individual Logs of Borings,

Plates 3A through 3C. The soils were visually classified in general accordance with the Unified Soil Classification

System (USCS) presented on Plate 4. The soil samples obtained from the explorations were brought to our office

where they were further examined in our soil mechanics laboratory. Five of the samples were subjected to laboratory

testing consisting of grain-size analyses and moisture content determinations. The results of the grain-size tests are

presented on Plate 5, Gradation Curves. The results of the moisture content tests are presented on Plate 5 and on

the appropriate exploration logs.

The results of our subsurface exploration program, our visual examination of the soil samples, and our review of the

laboratory test results have provided the basis for our engineering analyses and design recommendations. The

following discussions of our findings are subject to the limitations attached as Appendix II to this report.

Site Conditions

Surface Features: The areas immediately adjacent to the north and south sides of the existing two-story brick and

block firehouse consist of landscaped areas and concrete sidewalks. Asphalt covered paved areas are located beyond

the limits of the landscaped areas and sidewalks and are separated by a concrete curb.

Topographic information shown on plans provided to us indicate that the areas adjacent to the firehouse are relatively flat with elevations ranging from approximately +317 to +318 feet in the northern addition area and from approximately Elevation +315 to +316 feet across the southern addition footprint.

An existing one-story retail building is present very close to the southern property line. It is not known if that building contains a basement.

<u>Subsurface Conditions</u>: The following generalized strata were encountered in the explorations and are listed in order of increasing depth:

- 1) <u>Surface Treatments</u>: A surficial layer of topsoil approximately 4 inches thick was encountered in Boring No. IB-1. In Borings No. IB-2 and IB-3, the surface treatments consisted of a layer of asphalt pavement approximately 3 to 5 inches in thickness over a stone base course approximately 2 to 6 inches in thickness.
- 2) <u>Fill</u>: Fill materials consisting of silty sand and gravel were encountered in Boring No. IB-1 extending to a depth of approximately 2 feet below the existing ground surface.
- 3) <u>Silty Sand</u>: In Borings No. IB-2 and IB-3, the surface treatments were underlain by a layer of loose to medium dense silty sands which extended to depths of approximately 5 to 11 feet below the existing surface grades.
- 4) <u>Silt</u>: Below the surficial treatments, fill and sand in all three of the explorations, silt materials containing varying amounts of sand were observed. The silty soils were generally found to be stiff in consistency; however, several soft and medium layers were encountered at depths of 10 to 25 feet in Borings No. IB-2 and IB-3. The silts extended to depths of approximately 20 to 30 feet below grade.
- 5) <u>Sands/Silty Sands</u>: The silty materials were in turn underlain by loose to medium dense sands and silty sands which extended to the completion depths in all three of the borings of 32 to 42 feet below the existing surface grades.

Groundwater was encountered in all three of the borings at depths of approximately 10 to 11 feet below grade at the time of our study.

Findings and Recommendations

General: Based on the results of our study, it is our opinion that:

1) The proposed additions may be supported by conventional shallow foundations that derive their support from the natural sandy soils compacted in-place, or stiff silts. The proposed floor slabs could also derive their

support from these materials, as well as the existing fill compacted in place, or controlled compacted fill installed to reach the floor slab subgrade level.

Foundations established on the natural soils could be designed to impose maximum allowable net bearing pressures of up to 3,000 pounds per square foot.

- 2) The silts and silty sands anticipated to be encountered at the foundation subgrade levels are highly susceptible to minor changes in moisture content. We recommend that the foundation subgrades be overexcavated approximately 6 inches and replaced with clean 3/4 inch crushed stone in order to help protect the soils from the effects of moisture content changes and/or foot traffic during construction.
- 3) Groundwater was encountered at depths of approximately 10 to 11 feet below the existing surface grades at the time of our study. Consequently, it does not appear that construction dewatering would be a major construction related concern.

Discussions of these and other items considered relevant to the proposed construction are presented in the following sections of this report.

<u>Site Preparation</u>: The existing improvements including sidewalks, curbs, asphalt pavement, and any existing subsurface utilities should be removed and the resulting demolition rubble legally disposed of off-site. The topsoil should be stripped from landscaped areas and removed from the site.

After stripping and removal of the existing improvements, any existing fill more than 2 feet thick should be excavated so that no more than 2 feet of fill remains. The exposed subgrades should be proofrolled and compacted in place with several passes of a heavy, vibratory compactor with a minimum static drum weight of 10 tons under the observation of a geotechnical engineer from MTA. The soils exposed after stripping would consist primarily of silts and silty sands which are somewhat susceptible to disturbance from changes in moisture content and exposure to construction equipment traffic. Any areas which cannot be compacted to a dense and stable condition should be removed and replaced with controlled compacted fill. We recommend that the proofrolling and compaction operations be performed during periods of relatively warm, dry weather to the extent possible to minimize disturbing the natural soils. If proofrolling is attempted during or after periods of wet or freezing weather, excavation of

portions of the exposed soils and replacement with controlled compacted fill could be required to achieve stable

subgrades.

Depending on conditions at the time of construction, alternate proofrolling methods may be appropriate to limit

disturbance of the silty materials, as well as minimize vibrations imposed on the existing and adjacent structures.

Grading plans indicate that minor cuts and fills would be required to reach the proposed floor slab subgrade levels.

Fill materials generated from cuts in the northern addition area could be reused in the southern addition as

controlled compacted fill, provided the materials are maintained at or aerated and dried to moisture contents which

would allow compaction to 95 percent of their maximum dry density as determined by the ASTM-D1557 test

procedure.

Any imported fill required to complete the site grading should consist of uncontaminated, relatively well-graded

granular soils containing less than 15 percent by weight of material passing a U.S. Standard No. 200 sieve and a

maximum particle size of 4 inches. The fill supplier should provide documentation of the environmental quality of all

imported fill.

All fill placed in the addition areas should consist of controlled compacted fill and should be spread in layers on the

order of 12 inches or less in loose thickness and uniformly compacted to at least 95 percent of its maximum dry

density as determined by the ASTM D-1557 test procedure. Backfill placed in confined areas such as foundation or

utility trench excavations should be spread in thinner layers and uniformly compacted to similar densities using

manually operated compaction equipment. All fill should be moisture conditioned as necessary to achieve

compaction to the required densities.

All construction excavations should be performed in accordance with the most recent OSHA Excavation Guidelines

and governing safety codes. Based on the results of our explorations, we believe that the existing site soils would be

considered a Type "C" soil as defined by the latest OSHA Excavation Regulations.

Groundwater was encountered at depths of approximately 10 to 11 feet below the existing ground surface at the time of our study. It should be anticipated that shallower groundwater seepage could enter into construction excavations due to perched groundwater atop less pervious zones, or in the utility bedding of existing utilities. We believe that groundwater seepage which enters into construction excavations from perched groundwater seepage, utility bedding, or surface runoff could be removed by pumping from sumps located within or adjacent to the excavations.

Typical parameters for the on-site soils are:

Typical Soil Parameters

				l Equivaler ssures (psf			
Soil Type	Bearing Capacity (psf)	Subgrade Modulus (Ibs/in³)	Active	Passive	At-Rest	Friction Angle (degrees)	Estimated Total Unit Wt. (psf)
Sandy Fill	(1)	150	40	423	61	32	130
Upper Silty Sand (SM)	3,000	150	41	439	63	32	135
Silt	3,000	100	43	332	64	28	120
Lower Sand (SP) (SW/SM)	3,000	200	35	442	55	34	125

(1) Foundations should penetrate fill. Fill compacted in-place should provide adequate floor slab support.

<u>Foundation Design Criteria</u>: Following the site preparation procedures previously described, the foundations for the proposed additions may consist of conventional shallow foundations which derive their support from the undisturbed natural sandy/silty soils, or clean stone placed to protect the exposed foundation subgrades. The foundations may be designed to impose maximum allowable net bearing pressures of up to 3,000 pounds per square foot.

Due to the loose nature of some of the shallow sandy soils observed in the borings, we recommend that the exposed foundation subgrades be compacted with numerous passes of a walk-behind, vibratory compactor (Ramax, or equivalent) to compact the subgrade soils prior to foundation construction. Any areas which cannot be compacted to

a relatively dense and stable condition should be removed to the surface of competent soils and be replaced with

clean stone, controlled compacted fill, or flowable fill as shown on the Foundation Overexcavation Detail, Plate 6.

Exterior foundations should be established at least 4 feet below the lowest adjacent exterior grades, or deeper if

required by local building code, to provide protection from frost penetration. Interior foundations in permanently

heated portions of the structures could be established at more convenient depths below the floor slabs. Foundations

which abut the existing structure should be established at the same level of the existing footings to avoid

undermining the existing footings. All foundation subgrades should be observed by a representative of MTA to

confirm that the required bearing capacity is available. The silty soils which are anticipated to be exposed at the

foundation subgrade levels should be overexcavated at least 6 inches and replaced with clean 3/4-inch crushed stone

to reduce disturbance of the exposed subgrades prior to the placement of concrete.

Prior to construction, it should be determined what impact the footings for the south wall of the southern addition

would have on the existing building adjacent to the south property line. Any special considerations, such as

underpinning, should be evaluated prior to foundation design.

Post-construction settlements of foundations designed and installed in accordance with our recommendations are

estimated to be on the order of 1 inch, or less.

Seismic Design Criteria: Based on our review of the soil boring information, it is our opinion that the site subsurface

conditions are representative of Site Class "D" as defined by the Building Code of New York State, 2017 Edition, for

seismic design purposes. Estimating a Site Class "D" the published USGS design maps, estimate a short acceleration

period (S_s) equal to 0.255 and a one second acceleration (S₁) equal to 0.072. A copy of the USGS Design Map

Summary Report is included as Appendix I.

Floor Slab Design Criteria: We believe that the proposed floor slabs could be supported atop the sandy/silty soils

compacted to a dense and unyielding condition, compacted in-place sandy soil or controlled compacted fill installed

to reach the proposed floor slab subgrade level. Any areas observed to be soft or unstable should be removed to

suitable bearing materials and replaced with granular controlled compacted fill. The slab should be underlain by a

minimum of 6 inches of clean 3/4-inch crushed stone or washed gravel to provide a stable working base during

construction.

We believe that floor slabs constructed in accordance with our recommendations would experience total settlements

on the order of 1/4 of 1 inch, or less.

Pavement Rehabilitation: Two pavement cores, one each in Borings IB-2 and IB-3, indicated a variable pavement

section of 3 to 5 inches of asphalt over 2 to 6 inches of processed stone. No estimates of vehicle trips were provided

to us to evaluate the thickness design. Based on our observations, it appears that the pavement is in fair shape at

best with cracking noted throughout sections of the parking area primarily due to age and several patches. We

assume that the existing variable pavement section has performed adequately.

We recommend that the existing pavement be milled for a depth of approximately 2 inches and that the resulting

exposed pavement be proofrolled with a loaded tandem dump truck to observe any soft subgrades which may

require full depth asphalt replacement. Any areas which are observed to deflect under the proofrolling should be

removed for their full depth and any soft or disturbed soils removed and replaced with a processed stone material

compacted to 95 percent of its maximum dry density as determined by the ASTM D-1557 test procedure prior to

replacing the pavement section. Any cracking should be evaluated and Petromat or an equivalent should be installed

over the cracks to help minimize reflective cracking.

After repairing any failing asphalt pavement or disturbed subgrade material and the installation of Petromat to help

minimize reflective cracking, where appropriate, we recommend that the exposed pavement surface be swept to

remove any loose material and that a tack coat be installed prior to placement of the new 2 inch surface course.

Please feel free to contact us if you have any questions regarding this report.

The following Plates and Appendices are attached and complete this report:

Plate 1 – Site Location Map

Plate 2 – Plot Plan

Plates 3A through 3C – Logs of Borings

Plate 4 - Unified Soil Classification System

Plate 5 - Gradation Curves

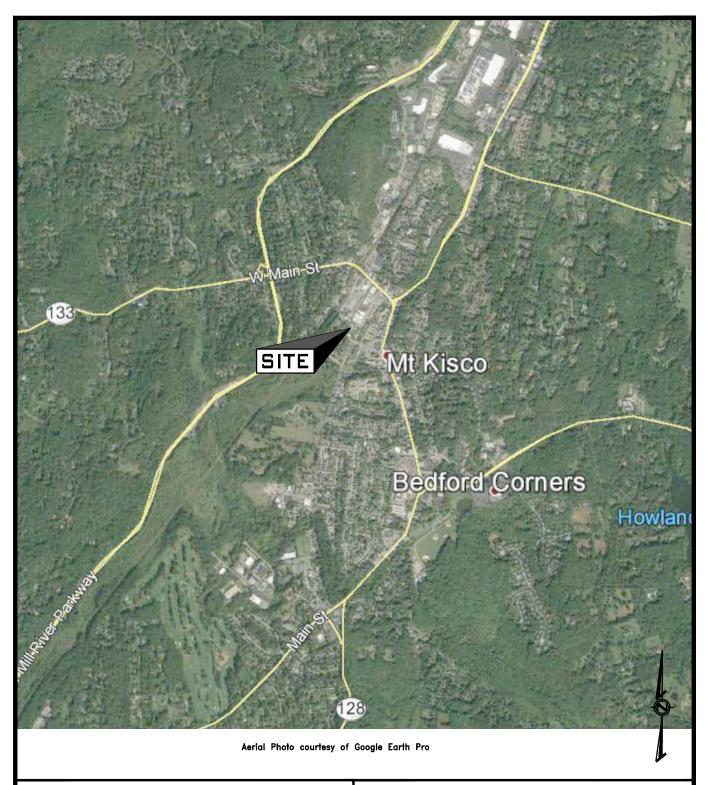
Plate 6 – Foundation Overexcavation Detail

Appendix I – Seismic Design Summary Report

Appendix II - Limitations

Respectfully submitted,

MELICK-TULLY and ASSOCIATES, a Division of GZA GeoEnvironmental, Inc.


James H. Beattie, P.E. Senior Consultant

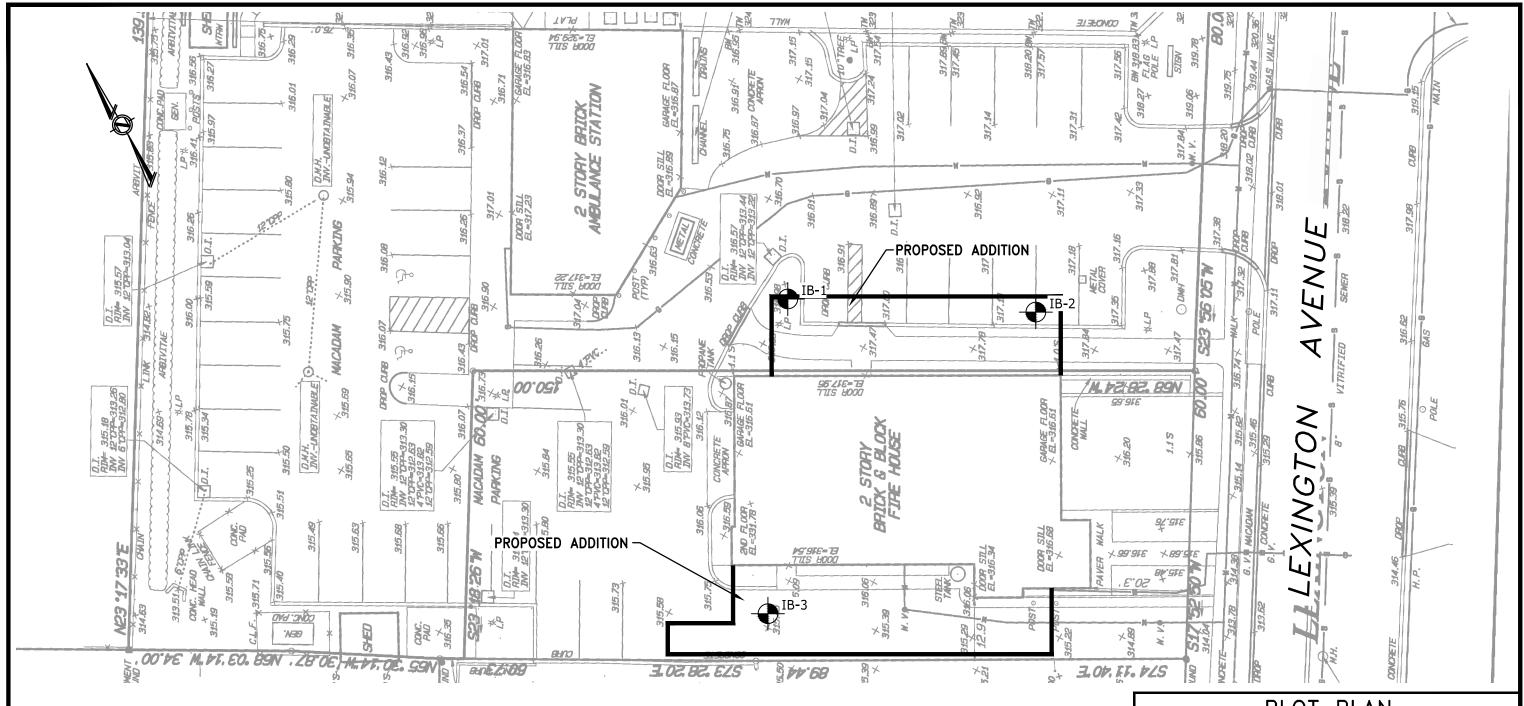
Todd E. Horowitz, P.E. Associate Principal

Ernest Hanna, P.E.
Consultant/Reviewer

JHB/TEH/mh

(3 copies submitted)

MELICK-TULLY AND ASSOCIATES A Division of GZA


Geotechnical Engineers & Environmental Consultants 117 Canal Road South Bound Brook, New Jersey 08880 (732) 356-3400

SITE LOCATION MAP

PROPOSED ADDITIONS (INDEPENDENT F.D.)
MOUNT KISCO, NEW YORK
H2M ARCHITECTS & ENGINEERS

JOB NO. 26.0091286.01 FILE NO. - DR. BY CHK. BY DATE SCALE PLATE

VJD JHB 4/12/18 1"=2,000' 1

KEY:

MB-1

NUMBER AND APPROXIMATE LOCATION OF BORINGS PERFORMED FOR THIS STUDY

NOTES:

- This drawing is part of Melick—Tully and Associates, a
 Division of GZA, Report No. 26.0091286.01 and should be
 read together with the report for complete evaluation.
- 2. General layout was obtained from a drawing prepared by Robert S. Johnson, P.L.S., entitled "Topographic Survey" dated 4/9/18, scale 1"=20'.

