SECTION 23 05 00 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Concrete bases.
 - 11. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. CPVC: Chlorinated polyvinyl chloride plastic.
 - 2. PE: Polyethylene plastic.

- 3. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
- I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
 - b. Others as approved by Engineer.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
 - b. Others as approved by Engineer
- C. Plastic-to-Metal Transition Unions: MSS SP-107, PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.
 - b. NIBCO, Inc.; Chemtrol Div.
 - c. Others as approved by Engineer

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.

- f. Watts Industries, Inc.; Water Products Div.
- g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035or 2070-kPa) minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035or 2070-kPa) minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 - 1. Available Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.

- b. Calpico, Inc.
- c. Metraflex Co.
- d. Pipeline Seal and Insulator, Inc.
- 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 3. Pressure Plates: Stainless steel. Include two for each sealing element.
- 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.
- E. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Type: With exposed-rivet hinge, set screw, and chrome-plated finish.

- G. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.

- b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with spring clips.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
- g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
- h. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
- i. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- M. Sleeves are not required for core-drilled holes.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint.
- Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.

- 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- T. Verify final equipment locations for roughing-in.
- U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using leadfree solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting".
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project. Refer to Division 03, "Cast-in-Place Concrete" for additional requirements.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.9 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 23 05 00

SECTION 23 05 13 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

- 1. Permanent-split capacitor.
- 2. Split phase.
- 3. Capacitor start, inductor run.
- 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 05 17 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 - 3. Others as approved by Engineer.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Presealed Systems.
 - 2. Others as approved by Engineer.
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.

- 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing.
- 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.
- 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves.
 - b. Piping NPS 6 (DN 150) size> and Larger: Galvanized-steel-pipe sleeves <Insert.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

- b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel wall sleeves with sleeveseal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel wall sleeves with sleeveseal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 23 05 17

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 05 18 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and set screw fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and set screw fastener.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and set screw fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
- 1. Escutcheons :
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deeppattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring cups..
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Onepiece, cast-brass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Onepiece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed or exposed-rivet hinge and set screw.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

END OF SECTION 23 05 18

SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART – 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Pipe stands.
 - 6. Equipment supports.
- B. Related Sections:
 - 1. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 2. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
 - 3. Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.

- 3. ERICO International Corporation.
- 4. National Pipe Hanger Corporation.
- 5. PHS Industries, Inc.
- 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
- 7. Piping Technology & Products, Inc.
- 8. Rilco Manufacturing Co., Inc.
- 9. Value Engineered Products, Inc.
- 10. Approved Equal
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100psig (688-kPa) minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100psig (688-kPa) minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless- steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or Vshaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Non-staining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:

- 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

- a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. PS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
- 5. Pipes NPS 8 (DN 200) and Larger: Include reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm)

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use padded hangers for piping that is subject to scratching.
- G. Use thermal-hanger shield inserts for insulated piping and tubing.
- H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C), pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.

- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4 (DN 15 to DN 100), to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8 (DN 20 to DN 200).
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8 (DN 10 to DN 200).
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3 (DN 10 to DN 80).
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 (DN 65 to DN 900) if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24 (DN 65 to DN 600), from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 (DN 50 to DN 600) if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 (DN 50 to DN 750) if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
- Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.
- J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use Mechanical Expansion Anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29

THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 23 05 48 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Freestanding spring isolators.
 - 4. Elastomeric hangers.
 - 5. Spring hangers.
 - 6. Pipe riser resilient supports.
 - 7. Resilient pipe guides.
 - 8. Restraining braces and cables.
 - 9. Steel and inertia, vibration isolation equipment bases.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 90.
 - 2. Building Classification Category: III.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.5 SUBMITTALS

A. Product Data: For the following:

- 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
- B. Coordination Drawings: Show coordination of bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code – Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ace Mountings Co., Inc.
 - 2. Amber/Booth Company, Inc.
 - 3. California Dynamics Corporation.
 - 4. Isolation Technology, Inc.
 - 5. Kinetics Noise Control.
 - 6. Mason Industries.
 - 7. Vibration Eliminator Co., Inc.
 - 8. Vibration Isolation.
 - 9. Vibration Mountings & Controls, Inc.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
 - 2. Minimum Durometer of 40.
 - 3. Basis of Design: Mason Industries Type W.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

- 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.
- 3. Minimum Static Deflection of 0.35".
- 4. Basis of Design: Mason Industries Type ND.
- D. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
 - 7. Basis of Design: Mason industries Type SLF.
- E. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.
- F. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
 - 8. Basis of Design: Mason Industries Type 30N.
- G. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch- (13-mm-) thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig (3.45 MPa) and for equal resistance in all directions.
- H. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch- (13-mm-) thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be

removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 VIBRATION ISOLATION EQUIPMENT BASES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Isolation Technology, Inc.
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibration Eliminator Co., Inc.
 - 7. Vibration Isolation.
 - 8. Vibration Mountings & Controls, Inc.
- B. Steel Base: Factory-fabricated, welded, structural-steel bases and rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and –tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and and wind-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation -control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by OSHPD.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.
- D. Spring Hangers shall be used for all piping in equipment rooms or adjacent to noisesensitive areas.

3.3 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Equipment Restraints:

- 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
- C. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m)] o.c.
 - 3. Brace a change of direction longer than 12 feet (3.7 m).
- D. Install cables so they do not bend across edges of adjacent equipment or building structure.
- E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- F. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- H. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:

- 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
- 2. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
- 3. Measure isolator restraint clearance.
- 4. Measure isolator deflection.
- 5. Verify snubber minimum clearances.
- 6. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 01 Section "Demonstration And Training."

3.7 HVAC VIBRATION-CONTROL DEVICE SCHEDULE

A. Supported or Suspended Equipment: Refer to Drawing Plans.

END OF SECTION 23 05 48

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Valve tags.
 - 5. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

- 2.1 EQUIPMENT LABELS
 - A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch (0.8-mm) Stainless steel, 0.025-inch (0.64-mm) Aluminum, 0.032-inch (0.8-mm) or anodized aluminum, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 - B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black.
 - 3. Background Color: White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 - C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
 - D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
 - 1. Tag Material: Brass, 0.032-inch (0.8-mm) Stainless steel, 0.025-inch (0.64-mm) Aluminum, 0.032-inch (0.8-mm) or anodized aluminum, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.

- 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches (100 by 178 mm).
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.

- 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections on end-use fixtures and units. List tagged valves in schedule.
- B. Valve-Tag Application Schedule:
 - 1. Valve-Tag Size and Shape: 1-1/2 inches (38mm), round.
 - 2. Valve-Tag Color: Natural
 - 3. Letter Color: Black

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 23 05 53

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- D. Certified TAB reports.
- E. Sample report forms.
- F. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.

- 3. Application.
- 4. Dates of use.
- 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC as a TAB technician.
- B. TAB Conference: Meet with Architect, Owner and Construction Manager on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Coordination and cooperation of trades and subcontractors.
 - d. Coordination of documentation and communication flow.
- C. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard TAB contractor's forms approved by Architect Owner and Construction Manager.
- E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section

"Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units and verify that they are accessible and their controls are connected and functioning.
- K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

- L. Examine operating safety interlocks and controls on HVAC equipment.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Automatic temperature-control systems are operational.
 - 3. Equipment and duct access doors are securely closed.
 - 4. Balance, smoke, and fire dampers are open.
 - 5. Isolating and balancing valves are open and control valves are operational.
 - 6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and SMACNA's "HVAC Systems Testing, Adjusting, and Balancing" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "Duct Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heatrecovery equipment, and air washers, under final balanced conditions.
 - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 6. Obtain approval from Engineer via Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-

motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-

heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each electric heating coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 - 5. Calculated kilowatt at full load.
 - 6. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Airflow.
 - 3. Air pressure drop.
 - 4. Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.9 TOLERANCES

- A. Set HVAC system's air flow rates
- B. within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.

3.10 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.11 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:

- a. Settings for outdoor-, return-, and exhaust-air dampers.
- b. Conditions of filters.
- c. Cooling coil, wet- and dry-bulb conditions.
- d. Face and bypass damper settings at coils.
- e. Fan drive settings including settings and percentage of maximum pitch diameter.
- f. Inlet vane settings for variable-air-volume systems.
- g. Settings for supply-air, static-pressure controller.
- h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Duct, outlet, and inlet sizes.
 - 3. Terminal units.
 - 4. Balancing stations.
 - 5. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches (mm), and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 - 3. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Filter static-pressure differential in inches wg (Pa).
 - f. Preheat-coil static-pressure differential in inches wg (Pa).
 - g. Cooling-coil static-pressure differential in inches wg (Pa).
 - h. Heating-coil static-pressure differential in inches wg (Pa).
 - i. Outdoor airflow in cfm (L/s).
 - j. Return airflow in cfm (L/s).
 - k. Outdoor-air damper position.

- I. Return-air damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch (mm) o.c.
 - f. Make and model number.
 - g. Face area in sq. ft. (sq. m).
 - h. Tube size in NPS (DN).
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Average face velocity in fpm (m/s).
 - c. Air pressure drop in inches wg (Pa).
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
 - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 - f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 - h. Refrigerant expansion valve and refrigerant types.
 - i. Refrigerant suction pressure in psig (kPa).
 - j. Refrigerant suction temperature in deg F (deg C).
- G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h (kW).
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - I. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches (mm), and bore.
 - n. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 - 2. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm (L/s).
 - b. Entering-air temperature in deg F (deg C).
 - c. Leaving-air temperature in deg F (deg C).
 - d. Air temperature differential in deg F (deg C).
 - e. Entering-air static pressure in inches wg (Pa).
 - f. Leaving-air static pressure in inches wg (Pa).

- g. Air static-pressure differential in inches wg (Pa).
- h. Low-fire fuel input in Btu/h (kW).
- i. High-fire fuel input in Btu/h (kW).
- j. Manifold pressure in psig (kPa).
- k. High-temperature-limit setting in deg F (deg C).
- I. Operating set point in Btu/h (kW).
- m. Motor voltage at each connection.
- n. Motor amperage for each phase.
- o. Heating value of fuel in Btu/h (kW).
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btu/h (kW).
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Air flow rate in cfm (L/s).
 - i. Face area in sq. ft. (sq. m).
 - j. Minimum face velocity in fpm (m/s).
 - 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btu/h (kW).
 - b. Air flow rate in cfm (L/s).
 - c. Air velocity in fpm (m/s).
 - d. Entering-air temperature in deg F (deg C).
 - e. Leaving-air temperature in deg F (deg C).
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches (mm), and bore.
 - h. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).

3.

- g. Number, make, and size of belts.
- Test Data (Indicated and Actual Values):
- a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Suction static pressure in inches wg (Pa).
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F (deg C).
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated air flow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual air flow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Entering-air temperature in deg F (deg C).
 - c. Leaving-air temperature in deg F (deg C).
- L. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.12 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.