PLOT PLAN

PROPOSED ADDITIONS (INDEPENDENT F.D.)

MOUNT KISCO, NEW YORK

H2M ARCHITECTS & ENGINEERS

MELICK-TULLY AND ASSOCIATES

A Division of GZA

Geotechnical Engineers & Environmental Consultants
117 Canal Road

South Bound Brook, New Jersey 08880
(732) 356-3400

JOB NO.	26.009128	6.01	FIL	E NO.	-
DR. BY	CHK. BY		ATE	SCALE	PLATE
VJD	JHB		2/18	1"=20'	2

BORING NO. IB-1

COMPLETION DATE: 3/6/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +317.0 ft. (±)

WATER LEVEL: 11' READING DATE: 3/6/18

						_
DEРТН	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	DEPTH
					4" Topsoil	
-	S1	10			FILL - White fine to coarse sand, little silt, some fine to	1
-					coarse gravel (miost)(medium dense)	-
-	S2	18	22.9		Brown silt, trace fine to medium sand (moist)(very stiff)	_
					- grading (stiff) @5'	_
5-					- grading (still) @3	5-
-	S3	9				-
-						,
	S4	12				_
10-						10-
-	S5	8		ML		
-						-
-						-
						[]
15-						15-
-	S6	13				-
-						-
						-
						[
20-					Brown fine to medium sand, trace silt, little fine gravel	20-
4	S7	18	15.6		(wet)(medium dense)	1
-				OLA // OL		-
				SW/SM		1 2
[_, [_ 1
25-						25-

NOTES FOR COLUMNS:

SAMPLE AT AVERAGE SAMPLING DEPTH
 INDICATES THE NUMBER OF BLOWS TO

ADVANCE A 2" OD SAMPLER A DISTANCE OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20% SOME 20 - 35%

AND OVER 35%

Sheet: 1 of 2

PLATE: 3A

BORING NO. IB-1

COMPLETION DATE: 3/6/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +317.0 ft. (±)

WATER LEVEL: 11' READING DATE: 3/6/18

DEРТН	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	рертн
30-	\$8	19		SP	Brown fine to medium sand, trace silt (wet)(medium dense)	30-
35-	S9 S10	20		SM	Brown fine to coarse sand, some silt, trace fine gravel (wet)(medium dense) Brown fine to coarse sand, trace silt (wet)(medium dense)	35-
40-					Boring completed @ 37' Groundwater encountered @ 11'	- - 40-
45-						- - 45-
50						50-

NOTES FOR COLUMNS:

1. SAMPLE AT AVERAGE SAMPLING DEPTH

2. INDICATES THE NUMBER OF BLOWS TO ADVANCE A 2" OD SAMPLER A DISTANCE

OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20%

SOME 20 - 35%

AND OVER 35%

Sheet: 2 of 2

PLATE: 3A

BORING NO. IB-2

COMPLETION DATE: 3/5/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +317.0 ft. (±)

WATER LEVEL: 11' READING DATE: 3/5/18

рертн	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	DEРТH
					5" Asphalt over 2" processed stone	
	S1	7	10.7	SM	Brown fine to medium sand, little silt, trace fine gravel (moist)(loose)	-
5-	S2	8	9.8		Gray-brown fine sand, some silt (moist)(loose)	- 5-
-	S3	9				-
-				SM	- grading (medium dense) @ 7'	-
-	S4	12				-
10-	S 5	9	30.8		Light brown silt, trace fine to medium sand (wet)(stiff)	10-
15-	S6	8		ML		- 15- - -
20-	S7	10				20-
25-						25-

NOTES FOR COLUMNS:

1. SAMPLE AT AVERAGE SAMPLING DEPTH 2. INDICATES THE NUMBER OF BLOWS TO

ADVANCE A 2" OD SAMPLER A DISTANCE OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20%

SOME 20 - 35% AND OVER 35%

Sheet: 1 of 2

PLATE: 3B

BORING NO. IB-2

COMPLETION DATE: 3/5/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +317.0 ft. (±)

WATER LEVEL: 11' READING DATE: 3/5/18

рертн	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	DEРТН
-	S8	7		ML	Light brown silt, trace fine to medium sand (wet)(medium)	
30-	S9	5			Brown fine to medium sand, little silt (wet)(loose)	30-
35-	S10	20		SM	- grading (medium dense) @ 35'	35-
40-	S11	14	:	SM	Brown fine to medium sand, some silt, some fine to coarse gravel (wet)(medium dense)	40-
45-					Boring completed @ 42' Groundwater encountered @ 11'	- 45 -
-						8
50 -						50 -

NOTES FOR COLUMNS:

1. SAMPLE AT AVERAGE SAMPLING DEPTH

2. INDICATES THE NUMBER OF BLOWS TO

ADVANCE A 2" OD SAMPLER A DISTANCE OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20%

SOME 20 - 35%

AND OVER 35%

Sheet: 2 of 2

PLATE: 3B

BORING NO. IB-3

COMPLETION DATE: 3/6/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +315.5 ft. (±)

WATER LEVEL: 10' READING DATE: 3/6/18

411						
ОЕРТН	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	DEPTH
					3" Asphalt over 6" processed stone	
-	S1	11		SM	Light brown fine sand, little to some silt (moist)(medium dense)	
	S2	10				-
5-						5-
]]-	S3	9			Light brown silt, some fine to medium sand (moist)(stiff)	ا ا
١.					- grading (wet) @ 7'	2
	S4	9	19.8		g. cog (, @ .	
	07		10.0			
1,0					- grading (medium) @ 10'	10
10-					- grading (median) @ 10	10-
-	S5	7	28.9			-
-				ML		-
-						-
-						-
15-					- grading (soft) @ 15'	15-
	S6	2	31.7			-
-						-
						-
.						-
20-						20-
	S7	10			Brown fine to medium sand, trace silt (wet)(medium dense)	
	0.	'0				
				SM		
						[]
25-						25-

NOTES FOR COLUMNS:

1. SAMPLE AT AVERAGE SAMPLING DEPTH

2. INDICATES THE NUMBER OF BLOWS TO ADVANCE A 2" OD SAMPLER A DISTANCE

OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20%

SOME 20 - 35% AND OVER 35%

Sheet: 1 of 2

PLATE: 3C

BORING NO. IB-3

COMPLETION DATE: 3/6/18 JOB NUMBER: 26.0091286.01 SURFACE ELEVATION: +315.5 ft. (±)

WATER LEVEL: 10' READING DATE: 3/6/18

ОЕРТН	SAMPLES	N-VALUE	MOISTURE CONTENT (%)	SYMBOL	DESCRIPTION	ОЕРТН
30	S8 S9	18		SM	Brown fine to medium sand, trace silt (wet)(medium dense)	30-
35-					Boring completed @ 32' Groundwater encountered @ 10'	35-
40-						40-
45-						45- - - - - 50-

NOTES FOR COLUMNS:

1. SAMPLE AT AVERAGE SAMPLING DEPTH

2. INDICATES THE NUMBER OF BLOWS TO ADVANCE A 2" OD SAMPLER A DISTANCE

OF 12 INCHES USING A 140 POUND

WEIGHT FALLING 30 INCHES

SOIL DESCRIPTION MODIFIERS:

TRACE 0 - 10% LITTLE 10 - 20%

SOME 20 - 35% AND OVER 35%

Sheet: 2 of 2

PLATE: 3C

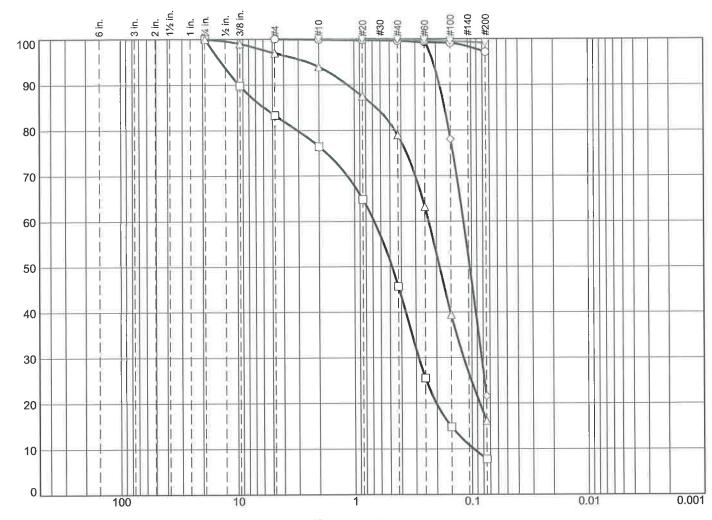
	MAJOR DIVISION	S	LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL &	CLEAN GRAVELS	GW	Well-graded gravels, gravel- sand mixtures, little or no fines.
	GRAVELLY SOILS	(Little or no fines)	GP	Poorly-graded gravels, gravelsand mixtures, little or no fines.
COARSE GRAINED	More than 50% of coarse fraction	GRAVELS WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures.
SOILS	RETAINED on No. 4 Sieve	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand- clay mixtures.
		CLEAN SAND	SW	Well-graded sands, gravelly sands, little or no fines.
More than 50%	SAND AND SANDY SOILS	(Little or no fines)	SP	Poorly-graded sands, gravelly sands, little or no fines.
of material is <u>LARGER</u> than No. 200 Sieve	More than 50% of coarse fraction	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures.
	PASSING a No. 4 Sieve	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
FINE GRAINED SOILS	SILTS AND CLAYS	Liquid limit LESS than 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
			OL	Organic silts and organic silty clays of low plasticity.
More than 50% of material		Liquid limit	МН	Inorganic silts, micaceous or diatomaceous fine sand or silty soils.
is SMALLER than No. 200 Sieve	SILTS AND CLAYS	GREATER than 50	СН	Inorganic clays of high plasticity, fat clays.
			ОН	Organic clays of medium to high plasticity, organic silts.
HI	IGHLY ORGANIC SO	ILS	PT	Peat, humus, swamp soils with high organic contents.

NOTE DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS.

GR	ADATION*	COMPACT sand and/o		CONSISTENCY* clay and/or silt		
% Fi	ner by Weight	Relative I	Density	Range of Shearing Strength in		
					ds per Square Foot	
Trace						
Trace	0% to 10%	Loose	0% to 40%	Very Soft	less than 250	
Little	0% to 10% 10% to 20%	Medium Dense	0% to 40% 40% to 70%	Soft Soft	less than 250 250 to 500	

^{*}Values are from laboratory or field test data, where applicable. When no testing was performed, values are estimated.

UNIFIED SOIL CLASSIFICATION SYSTEM SOIL CLASSIFICATION CHART


2000 to 4000

Greater than 4000

Very Stiff

Hard

Gradation Curve(s)

GRAIN SIZE - mm.

	0/ Oakblaa	% Gravel			% Sand		% Fines
	% Cobbles	Coarse	Fine	Coarse	Medium	Fine	/0 Filles
5	0.0	0.0	0.0	0.1	0.3	2.5	97.1
5	0.0	0.0	16.7	6.9	30.7	38.0	7.7
Δ	0.0	0.0	3.1	3.0	15.0	62.7	16.2
\	0.0	0.0	0.0	0.0	0.1	78.3	21.6
∇	0.0	0.0	0.0	0.0	0.1	0.8	99.1

	SOIL DATA										
SYMBOL	MBOL SOURCE SAMPLE DEPTH Material Description		Material Description	USCS							
0	IB-1	S-2	2-4	Silt, trace fine to medium Sand. (MC=22.9%)	ML						
	IB-1	S-7	20-22	Fine to medium Sand, little fine Gravel, trace Silt. (MC=15.6%)	SW-SM						
Δ	IB-2	S-1	1-3	Fine to medium Sand, little Silt, trace fine Gravel. (MC=10.7%)	SM						
♦	IB-2	S-2	3-5	Fine Sand, some Silt. (MC=9.8%)	SM						
∇	IB-2	S-5	10-12	Silt, trace fine to medium Sand. (MC=30.8%)	ML						

Melick-Tully & Associates, P.C.

PERCENT FINER

Client: H2M Architects & Engineers

Project: Building Additions Independent Fire Station, Mt. Kisco, NY

South Bound Brook, NJ

Project No.: 26.0091286.01

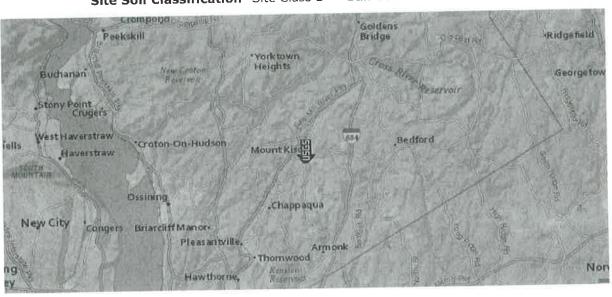
Plate 5

APPENDIX I Seismic Design Summary Report

SUSGS Design Maps Summary Report

User-Specified Input

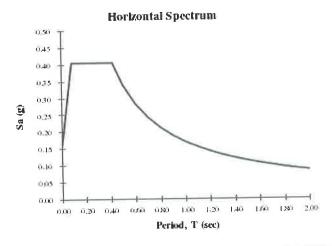
Report Title Independent

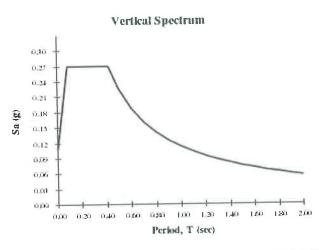

Tue April 24, 2018 14:05:20 UTC

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-2N

(which utilizes USGS hazard data available in 2008)

Site Coordinates 41.2°N, 73.73°W


Site Soil Classification Site Class D - "Stiff Soil"



USGS-Provided Output

 $\mathbf{S}_{s,BSE-2N}$ 0.254 g $\mathbf{S}_{xs,BSE-2N}$ 0.405 g

 $\mathbf{S}_{1,BSE-2N}$ 0.071 g $\mathbf{S}_{X1,BSE-2N}$ 0.169 g

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

APPENDIX II Limitations

APPENDIX II

Limitations

A. Subsurface Information

<u>Locations</u>: The locations of the explorations were approximately determined by tape measurement from an aerial photograph supplied to us by H2M. Elevations of the explorations were approximately determined by interpolation between contours shown on topographic plans provided to us by the architect. The locations and elevations of the explorations should be considered accurate only to the degree implied by the method used.

<u>Interface of Strata:</u> The stratification lines shown on the individual logs of the subsurface explorations represent the approximate boundaries between soil types, and the transitions may be gradual.

<u>Field Logs/Final Logs:</u> A field log was prepared for each exploration by a member of our staff. The field log contains factual information and interpretation of the soil conditions between samples. Our recommendations are based on the final logs as shown in this report and the information contained therein, and not on the field logs. The final logs represent our interpretation of the contents of the field logs, and the results of the laboratory observations and/or tests of the field samples.

<u>Water Levels</u>: Water level readings have been made in the explorations at times and under conditions stated on the individual logs. These data have been reviewed and interpretations made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater will occur due to variations in rainfall, temperature, and other factors.

<u>Pollution/Contamination:</u> Unless specifically indicated to the contrary in this report, the scope of our services was limited only to investigation and evaluation of the geotechnical engineering aspects of the site conditions, and did not include any consideration of potential site pollution or contamination resulting from the presence of chemicals, metals, radioactive elements, etc. This report offers no facts or opinions related to potential pollution/contamination of the site.

<u>Environmental Considerations</u>: Unless specifically indicated to the contrary in this report, this report does not address environmental considerations which may affect the site development, e.g., wetlands determinations, flora and fauna, wildlife, etc. The conclusions and recommendations of this report are not intended to supersede any environmental conditions which should be reflected in the site planning.

B. Applicability of Report

This report has been prepared in accordance with generally accepted soils and foundation engineering practices for the exclusive use of The Village of Mt. Kisco for specific application to the design of the proposed additions. No other warranty, expressed or implied, is made.

This report may be referred to in the project specifications for general information purposes only, but should not be used as the technical specifications for the work, as it was prepared for design purposes exclusively.

C. Reinterpretation of Recommendations

<u>Change in Location or Nature of Facilities:</u> In the event that any changes in the nature, design or location of the (<u>building</u>)(<u>facilities</u>) are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing.

<u>Changed Conditions During Construction</u>: The analyses and recommendations submitted in this report are based in part upon the data obtained from three widely-spaced test borings performed for this study. The nature and extent of variations between the explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.

<u>Changes in State-of-the-Art:</u> The conclusions and recommendations contained in this report are based upon the applicable standards of our profession at the time this report was prepared.

D. Use of Report by Prospective Bidders

This soil and foundation engineering report was prepared for the project by Melick-Tully and Associates, a Division of GZA GeoEnvironmental Inc. (MTA) for design purposes and may not be sufficient to prepare an accurate bid. Contractors utilizing the information in the report should do so with the express understanding that its scope was developed to address design considerations. Prospective bidders should obtain the owner's permission to perform whatever additional explorations or data gathering they deem necessary to prepare their bid accurately.

E. Construction Observation

We recommend that MTA be retained to provide on-site soils engineering services during the earthwork construction and foundation phases of the work. This is to observe compliance with the design concepts and to allow changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

Appendix C

Stormwater Inspection Report

CONSTRUCTION STORMWATER INSPECTION REPORT

SECTION A: Site Information

Date of Inspection:	Time of Inspection:	Date of Last Inspection:
	Stage of Construction	Weather Conditions
	Site Description:	
	Title:	
	e-mail:	
	Date of Inspection:	Stage of Construction Site Description:

SECTION B: Applicant's Information

Name:	e-mail:
Phone No.	Fax No.:
Address:	

SECTION C: General Contractor's Information

Name:	e-mail:	
Phone No.	Fax No.:	
Address:		

SECTION D: Engineer's Information

Name:	e-mail:
Phone No.	Fax No.:
Address:	

SECTION E: Document Verification

Criteria	NA	YES	NO	Comments
NOI posted at construction site				
SPDES General Permit retained at construction site				
SWPPP retained at construction site				
Updated as site conditions change				
Contains monthly/quarterly written summaries of compliance status				

SECTION F: Area of Disturbance

Criteria	NA	YES	NO	Comments
Less than 5 acres of disturbed soil				
If no, was there prior written approval?				
Disturbance within limits of approved plans				

SECTION G: Water Quality

Polluted discharges	NA	No	Yes	Comments:		
Discharges show visible signs of:	Sedir	ment _	_ Floatab	les Oil/Grease	Turbidity	Other
Receiving waters impacted:	Lake	· _	_ Bay	Stream	Wetland	Other

SECTION H: General Site Conditions

Criteria		Condition*				
	NA	S	М	U	Comments	
Litter/debris management						
Sediment and erosion control facilities						
Impact on adjacent property						
Dust control						

^{*} NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory

SECTION I: Temporary Stream Crossings

		Condi	tion*		
Criteria	NA	S	М	U	Comments
Pipe size spanning creeks					
Non-woven geotextile fabric installed beneath approaches					
Aggregate fill					
Rock on approaches removes sediment from vehicles and prevents Sediment from entering streams					

^{*} NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory

SECTION J: Runoff Control Practices

Criteria		Condi			
	NA	S	М	U	Comments
Excavation dewatering					
Upstream berms (one-foot min. freeboard)					
Downstream berms					
Clean water from upstream pool pumped to downstream pool					
Sediment-laden water discharged to silt trapping device					
Level spreader installation (constructed on undisturbed soil)					
Flow sheets do not erode downstream edge					
Interceptor dikes and swales installation					
Side slopes 2:1 or flatter					
Stabilized by geotextile fabric, seed or mulch					
Sediment-laden runoff is directed to sediment trapping device					
Stone check dams installation					
Stable channel					
Lack of a permanent pool behind dam					
Regular removal of accumulated sediment					
Rock outlet protection installation					
Installed concurrently with pipe installation					

^{*} NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory

SECTION K: Soil Stabilization

		Condi	tion*		
Criteria	NA	S	М	U	Comments
Topsoil and stockpiles					
With vegetation					
With mulch					
Sediment control installed at toe of slope					
Revegetation					
Temporary seeding and mulch applied to idle areas					
Minimum of 4 inches topsoil applied under permanent seedings					

^{*} NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory

SECTION L: Sediment Control Practices

		Cond	dition*		2
Criteria	NA	S	M	U	Comments
Stabilized construction entrance installation					
Drainage prevents ponding					
Stone removes mud from vehicles					
All traffic uses the entrance					
Silt fence installation					
On contour and 10' from toe of slope					
Not across conveyance channels					
End stakes wrapped together at joints					
Fabric is buried min 6"					
Posts are stable, fabric is tight and not damaged					
Sediment accumulation (note % of design capacity in comments)					
Storm drain inlet protection					
Drainage area is less than 1 acre					
 Sediment accumulation (note % of design capacity in comments) 					
Excavated drop inlet protection					
- 900 cu. ft. per acre of disturbed land					
- 2:1 side slopes					
Stone and block drop inlet protection					
- Concrete blocks installed lengthwise					
- Wire screen placed between #3 crushed stone & concrete blocks					
Filter fabric drop inlet protection					
- 2"x4" frame					
- Posts (stable; spaced max. 3' apart)					
 Fabric *undamaged; embedded 1' to 1.5' below ground; stapled to frame/posts at max. spacing of 8" 					
Curb drop inlet protection					
- 2"x4" frame					
 Continuous wire mesh across throat (30" min. width, 4' longer than throat) shaped and nailed to 2"x4" weir 					
- Weir nailed to 2"x4" spacers (9" long, 6' max. apart)					
- Placed across inlet and secured by 2"x4" * NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory					

^{*} NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory

		Cond	lition*		2
Criteria	NA	S	M	U	Comments
emporary sediment trap installation					
Geotextile fabric placed beneath rock fill					
Sediment accumulation (note % of design capacity in comments)					
Temporary sediment basin installation					
Side slopes stabilized with seed or mulch					
Structure flushed and surface restored upon removal of facility					
Sediment accumulation (note % of design capacity in comments)					
Inspections occur at least every 7 calendar days					
nspections occur at within 24 hours of any storm event of 0.5" or greater					
Effectiveness of erosion and sediment control practices is evaluated at tir of inspection and documented	ne				
Inspection reports maintained in log book at site and are available for review					
Sediment is removed from traps/ponds when design capacity is reduced b 50%	у				
Site inspections are being performed by a qualified inspector					
Reports are properly signed/certified * NA=Not Applicable; S=Satisfactory; M=Marginal; U=Unsatisfactory					
SECTION N: Additional Comments/Notes					
SECTION O: Overall Inspection Rating	inal			□ Ur	nsatisfactory
Form Completed By:					

Appendix D

Notice of Intent (NOI)
Short Environmental Assessment Form (EAF)
SEQRA Determination

APPENDIX B

NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION APPLICATION FOR REVIEW AND APPROVAL OF STORMWATER POLLUTION PREVENTION PLANS

Project Name:V	illage of Mount Kisco - Independent	Fire Station		
Name: Edward I Address: 104 Main Mount Ki Phone: 914-864-	sco, NY 10594	Address: Phone: _ e-mail: _ Tax Map County: _ Lot numl	Sean T. Hoffman 2 Executive Boulevard, Suite Suffern, NY 10901 845-357-7238 shoffman@h2m.com Parcel: 80.48-1 Westchester	9 401
Submissions must	include plans and supporting doc	uments.		
Project Description of Description of Description of Operations and General Requirem required information items to be included Sections 18-23 and Environmental Co	ust include narratives, plans, detaiption f Existing Conditions f Proposed Conditions d Maintenance Plans ents for submission are set forth i on for each type of approval is de ed in the submission. For addition d 18-39 of the Watershed Regulat nservation (DEC) SPDES Genera-	in Section 3 of the escribed in Section al detail, please stions, and Part III	e accompanying Guide. Sup n 4. Also see Appendix D fo ee Appendixes E and F of th of the New York State Dep	plemental or a checklist of his document, partment of
	aring Funds rred in the design, implementation ble for DEP funding. Refer to Sec			
I believe this appl	ication to be complete and in com	ipliance with the	Watershed Regulations.	
(Signature)	SES.		(17/21 Filing Date)	
Edward 1	D. Brenzah			
(Print Name)	Village Hanager			

NOTICE OF INTENT

COPY FOR DEP REVIEW
ONLY NOT FOR
SIGNATURE OR DEC
SUBMITTAL

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor Albany, New York 12233-3505

NYR					
	(for	DEC	use	onl	у)

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

								(Owr	er	/0	pe	ra	toı	· 1	nf	orı	mat	tic	on											
Owner/Op	perato	or (Comp	any	N	ame	e/P:	riv	vat	e (Ow:	nei	r I	Nan	ne/	Mu	nio	cir	al	it	y I	Nan	ne)								
Owner/Op	perato	or C	onta	ıct	Pe	rsc	on :	Las	st	Naı	me	(1	NO'	ГС	ON	SU	LT2	N	Γ)												
																			Ĺ												
Owner/Op	perato	or C	ont.	ıct	Pe	rsc	on :	Fin	rst	N	am	e																			
				Ī																				T		Τ					
Owner/Op	perato	or M	Maili	ng	Ad	dre	ess														,			_	1		1		1		_
City										·		·													·						
								T		T															T			Π			
State		Z	ip] -																									
	Owner,	Ope	rato	or)					[Тах	2 (Ow	ne	r/	0pe	era	ato	r)	L												
Email (C)wner/	'Ope	rato	r)																											
FED TAX	ID] (r	not	re	equ	ire	ed	fc	or	in	di	vic	lua	ıls)													

Project Site Information
Project/Site Name
Street Address (NOT P.O. BOX)
Side of Street O North O South O East O West
City/Town/Village (THAT ISSUES BUILDING PERMIT)
State Zip County DEC Region
Name of Nearest Cross Street
Distance to Nearest Cross Street (Feet) Project In Relation to Cross Street North O South O East O West
Tax Map Numbers Section-Block-Parcel
1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you must go to the NYSDEC Stormwater Interactive Map on the DEC website at:
www.dec.ny.gov/imsmaps/stormwater/viewer.htm (Website will not load properly.)
Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.
X Coordinates (Easting) Y Coordinates (Northing)
Site Coordinates from Google Earth at Centroid. Latitude: 41 11'48.19"N Longitude: 73 43'58.95"W
2. What is the nature of this construction project?
O New Construction
O Redevelopment with increase in impervious area
O Redevelopment with no increase in impervious area

3. Select the predominant land use for both pre and post development conditions. SELECT ONLY ONE CHOICE FOR EACH

	Pre-Development Existing Land Use	Post-Development Future Land Use
	○ FOREST	○ SINGLE FAMILY HOME Number of Lots
	O PASTURE/OPEN LAND	O SINGLE FAMILY SUBDIVISION
	○ CULTIVATED LAND	O TOWN HOME RESIDENTIAL
	○ SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
	O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
	O TOWN HOME RESIDENTIAL	○ INDUSTRIAL
	○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
	○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
	○ INDUSTRIAL	○ ROAD/HIGHWAY
	○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD
	○ ROAD/HIGHWAY	O BIKE PATH/TRAIL
	O RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
	○ BIKE PATH/TRAIL	O PARKING LOT
	O LINEAR UTILITY	O CLEARING/GRADING ONLY
	O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
	OTHER	○ WELL DRILLING ACTIVITY *(Oil, Gas, etc.)
		OTHER
	ote: for gas well drilling, non-high volume In accordance with the larger common plan of	of development or sale,
	enter the total project site area; the total existing impervious area to be disturbed (factivities); and the future impervious area disturbed area. (Round to the nearest tenth	for redevelopment a constructed within the n of an acre.)
	Total Site Total Area To Exist	Future Impervious ting Impervious Area Within
		To Be Disturbed Disturbed Area
5.	Do you plan to disturb more than 5 acres of	f soil at any one time? O Yes O No
6.	Indicate the percentage of each Hydrologic	Soil Group(HSG) at the site.
	A B 8	C D %
7.	Is this a phased project?	\bigcirc Yes \bigcirc No
8.	Enter the planned start and end dates of the disturbance activities.	te End Date - / / / / / / / / / / / / / / / / / /

area?

9	•	Idei	ntif	У	th	e	nea	are	est	: :	sui	rfa	ace	2 W	ate	erk	000	ly(ies	3)	to	wł	nio	ch	CC	ns	tr	uc	ti	.or	ı s	sit	.e	ru	noi	Ξf	wi	11			1
		disc	har	ge	•																																				
Nar	ne	П	Т	Τ	Τ	Т	T	Τ	T	П				Π			Τ	Ι	Π	Ι	Τ			Τ	Τ	Т	Τ	T	Т			Τ	Т	Τ	Т	Т	Т	Τ	Τ	Т	٦
			<u> </u>		<u> </u>	<u> </u>	+	<u> </u>	<u> </u>											<u> </u>	<u> </u>			+	+	+	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u></u>	<u> </u>	+	<u> </u>	+		<u> </u>	<u></u>	4
																										L							L			L					
0		_	_		_			,	,		,		٠,	. ,	, ,		_				0.0																				
98	a.	.1	'уре	9 0	ΙV	va	ter	`DC	ody		Lde	ent	11	ilec	ם ג	.n	Qu	es	tlc	on	9?																				
	\circ	Wet	lan	d	/ 5	sta	ate	J	ur	is	di	ct	io	n C)n	Si	te	(]	۱ns	we	r (9b)																			
	_	Wet						_					-			_		`				,																			
	_	Wet						_					-						(Z	ng	wei	~ Q)h)																		
	_	Wet																	•		WCI	- /	ν.Σ,																		
	_	Str			•							ат	CL	101	ı C	/	ی	TC	=																						
	_	Str						ΟI	I	SI	.te																														
	_	Riv																			9b		I	oF	7 W	as	t	he	V	ret	:1a	and	i	de	nti	Lfi	.ed	?			
	_	Riv					ce																																		
	Ŭ	Lak																				() I	Reg	gul	at	or	У	Ma	ap											
		Lak																				() I	De]	lir	ıea	te	d	by	7 (COI	nsu	ılt	an	t						
	0	Oth	er	Ту	рe	Or	ı S	it	e													() I	De]	lir	ıea	te	d	by	7 I	Arı	ny	Cc	orp	s)f	Er	ıgi	nee	ers	5
	0	Oth	er '	Ту	ре	to	Ef	Si	te								1					() ()])tł	ner	<u> </u>	id	ler.	ıt:	Lfy	7)										
		Ш						_															L					_	_			_									
																																								_	
1	0.		Ias																				oe e	en	id	.en	ti	fi	ed	. а	s	a			Y	es		O N	0		
		3	303(d)	se	egi	men	ıt	ın	L F	/bi	en	d1	.x I	5 (Σ	GΡ	-0	-15	o – O	102	?																			
1	1.]	is t	hi	s ï	or	oie	ect	: 1	.00	cat	ed	l i	n o	$on\epsilon$	- C	f	the	e W	lat	er	she	eds	s i	.de	nt	if	ie		in	L										
			ppe																																Y	es	(○ N	0		
1.	2.		s t irea																				i												Y	es	(O N	0		
			ate f n			- i :	n a	1116	ae+	ic	n	1 3																													
				,			P 4	Į u.c			,,,		•																												_
1:	3.		oes																								g _	i	c												
		i	.den	ti	fie	ed	as	l 6	an	E	or	î F	' c	n t	he	e U	JSD	A	Soi	.1	Su	rve				114		_) Y	es	,	○ N	O		
			f Y	es	, 1	vn	at	18	3 C	ne	3 6	lCI	ea]	ıge	to) E	e 	a1;	stu —	ırc	ea																				
													L					 •																							
_					,								,		-			, .																							
1	4.		7ill regu																				lja	ace	ent										Y	es	(O N	o		

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?	io O Un	lknown
16.	What is the name of the municipality/entity that owns the separate system?	torm se	wer
17.	Does any runoff from the site enter a sewer classified as a Combined Sewer?	lo O Un	lknown
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	O Yes	O No
19.	Is this property owned by a state authority, state agency, federal government or local government?	O Yes	O No
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.)	○ Yes	O No
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	O Yes	O No
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.	○ Yes	O No
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	O Yes	○ No