- 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect and Owner.
 - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Architect and Owner.
 - 3. Construction Manager shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
 - 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
 - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.13 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
- B. Related Sections:
 - 1. Division 23 Section "HVAC Equipment Insulation."
 - 2. Division 23 Section "HVAC Piping Insulation."
 - 3. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and factory- applied jackets.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application at linkages of control devices.
- C. Qualification Data: For qualified Installer.
- D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- E. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
 - 2. Concealed Duct:
 - a. Nominal density of 0.75 PCF.
 - b. Thermal conductivity (k-value) of 0.29 BTU-in/hr x ft² x °F.
 - c. Installed thermal resistance (R-value), for 2-in. thick insulation, of 6.0.
 - 3. Exposed Duct:
 - a. Nominal density of 1.0 PCF.
 - b. Thermal conductivity (k-value) of 0.27 BTU-in/hr x ft² x °F.
 - c. Installed thermal resistance (R-value), for 2-in. thick insulation, of 6.0.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.

- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
- d. Mon-Eco Industries, Inc.; 22-25.
- 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for <u>outdoor</u> use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.

- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.4 SEALANTS

- A. FSK Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II..

2.6 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 2.5 inches.
 - 3. Thickness: 9 mils.
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
 - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, and securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

- a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
- b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.
 - Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. C & F Wire.

2.8 CORNER ANGLES

A. Stainless-Steel Corner Angles: 0.024 inch (0.61 mm) thick, minimum 1 by 1 inch (25 by 25 mm), stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" firestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over compress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts (supply air and outdoor air) and plenums (intake and exhaust) with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
 - 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
 - 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

3.7 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
- B. Items Not Insulated:
 - 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 2. Factory-insulated flexible ducts.
 - 3. Factory-insulated plenums and casings.
 - 4. Flexible connectors.
 - 5. Vibration-control devices.

6. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed and exposed, round, supply-air and outdoor-air duct shall be furnished with 2-in. internal insulation as specified in section 23 31 13 Metal Ducts.
- B. Concealed and exposed, round, return-air duct shall not be insulated.
- C. Concealed, round, exhaust-air duct between isolation dampers and penetration of building exterior shall be furnished with insulation same as for round supply air duct.
- D. Concealed, rectangular, supply- and return- air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. nominal density.
- E. Concealed, rectangular, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. nominal density.
- F. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- G. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- H. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- I. Exposed, rectangular, exhaust-air duct shall not be insulated.
- J. Exposed, outdoor-air plenum insulation shall be the following:
 - 1. Rigid Glass Fiber Board: 2 inches and 0.75-lb/cu. ft. nominal density.
- K. Exposed, exhaust-air plenum insulation shall be the following:
 - 1. Rigid Glass Fiber Board: 2 inches and 0.75-lb/cu. ft. nominal density.

END OF SECTION 23 07 13

SECTION 23 07 16 - HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC equipment that is not factory insulated:
 - 1. Exhaust fan.
- B. Related Sections:
 - 1. Division 23 Section "Duct Insulation."
 - 2. Division 23 Section "HVAC Piping Insulation."

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail removable insulation at equipment connections.
 - 4. Detail application at linkages of control devices.
 - 5. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Preformed Pipe Insulation Materials: 12 inches (300 mm) long by NPS 2 (DN 50).
 - 2. Sheet Form Insulation Materials: 12 inches (300 mm) square.
 - 3. Sheet Jacket Materials: 12 inches (300 mm) square.
 - 4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.
- D. Qualification Data: For qualified Installer.
- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Breeching Insulation Schedule" and "Equipment Insulation Schedule" articles for where insulating materials shall be applied.

- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- G. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - Type II, 1200 Deg F (649 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.

- c. Knauf Insulation; Pipe and Tank Insulation.
- d. Manson Insulation Inc.; AK Flex.
- e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
- C. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H .B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.

- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
- d. Mon-Eco Industries, Inc.; 55-50.
- e. Vimasco Corporation; WC-1/WC-5.
- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.4 SEALANTS

- A. ASJ Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 Johns Manville; Zeston.

- b. P.I.C. Plastics, Inc.; FG Series.
- c. Proto Corporation; LoSmoke.
- d. Speedline Corporation; SmokeSafe.
- 2. Adhesive: As recommended by jacket material manufacturer.
- 3. Color: White
- 4. Factory-fabricated tank heads and tank side panels.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 316; 0.015 inch (0.38 mm) thick, 3/4 inch (19 mm) wide with wing seal.
 - 3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing seal
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-)diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.

- 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers, Series.
 - 2) GEMCO; Peel & Press.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

- D. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.
 - Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. C & F Wire.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.

- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4inches (100 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches (150 mm) from each end. Install wire or cable between two circumferential girdles 12 inches (300 mm) o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches (1200 mm) o.c. Use this network for securing insulation with tie wire or bands.
 - 7. Stagger joints between insulation layers at least 3 inches (75 mm).
 - 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.

- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.6 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to oneocation(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.

END OF SECTION 23 07 16

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Heating hot-water piping, indoors.
- B. Related Sections:
 - 1. Division 23 Section "HVAC Equipment Insulation."
 - 2. Division 23 Section "Duct Insulation."

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
- C. Qualification Data: For qualified Installer.
- D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- E. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.

- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. PVC Jacket Adhesive: Compatible with PVC jacket.

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
- 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.

- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
- d. Mon-Eco Industries, Inc.; 55-50.
- e. Vimasco Corporation; WC-1/WC-5.
- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.4 SEALANTS

- A. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.8 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

- C. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.
 - Manufacturers: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. C & F Wire.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.

- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm)o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

- 4. Manholes.
- 5. Handholes.
- 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular

surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

- 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded

fittings, three locations of welded fittings, for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

- A. Heating-Hot-Water Supply and Return, 200 Deg F and Below:
 - NPS 1-1/2 (DN 37) and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inch (37 mm) thick.
 - 2. NPS 2 (DN 50) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.
- B. Steam Supply and Return, 250 Deg F and Below:
 - NPS 3 (DN 75) and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2-1/2 inch (64 mm) thick.
 - NPS 4 (DN 100) and Larger: Insulation shall be the following:

- a. Mineral-Fiber, Preformed Pipe, Type I: 3 inches (75 mm) thick.
- C. Steam Supply and Return, 350 Deg F and Below:
 - 1. NPS 3/4 (DN 19) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 3 inch (75 mm) thick.
 - NPS 1 (DN 25) to NPS 1-1/4 (DN 31): Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 4 inches (100 mm) thick.
 - 3. NPS 1-1/2 (DN 37) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 4-1/2 inches (113 mm) thick.
- D. Steam Supply and Return, 350 Deg F and Above:
 - 1. NPS 3/4 (DN 19) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 4-1/2 inch (113 mm) thick.
 - 2. NPS 1 (DN 25) and Above: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 5 inches (150 mm) thick.
- E. Steam Supply and Return, 350 Deg F and Above:
 - 1. NPS 1-1/2 (DN 37) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 1 inch (25 mm) thick.
 - b. Cellular Glass, 2 inches (50 mm) thick
 - NPS 2 (DN 50) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

END OF SECTION 23 07 19

2.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 09 00 – HVAC INSTRUMENTATION AND CONTROLS

PART 1 - GENERAL

1.1 SYSTEM DESCRIPTION

- A. An Energy Performance Contract recently installed by Day Automation Building Services, Inc., shall be the basis of design. The district requires a continuation of the existing EMS to be installed by this contractor. Contact: David Kincaid Tel: 585-315-3007.
- B. The entire Energy Management and Control System (EMCS) shall be comprised of a network of direct digital controllers communicating on a contiguous communication network. All information from the EMCS shall be available to local computers within the building via local Intranet and to remote computers or from multiple facilities via the Internet. The EMCS shall be capable of communicating to third party systems such as HVAC, lighting, energy metering, power management, security, access control and other building management related devices with open, interoperable communication capabilities.
- C. All labor, material, equipment and software not specifically referred to herein or on the plans, that are required to meet the functional intent of this specification, shall be provided without additional cost to the Owner.
- D. The Orange, Rockland, Ulster County School District presently has an extensive Schneider Electric IA Series Energy Management System by Day Automation Inc., installed in all schools buildings as part of past capital projects as well as an existing performance contract. The intent of this project is to extend and interoperate (read/write) with the existing Schneider system. The energy management software will host the new and existing equipment being installed under this project to maintain integrity for centralized scheduling, trending, programming and alarming. PC Desktop icons that "link" to a separate EMS system are not acceptable. Any costs associated with connecting to the existing energy management system, including factory licensed software, programming, training etc., shall be part of the controls contractor's bid. Third party EMS or integration software used to perform the integration/interoperation will not be acceptable. The contractor must demonstrate their ability to perform the integration to the existing energy management system prior to submittal acceptance and invoicing. Provide a list of at least three (3) sites where such integration has been performed within a 60 mile radius of the site. All new and existing systems being controlled will be shown via dynamic Web based graphics with all pertinent system alarms for proper operation and maintenance. The use of separate PC workstations, gateways, metalinks and additional software graphic packages to accomplish this integration will not be accepted.
- E. Prospective bidders shall visit the School District Buildings to verify existing DDC controls equipment and Contractors ability to be compatible with these controls before bid. Contact the Schools Supt. of Buildings and Grounds for details. Contractor shall provide Web based graphics for controlled equipment. Contractor shall configure graphic display to meet Owner and Engineer requirements. The Temperature Controls Contractor (TCC) shall provide each of the following portions of the complete EMCS as a standalone system that can communicate with any other DDC system which is following the same protocol.
 - (a) Operator Workstation: Existing

F. All proposed controls contractors that intend on interoperating with the existing DDC system utilizing DDC controls other than those presently installed in the district, shall submit a Technical Proposal, complete with the diagrams, Specifications Compliance Reports, product information, and supporting documentation outlined below 2 weeks prior to bid. The technical proposal will be utilized to evaluate the methodology that will be used to implement the interoperation and integration of the new controls of this project into the existing district wide energy management system. It will also be used as a basis for vendor qualification on for the project. Arrange the Technical Proposal in order of the specification article numbers.

Include the following in a complete Technical Proposal:

- 1. A list of local jobs (three minimum) of similar type and size the bidder has installed, utilizing the products proposed for this project, with owner's representatives' names and telephone numbers for reference. This list should directly reflect:
 - i. projects that include direct integration to third party microprocessor controllers of the type specified within the scope where an integration and interoperation of BACnet controls has been successfully achieved between two different manufacturers' controls systems.
- 2. EMCS network wiring diagram showing interconnection of all panels, workstations, system printer(s) etc. A diagram describing system architecture for this project with product code numbers for workstation, network controllers, application specific controllers, transducers, sensors, communication network, etc.
- 3. Provide information on owner training provided as part of the bid package as well as additional opportunities and factory schools available with associated cost. Include details of operator HVAC Training System as specified herein.
- 4. Specification Compliance Report. The specification compliance report shall address every paragraph within this specification (230900), utilizing an outline format, as follows:
 - a. Comply-bid package complies without exception;
 - b. Exception bid package meets the functional intent, but not the letter of the specification. For each paragraph that an exception is taken, identify all deviations from what is specified in the given paragraph and provide a description of what is excluded, what is included, and how the contractor intends to meet the functional intent;
 - c. Does not comply bid package cannot meet specified function and will not be provided.