	_																																					
/ 24	4.	T]	he	St	orr	nwa	te	r	Po:	llu	ıti	on	Pr	cev	en	ti	on	Pl	.an	(5	SWE	PP) 7	was	р	re	paı	red	l b	у:								
	\bigcirc 1	Pro	fes	si	on	al	En	gi	ne	er	(P	. E	.)																									
	0:	Soi	1 a	ınd	W	ate	er	Co	ns	erv	<i>r</i> at	io	n 1	Dis	str	ic	t	(SV	VCD)																		
	\bigcirc 1	Reg	ist	er	ed	La	nd	lsc	ap	e Z	Arc	hi	te	ct	(R	L.L	.A)																				
	0	Cer	tif	ie	d :	Pro	ofe	ss	io	na:	ιi	n	Ero	osi	lon	ιa	nd	Se	edi	me	nt	Cc	nt	ro.	L (CF	ES	C)										
		Own																																				
		Oth		O.P.			_																															
				Т	Т		Т		Т				Т		Т	T		T				Т	T		Т	Т		Т								٦		
	L																																					
		_																																				
SWP	PP	Pre	pa:	rer	-							Ι			Ι	Π	Т	T	Τ	Τ	Π		Τ		Π	Τ	Τ	Τ	Τ		T	Τ	Τ	l		П	T	
																																			Ш	Ш		\sqcup
Con	tac	t N	Iam	e (La	st	, :	Spa	ce	,	Fir	st	;)		_		_				_	<u> </u>	_	1			Т		Т		Т		_					_
																																L			Ш	Ш		
Mai	lin	g A	dd:	res	s																																	_
Cit	У																																					
Sta	te	Zi	.p				,												•				•															
							-																															
Pho	ne						,					•								Fa:	X											_						
		-				-																	-				-											
Ema	il					J					J												J				1		-			J						
		1	T												T		T	T	T	T	T		T			T	T	T	T			Ť	T		Ħ	Ħ		Ī.
igg																										_		_										\dashv

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First	Nan	ne .									MΙ						
Last 1	Name	2															
Sig	natı	ıre	,							1							
											Dat	te					
													/		/		

25.	Has a construction sequence schedule for t practices been prepared?	the planned management
26.	Select all of the erosion and sediment coremployed on the project site:	ntrol practices that will be
	Temporary Structural	Vegetative Measures
	O Check Dams	O Brush Matting
	\bigcirc Construction Road Stabilization	O Dune Stabilization
	O Dust Control	○ Grassed Waterway
	○ Earth Dike	○ Mulching
	○ Level Spreader	O Protecting Vegetation
	○ Perimeter Dike/Swale	O Recreation Area Improvement
	○ Pipe Slope Drain	○ Seeding
	O Portable Sediment Tank	○ Sodding
	O Rock Dam	○ Straw/Hay Bale Dike
	○ Sediment Basin	O Streambank Protection
	○ Sediment Traps	○ Temporary Swale
	○ Silt Fence	O Topsoiling
	O Stabilized Construction Entrance	O Vegetating Waterways
	O Storm Drain Inlet Protection	Permanent Structural
	○ Straw/Hay Bale Dike	
	O Temporary Access Waterway Crossing	O Debris Basin
	○ Temporary Stormdrain Diversion	O Diversion
	○ Temporary Swale	\bigcirc Grade Stabilization Structure
	O Turbidity Curtain	O Land Grading
	○ Water bars	\bigcirc Lined Waterway (Rock)
		O Paved Channel (Concrete)
	Biotechnical	O Paved Flume
	○ Brush Matting	\bigcirc Retaining Wall
	○ Wattling	\bigcirc Riprap Slope Protection
	_	O Rock Outlet Protection
Otl	ner	O Streambank Protection

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required
 if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - O Preservation of Undisturbed Areas
 - O Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - O Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - O Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - O All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total	$\mathbf{W}\mathbf{Q}\mathbf{v}$	Req	uire	đ
				acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

	Total Contributing		rota	I Cor	ıtr	:1bu	ting
RR Techniques (Area Reduction)	Area (acres)	Im	erv	ious	Ar	ea(acres)
○ Conservation of Natural Areas (RR-1)		and/or					
O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or					
○ Tree Planting/Tree Pit (RR-3)		and/or			•		
O Disconnection of Rooftop Runoff (RR-4)		and/or			•		
RR Techniques (Volume Reduction)							
\bigcirc Vegetated Swale (RR-5) $\cdots\cdots$	• • • • • • • • • • • • • • • • • • • •	• • • • •			•		
○ Rain Garden (RR-6) ······	• • • • • • • • • • • • • • • • • • • •	• • • • •			•		
○ Stormwater Planter (RR-7)	• • • • • • • • • • • • • • • • • • • •				•		
○ Rain Barrel/Cistern (RR-8)	• • • • • • • • • • • • • • • • • • • •				•		
O Porous Pavement (RR-9)	• • • • • • • • • • • • • • • • • • • •				_إ•		
○ Green Roof (RR-10)	• • • • • • • • • • • • • • • • • • • •	• • • • •					
Standard SMPs with RRv Capacity							
○ Infiltration Trench (I-1) ······	• • • • • • • • • • • • • • • • • • • •				•		
O Infiltration Basin (I-2) ······							
Opry Well (I-3)							
O Underground Infiltration System (I-4)							
○ Bioretention (F-5)							
Opry Swale (0-1)							
© 21, 5mare (0 1)							
Standard SMPs							
O Micropool Extended Detention (P-1)	• • • • • • • • • • • • • • • • • • • •						
○ Wet Pond (P-2) · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • •	• • • •					
○ Wet Extended Detention (P-3) ······	• • • • • • • • • • • • • • • • • • • •	• • • • •					
O Multiple Pond System (P-4)	• • • • • • • • • • • • • • • • • • •	• • • •					
O Pocket Pond (P-5) ·····		• • • • •					
○ Surface Sand Filter (F-1) ······	• • • • • • • • • • • • • • • • • • • •						
○ Underground Sand Filter (F-2) ······	• • • • • • • • • • • • • • • • • • •						
O Perimeter Sand Filter (F-3) ······	• • • • • • • • • • • • • • • • • • • •						
Organic Filter (F-4)	• • • • • • • • • • • • • • • • • • •						
○ Shallow Wetland (W-1)	• • • • • • • • • • • • • • • • • • • •						
O Extended Detention Wetland (W-2)							
O Pond/Wetland System (W-3)							
O Pocket Wetland (W-4)							
○ Wet Swale (0-2)							

Table 2 -Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY) Total Contributing Alternative SMP Impervious Area(acres) ○ Hydrodynamic \bigcirc Wet Vault O Media Filter Other Provide the name and manufacturer of the Alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment. Name Manufacturer Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project. 30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. Total RRv provided acre-feet 31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28). O Yes O No If Yes, go to question 36. If No, go to question 32. 32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P)(0.95)(Ai)/12, Ai=(S)(Aic)] Minimum RRv Required acre-feet 32a. Is the Total RRv provided (#30) greater than or equal to the O Yes O No Minimum RRv Required (#32)? If Yes, go to question 33. Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).
Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.
Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a.	Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.
	WQv Provided acre-feet
<u>Note</u> :	For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)
34.	Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).
35.	Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? \bigcirc Yes \bigcirc No
	If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.
36.	Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

CPv Required CPv Provided

acre-feet acre-feet acre-feet

- 36a. The need to provide channel protection has been waived because:
 - O Site discharges directly to tidal waters or a fifth order or larger stream.
 - O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.
- 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp) Pre-Development Post-development CFS CF

Total Extreme Flood Control Criteria (Qf)

	<u> </u>	
Pre-Development	Post-development	:
- CFS	CF	rs

37a.	The	ne	ed t	0 m	eet	t.	he Q	ра	nd (Qf d	cri	ter	ia 1	has	bee	en v	wai	ved	be	caı	ıse	:						
		0	Site												rs													
		0	or a Down							_					a a	and	Of											
		_	cont												-		~											
38.			long onst																n				\bigcirc	Yes	2 .	O No	,	
			ped?		CIO.	11	SCOI	ıııwa	CEI	ıllaı	iay	Cilic	IIC j	prac	CIC	. e (;	5)	Dee.	.1							o . (
	If '	Yes	, Id	ent:	ify	tŀ	ne ei	nti	ty 1	resp	on	sib:	le i	Eor	the	e 10	ong	te	cm									
	Ope:	rat	ion a	and	Ma	int	tena	nce																				_
			ΪÌ													Ť			i									
																												_
39.			is s																			ust:	if:	ica	tio	n		
			t re pace																			+ i 01	n					
	1111	а а 	pace	Cal	ıı a	15	o be	us	eu .	LOI	00	1161	pe.	LUIII	CIIC	- P1			11.	1101	ıııa	C101						

4285089826

40.	Identify other DEC permits, existing and new, that are required for the project/facility.	nis	
	O Air Pollution Control		
	○ Coastal Erosion		
	○ Hazardous Waste		
	○ Long Island Wells		
	○ Mined Land Reclamation		
	○ Solid Waste		
	O Navigable Waters Protection / Article 15		
	○ Water Quality Certificate		
	○ Dam Safety		
	○ Water Supply		
	○ Freshwater Wetlands/Article 24		
	○ Tidal Wetlands		
	○ Wild, Scenic and Recreational Rivers		
	O Stream Bed or Bank Protection / Article 15		
	○ Endangered or Threatened Species(Incidental Take Permit)		
	○ Individual SPDES		
	○ SPDES Multi-Sector GP		
	Other		
	○ None		
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	O Yes	○ No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	O Yes	O No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	○ Yes	O No
44.	If this NOI is being submitted for the purpose of continuing or transcoverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned.		

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

MI
7
B. C.
Date

Short Environmental Assessment Form Part 1 - Project Information

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

Part 1 - Project and Sponsor Information						
Name of Action or Project:						
FIRE DEPARMENT CONSTRUCTION AND RENOVATIONS						
Project Location (describe, and attach a location map):						
29 Green Street, Mount Kisco, NY 10549; 322 Lexington Avenue, Mount Kisco, NY 105	49; 99 M	ain Street, Mount Kisco, I	NY 105	549		
Brief Description of Proposed Action:						
Renovation, expansion and various improvements of three (3) fire department facilities i	n the Vill	age/Town of Mount Kisco) .			
Name of Applicant or Sponsor:	Telepl	none: (914) 241-0500				
VILLAGE/TOWN OF MOUNT KISCO	E-Mai	l: ebrancati@mountkisco	ony.go	ıv		
Address: 104 Main Street	1					
City/PO;		State:	Zip	Code:		
Mount Kisco		NY	1054	49		
1. Does the proposed action only involve the legislative adoption of a plan, le	ocal law	, ordinance,		NO	YES	
administrative rule, or regulation? If Yes, attach a narrative description of the intent of the proposed action and may be affected in the municipality and proceed to Part 2. If no, continue to			hat	\checkmark		
2. Does the proposed action require a permit, approval or funding from any	other go	overnmental Agency?		NO	YES	
If Yes, list agency(s) name and permit or approval: Potential: NYCDEP approval (Designated Main Street Area), NYS and Westchester Co and NYSDEC.	unty Dep	partments of Transportation	on,		$\overline{\mathbf{V}}$	
3.a. Total acreage of the site of the proposed action?		I+ acres				
b. Total acreage to be physically disturbed? c. Total acreage (project site and any contiguous properties) owned	•	1 acres				
or controlled by the applicant or project sponsor?	1	1+ acres				
	ercial	□Residential (suburt	ban)			

5. Is the proposed action,	NO	YES	N/A
a. A permitted use under the zoning regulations?		\checkmark	
b. Consistent with the adopted comprehensive plan?		V	
6. Is the proposed action consistent with the predominant character of the existing built or natural		NO	YES
landscape?			\checkmark
7. Is the site of the proposed action located in, or does it adjoin, a state listed Critical Environmental A	rea?	NO	YES
If Yes, identify:		\checkmark	
8. a. Will the proposed action result in a substantial increase in traffic above present levels?		NO	YES
		\checkmark	
b. Are public transportation service(s) available at or near the site of the proposed action?			/
c. Are any pedestrian accommodations or bicycle routes available on or near site of the proposed ac	tion?		V
9. Does the proposed action meet or exceed the state energy code requirements?		NO	YES
If the proposed action will exceed requirements, describe design features and technologies:			V
			L.V.
10. Will the proposed action connect to an existing public/private water supply?		NO	YES
If No, describe method for providing potable water:		П	
11. Will the proposed action connect to existing wastewater utilities?		NO	YES
If No, describe method for providing wastewater treatment:			
12. a. Does the site contain a structure that is listed on either the State or National Register of Historic		NO	YES
Places? b. Is the proposed action located in an archeological sensitive area?		\checkmark	
b. is the proposed action located in an archeological sensitive area?		V	
13. a. Does any portion of the site of the proposed action, or lands adjoining the proposed action, contain	n	NO	YES
wetlands or other waterbodies regulated by a federal, state or local agency?		Ш	
b. Would the proposed action physically alter, or encroach into, any existing wetland or waterbody? If Yes, identify the wetland or waterbody and extent of alterations in square feet or acres:	9	\checkmark	
11 Tos, identify the westand of waterbody and extent of alterations in square root of decision			
14. Identify the typical habitat types that occur on, or are likely to be found on the project site. Check		apply:	
☐ Shoreline ☐ Forest ☐ Agricultural/grasslands ☐ Early mid-success ☐ Wetland ☐ Urban ☐ Suburban	ional		
- 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		NO	YES
15. Does the site of the proposed action contain any species of animal, or associated habitats, listed by the State or Federal government as threatened or endangered?			LES
		NO	WES
16. Is the project site located in the 100 year flood plain?		NO V	YES
17. Will the proposed action create storm water discharge, either from point or non-point sources?		NO	YES
If Yes,			/
a. Will storm water discharges flow to adjacent properties? ✓ NO ☐YES			
b. Will storm water discharges be directed to established conveyance systems (runoff and storm drain	ns)?		
If Yes, briefly describe: ■ NO YES Existing municipal storm water connections to be maintained.			
		1	

18. Does the proposed action include construction or other activities that result in the impoundment of water or other liquids (e.g. retention pond, waste lagoon, dam)?	NO	YES
If Yes, explain purpose and size:	V	
19. Has the site of the proposed action or an adjoining property been the location of an active or closed solid waste management facility?	NO	YES
If Yes, describe:	V	
20. Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or completed) for hazardous waste?	NO	YES
If Yes, describe:	V	
I AFFIRM THAT THE INFORMATION PROVIDED ABOVE IS TRUE AND ACCURATE TO THE KNOWLEDGE Applicant/sponsorname: Village/Town of Mount Kieco: J. Michael Cindrich, Mayor Date: 9/5//	BEST O	FMY
Signature:		

Αg	ency Use Only [If applicable]	
Project:		
Date:		

Short Environmental Assessment Form Part 2 - Impact Assessment

Part 2 is to be completed by the Lead Agency.

Answer all of the following questions in Part 2 using the information contained in Part 1 and other materials submitted by the project sponsor or otherwise available to the reviewer. When answering the questions the reviewer should be guided by the concept "Have my responses been reasonable considering the scale and context of the proposed action?"

		No, or small impact may occur	Moderate to large impact may occur
1.	Will the proposed action create a material conflict with an adopted land use plan or zoning regulations?	V	
2.	Will the proposed action result in a change in the use or intensity of use of land?	V	
3.	Will the proposed action impair the character or quality of the existing community?	V	Manual Account of
4.	Will the proposed action have an impact on the environmental characteristics that caused the establishment of a Critical Environmental Area (CEA)?	Z	
5.	Will the proposed action result in an adverse change in the existing level of traffic or affect existing infrastructure for mass transit, biking or walkway?	V	
6.	Will the proposed action cause an increase in the use of energy and it fails to incorporate reasonably available energy conservation or renewable energy opportunities?	V	
7.	Will the proposed action impact existing: a. public / private water supplies?	V	
	b. public / private wastewater treatment utilities?	V	
8.	Will the proposed action impair the character or quality of important historic, archaeological, architectural or aesthetic resources?	V	
9.	Will the proposed action result in an adverse change to natural resources (e.g., wetlands, waterbodies, groundwater, air quality, flora and fauna)?	V	
10.	Will the proposed action result in an increase in the potential for erosion, flooding or drainage problems?		
11.	Will the proposed action create a hazard to environmental resources or human health?	V	

Agen	cy Use Only [If applicable]
Project:	
Date:	

Short Environmental Assessment Form Part 3 Determination of Significance

For every question in Part 2 that was answered "moderate to large impact may occur", or if there is a need to explain why a particular element of the proposed action may or will not result in a significant adverse environmental impact, please complete Part 3. Part 3 should, in sufficient detail, identify the impact, including any measures or design elements that have been included by the project sponsor to avoid or reduce impacts. Part 3 should also explain how the lead agency determined that the impact may or will not be significant. Each potential impact should be assessed considering its setting, probability of occurring, duration, irreversibility, geographic scope and magnitude. Also consider the potential for short-term, long-term and cumulative impacts.

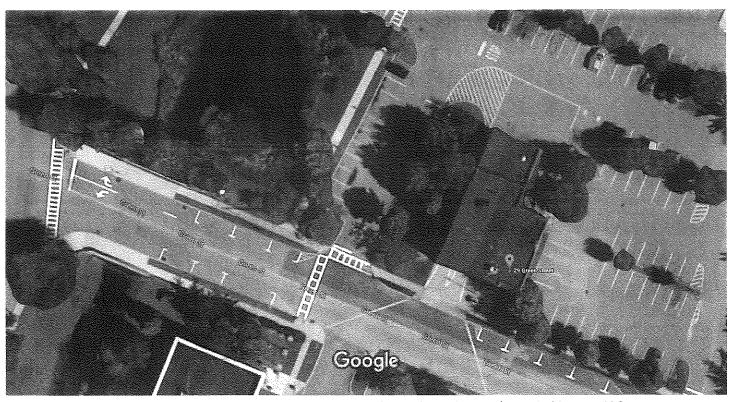
N/A

Check this box if you have determined, based on the information and analysis above, and any supporting documentation,					
that the proposed action may result in one or more potentially large or significant adverse impacts and an					
environmental impact statement is required.					
Check this box if you have determined, based on the information and analysis above, and any supporting documentation,					
that the proposed action will not result in any significant	adverse environmental impacts.				
Board of Trustees, Village/Town of Mount Kisco	9-19-2017				
Name of Lead Agency	Date				
J. Michael Cindrich	Mayor				
Print or Type Name of Responsible Officer in Lead Agency	Title of Responsible Officer				
Mulu Caling					
Signature of Responsible Office in Lead Agency	Signature of Preparer (if different from Responsible Officer)				

Google Maps 99 Main St

Imagery ©2017 Google, Map data ©2017 Google

United States


20 ft %

99 Main St Mt Kisco, NY 10549

Go gie Maps 29 Green St

Imagery ©2017 Google, Map data ©2017 Google United States 20 ft

29 Green St Mt Kisco, NY 10549

At this location

Union Hook and Ladder Company

Fire Station - 29 Green St

Google Maps 322 Lexington Ave

Imagery ©2017 Google, Map data ©2017 Google United States 50 ft

322 Lexington Ave Mt Kisco, NY 10549

At this location

Independent Fire Company

4.5 专士女女女 (2)

Volunteer Organization - 322 Lexington Ave

VILLAGE/TOWN OF MOUNT KISCO

WESTCHESTER COUNTY, NEW YORK

104 Main Street, Mount Kisco, NY 10549-0150 Tel (914) 241-0500 • Fax (914) 241-9018 www.mountkiscony.gov

4) Old Business:

a. Resolution adopting the SEQRA Findings regarding the renovations, expansion and various improvement to all (3) Fire Department facilities in the Village/Town of Mount Kisco.

The following resolution was offered by Trustee Grunthal and seconded by Trustee Farber adopting the Short Environmental Assessment Review Form which has no negative findings and authorizing the Mayor to sign same, regarding the renovations, expansion and various improvement to all (3) Fire Department facilities in the Village/Town of Mount Kisco;

WHEREAS, the Village is the Owner of three (3) properties comprising Village Firehouses located at 99 Main Street (80.25-3-1- Mutual Engine & Hose), 29 Green Street (P/O 80.25-2-1- Union Hook & Ladder Company) and 322 Lexington Avenue (P/O 80.48-1-5- Independent Fire Company) (hereafter referred to as the "subject properties"); and

WHEREAS, the Village of Mount Kisco issued a Request for Proposals (RFPs) wherein it seeks to undertake, fund and or approve the design renovations and expansions for the existing buildings at the subject properties, which would be implemented through contract awards and bond issuances;

WHEREAS, the Village Board conducted a number of public meetings, both in a regular meeting format and in work sessions, it was able to have input form the public and consider alternatives;

WHEREAS, the Board of Trustees has had an opportunity to weigh the various facts, circumstances and considerations associated with proposal, and has also had an opportunity to confer with its various professionals;

WHEREAS, in connection with such project the Village Board, as lead agency, has reviewed and fully considered the proposed action and Part I of the Environmental Assessment Form (EAF) and has completed Part II of the EAF, addressing the potential impacts of the project;

WHEREAS, the Board of Trustees has determined that depending upon the final architectural plans (amount of square footage), the proposal is either: a) Type II activity [minor expansion, replacement, rehabilitation pursuant to 6 NYCRR617.5(c)(2),(3) or (9)] or b) is an unlisted action that does not exceed or trigger any thresholds for Type I activities;

NOW, THEREFORE, be it:

RESOLVED, that based on the impact assessments discussed in the attached SEQRA Negative Declaration – Notice of Determination of Non-Significance ("Negative Declaration") the Board of Trustees, as lead agency, hereby finds that the Action will not have a significant adverse impact on the environment and authorizes the filing of a Negative Declaration for the Action, and consequently no EIS will be prepared.

FURTHER RESOLVED, that the Mayor is hereby authorized to execute the determination of significance and any documents necessary and incidental thereto. On the question:

Trustee Schleimer stated that she found it unusual that we are acting as the Lead Agency, generally the Planning Board acts as Lead Agency, this is the first time I've seen this Environmental Assessment Form. I feel unprepared to evaluate it, as to whether or not we should sign it.

Village Attorney Singleton replied that you can't move forward with your determination for funding without making a determination that you are moving forward with the project. So that is why you are making the determination now. My understanding is that the proposed renovations and/or additions are going to be to the existing sites, and that they are going to be on the existing surfaces and that they will not result in any significate increase in traffic, there will not be any construction on any contaminated sites, or next to a landfill, and that there is not going to be any significant adverse impacts to the environment as it's defined and set forth in this Environmental Assessment Form. Certainly, these are findings not for me to make, but these are findings for your Board to make in going through the Environmental Assessment Form. As to Trustee Schleimer's concern about the Planning Board, I believe it's the Village Board's position, although it hasn't been discussed, that you are going to exempt this project from normal Planning and Zoning reviews as was done with the Mount Kisco Library.

Trustee Grunthal stated these are buildings that we own and that we are improving existing buildings. The Fire Department wants them improved and we want to put it to the residents in a referendum to see whether they want to spend the money and have them improved. So I don't have any problem adopting these findings, because from an environmental point of view, I can only see this as an improvement not a detriment.

Village Attorney Singleton replied that he had gone through the Short Environmental Assessment Form and had completed and researched the form to the best of his ability. But ultimately it is the Village Board's determination, not his, he simply provided the Board with a filled out form.

Deputy Mayor Markus stated that he agreed with Trustee Grunthal, we want to move forward with this, the Fire Department requires it. I don't believe that we have any problems with environmental issues here. We are doing it in the same fashion we did with the Library and I for one would like to move forward on this. We can certainly continue the review of all of the different plans as we move forward and if the Bond Referendum is approved. But again, these are existing sites and these improvements are only going to help the environment. I'm very comfortable moving forward with this.

Trustee Farber stated that this has been extremely well reviewed and researched. We know exactly what we need and time is of the essence because it has to be on the ballot in November and I feel very comfortable that we have done our due diligence.

Motion AdoptedTrustee FarberAyeTrustee GrunthalAyeDeputy Mayor MarkusAyeTrustee SchleimerNAY

STATE OF NEW YORK COUNTY OF WESTCHESTER VILLAGE OF MOUNT KISCO

SS.

I hereby certify that I have compared the foregoing Resolution with the original on file in my office, and that the same is a correct transcript therefrom and of the whole of the said original Resolution, which was duly adopted by the Board of Trustees of the Village of Mount Kisco, on

In WITNESS WHEREOF, I have hereunto set my hand and affixed the Corporate Seal of said Village of Mount Kisco,

Village of Mount Kisco.

Appendix E

Signatory Requirement Contractor Certification Statement Long Term Contact Information

Signatory Requirements:

Pursuant to NYSDEC SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-20-001), signatory requirements for all NOIs, NOTs, SWPPPs, MS4 SWPPP Acceptance forms, reports, certifications or information required by the aforementioned permit are as follows:

- 1) All NOIs and NOTs shall be signed as follows:
 - a) For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
 - ii) the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
 - b) For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
 - c) For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - i) the chief executive officer of the agency, or
 - ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g. Regional Administrators of EPA).
- 2) The SWPPP and other information requested by the Department shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a) The authorization is made in writing by a person described in 1) above;
 - b) The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant

- manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,
- c) The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3) All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4) The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4*, or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

Contractor or Subcontractor Certification Statement

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Contractor Name:					
Address:		-			
		<u>.</u>			
Telephone number:					
Contractor Representative:					
Name:	Title:				
Signature:	Date:				
Trained Contractor (if different from above):					
Name:	Title:				
Signature:	Date:				
SWPPP Responsibilities					
Elements of SWPPP above contractor is responsible for implementing:					
		_			

Contractor or Subcontractor Certification Statement

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Contractor Name:		_
Address:		_
		-
Telephone number:		_
Contractor Representative:		
Name:	Title:	
Signature:	Date:	
Trained Contractor (if different from above):		
Name:	Title:	
Signature:	Date:	
SWPPP Responsibilities		
Elements of SWPPP above contractor is respo	nsible for implementing:	

Contractor or Subcontractor Certification Statement

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Contractor Name:		-
Address:		-
Telephone number:		- -
Contractor Representative:		
Name:	Title:	
Signature:	Date:	
Trained Contractor (if different from above):		
Name:	Title:	
Signature:	Date:	
SWPPP Responsibilities		
Elements of SWPPP above contractor is respo	nsible for implementing:	

Independent Fire Station – SWPPP 332 Lexington Avenue Village of Mount Kisco, NY 10549 New Croton Reservoir Drainage Basin

Contact Information for Long Term Maintenance of Stormwater Practices:

Village of Mount Kisco

104 Main Street Mount Kisco, NY 10549

Hours: M-F 8:30AM - 4:30PM

PH: (914) 241-0500 FAX: (914) 241-9018

webmaster@mountkiscony.gov

Appendix F

Pre and Post Development Drainage Report

Watershed Model Schematic

Legend Hyd. Origin **Description** SCS Runoff WS #1 SCS Runoff WS#2 Wednesday, 10 / 6 / 2021 Project: Pre-Development Conditions.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

	Hydrograph	Inflow			Peak Outflow (cfs)						Hydrograph
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.335				2.783			5.191	WS #1
2	SCS Runoff		0.317				0.609			1.097	WS#2

Proj. file: Pre-Development Conditions.gpw

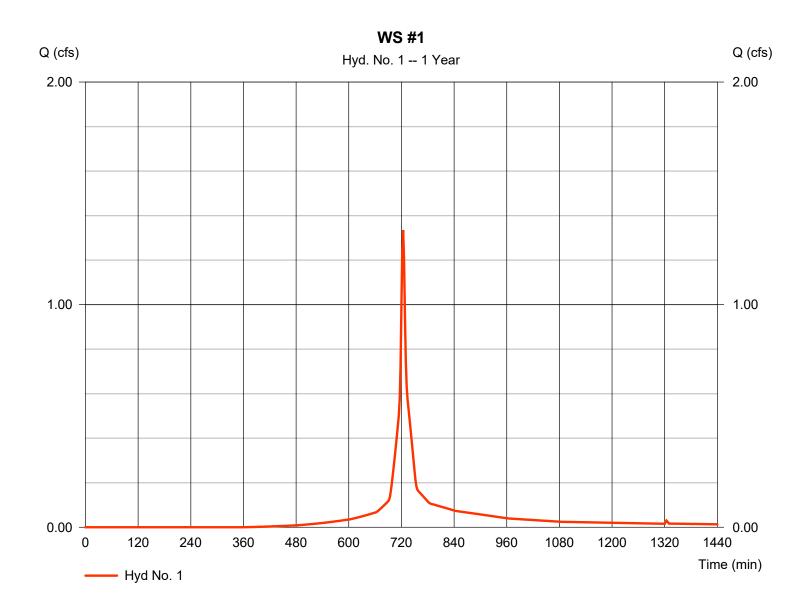
Wednesday, 10 / 6 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.335	2	724	4,043				WS #1
1 2	SCS Runoff SCS Runoff	1.335	2 2	724 724	4,043 997				WS#1 WS#2
	-Developmer					Period: 1 Ye			v, 10 / 6 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

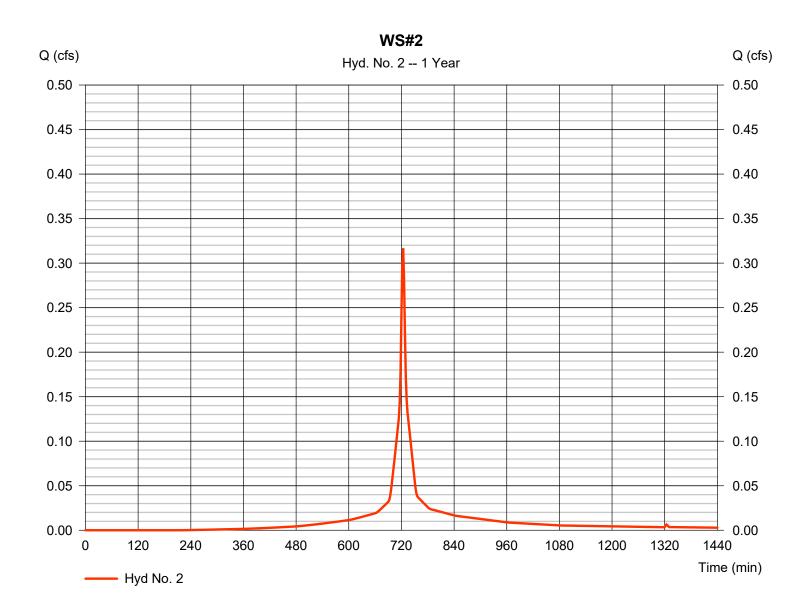
Hyd. No. 1

WS #1

= 1.335 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 4,043 cuftDrainage area = 0.630 acCurve number = 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 2.80 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.516 \times 98) + (0.111 \times 61)] / 0.630$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

Hyd. No. 2

WS#2

= 0.317 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 997 cuft Curve number Drainage area = 0.130 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 2.80 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

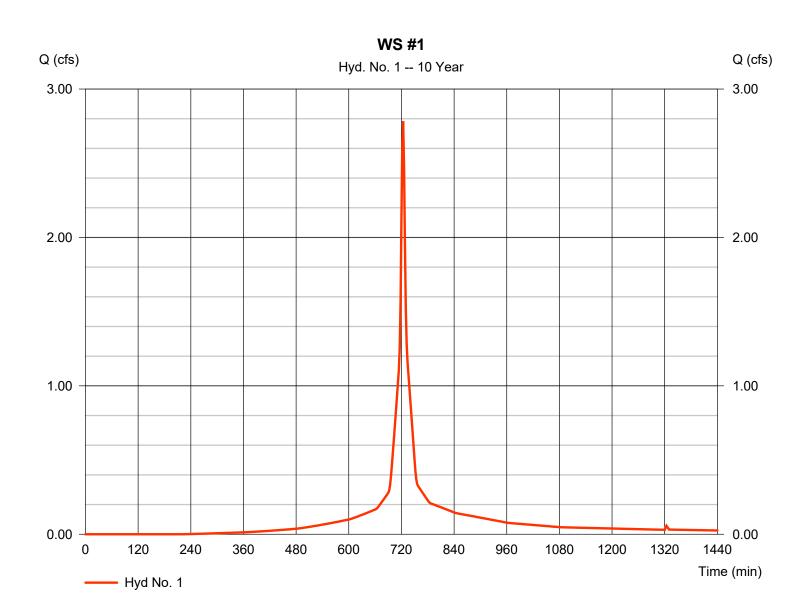
^{*} Composite (Area/CN) = $[(0.106 \times 98) + (0.025 \times 80)] / 0.130$

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.783	2	724	8,746				WS #1
2	SCS Runoff	0.609	2	724	1,999				WS#2
Pre	-Developme	_ nt Conditie	ons.gpw		Return F	Period: 10 Y	⊥ ∕ear	Wednesday	y, 10 / 6 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