For all paragraphs indicates as "Comply" or Exception", provide and reference factory product documentation to substantiate compliance.6.

5. Statement that all products used on this project is of current manufactures and are readily available through multiple distribution channels. Products in "field testing" status are not acceptable.

1.2 SUBMITTAL

- A. Eight copies of shop drawings of the entire control system shall be submitted and shall consist of a complete list of equipment and materials, including manufacturers catalog data sheets and installation instructions. Shop drawings shall also contain complete wiring and schematic diagrams, software descriptions, calculations, and any other details required to demonstrate that the system has been coordinated and will properly function as a system. Terminal identification for all control wiring shall be shown on the shop drawings. A complete written Sequence of Operation, and input/output point list of all connected points to the EMCS system shall be included with the submittal package.
- B. Submittal shall also include a system schematic diagram depicting (as required) the Full User Interface (FUI) and Browser User Interface (BUI) computers / peripherals, Network Area Controllers (NAC), 3rd party controllers and the networking equipment required to make a complete and functional system.
- C. Upon completion of the work, provide an electronic set of 'as-built' drawings, job documentation and application software on magnetic floppy disk media or compact disk. Drawings shall be provided as AutoCAD[™] or Visio[™] compatible files. Submittal data such as sequence of operation and cut sheets shall be provided in an Adobe Acrobat[™] format.

Eight printed copies of the 'as-built' drawings shall be provided in addition to the documents on magnetic floppy disk media or compact disk.

- 1. Provide 2 hard copy back-up disks and CD-ROM or USB Drive backup of all software programs and configurations, as the system exists at final acceptance.
- 2. Deliver one set of back-up disks to the Owner's Representative for turnover to the school district.
- 3. Deliver one set of back-up disks and the CD-ROM to Engineer.
- 4. Upon closeout with the first year, send updated disks and CD-ROM to the above listed personnel.
- 5. Provide all revisions and/or upgrades made to the system software during the one-year guarantee warranty period, at no additional cost to the Owner.

1.3 RELATED WORK SPECIFIED ELSEWHERE

- A. Division 23 HVAC Contractor:
 - 1. Provides taps and installation of wells in piping for control system sensors and flow measurement devices.
 - 2. Installation of any control system dampers.
 - 3. Installation of any control valves.
- B. Division 26, Electrical:
 - 1. Provides motor starters and disconnect switches (unless otherwise noted).
 - 2. Provides power wiring and conduit (unless otherwise noted).
 - 3. Provision, installation and wiring of smoke detectors (unless otherwise noted).

1.4 AGENCY AND CODE APPROVALS

- A. All products of the EMCS shall be provided with the following agency approvals. Verification that the approvals exist for all submitted products shall be provided with the submittal package. Systems or products not currently offering the following approvals are not acceptable.
 - 1. UL-916 Energy Management Systems
 - 2. ULC, UL Canadian Standards Association
 - 3. FCC, Part 15, Subpart J, Class A Computing Devices

1.5 SOFTWARE LICENSE AGREEMENT

A. The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights to disclosure of trade secrets contained within such software.

1.6 DELIVERY, STORAGE AND HANDLING

A. Provide factory-shipping cartons for each piece of equipment and control device. Maintain cartons through shipping, storage, and handling as required to prevent equipment damage. Store equipment and materials inside and protected from weather.

1.7 JOB CONDITIONS

A. Cooperation with Other Trades: Coordinate the Work of this section with that of other sections to insure that the Work will be carried out in an orderly fashion. It shall be this Contractor's responsibility to check the Contract Documents for possible conflicts between his work and that of other crafts in equipment location, pipe, duct and conduit runs, electrical outlets and fixtures, air diffusers, and structural and architectural features.

1.8 QUALITY ASSURANCE

A. The Manufacturer of the EMCS digital controllers shall provide documentation supporting compliance with ISO-9001 (Model for Quality Assurance in Design/Development, Production, Installation and Servicing). Product literature provided by the EMCS digital controller manufacturer shall contain the ISO-9001 Certification Mark from the applicable registrar.

1.9 SPECIFICATION NOMENCLATURE

- A. Acronyms used in this specification are as follows:
 - 1. EMS Energy Management System
 - 2. NAC Network Area Controller Also known as JACE
 - 3. IDC Interoperable Digital Controller
 - 4. FUI Full User Interface
 - 5. BUI Browser User Interface
- 6. DDC Direct Digital Controls
- 7. LAN Local Area Network
- 8. WAN Wide Area Network
- 9. OOT Object Oriented Technology
- 10. PICS Product Interoperability Compliance Statement

PART 2 - MATERIALS

2.1 GENERAL

A. The Energy Management Control System (EMS) shall be comprised of a network of interoperable, stand-alone digital controllers, a computer system, graphical user interface

software, portable operator terminals, printers, network devices and other devices as specified herein.

B. The installed system shall provide secure password access to all features, functions and data contained in the overall EMCS.

2.2 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURES

- A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system with the capability to integrate BACnet and Invensys Network 8000 technology communication protocols in one open, interoperable system.
- B. The programming computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. In addition, adherence to industry standards including ANSI / ASHRAE™ Standard 135-1995, to assure interoperability between all system components is required. For each BACnet device that does not have BACnet certification, the device supplier must provide an XIF file for the device. All components and controllers supplied under this contract shall be true "peer-to-peer" communicating devices. Components or controllers requiring "polling" by a host to pass data shall not be acceptable.
- C. The supplied system must incorporate the ability to access all data using Java enabled browsers without requiring proprietary operator interface and configuration programs. An Open DataBase Connectivity (ODBC) or Structured Query Language (SQL) compliant server database is required for all system database parameter storage. This data shall reside on a supplier-installed server for all database access. Systems requiring proprietary database or proprietary user interface programs shall not be acceptable.
- D. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer's internal Intranet network. Systems employing a "flat" single tiered architecture shall not be acceptable.
 - 1. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 5 seconds for network connected user interfaces.

2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or dial-up connected user interfaces.

2.3 NETWORKS

- A. The Local Area Network (LAN) shall be either a 10 or 100 Megabits/sec Ethernet network supporting, Java, XML, HTTP, and CORBA IIOP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Area Controllers (NACs), Browser User Interfaces (BUIs) and/or Full User Interfaces (FUIs).
- B. Local area network minimum physical and media access requirements:
 - 1. Ethernet; IEEE standard 802.3
 - 2. Cable; 10 Base-T, UTP-8 wire, category 5
 - 3. Minimum throughput; 10 Mbps, with ability to increase to 100 Mbps

2.4 NETWORK ACCESS

- A. Remote Access.
 - For Local Area Network installations, provide access to the LAN from a remote location, via the Internet. The owner shall provide a connection to the Internet to enable this access via high-speed cable modem, asynchronous digital subscriber line (ADSL) modem, and ISDN line, T1 Line or via the customer's Intranet to a corporate server providing access to an Internet Service Provider (ISP). Owner agrees to pay monthly access charges for connection and ISP.
 - 2. Where no Local Area Network exists, EMCS supplier shall provide the following:
 - a. 8 Port Ethernet hub (3Com, or equal)
 - b. Ethernet router (Cisco or equal)
 - The owner shall provide a connection to the Internet to enable this access via highspeed cable modem, asynchronous digital subscriber line (ADSL) modem, ISDN line or T1 Line. Owner agrees to pay monthly access charges for connection and ISP

2.5 NETWORK AREA CONTROLLER (NAC OR JACE)

A. The Network Area Controller (NAC) shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control

devices connected to the NAC. It shall be capable of executing application control programs to provide:

- 1. Calendar functions
- 2. Scheduling
- 3. Trending
- 4. Alarm monitoring and routing
- 5. Time synchronization
- 6. Integration of BACnet controller data
- 7. Network Management functions for all BACnet based devices
- B. The Network Area Controller must provide the following hardware features as a minimum:

- 1. One Ethernet Port -10 / 100 Mbps
- 2. One RS-232 port
- 3. One BACnet Interface Port 78KB FTT-10A
- 4. Battery Backup
- 5. Flash memory for long term data backup (If battery backup or flash memory is not supplied, the controller must contain a hard disk with at least 1 gigabyte storage capacity)
- 6. The NAC must be capable of operation over a temperature range of 0 to 55°C
- 7. The NAC must be capable of withstanding storage temperatures of between 0 and 70°C
- 8. The NAC must be capable of operation over a humidity range of 5 to 95% RH, noncondensing
- C. The NAC shall provide multiple user access to the system and support for ODBC or SQL. A database resident on the NAC shall be an ODBC-compliant database or must provide an ODBC data access mechanism to read and write data stored within it.
- D. The NAC shall support standard Web browser access via the Intranet/Internet. It shall support a minimum of 16 simultaneous users.
- E. Event Alarm Notification and actions
 - 1. The NAC shall provide alarm recognition, storage; routing, management, and analysis to supplement distributed capabilities of equipment or application specific controllers.
 - 2. The NAC shall be able to route any alarm condition to any defined user location whether connected to a local network or remote via dial-up, telephone connection, or wide-area network.
 - 3. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including but limited to:
 - a. To alarm
 - b. Return to normal
 - c. To fault
 - 4. Provide for the creation of an unlimited number of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc.
 - 5. Provide timed (schedule) routing of alarms by class, object, group, or node.
 - 6. Provide alarm generation from binary object "runtime" and /or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control.
- F. Control equipment and network failures shall be treated as alarms and annunciated.
- G. Alarms shall be annunciated in any of the following manners as defined by the user:
 - 1. Screen message text
 - 2. Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:
 - a. Day of week
 - b. Time of day
 - c. Recipient
 - 3. Pagers via paging services that initiate a page on receipt of email message
 - 4. Graphic with flashing alarm object(s)
 - 5. Printed message, routed directly to a dedicated alarm printer

- H. The following shall be recorded by the NAC for each alarm (at a minimum):
 - 1. Time and date
 - 2. Location (building, floor, zone, office number, etc.)
 - 3. Equipment (air handler #, accessway, etc.)
 - 4. Acknowledge time, date, and user who issued acknowledgement.
 - 5. Number of occurrences since last acknowledgement.
- I. Alarm actions may be initiated by user defined programmable objects created for that purpose.
- J. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.
- K. A log of all alarms shall be maintained by the NAC and/or a server (if configured in the system) and shall be available for review by the user.
- L. Provide a "query" feature to allow review of specific alarms by user-defined parameters.
- M. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.
- N. An Error Log to record invalid property changes or commands shall be provided and available for review by the user.