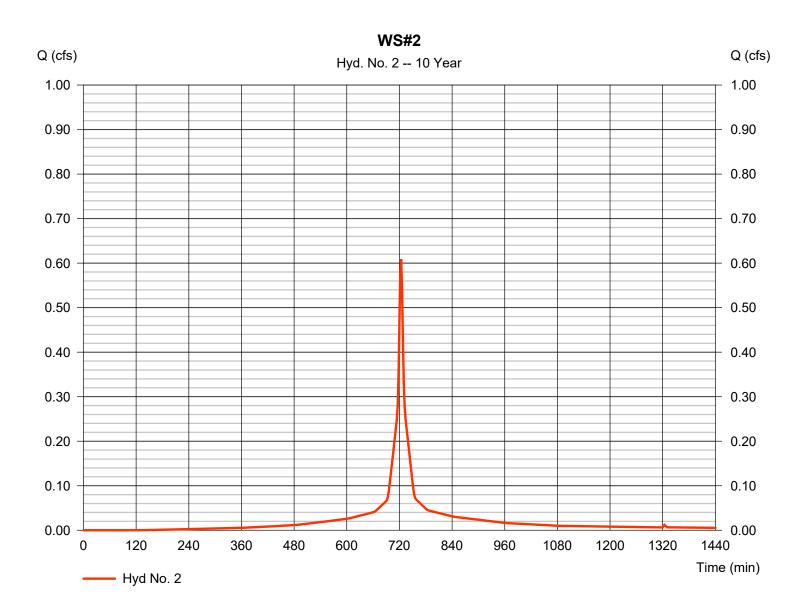
Hyd. No. 1

WS #1

Hydrograph type = SCS Runoff Peak discharge = 2.783 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 8,746 cuftCurve number Drainage area = 0.630 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 6.00 min = User Total precip. = 5.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.516 \times 98) + (0.111 \times 61)] / 0.630$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

Hyd. No. 2

WS#2

Hydrograph type = SCS Runoff Peak discharge = 0.609 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 1,999 cuftCurve number Drainage area = 0.130 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 6.00 min = User Total precip. = 5.10 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

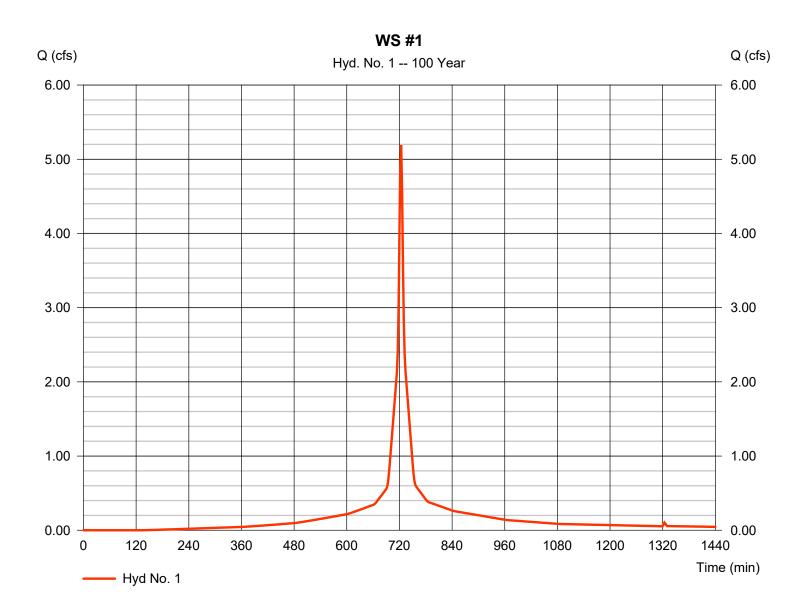
^{*} Composite (Area/CN) = $[(0.106 \times 98) + (0.025 \times 80)] / 0.130$

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.191	2	724	16,965				WS #1
2	SCS Runoff	1.097	2	724	3,715				WS#2
Pre-Development Conditions.gpw				Return F	Period: 100	Year	Wednesda	y, 10 / 6 / 2021	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

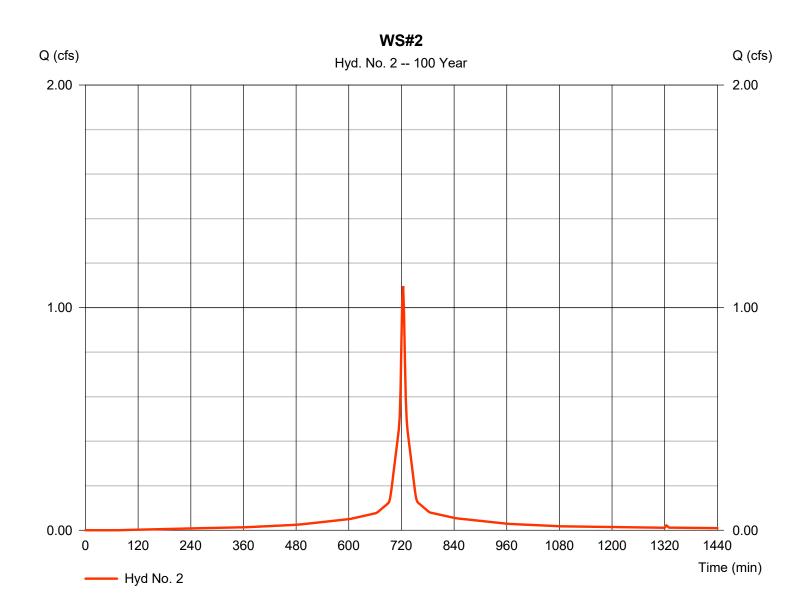
Hyd. No. 1

WS #1

Hydrograph type = SCS Runoff Peak discharge = 5.191 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 16.965 cuft Curve number Drainage area = 0.630 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 9.00 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.516 \times 98) + (0.111 \times 61)] / 0.630$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

Hyd. No. 2

WS#2

Hydrograph type = SCS Runoff Peak discharge = 1.097 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 3,715 cuftCurve number Drainage area = 0.130 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 6.00 min = User Total precip. = 9.00 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.106 \times 98) + (0.025 \times 80)] / 0.130$

Hydraflow Rainfall Report

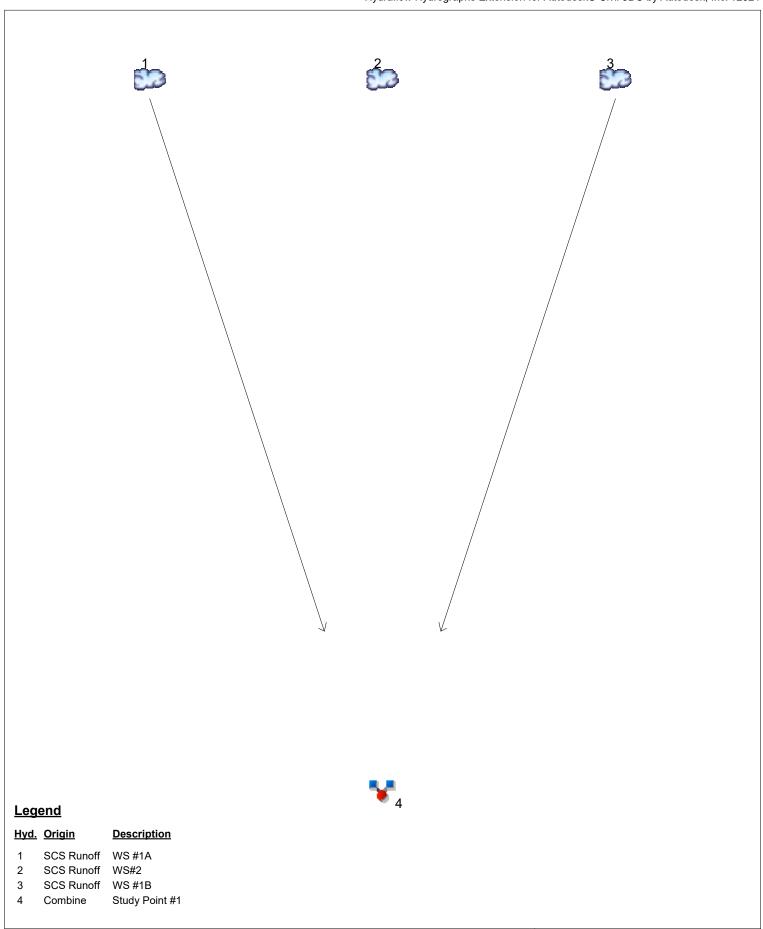
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 10 / 6 / 2021

Return Period	Intensity-Du	ıration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	69.8703	13.1000	0.8658	
3	0.0000	0.0000	0.0000	
5	79.2597	14.6000	0.8369	
10	88.2351	15.5000	0.8279	
25	102.6072	16.5000	0.8217	
50	114.8193	17.2000	0.8199	
100	127.1596	17.8000	0.8186	

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E


Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.

X:\MKIV (Village of Mount Kisco)\MKIV1803 (Independent Fire Station)\01-Reports\SWPPP\Hydraflow\MKIV precip.pcp

		R	ainfall P	recipitat	ion Tabl	e (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.80	3.25	0.00	3.30	5.10	5.77	6.80	9.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	2.75	0.00	5.38	6.50	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	2.80	0.00	5.25	6.00	0.00

Watershed Model Schematic

Project: Post-Development Conditions.gpw

Wednesday, 10 / 6 / 2021

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph	Inflow	Peak Outflow (cfs)								Hydrograph
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.272				2.650			4.944	WS #1A
2	SCS Runoff		0.307				0.602			1.092	WS#2
3	SCS Runoff		0.056				0.125			0.241	WS #1B
4	Combine	1, 3	1.328				2.775			5.185	Study Point #1

Proj. file: Post-Development Conditions.gpw

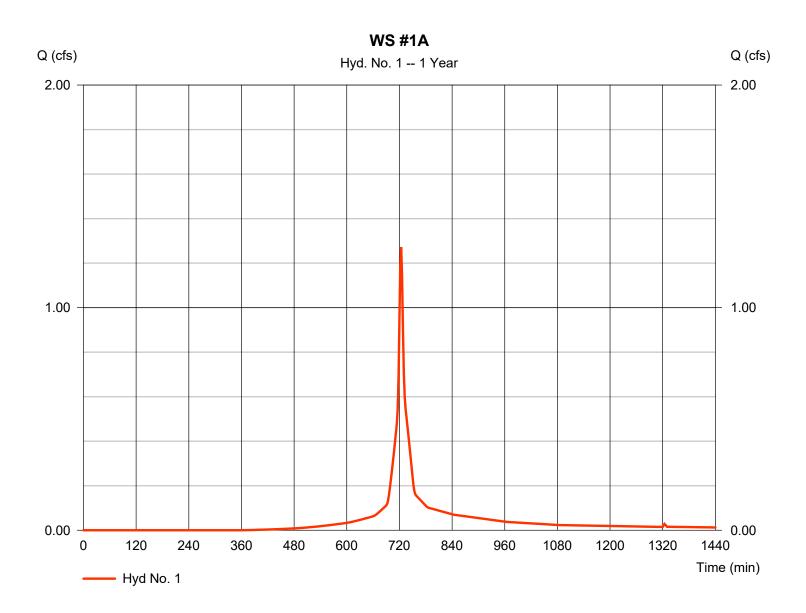
Wednesday, 10 / 6 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	1.272	2	724	3,850				WS #1A	
2	SCS Runoff	0.307	2	724	954				WS#2	
3	SCS Runoff	0.056	2	724	168				WS #1B	
Pos	Post-Development Conditions.gpw				Return F	Period: 1 Ye	⊥ear	Wednesday, 10 / 6 / 2021		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

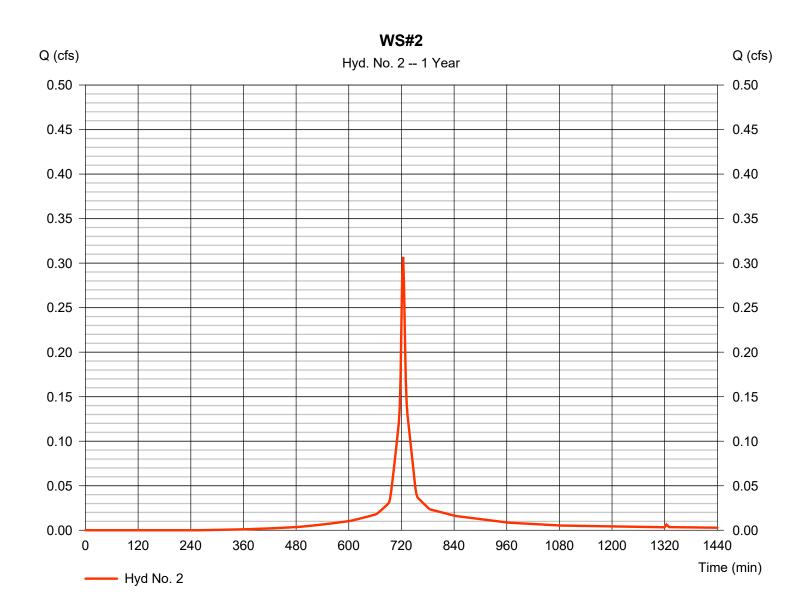
Hyd. No. 1

WS #1A

Hydrograph type = 1.272 cfs= SCS Runoff Peak discharge Storm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 3,850 cuftCurve number Drainage area = 0.600 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 2.80 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.490 \times 98) + (0.110 \times 61)] / 0.600$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

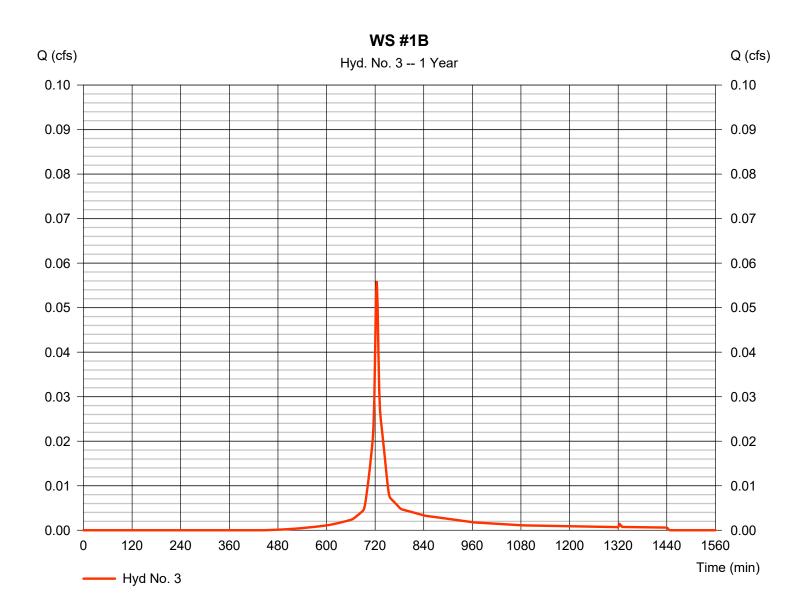
Hyd. No. 2

WS#2

Hydrograph type = SCS Runoff Peak discharge = 0.307 cfsStorm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 954 cuft Curve number Drainage area = 0.130 ac= 94* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 2.80 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.102 x 98) + (0.026 x 80)] / 0.130

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

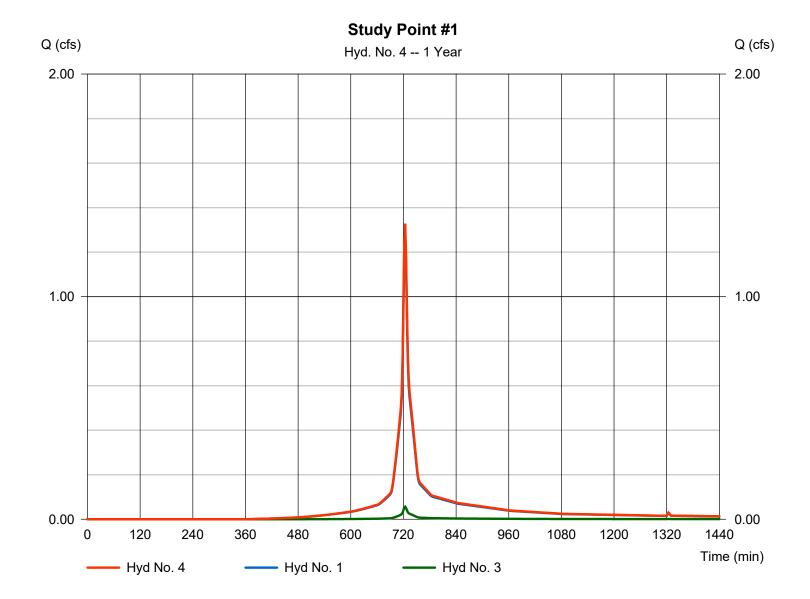

Wednesday, 10 / 6 / 2021

Hyd. No. 3

WS #1B

Hydrograph type = SCS Runoff Peak discharge = 0.056 cfsStorm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 168 cuft Curve number Drainage area = 0.030 ac= 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 2.80 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.021 \times 98) + (0.008 \times 61)] / 0.030$