2.6 DATA COLLECTION AND STORAGE

- A. The NAC shall have the ability to collect data for any property of any object and store this data for future use.
- B. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:
 - 1. Designating the log as interval or deviation.
 - 2. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
 - 3. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
 - 4. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
 - 5. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
- C. All log data shall be stored in a relational database in the NAC and the data shall be accessed from a server (if the system is so configured) or a standard Web Browser.
- D. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.
- E. All log data shall be available to the user in the following data formats:
 - 1. HTML
 - 2. XML
 - 3. Plain Text

- 4. Comma or tab separated values
- F. Systems that do not provide log data in HTML and XML formats at a minimum shall not be acceptable.
- G. The NAC shall have the ability to archive its log data either locally (to itself), or remotely to a server or other NAC on the network. Provide the ability to configure the following archiving properties, at a minimum:
 - 1. Archive on time of day
 - 2. Archive on user-defined number of data stores in the log (buffer size)
 - 3. Archive when log has reached it's user-defined capacity of data stores
 - 4. Provide ability to clear logs once archived

2.7 AUDIT LOG

A. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has

reached its user-defined buffer size. Provide the ability to archive the log locally (to the NAC), to another NAC on the network, or to a server. For each log entry, provide the following data:

- 1. Time and date
- 2. User ID
- 3. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

2.8 DATABASE BACKUP AND STORAGE

- A. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.
- B. Copies of the current database and, at the most recently saved database shall be stored in the NAC. The age of the most recently saved database is dependent on the user-defined database save interval.
- C. The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

2.9 INTEROPERABLE DIGITAL CONTROLLER (IDC)

- A. Controls shall be microprocessor based Interoperable BACnet[™] (IDC). Where possible, all Interoperable Digital Controllers shall bear the applicable BACnet[™] interoperability logo on each product delivered.
- B. HVAC control shall be accomplished using BACnet[™] based devices where the application has a BACnet profile defined. Where BACnet devices are not available for a particular application, devices based on BACnet shall be acceptable. For each BACnet device that does not have BACnet certification, the device supplier must provide an XIF file for the device. Publicly available specifications for the Applications Programming Interface (API) must be provided for each BACnet controller defining the programming or setup of each device. All programming,

documentation and programming tools necessary to set up and configure the supplied devices per the specified sequences of operation shall be provided.

- C. The BACnet network trunk shall be run to the nearest Network Area Controller (NAC). A maximum of 126 devices may occupy any one BACnet trunk and must be installed in buss architecture using the appropriate trunk termination device. All BACnet devices must be supplied using FTT-10A BACnet communications transceivers.
- D. The Network Area Controller will provide all scheduling, alarming, trending, and network management for the BACnet based devices.
- E. The IDCs shall communicate with the NAC at a baud rate of not less than 78.8K baud. The IDC shall provide LED indication of communication and controller performance to the technician, without cover removal.
- F. All IDCs shall be fully application programmable and shall at all times maintain their BACnet certification. Controllers offering application selection only (non-programmable), require a 10% spare point capacity to be provided for all applications. All control sequences within or programmed into the IDC shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.
- G. The supplier of any programmable IDC shall provide one copy of the manufacturer's programming tool, with documentation, to the owner.

2.10 FULL USER INTERFACE SOFTWARE (USE EXISTING)

- A. Operating System:
 - 1. The FUI shall run on Microsoft Windows NT Workstation 4.0, Service Pack 4 or later.
- B. The FUI shall employ browser-like functionality for ease of navigation. It shall include a tree view (similar to Windows Explorer) for quick viewing of, and access to, the hierarchical structure of the database. In addition, menu-pull downs, and toolbars shall employ buttons, commands and navigation to permit the operator to perform tasks with a minimum knowledge of the HVAC Control System and basic computing skills. These shall include, but are not limited to, forward/backward buttons, home button, and a context sensitive locator line (similar to a URL line), that displays the location and the selected object identification.
- C. Real-Time Displays. The FUI, shall at a minimum, support the following graphical features and functions:
 - 1. Graphic screens shall be developed using any drawing package capable of generating a GIF, BMP, or JPG file format. Use of proprietary graphic file formats shall not be acceptable. In addition to, or in lieu of a graphic background, the FUI shall support the use of scanned pictures.
 - 2. Graphic screens shall have the capability to contain objects for text, real-time values, animation, color spectrum objects, logs, graphs, HTML or XML document links, schedule objects, hyperlinks to other URL's, and links to other graphic screens.
 - 3. Graphics shall support layering and each graphic object shall be configurable for assignment to a layer. A minimum of six layers shall be supported.
 - 4. Modifying common application objects, such as schedules, calendars, and set points shall be accomplished in a graphical manner.

- a. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
- b. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
- 5. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
- 6. Adjustments to analog objects, such as set points, shall be done by right-clicking the selected object and using a graphical slider to adjust the value. No entry of text shall be required.
- D. System Configuration. At a minimum, the FUI shall permit the operator to perform the following tasks, with proper password access:
 - 1. Create, delete or modify control strategies.
 - 2. Add/delete objects to the system.
 - 3. Tune control loops through the adjustment of control loop parameters.
 - 4. Enable or disable control strategies.
 - 5. Generate hard copy records or control strategies on a printer.
 - 6. Select points to be alarmable and define the alarm state.
 - 7. Select points to be trended over a period of time and initiate the recording of values automatically.
- E. On-line Help. Provide a context sensitive, on-line help system to assist the operator in operation and editing of the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext. All system documentation and help files shall be in HTML format.
- F. On-line Documentation. Provide a context sensitive, on-line documentation system to assist the operator in operation and trouble shooting of each integrated system. On-line help shall be

available for all applications and shall provide the relevant data for that particular monitoring screen. As a minimum, provide a link to the Sequence of Operation, input/output summary, and cut sheets in either Adobe Acrobat[™] or HTML format.

- G. Security. Each operator shall be required to log on to that system with a user name and password in order to view, edit, add, or delete data. System security shall be selectable for each operator. The system administrator shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the operators' access for viewing and/or changing each system application, full screen editor, and object. Each operator shall automatically be logged off of the system if no keyboard or mouse activity is detected. This auto log-off time shall be set per operator password. All system security data shall be stored in an encrypted format.
- H. System Diagnostics. The system shall automatically monitor the operation of all workstations, printers, modems, network connections, building management panels, and controllers. The failure of any device shall be annunciated to the operator.
- I. Alarm Console
 - 1. The system will be provided with a dedicated alarm window or console. This window will notify the operator of an alarm condition, and allow the operator to view details of

the alarm and acknowledge the alarm. The use of the Alarm Console can be enabled or disabled by the system administrator.

2. When the Alarm Console is enabled, a separate alarm notification window will supercede all other windows on the desktop and shall not be capable of being minimized or closed by the operator. This window will notify the operator of new alarms and un-acknowledged alarms. Alarm notification windows or banners that can be minimized or closed by the operator shall not be acceptable.

2.11 BROWSER USER INTERFACE SOFTWARE (EXISTING)

- A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer[™] or Netscape Navigator[™]. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.
- B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the EMCS, shall not be acceptable.
- C. The Web browser shall provide the same view of the system, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Full User Interface. Systems that require different views or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.
- D. The Web browser client shall support at a minimum, the following functions:
 - 1. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.
 - Graphical screens developed for the FUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the FUI shall be supported by the Web browser interface.
 HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.
 - 3. Storage of the graphical screens shall be in the Network Area Controller (NAC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.
 - 4. Real-time values displayed on a Web page shall update automatically without requiring a manual "refresh" of the Web page.
 - 5. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 - a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 - 1) Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 - 2) Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.

- b. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
- c. View logs and charts
- d. View and acknowledge alarms
- 6. The system shall provide the capability to specify a user's (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to a predefined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.
- 7. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

2.12 SYSTEM PROGRAMMING

- A. The Full User Interface software (FUI) shall provide the ability to perform system programming and graphic display engineering as part of a complete software package. Access to the programming functions and features of the FUI shall be through password access as assigned by the system administrator.
- B. A library of control, application, and graphic objects shall be provided to enable the creation of all applications and user interface screens. Applications are to be created by selecting the desired control objects from the library, dragging or pasting them on the screen, and linking them together using

a built in graphical connection tool. Completed applications may be stored in the library for future use. Graphical User Interface screens shall be created in the same fashion. Data for the user displays

is obtained by graphically linking the user display objects to the application objects to provide "real-time" data updates. Any real-time data value or object property may be connected to display its current

value on a user display. Systems requiring separate software tools or processes to create applications and user interface display shall not be acceptable.

- C. Programming Methods
 - 1. Provide the capability to copy objects from the supplied libraries, or from a user-defined library to the user's application. Objects shall be linked by a graphical linking scheme by dragging a link from one object to another. Object links will support one-to-one, many-to-one, or one-to-many relationships. Linked objects shall maintain their connections to other objects regardless of where they are positioned on the page and shall show link identification for links to objects on other pages for easy identification. Links will vary in color depending on the type of link; i.e., internal, external, hardware, etc.
 - 2. Configuration of each object will be done through the object's property sheet using fill-in the blank fields, list boxes, and selection buttons. Use of custom programming, scripting language, or a manufacturer-specific procedural language for configuration will not be accepted.
 - 3. The software shall provide the ability to view the logic in a monitor mode. When on-line, the monitor mode shall provide the ability to view the logic in real time for easy

diagnosis of the logic execution. When off-line (debug), the monitor mode shall allow the user to set values

to inputs and monitor the logic for diagnosing execution before it is applied to the system.

- 4. All programming shall be done in real-time. Systems requiring the uploading, editing, and downloading of database objects shall not be allowed.
- 5. The system shall support object duplication within a customer's database. An application, once configured, can be copied and pasted for easy re-use and duplication. All links, other than to the hardware, shall be maintained during duplication.

2.13 OBJECT LIBRARIES

- A. A standard library of objects shall be included for development and setup of application logic, user interface displays, system services, and communication networks.
- B. The objects in this library shall be capable of being copied and pasted into the user's database and shall be organized according to their function. In addition, the user shall have the capability to group objects created in their application and store the new instances of these objects in a user-defined library.
- C. In addition to the standard libraries specified here, the supplier of the system shall maintain an on-line accessible (over the Internet) library, available to all registered users to provide new or updated objects and applications as they are developed.
- D. The object library shall include objects to support the integration of devices connected to the Network Area Controller (NAC). At a minimum, provide the following as part of the standard library included with the programming software:
 - BACnet devices. These devices shall include, but not be limited to, devices for control of HVAC, lighting, access, and metering. Provide BACnet manufacturer-specific objects to facilitate simple integration of these devices. All network variables defined in the BACnet profile shall be supported. Information (type and function) regarding network variables not defined in the BACnet profile shall be provided by the device manufacturer.
 - 2. For devices not conforming to the BACnet standard, provide a dynamic object that can be assigned to the device based on network variable information provided by the device manufacturer. Device manufacturer shall provide an XIF file and documentation for the device to facilitate device integration.

2.14 BACNET NETWORK MANAGEMENT

- A. The Full User Interface software (FUI) shall provide a complete set of integrated BACnet network management tools for working with BACnet networks. These tools shall manage a database for all BACnet devices by type and revision, and shall provide a software mechanism for identifying each device on the network. These tools shall also be capable of defining network data connections between BACnet devices, known as "binding". Systems requiring the use of third party BACnet network management tools shall not be accepted.
- B. Network management shall include the following services: device identification, device installation, device configuration, device diagnostics, device maintenance and network variable binding.

- C. The Network configuration tool shall also provide diagnostics to identify devices on the network, to reset devices, and to view health and status counters within devices.
- D. These tools shall provide the ability to "learn" an existing BACnet network, regardless of what network management tool(s) were used to install the existing network, so that existing BACnet devices and newly added devices are part of a single network management database.
- E. The network management database shall be resident in the Network Area Controller (NAC), ensuring that anyone with proper authorization has access to the network management database at all times. Systems employing network management databases that are not resident, at all times, within the control system shall not be accepted.

2.15 OTHER CONTROL SYSTEM HARDWARE

- A. Motorized Control Dampers: Coordinate with the other trades for the exact quantity, size and location of all dampers. Dampers shall be black enamel finish or galvanized, with nylon bearings. Blade edge and tip seals shall be included for all dampers. Blades shall be 16-gauge minimum and 6 inches wide maximum and frame shall be of welded channel iron. Dampers with both dimensions less than 18 inches may have strap iron frames. Ruskin CD-46 or Equal
- B. Control Damper: Coordinate with other trades for exact quantity, size and location of all dampers. Provide all dampers unless Two-position or proportional electric actuators shall be direct-mount type. All actuators shall be spring return type. Provide one actuator per damper minimum.
- C. Wall Mount Room Thermostats: Each room thermostat shall provide temperature indication to the digital controller; provide the capability for a software-limited set point adjustment and operation override capability. An integral LCD shall annunciate current room temperature and set point as well as override status indication. In addition, the thermostat shall include a port for connection of the portable operator's terminal described elsewhere in this specification.
- D. Duct Mount, Pipe Mount and Outside Air Temperature Sensors: 10,000-ohm thermistor temperature sensors with an accuracy of \pm 0.2°C. Outside air sensors shall include an integral sun shield.
- E. Current Sensitive Switches: Solid state, split core current switch that operates when the current level (sensed by the internal current transformer) exceeds the adjustable trip point. Current switch to include an integral LED for indication of trip condition and a current level below trip set point.
- F. Temperature Control Panels: Furnish temperature control panels of code gauge steel with locking doors for mounting all devices as shown. Control panels shall meet all requirements of Title 24, California Administrative Code. All electrical devices within a control panel shall be factory wired. All external wiring shall be connected to terminal strips mounted within the panel. Provide engraved phenolic nameplates identifying all devices mounted on the face of control panels. A complete set of 'as-built' control drawings (relating to the controls within that panel) shall be furnished within each control panel.

2.16 INPUT DEVICES

A. System accuracy of sensed conditions shall be as follows:

- 1. +/- .5°F for space temperature in the 0-130°F range
- 2. +/- .5°F for duct temperatures in the 40-130°F range
- 3. +/- 1.0°F for outside air temperatures in the (-30)-230°F range
- 4. +/- 1.0°F for water temperatures in the 30-230°F range
- 5. +/- .1 inch for filter status differential over a 0-2 inch range
- B. The system shall maintain the specified analog end-to-end accuracy throughout the warranty period from sensor to controller readout.
- C. Packaging: Sensors (transducers) will be appropriately packaged for the location.
 - 1. Architectural housing for space mounting.
 - 2. Weatherproof/sunshield housing for outdoors.
 - 3. Thermal well housing for water applications.
 - 4. Protective housing for duct mounting.
- D. Environmental Ratings: The sensor/transducer shall be selected to withstand ambient conditions where:
 - 1. Moisture or condensation is a factor.
 - 2. Vibration exists from ductwork, equipment, etc.
 - 3. Reasonably expected transient conditions exist for temperatures, pressures, humidities, etc. outside the normal sensing range.
- E. Temperature Sensors:
 - 1. Temperature sensors will be by the use of thermistors (10K ohm at 77°F) or RTDs (PT100 curve).
 - 2. Sensors in the return or discharge duct shall be of the single point type. Sensors in the mixed air will be of the average type.
 - 3. Thermowells shall be brass or stainless steel for non-corrosive fluids below 250°F and 300 series stainless steel for all other applications.
 - 4. Room temperature sensors:
 - a. Sensing element only
- F. Digital Sensors:
 - 1. All digital inputs will be provided by dry contacts. The contacts will be wired normally open or normally closed as required.
 - 2. Motor status (pumps, fans, etc.) shall be determined by current-operated switch.

2.17 OUTPUT DEVICES

- A. The use of multiplexers will not be accepted.
- B. Relays, Contactors:
 - 1. All digital outputs will be electrically isolated from the digital controller by interface relays.
 - 2. Field relays shall have a minimum life of 1 million cycles without failure.
 - 3. Contactors shall have a minimum life of ten thousand cycles without failure.

2.18 ACTUATORS

A. Standard manufacturer damper actuators, proportional or two-position as required, sized to properly operate device. Damper actuators shall be of the direct coupled type, Belimo or equal.

2.19 WIRING AND CONDUIT

- A. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.
- B. Conduit shall be installed in MER's and shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit seal-off fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.
- C. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.
- D. Junction boxes shall be provided at all cable splices, equipment terminations, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.
- E. Where the space above the ceiling is a supply or return air plenum, the wiring shall be installed open, without conduit. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire alarm system shall be in conduit.

2.20 ENCLOSURES

- A. All controllers and field interface panels shall be mounted in new enclosures unless otherwise stated in this specification.
- B. All outside mounted enclosures shall meet the NEMA-4 rating.
- C. Wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.

2.21 CO2 SENSORS AND CONTROLLERS

- A. Specifications:
 - 1. Supply Voltage: 24 VAC +/-20%, 50/60 Hz (half-wave rectifier); 16.5-40 VDC Max.
 - 2. Power Consumption: 3VA for 24VAC, 3W for 24VDC (peak); <0.9W (average)
 - Sensing Technology/Sensing Method: Single beam infrared sensing technology (NDIR); Diffusion

- 4. Measurement Range Default: 0 to 2,000 ppm CO2 Output Signal: Out 1: 0-5 VDC or 0-10 VDC (Default) Out 2: 4-20 mA (500 Ohm Load Max.)
- 5. Fail Safe: Polarity protected
- 6. CO2 Accuracy: +/- 40 ppm +/- 3% of reading (@ 15-35°C; 20-70% RH and 101.3 kPa)
- 7. Pressure Dependence: + 1.6% reading per kPa (deviation from standard pressure 101.3 kPa)
- 8. Response Time: ≤ 2 minutes, diffusion
- 9. Warm Up Time: < 1 minute (@ full specs < 15 minutes)
- 10. Operating Temperature/Relative Humidity Range: 32 to 122°F (0 to 50oC)/0 to 95%, non-condensing
- 11. Sensor Coverage Area: 7,500 sq. ft. maximum
- 12. Life Expectancy: > 15 years (typical)
- 13. Product Dimensions (Room Mount): (H) 4.5" (W) 2.75" (D) 1.12"
- 14. Product Dimensions (Duct Mount): (H) 5.98" (W) 3.33" (D) 1.85"

PART 3 - EXECUTION

3.1 INSTALLATION

A. All work described in this section shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work and in the regular employment of the temperature control system manufacturer or its exclusive factory authorized installing contracting field office (representative). The installing office shall have a minimum of five

years of installation experience with the manufacturer and shall provide documentation in submittal package verifying longevity of the installing company's relationship with the manufacturer. Supervision, calibration and checkout of the system shall be by the employees of the local exclusive factory authorized temperature control contracting field office (branch or representative).

- B. Install system and materials in accordance with manufacturer's instructions, and as detailed on the project drawing set.
- C. Drawings of temperature control systems are diagrammatic only and any apparatus not shown, such as relays, accessories, etc., but required to make the system operative to the complete satisfaction of the Architect shall be furnished and installed without additional cost.
- D. Line and low voltage electrical connections to control equipment shown specified or shown on the control diagrams shall be furnished and installed by the Temperature Control sub-contractor in accordance with these specifications.
- E. Equipment furnished by the HVAC Contractor that is normally wired before installation shall be furnished completely wired. Control wiring normally performed in the field will be furnished and installed by the Temperature Control sub-contractor.
- F. All control devices mounted on the face of control panels shall be clearly identified as to function and system served with permanently engraved phenolic labels.

Verify location of room temperature sensors and other exposed control sensors with plans and room details before installation. Locate occupant adjustable devices 54 inches above floor to centerline of housing. Coordinate with adjacent devices.

3.2 WIRING

- A. All electrical control wiring and power wiring to the control panels shall be the responsibility of the EMCS contractor.
- B. The electrical contractor (Div. 16) shall furnish all power wiring to electrical starters and motors.
- C. All wiring shall be in accordance with the Project Electrical Specifications (Division 16), the National Electrical Code and any applicable local codes. All EMCS wiring shall be installed in the conduit types specified in the Project Electrical Specifications (Division 16) unless otherwise allowed by the National Electrical Code or applicable local codes. EMCS plenum rated cable wiring is allowed above suspended ceilings and shall be run parallel to or at right angles to the structure, properly supported and installed in a neat and workmanlike manner.
- D. The 120VAC power wiring to each control panel shall be on a dedicated circuit, with a separate breaker. Junction box covers will be marked to indicate that they are a part of the EMCS system. Power for any EMCS equipment that is controlling equipment that operates under emergency power shall be obtained from emergency power panels.
- E. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
- F. Coordinate connection of HAND-OFF-AUTO selector switches to override automatic interlock controls when switch is in HAND position.

3.3 WARRANTY

- A. Equipment, materials and workmanship incorporated into the work shall be warranted for a period of one year from the time of system acceptance.
- B. Within this period, upon notice by the Owner, any defects in the EMCS due to faulty materials, methods of installation or workmanship shall be promptly (within 48 hours after receipt of notice) repaired or replaced by the Temperature Control sub-contractor at no expense to the Owner

3.4 WARRANTY ACCESS

A. The Owner shall grant to the Temperature Control sub-contractor, reasonable access to the EMCS during the warranty period. The owner shall allow the contractor to access the EMCS from a remote location for the purpose of diagnostics and troubleshooting, via the Internet, during the warranty period.

3.5 ACCEPTANCE TESTING

A. Upon completion of the installation, the Temperature Control sub-contractor shall load all system software and start-up the system. The Temperature Control sub-contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications.

The Temperature Control sub-contractor shall perform tests to verify proper performance of components, routines, and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation.

- B. Upon completion of the performance tests described above, repeat these tests, point by point as described in the validation log above in presence of Owner's Representative, as required. Properly schedule these tests so testing is complete at a time directed by the Owner's Representative. Do not delay tests so as to prevent delay of occupancy permits or building occupancy.
- C. System Acceptance: Satisfactory completion is when the Temperature Control sub-contractor has performed successfully all the required testing to show performance compliance with the requirements

of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.6 OPERATOR INSTRUCTION, TRAINING

- A. General
 - 1. Owner training shall be executed in three phases. The first phase shall be provided off site at a Local Training Center and will be scheduled at a time immediately preceding owner acceptance. The purpose of this training is to provide an introduction and an overview of the EMCS. Completion of this training shall be a condition of system acceptance and the commencement of the Warrantee Period. The second phase of training shall take place at the actual customer job

site and will at a minimum include a site-specific walk through and hands on sitespecific instruction. The third phase of training shall be again provided off site at the Local Training Center as a follow-up and enrichment to the introductory and site-specific training. A proposed training agenda will be submitted to the engineer in writing, and approved by the engineer before training takes place. All and materials shall be supplied for three trainees to be selected by the owner.