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 10 / 6 / 2021

Hyd. No. 4

Study Point #1

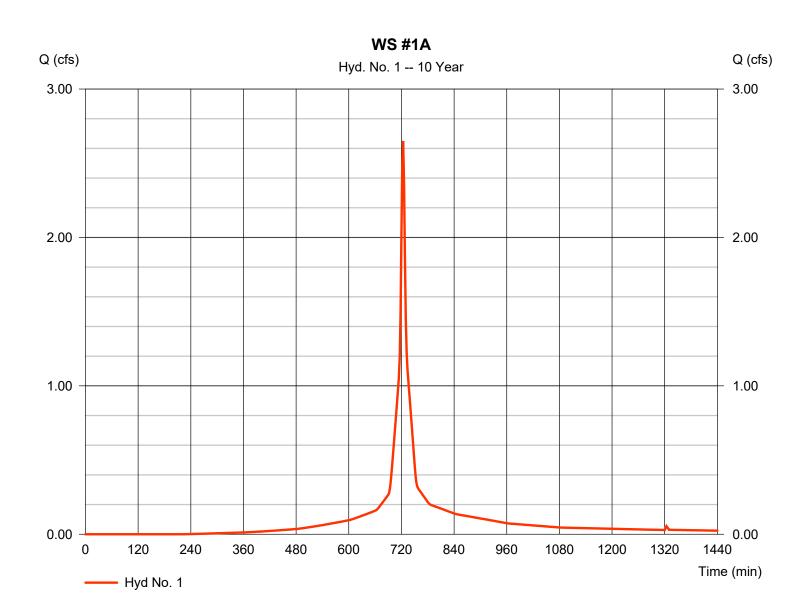
Hydrograph type = Combine = 1.328 cfsPeak discharge Storm frequency = 1 yrsTime to peak = 724 min = 4,018 cuft Time interval = 2 min Hyd. volume Inflow hyds. = 1, 3 Contrib. drain. area = 0.630 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	2.650	2	724	8,329				WS #1A	
2	SCS Runoff	0.602	2	724	1,950				WS#2	
3	SCS Runoff	0.125	2	724	384				WS #1B	
3 4	SCS Runoff Combine	0.125 2.775	2 2	724	384 8,714	1, 3			WS #1B Study Point #1	
Pos	t-Development Conditions.gpw Return				Return F	Period: 10 Y	'ear	Wednesday, 10 / 6 / 2021		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

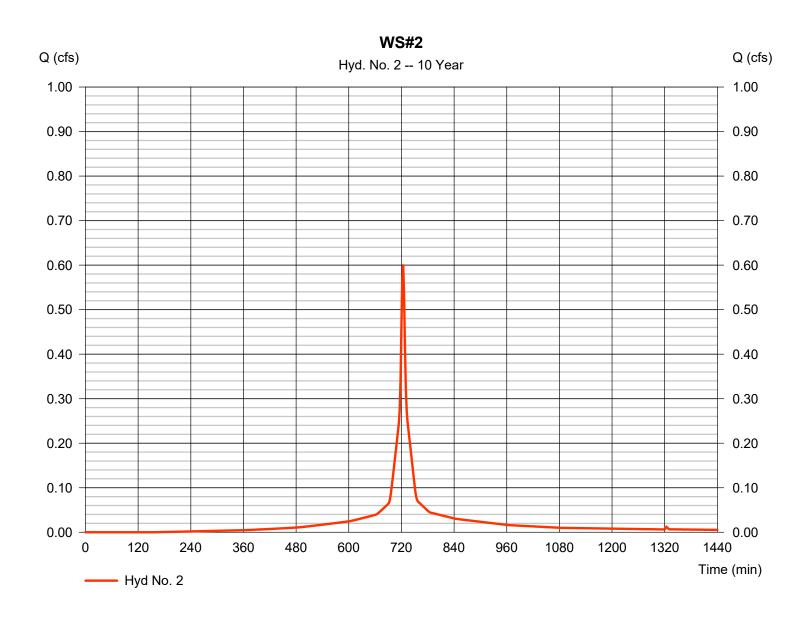
Hyd. No. 1

WS #1A

Hydrograph type = SCS Runoff Peak discharge = 2.650 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 8,329 cuftCurve number Drainage area = 0.600 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 6.00 min = User Total precip. = 5.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.490 \times 98) + (0.110 \times 61)] / 0.600$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

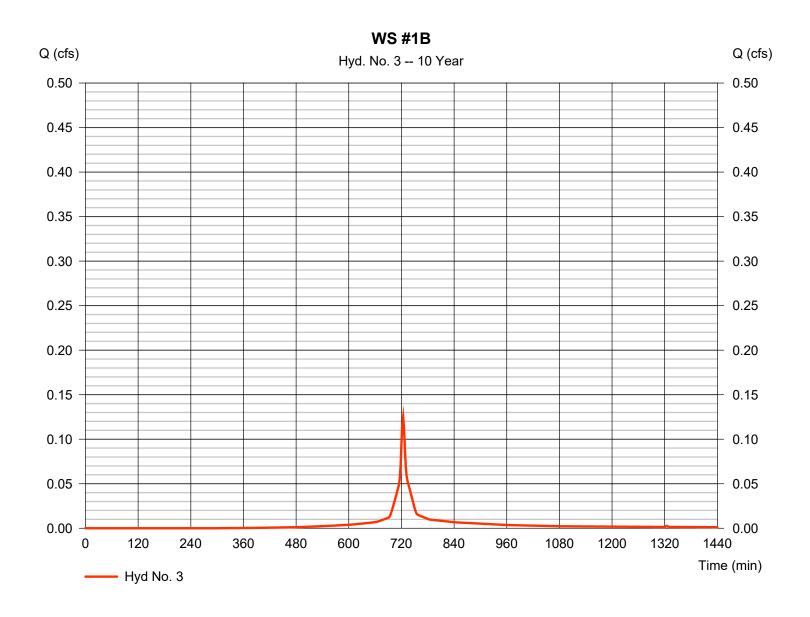
Hyd. No. 2

WS#2

Hydrograph type = SCS Runoff Peak discharge = 0.602 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 1,950 cuftCurve number Drainage area = 0.130 ac= 94* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 5.10 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.102 x 98) + (0.026 x 80)] / 0.130

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

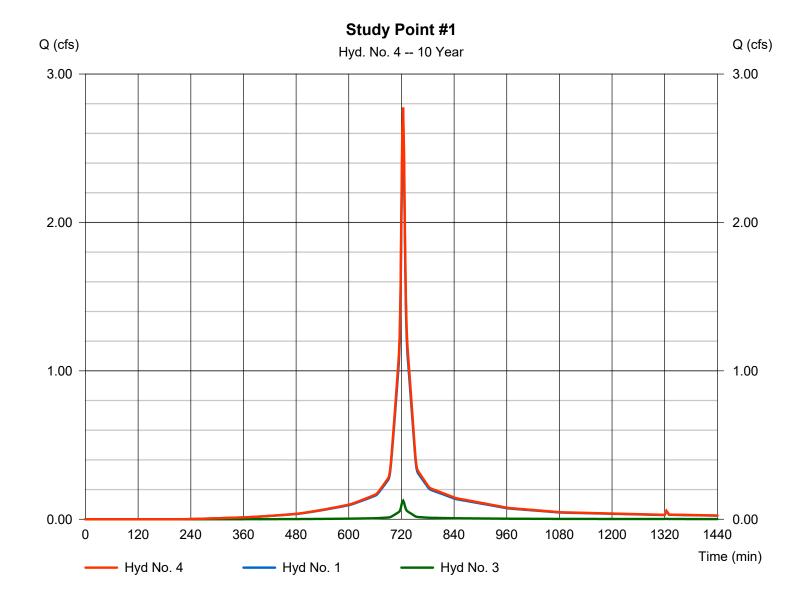

Wednesday, 10 / 6 / 2021

Hyd. No. 3

WS #1B

Hydrograph type = SCS Runoff Peak discharge = 0.125 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 384 cuft Curve number Drainage area = 0.030 ac= 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 5.10 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.021 \times 98) + (0.008 \times 61)] / 0.030$


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 10 / 6 / 2021

Hyd. No. 4

Study Point #1

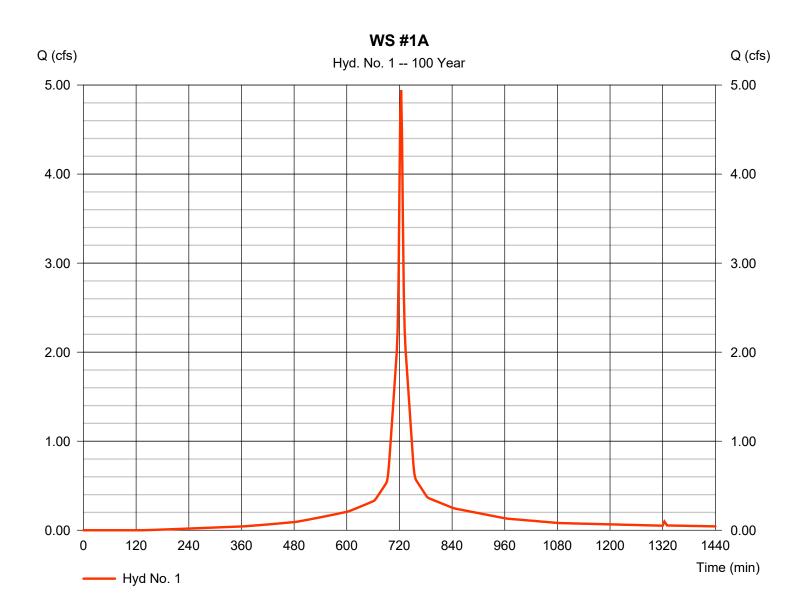
Hydrograph type = Combine Peak discharge = 2.775 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 8,714 cuft Inflow hyds. = 1, 3 Contrib. drain. area = 0.630 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	4.944	2	724	16,158				WS #1A	
2	SCS Runoff	1.092	2	724	3,662				WS#2	
3	SCS Runoff	0.241	2	724	771				WS #1B	
Pos	Post-Development Conditions.gpw				Return F	Period: 100	Year	Wednesday, 10 / 6 / 2021		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

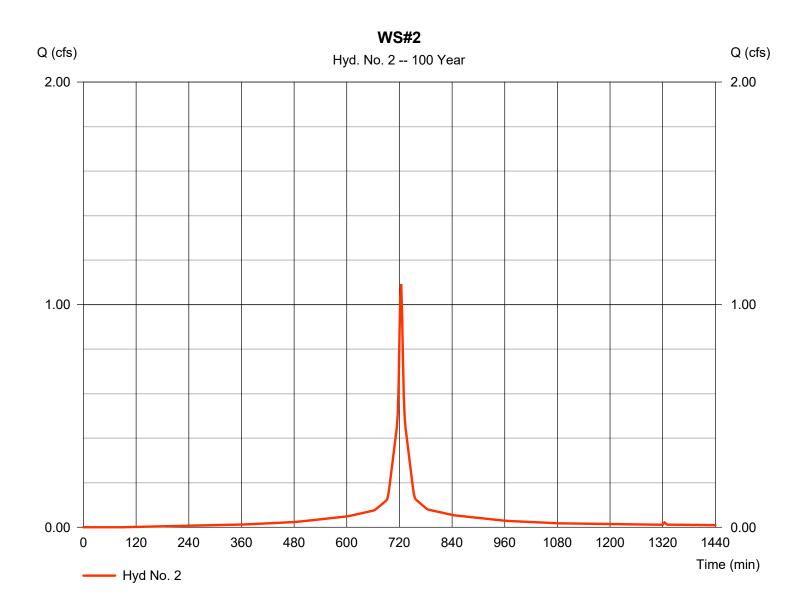
Hyd. No. 1

WS #1A

Hydrograph type = SCS Runoff Peak discharge = 4.944 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 16.158 cuft Drainage area = 0.600 acCurve number = 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 6.00 \, \text{min}$ Total precip. = 9.00 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.490 \times 98) + (0.110 \times 61)] / 0.600$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 10 / 6 / 2021

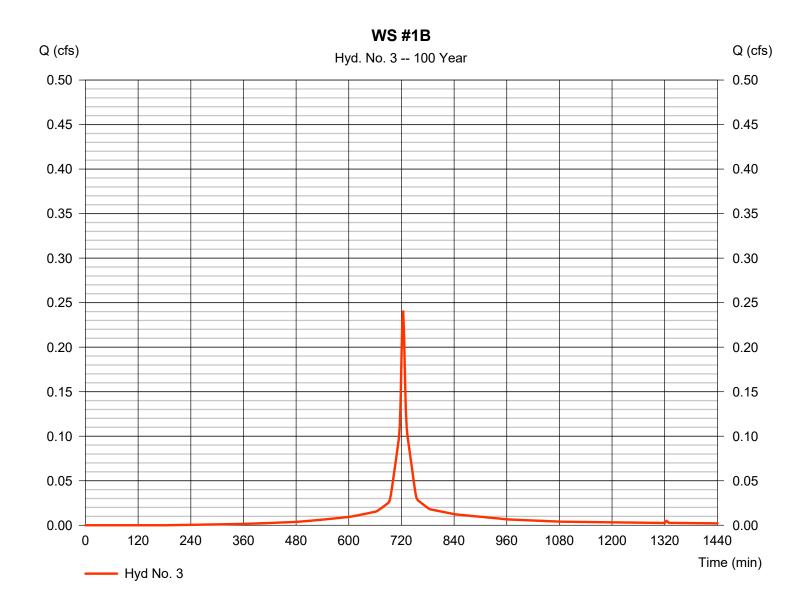
Hyd. No. 2

WS#2

Hydrograph type = SCS Runoff Peak discharge = 1.092 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 3,662 cuftCurve number Drainage area = 0.130 ac= 94* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 6.00 min = User Total precip. = 9.00 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.102 x 98) + (0.026 x 80)] / 0.130

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

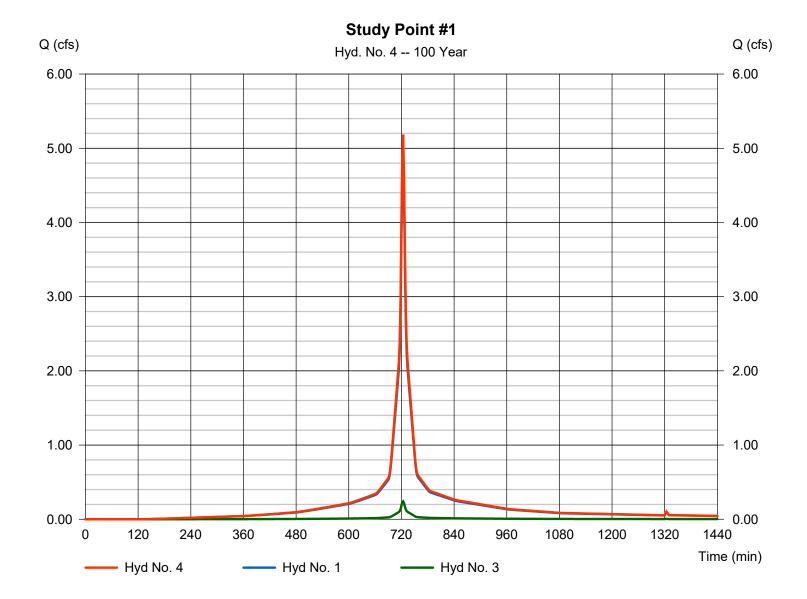

Wednesday, 10 / 6 / 2021

Hyd. No. 3

WS #1B

Hydrograph type = SCS Runoff Peak discharge = 0.241 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 771 cuft Curve number Drainage area = 0.030 ac= 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 9.00 inDistribution = Type III Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.021 x 98) + (0.008 x 61)] / 0.030


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 10 / 6 / 2021

Hyd. No. 4

Study Point #1

Hydrograph type = Combine Peak discharge = 5.185 cfsTime to peak Storm frequency = 100 yrs= 724 min Time interval = 2 min Hyd. volume = 16,928 cuft Inflow hyds. = 1, 3 Contrib. drain. area = 0.630 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 10 / 6 / 2021

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)				
1	0.0000	0.0000	0.0000					
2	69.8703	13.1000	0.8658					
3	0.0000	0.0000	0.0000					
5	79.2597	14.6000	0.8369					
10	88.2351	15.5000	0.8279					
25	102.6072	16.5000	0.8217					
50	114.8193	17.2000	0.8199					
100	127.1596	17.8000	0.8186					

File name: SampleFHA.idf

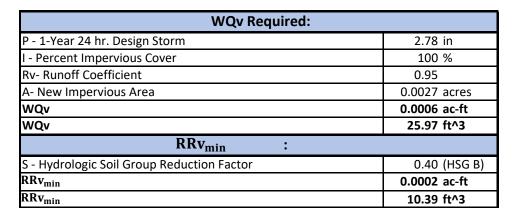
Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.