- B. Phase I Training (This phase of training shall be a minimum of 8 hours) This training will give the operator with little or no experience with the EMCS an introduction to:
 - 1. Building automation fundamentals
 - 2. System architecture and functions
 - 3. System access using FUI software and BUI software
 - 4. Basic concepts for OOT programming
 - 5. Editing parameters such as set points and schedules
 - 6. Day to day system monitoring techniques
- C. Phase II On-Site Training (This phase of training shall be a minimum of 8 hours) Site personal and operators shall become familiar and proficient with:

- 1. Using As-Built documentation-Sequence of operation, control drawings, Input / Output summaries
- 2. Field sensor and actuator location and maintenance
- 3. Field controller location and maintenance
- 4. System architecture and functions as they pertain to the site
- 5. FUI and BUI hardware operation and maintenance
- 6. FUI and BUI software site specific capabilities
- D. Phase III Training (This phase of training shall be a minimum of 8 hours) Building operators will become qualified using hands-on labs for:
 - 1. Monitoring and making changes to a preprogrammed EMCS
 - 2. Understanding the PC and windows environment
 - 3. Using the Browser tools to navigate BUI functions
 - 4. Using graphic floor plans and equipment screens
 - 5. Changing point values such as set points, schedules, and overrides
 - 6. Retrieving trend reports and graphs
 - 7. Acknowledging exceptions and alarms.
- E. The training room shall be clean, well lit, well ventilated and isolated from noise (including HVAC noise) and other distractions. The Contractor shall arrange, via delamping, covering fixtures or by light switches, for there to be adequate contrast lighting to take notes and fend off drowsiness.
- F. Instructor shall employ an LCD panel, video projector or other suitable device to project large images of the EMCS software and/or other training images.
- G. Printed training materials shall be tailored to the task at hand and shall be well illustrated. Materials shall take students through the steps of learning the EMCS and its software and shall provide sample exercises for the trainees to perform on the computers.
- H. Training must steer clear of jargon and other confusing terminology and focus instead on learning how to use the system. Specific jargon may be addressed after the trainees have demonstrated a basic understanding of system operation.
- I. Training shall involve actual field-type equipment using a training demonstration package that simulates real-time temperatures, settings, alarms, etc. Training shall also spend substantial time observing the site's actual system, include point logs, graphics, and alarms. In addition, a brief field visit shall be included to familiarize trainees with the equipment installed at their site.
- J. Training must include quizzes, tests, and exercises that compel trainees to demonstrate understanding of the system's most important concepts. These concepts shall include, but not be limited to, the elements of a monitoring checklist developed by the site.

END OF SECTION 23 09 00

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 09 13 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
 - 1. Full-voltage manual.
 - 2. Reduced-voltage solid state.
- B. Related Section:
 - 1. Division 23 Section "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on variable torque loads in ranges up to 200 hp.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. N.C.: Normally closed.
- E. N.O.: Normally open.
- F. OCPD: Overcurrent protective device.
- G. SCR: Silicon-controlled rectifier.

1.4 SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Show tabulations of the following:
 - a. Each installed unit's type and details.

- b. Factory-installed devices.
- c. Nameplate legends.
- d. Short-circuit current rating of integrated unit.
- 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Qualification Data: For qualified testing agency.
- D. Field quality-control reports.
- E. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and installed components.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.7 COORDINATION

A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.

- B. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Siemens Energy & Automation, Inc.
 - e. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
 - 4. Surface mounting.
 - 5. Red pilot light.

2.2 REDUCED-VOLTAGE MAGNETIC CONTROLLERS

- A. General Requirements for Reduced-Voltage Magnetic Controllers: Comply with NEMA ICS 2, general purpose, Class A; closed-transition; adjustable time delay on transition.
- B. Reduced-Voltage Magnetic Controllers: Reduced voltage, electrically held.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Siemens Energy & Automation, Inc.
 - e. Square D; a brand of Schneider Electric.
 - 2. Configuration:
 - a. Wye-Delta Controller: Four contactors, with a three-phase starting resistor/reactor bank.
 - b. Part-Winding Controller: Separate START and RUN contactors, field-selectable for 1/2- or 2/3-winding start mode, with either six- or nine-lead motors; with separate overload relays for starting and running sequences.
 - c. Autotransformer Reduced-Voltage Controller: Medium-duty service, with integral overtemperature protection; taps for starting at 50, 65, and 80 percent of line voltage; two START and one RUN contactors.
 - 3. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 24-V ac; obtained from integral CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - 6. Bimetallic Overload Relays:
 - a. Inverse-time-current characteristic.

- b. Class 10 tripping characteristic.
- c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
- d. Ambient compensated.
- e. Automatic resetting.
- 7. External overload reset push button.

2.3 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Heavy-duty type.
 - a. Push Buttons: Recessed types; momentary.
 - b. Pilot Lights: LED types; colors as indicated.
 - c. Selector Switches: Rotary type.
 - 2. Elapsed Time Meters: Heavy duty with digital readout in hours; resettable.
- B. N.C./ N.O. auxiliary contact(s).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Division 23 Section "Identification for HVAC Piping and Equipment."
 - 1. Label each enclosure with engraved nameplate.
 - 2. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation.
 - 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Construction Manager before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed controllers will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Set the taps on reduced-voltage autotransformer controllers at 50 percent.

3.6 PROTECTION

A. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 23 09 13

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 09 33 - VARIABLE FREQUENCY DRIVES

PART 1 – GENERAL

1.1 DESCRIPTION

- A. This specification is to cover a complete Variable Frequency motor Drive (VFD) consisting of a pulse width modulated (PWM) inverter designed for use on a standard NEMA Design B induction motor.
- B. The drive manufacturer shall supply the drive and all necessary controls as herein specified. The manufacturer shall have been engaged in the production of this type of equipment for a minimum of twenty years. All VFDs installed on this project shall be from the same manufacturer.

1.2 QUALITY ASSURANCE

- A. Referenced Standards:
 - 1. Institute of Electrical and Electronic Engineers (IEEE)
 - a) Standard 519-1992, IEEE Guide for Harmonic Content and Control.
 - 2. Underwriters laboratories a) UL508C
 - National Electrical Manufacturer's Association (NEMA)
 a) ICS 7.0, AC Adjustable Speed Drives
 - 4. IEC 16800 Parts 1 and 2
- B. Qualifications:
 - 1. VFDs and options shall be UL listed as a complete assembly. VFDs that require the customer to supply external fuses for the VFD to be UL listed are not acceptable. VFDs with requiring additional branch circuit protection are not acceptable. The base VFD shall be UL listed for 100 KAIC without the need for input fusing.
 - CE Mark The VFD shall conform to the European Union Electro Magnetic Compatibility directive, a requirement for CE marking. The VFD shall meet product standard EN 61800-3 for the First Environment restricted level.
 - 3. Acceptable Manufactures:
 - a) ABB ACH 550 Series in NEMA 3R enclosures suitable for roof mounting.
 - Alternate manufacturer's requests must be submitted in writing at least 10 working days prior to bid. Approval does not relieve supplier of specification requirements.
 - c) VFDs that are manufactured by a third party and "brand labeled" shall not be acceptable.

1.3 SUBMITTALS

- A. Submittals shall include the following information:
 - 1. Outline dimensions, conduit entry locations and weight.
 - 2. Customer connection and power wiring diagrams.
 - 3. Complete technical product description include a complete list of options provided. Any portions of the specifications not complied with must be clearly indicated or the supplier and contractor shall be liable to provide all components required to meet the specification.
 - 4. Compliance to IEEE 519 harmonic analysis for particular jobsite including total harmonic voltage distortion and total harmonic current distortion (TDD).
 - a) The VFD manufacturer shall provide calculations; specific to the installation, showing total harmonic voltage distortion is less than 5%. Input filters shall be sized and provided as required by the VFD manufacturer to ensure compliance with the IEEE electrical system standard 519. All VFDs shall include a minimum of 5% equivalent impedance reactors, no exceptions.

PART 2 – PRODUCTS

2.1 VARIABLE FREQUENCY DRIVES

- A. The VFD package as specified herein shall be enclosed in a UL Listed Type enclosure, (NEMA rated enclosures are not acceptable) completely assembled and tested by the manufacturer in an ISO9001 facility. The VFD tolerated voltage window shall allow the VFD to operate from a line of +30% nominal, and -35% nominal voltage as a minimum.
 - 1. Environmental operating conditions: 0 40° C continuous. Altitude 0 to 3300 feet above sea level, up to 95% humidity, non-condensing. All circuit boards shall have conformal coating.
 - 2. Enclosure shall be rated UL type 1 and shall be UL listed as a plenum rated VFD.
- B. All VFDs shall have the following features:
 - 1. All VFDs shall have the same customer interface, including digital display, and keypad, regardless of horsepower rating. The keypad shall be removable, capable of remote mounting and allow for uploading and downloading of parameter settings as an aid for start-up of multiple VFDs.
 - 2. The keypad shall include Hand-Off-Auto selections and manual speed control. There shall be fault reset and "Help" buttons on the keypad. The Help button shall include "on-line" assistance for programming and troubleshooting.
 - 3. There shall be a built-in time clock in the VFD keypad. The clock shall have a battery back up with 10 years minimum life span. The clock shall be used to date and time stamp faults and record operating parameters at the time of fault. If the battery fails, the VFD shall automatically revert to hours of operation since initial power up. The clock shall also be programmable to control start/stop functions, constant speeds, PID parameter sets and output relays. The VFD shall have a digital input that allows an override to the time clock (when in the off mode) for a programmable time frame. There

shall be four (4) separate, independent timer functions that have both weekday and weekend settings. Capacitor backup is not acceptable.

- 4. The VFD shall be capable of starting into a coasting load (forward or reverse) up to full speed and accelerate or decelerate to setpoint without safety tripping or component damage (flying start).
- 5. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes, 130% overload for 2 seconds. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430-150 for 4-pole motors.
- 6. The VFD shall have 5% equivalent impedance internal reactors to reduce the harmonics to the power line and to add protection from AC line transients. The 5% equivalent impedance may be from dual (positive and negative DC bus) reactors, or 5% AC line reactors. VFDs with only one DC reactor shall add an AC line reactor.
- 7. The VFD shall include a coordinated AC transient protection system consisting of 4-120 joule rated MOV's (phase to phase and phase to ground), a capacitor clamp, and 5% equivalent impedance internal reactors.
- 8. The VFD shall provide a programmable proof of flow Form-C relay output (broken belt / broken coupling). The drive shall be programmable to signal this condition via a keypad warning, relay output and/or over the serial communications bus. Relay outputs shall include programmable time delays that will allow for drive acceleration from zero speed without signaling a false underload condition.
- C. All VFDs to have the following adjustments:
 - 1. Three (3) programmable critical frequency lockout ranges to prevent the VFD from operating the load continuously at an unstable speed.
 - 2. Two (2) PID Setpoint controllers shall be standard in the drive, allowing pressure or flow signals to be connected to the VFD, using the microprocessor in the VFD for the closed loop control. The VFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. There shall be two parameter sets for the first PID that allow the sets

supplied by others. There shall be two parameter sets for the first PID that allow the sets to be switched via a digital input, serial communications or from the keypad for night setback, summer/winter setpoints, etc. There shall be an independent, second PID loop that can utilize the second analog input and modulate one of the analog outputs to maintain setpoint of an independent process (ie. valves, dampers, etc.). All setpoints, process variables, etc. to be accessible from the serial communication network.

- 3. Two (2) programmable analog inputs shall accept current or voltage signals.
- 4. Two (2) programmable analog outputs (0-20ma or 4-20 ma). The outputs may be programmed to output proportional to Frequency, Motor Speed, Output Voltage, Output Current, Motor Torque, Motor Power (kW), DC Bus voltage, Active Reference, and other data.
- 5. Six (6) programmable digital inputs.
- 6. Three (3) programmable digital Form-C relay outputs. The relays shall include programmable on and off delay times and adjustable hysteresis. The relays shall be rated for maximum switching current 8 amps at 24 VDC and 0.4 A at 250 VAC; Maximum voltage 300 VDC and 250 VAC; continuous current rating 2 amps RMS. Outputs shall be true Form-C type contacts; open collector outputs are not acceptable.
- 7. Run permissive circuit There shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad, time-clock control, or serial communications) the VFD shall provide a dry contact closure that will signal the damper to open (VFD motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a VFD digital input and allows motor operation. Two separate safety interlock inputs shall be provided.

When either safety is opened, the motor shall be commanded to coast to stop, and the damper shall be commanded to close.

- 8. Two independently adjustable accel and decel ramps with 1 1800 seconds adjustable time ramps.
- 9. The VFD shall include a motor flux optimization circuit that will automatically reduce applied motor voltage to the motor to optimize energy consumption and audible motor noise.
- 10. The VFD shall include a carrier frequency control circuit that reduces the carrier frequency based on actual VFD temperature that allows higher carrier frequency without derating the VFD or operating at high carrier frequency only at low speeds.
- 11. The VFD shall include password protection against parameter changes.
- D. The Keypad shall include a backlit LCD display. The display shall be in complete English words for programming and fault diagnostics (LED and alpha-numeric codes are not acceptable). All VFD faults shall be displayed in English words.
- E. All applicable operating values shall be capable of being displayed in engineering (user) units. A minimum of three operating values from the list below shall be capable of being displayed at all times. The display shall be in complete English words (alpha-numeric codes are not acceptable):

Output Frequency Motor Speed (RPM, %, or Engineering units) Motor Current Drive Temperature DC Bus Voltage Output Voltage

- F. The VFD shall include a fireman's override input. Upon receipt of a contact closure from the fireman's control station, the VFD shall operate in one of two modes: 1) Operate at a programmed predetermined fixed speed or operate in a specific fireman's override PID algorithm that automatically adjusts motor speed based on override set point and feedback. The mode shall override all other inputs (analog/digital, serial communication, and all keypad commands), except customer defined safety run interlock, and force the motor to run in one of the two modes above. "Override Mode" shall be displayed on the keypad. Upon removal of the override signal, the VFD shall resume normal operation.
- G. Serial Communications
 - 1. The VFD shall have an RS-485 port as standard. The standard protocols shall be LON. Each individual drive shall have the protocol in the base VFD. The use of third party gateways and
 - 2. multiplexers is not acceptable. All protocols shall be "certified" by the governing authority (i.e. BACnet). Use of non-certified protocols is not allowed.
 - 3. The
 - 4. BACnet connection shall be an RS485, MS/TP interface operating at 9.6, 19.2, 38.4, or 76.8 Kbps. The connection shall be tested by the
 - 5. BACnet Testing Labs and be Listed. The
 - 6. BACnet interface shall conform to the LON standard device type of an Applications Specific Controller. The interface shall support all defined by the LON standard profile including, but not limited to:
 - a. Data Sharing Read Property B.
 - b. Data Sharing Write Property B.

- c. Device Management Dynamic Device Binding (Who-Is; I-AM).
- d. Device Management Dynamic Object Binding (Who-Has; I-Have).
- e. Device Management Communication Control B.
- 7. Serial communication capabilities shall include, but not be limited to; run-stop control, speed set adjustment, proportional/integral/derivative PID control adjustments, current limit, accel/decel time adjustments, and lock and unlock the keypad. The drive shall have the capability of allowing the DDC to monitor feedback such as process variable feedback, output speed / frequency, current (in amps), % torque, power (kW), kilowatt hours (resettable), operating hours (resettable), and drive temperature. The DDC shall also be capable of monitoring the VFD relay output status, digital input status, and all analog input and analog output values. All diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote VFD fault reset shall be possible.
- H. EMI / RFI filters. All VFDs shall include EMI/RFI filters. The VFD shall comply with standard EN 61800-3 for the First Environment, restricted level with up to 100' of motor cables. No Exceptions. Certified test lab test reports shall be provided with the submittals.
- I. All VFDs through 60HP shall be protected from input and output power mis-wiring. The VFD shall sense this condition and display an alarm on the keypad. The VFD shall not be damaged by this condition.
- J. OPTIONAL FEATURES Optional features to be furnished and mounted by the drive manufacturer. All optional features shall be UL Listed by the drive manufacturer as a complete assembly and carry a UL508 label. The bypass enclosure door and VFD enclosure must be interlocked such that input power is turned off before either enclosure can be opened. The VFD and Bypass as a package shall have a UL listed short circuit rating of 100,000 amps and shall be indicated on the data label.
 - 1. A complete factory wired and tested bypass system consisting of an output contactor and bypass contactor, service (isolation) switch and VFD input fuses are required. Bypass designs, which have no VFD only fuses, or that incorporate fuses common to both the VFD and the bypass will not be accepted
 - 2. Door interlocked padlockable circuit breaker that will disconnect all input power from the drive and all internally mounted options.
- K. The following operators shall be provided:
 - a. Bypass Hand-Off-Auto
 - b. Drive mode selector and light
 - c. Bypass mode selector and light
 - d. Bypass fault reset
 - e. Bypass LDC display, 2 lines, for programming and status / fault / warning indications
 - 1. Motor protection from single phase power conditions The Bypass system must be able to detect a single phase input power condition while running in bypass, disengage the motor in a controlled fashion, and give a single phase input power indication. Bypass systems not incorporating single phase protection in Bypass mode are not acceptable.
 - 2. The system (VFD and Bypass) tolerated voltage window shall allow the system to operate from a line of +30%, -35% nominal voltage as a minimum. The system shall incorporate circuitry that

will allow the drive or bypass contactor to remain "sealed in" over this voltage tolerance at a minimum.

- 3. The Bypass system shall NOT depend on the VFD for bypass operation. The bypass shall be completely functional in both Hand and Automatic modes even if the VFD has been removed from the enclosure for repair / replacement.
- 4. Serial communications the bypass and VFD shall be capable of being monitored and or controlled via serial communications. Provide communications protocols for
- 5. BACnet in the bypass controller.
- 6.
- 7. BACnet Serial communication bypass capabilities shall include, but not be limited to; bypass run-stop control; the ability to force the unit to bypass; and the ability to lock and unlock the keypad. The bypass shall have the capability of allowing the DDC to monitor feedback such as, bypass current (in amps), bypass kilowatt hours (resettable), bypass operating hours (resettable), and bypass logic board temperature. The DDC shall also be capable of monitoring the bypass relays output status, and all digital input status. All bypass diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote bypass fault reset shall be possible. The following additional bypass status indications and settings shall be transmitted over the serial communications bus keypad "Hand" or "Auto" selected, and bypass selected. The DDC system shall also be able to monitor if the motor is running under load in both VFD and bypass (proof of flow) in the VFD mode over serial communications or Form-C relay output. A minimum of 40 field parameters shall be capable of being monitored in the bypass mode.
- 8. Run permissive circuit there shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad, time-clock control, or serial communications) the VFD and bypass shall provide a dry contact closure that will signal the damper to open (VFD motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a VFD system input and allows motor operation. Two separate safety interlock inputs shall be provided. When either safety is opened, the motor shall be commanded to coast to stop, and the damper shall be commanded to close.
- 9. The bypass control shall monitor the status of the VFD and bypass contactors and indicate when there is a welded contactor contact or open contactor coil. This failed contactor operation shall be indicated on the Bypass LCD display as well as over the serial communications protocol.
- 10. The bypass control shall include a programmable time delay for bypass start and keypad indication that this time delay is in process. This will allow VAV boxes to be driven open before the motor operates at full speed in the bypass mode. The time delay shall be field programmable from 0 120 seconds.
- 11. The bypass control shall be programmable for manual or automatic transfer to bypass. The user shall be able to select via keypad programming which drive faults will generate an automatic transfer to bypass and which faults require a manual transfer to bypass.
- 10. There shall be an adjustable motor current sensing circuit for the bypass and VFD mode to provide proof of flow indication. The condition shall be indicated on the keypad display, transmitted over the building automation protocol and on a relay output contact closure.
- 11. The bypass controller shall have six programmable digital inputs, and five programmable Form-C relay outputs.
- 12. The relay outputs from the bypass shall programmable for any of the following indications.
 - a. System started

- b. System running
- c. Bypass override enabled
- d. Drive fault
- e. Bypass fault
- f. Bypass H-O-A position
- g. Motor proof of flow (broken belt)
- h. Overload
- i. Bypass selected
- j. Bypass run
- k. System started (damper opening)
- I. Bypass alarm
- m. Over temperature
- 13. The digital inputs for the system shall accept 24VAC or 24VDC. The bypass shall incorporate internally sourced power supply and not require an external control power source. The bypass power board shall supply 250 ma of 24 VDC for use by others to power external devices.
- 14. Customer Interlock Terminal Strip provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is in VFD or Bypass mode. The remote start/stop contact shall operate in VFD and bypass modes. The terminal strip shall allow for independent connection of up to four (4) unique safety inputs.
- 15. The user shall be able to select the text to be displayed on the keypad when the safety opens. Example text display indications include "Firestat", "Freezestat", "Over pressure" and "Low pressure". The user shall also be able to determine which of the four (4) safety contacts is open over the serial communications connection.
- 16. Class 10, 20, or 30 (selectable) electronic motor overload protection shall be included.

PART 3 – EXECUTION

3.1 INSTALLATION

A. Installation shall be the responsibility of the mechanical contractor. The contractor shall install the drive in accordance with the requirements of the VFD manufacturer's installation manual.

3.2 START-UP

A. Certified factory start-up shall be provided for each drive by a factory certified service center. A certified start-up form shall be filled out for each drive with a copy provided to the owner, and a copy kept on file at the manufacturer.

3.3 PRODUCT SUPPORT

A. Factory trained application engineering and service personnel that are thoroughly familiar with the VFD products offered shall be locally available at both the specifying and installation locations. A toll free 24/365 technical support line shall be available.

B. A computer based training CD or 8-hour professionally generated video (VCR format) shall be provided to the owner at the time of project closeout. The training shall include installation, programming and operation of the VFD, bypass and serial communication.

3.4 WARRANTY

A. Warranty shall be 24 months from the date of certified start-up, not to exceed 30 months from the date of shipment. The warranty shall include all parts, labor, travel time and expenses.