X:\MKIV (Village of Mount Kisco)\MKIV1803 (Independent Fire Station)\01-Reports\SWPPP\Hydraflow\MKIV precip.pcp

	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.80	3.25	0.00	3.30	5.10	5.77	6.80	9.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	2.75	0.00	5.38	6.50	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	2.80	0.00	5.25	6.00	0.00


Appendix G

WQv, RRv and Rain Garden Calculations Coliform Calculations Design Storm Figures per NYS Design Manual

Independent Fire Staton

MKIV 1803

WQv and $\,RRv_{min}$

WQv (Rain Garden Contributing Area):					
P - 1-Year 24 hr. Design Storm	2.78 in				
I - Percent Impervious Cover	72 %				
Rv- Runoff Coefficient	0.70				
A (WS#1B)	0.030 acres				
WQv	0.005 ac-ft				
WQv	211.31 ft^3				

Rain Garden Design:					
ARG = rain garden surface area [square feet]	127.00 sf				
DSM = depth of the soil media, typically* 1.0 to 1.5 [feet]	1.50 ft				
DDL = depth of the drainage layer, minimum 0.5 [feet]	1.00 ft				
DP = depth of ponding above surface, maximum 0.5 feet [feet]	0.50 ft				
n_SM = porosity of the soil media (≥ 20%)	0.20				
n_DL = porosity of the drainage layer (≥ 40%)	0.40				
VSM = volume of the soil media [cubic feet]	38.10 ft^3				
VDL = volume of the gravel drainage layer [cubic feet]	50.800 ft^3				
WQv = Contributing Water Quality Volume [cubic feet]	211.31 ft^3				
Storage Volume Provided by Rain Garden [cubic feet]	152.40 ft^3				

Equations Used:
$RRv_{min} = \frac{P_{1yr} * \overline{R}_{v} * Aic * S}{12}$
$WQv = \frac{P * R_v * A}{12}$

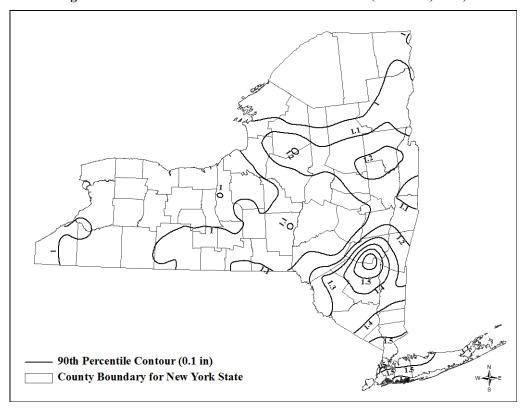
Credited RRv (ft^3):	
100% of Rain Garden Design	152.40

Note: The rain garden designed meets the required WQv and RRv. Any excess runoff from the contributing area will be routed to the existing drainage system via a 24" dia. domed riser. Refer to site plans for additional information.

Annual Pollutant Loading Calculations for Fecal Coliform MKIV1803 Independent Fire Station

Land Use/ Ground Cover	Area (ac)	Area (ha)	Rate FC (#/ha/year)	Annual Loads (#/ha/year)	
Pavement/ Impervious	0.622	0.2517	1.80E+08	4.53E+07	
Grass/Pervious	0.136	0.0550	1.60E+10	8.81E+08	
			TOTAL EXISTING	9.26E+08	
Proposed Conditions WS#1A and WS#	2 (Untreated)				
Land Use/ Ground Cover	Area (ac)	Area (ha)	Rate FC (#/ha/year)	Annual Loads (#/ha/year)	
Pavement/ Impervious	0.596	0.2412	1.80E+08	4.34E+07	
Grass/Pervious	0.133	0.0539	1.60E+10	8.63E+08	
			Total	9.07E+08	
Proposed Conditions WS#1B (Treated	By Rain Garden)				
Land Use/ Ground Cover	Area (ac)	Area (ha)	Rate FC (#/ha/year)	Annual Loads (#/ha/year)	
Pavement/ Impervious	0.021	0.0085	1.80E+08	1.53E+06	
Grass/Pervious	0.008	0.0032	1.60E+10	5.18E+07	
			Sub-Total	5.33E+07	
	Treatment	from Rain Garden F	Per NYS Design Manual*:	35%	
	Sub-Total After Treatment				
			TOTAL PROPOSED	9.25E+08	

Overall Reduction (%)

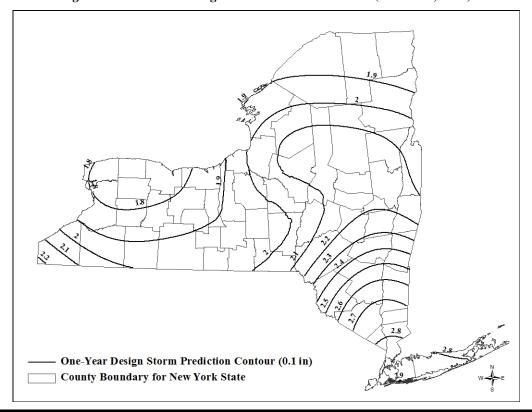

0.08

^{*}Capable of 35-70% removal. 35% used for most conservative estimate.

Chapter 4: Unified Stormwater Sizing Criteria

Section 4.2 Water Quality Volume (WQv)

Figure 4.1: 90th Percentile Rainfall in New York State (NYSDEC, 2013)


Basis of Design for Water Quality

As a basis for design, the following assumptions may be made:

Measuring Impervious Cover: the measured area of a site plan that does not have permanent vegetative or permeable cover shall be considered total impervious cover. Impervious cover is defined as all impermeable surfaces and includes: paved and gravel road surfaces, paved and gravel parking lots, paved driveways, building structures, paved sidewalks, and miscellaneous impermeable structures such as patios, pools, and sheds. Where site size makes direct measurement of impervious cover impractical, the land use/impervious cover relationships presented in Table 4.2 can be used to initially estimate impervious cover. In site specific planning impervious cover must be calculated based the specific proposed impervious cover.

Chapter 4: Unified Stormwater Sizing Criteria Section 4.5 Overbank Flood Control Criteria (Qp)

Figure 4.2: One-Year Design Storm in New York State (NYSDEC, 2013)

Section 4.5 Overbank Flood Control Criteria (Q_p)

The primary purpose of the overbank flood control sizing criterion is to prevent an increase in the frequency and magnitude of out-of-bank flooding generated by urban development (i.e., flow events that exceed the bankfull capacity of the channel, and therefore must spill over into the floodplain).

Overbank control requires storage to attenuate the post development 10-year, 24-hour peak discharge rate (Q_p) to predevelopment rates.

The overbank flood control requirement (Q_p) does not apply in certain conditions, including:

- The site discharges directly tidal waters or fifth order (fifth downstream) or larger streams. Refer to Section 4.3 for instructions.
- A downstream analysis reveals that overbank control is not needed (see section 4.10).

Basis for Design of Overbank Flood Control

When addressing the overbank flooding design criteria, the following represent the minimum basis for design:

Chapter 4: Unified Stormwater Sizing Criteria Section 4.5 Overbank Flood Control Criteria (Qp)

- TR-55 and TR-20 (or approved equivalent) will be used to determine peak discharge rates.
- When the predevelopment land use is agriculture, the curve number for the pre-developed condition shall be "taken as meadow".
- Off-site areas should be modeled as "present condition" for the 10-year storm event.
- Figure 4.3 indicates the depth of rainfall (24 hour) associated with the 10-year storm event throughout the State of New York.
- The length of overland flow used in t_c calculations is limited to no more than 150 feet for predevelopment conditions and 100 feet for post development conditions. On areas of extremely flat terrain (<1% average slope), this maximum distance is extended to 250 feet for predevelopment conditions and 150 feet for post development conditions.

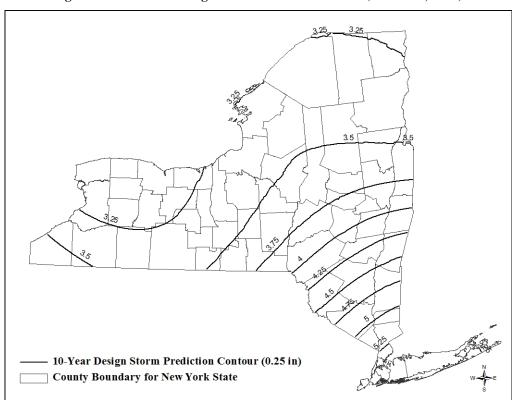


Figure 4.3: Ten-Year Design Storm in New York State (NYSDEC, 2013)

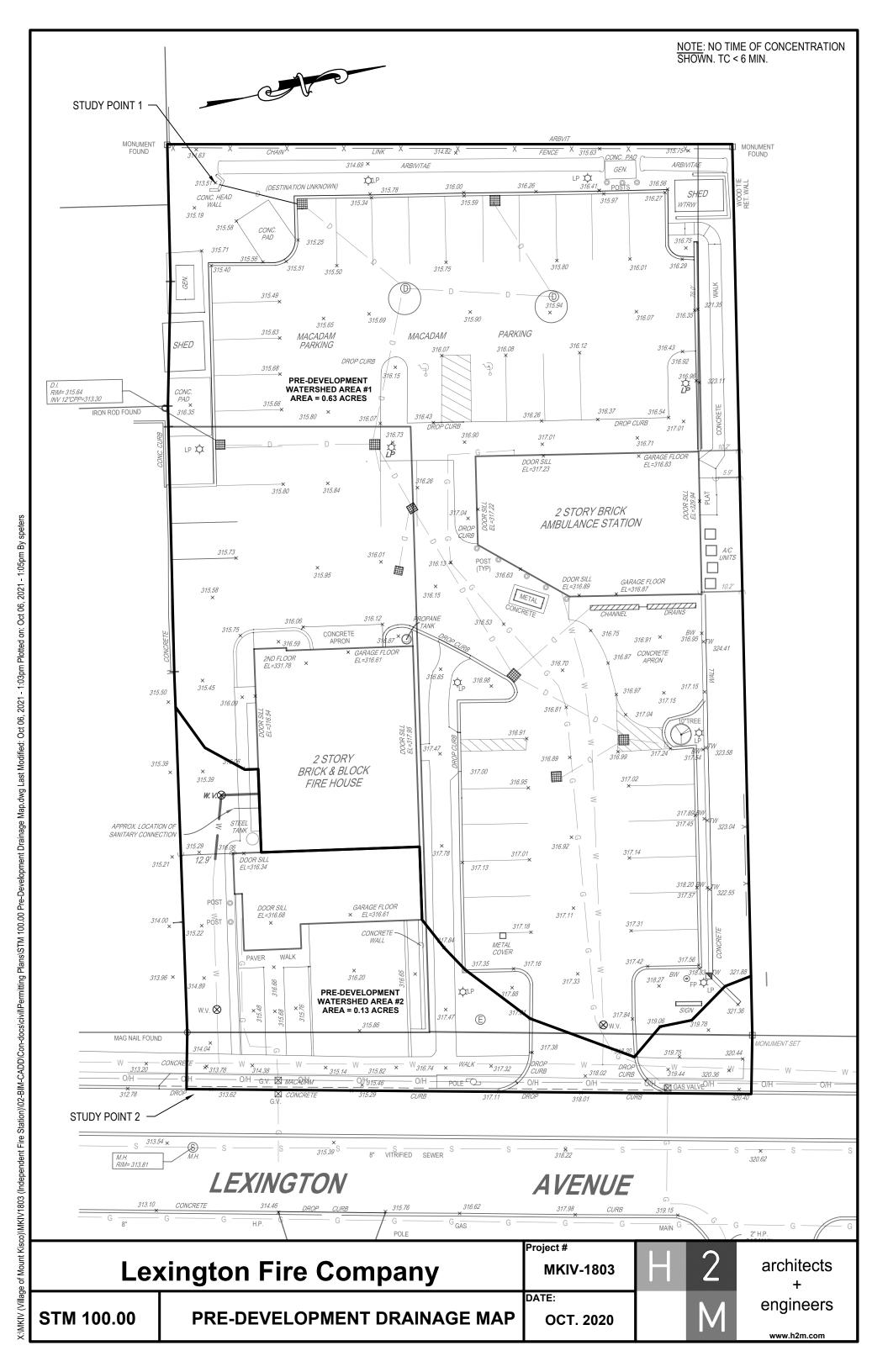
Chapter 4: Unified Stormwater Sizing Criteria

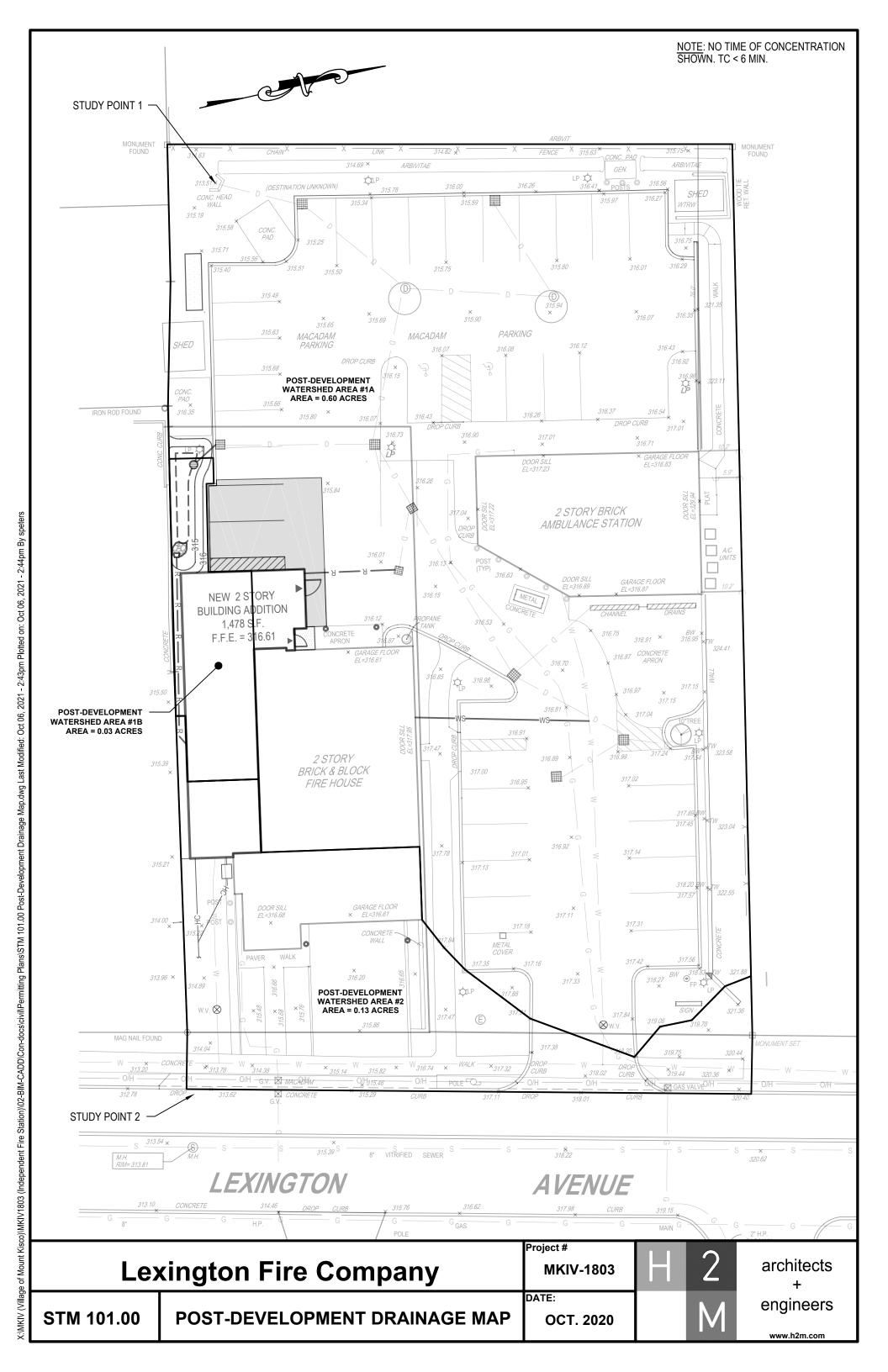
Section 4.7 Alternative Method

- When determining the storage required to reduce 100-year flood peaks, model off-site areas under current conditions.
- When determining storage required to safely pass the 100-year flood, model off-site areas under ultimate conditions.

100-Year Design Storm Prediction Contour (0.5 in)

County Boundary for New York State


Figure 4.4: One Hundred-Year Design Storm in New York State (NYSDEC, 2013)


Section 4.7 Alternative Method

New development causes changes to runoff volume, flow rates, timing of runoff and, most importantly, habitat destruction and degradation of the physical and chemical quality of the receiving waterbody. Traditionally, event based design storms are used for evaluation of hydrology and sizing of stormwater management practices. With an increasing need for assessment of the long term effects of development and maintenance of pre-development hydrology, the necessity of continuous simulation modeling as an effective tool for analysis and evaluation of flow-duration, downstream quality, quantity, biological, and hydro-habitat sustainability has been acknowledged.

Appendix H

Pre and Post Development Drainage Maps Engineering Plans