END OF SECTION 23 09 33

SECTION 23 09 93 - SEQUENCE OF OPERATION

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Sequence of operation:
 - 1. Rooftop Units (RTU).
 - 2. Dedicated Outside Air System (DOAS)
 - 3. Fan Coil Unit
 - 4. Exhaust Fans (Kitchen exhaust, etc.)
 - 5. Makeup air Unit (MAU).
 - 6. Heat Pump Units (HPCC).

1.2 RELATED DOCUMENTS

- A. General Provisions of Contract, including General Conditions, Supplementary Conditions, Prevailing Hourly Wage Rates and Prevailing Hourly Supplements as updated by the NYS Department of Labor, General Requirements, and other related sections of the Specifications govern this section.
- B. Refer to Drawings for additional information, Schematic and Sequence of Operation to be coordinated with Sequence herein.

1.3 SYSTEM DESCRIPTION

A. This Section defines the manner and method by which controls function. Requirements for each type of control system operation are specified. Equipment, devices, and system components required for control systems are specified in other Sections.

1.4 SUBMITTALS FOR REVIEW

- A. Submit under provisions of Division 1.
- B. Shop Drawings: Indicate mechanical system controlled and control system components.
 - 1. Label with settings, adjustable range of control and limits. Include written description of control sequence.
 - 2. Include flow diagrams for each control system, graphically depicting control logic.
 - 3. Include draft copies of graphic displays indicating mechanical system components, control system components, and controlled function status and value.

1.5 SUBMITTALS AT PROJECT CLOSEOUT – DIVISION 1

A. Project Record Documents: Record actual locations of components and setpoints of controls, including changes to sequences made after submission of shop drawings.

PART 2 - PRODUCTS - Not Used

PART 3 - EXECUTION

3.1 GRAPHIC DISPLAY

- A. Provide graphic displays for each system, (DOAS, RTU, KX, EF, IX, etc.) as applicable to the system type. All setpoints shall be capable of being adjusted by the user. The controls contractor shall provide all necessary controllers, sensors, etc.
 - 1. System graphic.
 - 2. System on/off indication.
 - 3. System day/night mode.
 - 4. Outside air temperature indication.
 - 5. Room temperature indication.
 - 6. Operation mode for all exhaust fans, fan coil unit, MAU, RTU and HPCC, etc..

3.2 EXHAUST FANS

GENERAL: Local switch as herein specified shall be furnished by Division 23 and installed by Division 26.

Contacts for signaling the EMS shall be furnished and installed by this contractor under this Division 23 as well as fans operating with other fans or system as specified herein.

New Kitchen Hood Exhaust Fans for general spaces: These fans shall be provided with DDC compatible variable frequency drives. Start/stop shall be in accordance with the occupancy schedule for the area served as determined by the time-of-day schedule. In the unoccupied mode, the fan shall be off and its respective motorized exhaust air damper shall be closed. When a supply fan serving the respective space is on (i.e. Makeup Air Units or AC units) the respective exhaust fan shall start and run at a pre-determined minimum speed. A software program resident in the DDC Network Area Controller shall determine the output signal to the variable frequency drive based on hardwired feedback from the units controllers as the position of the outside air dampers from each unit serving the same space as the exhaust fan, modulates via their respective CO2 sensors. As the outside air dampers modulates towards the full open position, (for free cooling, economizer cycle) the speed of the exhaust fan shall increase proportionally to the position of the dampers.

- A. New building and toilet exhaust fans shall operate by time schedule by the DDC system operator. Schedule to be determined by the district.
- B. Toilet exhaust shall operate by occupancy <u>and</u> time schedule. Schedules to be determined by the district.

3.3 FAN COIL UNITS – HEATING MODE

A. The outside air intake damper, shall be controlled via their associated DOAS own separate and unique binary outputs. It is not permissible to control multiple end devices from a common binary output. All fan coil units shall be controlled to ASHRAE cycle II requirements as modified herein. Supply fan status for all fan coil units shall be via current sensing relay. Other status devices such as filters shall be provided. The front end of the EMS will interpret the signal as fan

status and filter status.

- B. When the fan coil units are off, upon loss of power, the outside air damper shall be closed.
- C. The fan coil units shall be started either automatically, along with associated DOAS units, based on day schedules used by the school, or remotely through a command at any of the operator workstations or automatically when the space is unoccupied and the space temperature is below the night heating setpoint.
- D. There shall be three (3) adjustable, space temperature setpoints as follows:
 - Heating Night The system is off unless the space temperature goes below this setpoint.
 - Unoccupied Heating Day Utilized when the space is vacant and heating is required.
 - Occupied Heating Day Utilized when the space is occupied and heating is required.
- E. During the day modes, the occupied/unoccupied status shall be determined from the owners work station schedule.
- F. Night Operation: Whenever the space temperature falls below the night heating setpoint, the unit ventilator shall cycle to maintain desired temperature. During this mode, the return air damper shall open, the outside air damper shall remain closed and the exhaust fan serving the space shall remain off.
- G. Whenever the unit ventilator is started in other than the night mode, the outside air damper shall open to its adjustable minimum position. A room thermostat, through its respective UNT Controller shall modulate the face/bypass damper to maintain desired room temperature based on the working setpoint. As the space temperature rises above the working setpoint, the UNT Controller shall gradually modulate the coil damper towards the full bypass position. If the room temperature continues to rise and the face/bypass damper is in the full bypass position, the 2 position control valve on the heating coil shall close and the outside air damper shall be modulated towards the full open position to maintain desired room temperature.
- H. A low limit temperature sensor, through the DDC UNT controller, shall override the room sensor and prevent the unit discharge temperature from falling below a predetermined limit. A low temperature warning alarm shall be initiated at all operator workstations if the discharge temperature falls to within 5°F of the setpoint of the electric low temperature protection thermostat.
- I. An electric, factory installed, low temperature protection sensor shall stop the unit, keep the compressor operating, close the O.A. damper and initiate an alarm if it senses a temperature across any 6" increment of its sensor less than setpoint (39°F, adjustable).
- J. Relief Air Exhaust Fans: When FCU outside air dampers are open, associated exhaust

or DOAS unit shall exhaust or relief outside air accordingly as herein specified (under exhaust fans) by its' associated variable frequency drive.

3.4 FAN COIL UNITS- COOLING MODE

A. The outside air intake damper, and air cooled condenser shall be controlled via their own separate and unique binary outputs. It is not permissible to control multiple end devices from a common binary output. All fan coil units shall be controlled to ASHRAE cycle II requirements as

modified herein. Supply fan status for all fan coil units shall be via current sensing relay. Other status devices such as filters shall be provided. The front end of the EMS will interpret the signal as fan status and filter status.

- B. When the unit is off, upon loss of power, the outside air damper shall be closed.
- C. The fan coil unit shall be started either automatically based on day schedules used by the school, or remotely through a command at any of the operator workstations or automatically when the space is unoccupied and the space temperature is above the night cooling setpoint.
- D. There shall be three (3) adjustable, space temperature setpoints as follows:
 - Cooling Night The system is off unless the space temperature goes below this setpoint.
 - Unoccupied Cooling Day Utilized when the space is vacant and heating is required.
 - Occupied Cooling Day Utilized when the space is occupied and heating is required.
- E. During the day modes, the occupied/unoccupied status shall be determined from the owners work station schedule.
- F. Night Operation: Whenever the space temperature rises above the night cooling setpoint, the unit ventilator shall cycle to maintain desired temperature. During this mode, the return air damper shall open, the outside air damper shall remain closed and the exhaust fan serving the space shall remain off.
- G. Whenever the unit is started in other than the night mode, the outside air damper shall open to its adjustable minimum position. A room thermostat, through its respective UNT Controller shall modulate the face/bypass damper to maintain desired room temperature based on the working setpoint. As the space temperature falls below the working setpoint, the UNT Controller shall gradually modulate the coil damper towards the full bypass position. If the room temperature continues to fall and the face/bypass damper is in the full bypass position, the air cooled condenser relay on the cooling coil shall open and the outside air damper shall be modulated towards the full open position to maintain desired room temperature.
- H. An upper limit temperature sensor, through the DDC UNT controller, shall override the room sensor and prevent the unit discharge temperature from rising above a predetermined limit. An upper limit temperature warning alarm shall be initiated at all operator workstations if the discharge temperature rises to within 5°F of the setpoint of the electric upper limit temperature protection thermostat.
- I. An electric, factory installed, upper limit temperature protection sensor, shall stop the fan coil unit, , keep the air cooled condensing unit circulating refrigerant to the DX coil, close the O.A. damper and initiate an alarm if it senses a temperature across any 6" increment of its sensor greater than setpoint (65°F, adjustable).
- J. Relief Air Exhaust Fans: When UV outside air dampers are open, associated exhaust fans shall exhaust or relief outside air accordingly as herein specified (under exhaust fans) by its' associated variable frequency drive. (James Evans)

3.5 CO2-DEMAND CONTROL VENTILATION

1. Sequence of Operation shall include the following:
- A. Ventilation to handle the non-occupant related contaminants.
- B. Pre-occupancy purge.
- C. Post-occupancy flush.
- D. Outdoor air damper positioning during occupied periods.
- 2. The CO₂ controller shall include in the sequence a provision for minimum ventilation rate 24 hours per day, 365 days a year a purge of the space prior to occupancy. Preoccupancy purge shall consist of a 30-minute fan(s) operation with outside air damper open to maximum occupant load position.
- 3. Post Occupancy Flush: Unit must run with outside air damper open after the occupied times to reduce CO₂ concentrations in the space to outside air levels, prior to shutting down.
- 4. Provide provision for a proportional-integral or a proportional-integral-derivative CO₂ controller. Controller/sensor shall be self-calibrating. See Section 15970 for CO₂ system and controllers.
- 5. Provide provision for measuring outside air CO₂.
- 6. The outside air damper (OAD) must start to modulate open beyond the minimum setting starting at an interior concentration of not greater than 100 ppm over that of the outside air and be open for full occupancy when CO₂ concentrations reach upper limit (ppm) over that of the outside air. Upper limit of CO₂ must be provided. Limit must be based upon metabolic rate of activities in area and volumetric flow rate required by code for area served.
- 7. Provide provision for economizer override of CO₂ control when conditions permit free cooling of building.
- 8. Contractor shall include extended commissioning (1 year) to check calibration of CO₂ sensor, monitor/test CO₂ levels to ensure target per person ventilation rates are met and maintained.
- 9. Record keeping: Space and outside air CO₂ conditions must be recorded at not greater than 15-minute intervals. Records of CO₂ concentrations must be kept for a minimum of three years. These records must be maintained in the custodian's office for review by the New York State Education Department.

3.6 NEW AIR HANDLING UNITS

- A. Operation shall be controlled through EMS scheduling. When operation, modulate the normallyclosed outside air damper and normally-open return air damper to maintain ventilation flow rates as measured in the outside air duct at the scheduled minimums.
- B. Minimum Ventilation: Minimum outside airflow rates (as scheduled on dwgs.) shall be controlled through EMS and as through system operator adjustment.
- C. Economizer Cooling: When outside air temperature is below 65 degrees F (adjustable), the outside air and return air dampers shall be modulated to maintain the discharge air setpoint temperatures. Discharge Air Setpoint Control: Discharge air temperature shall be reset according to space temperature sensors. As the average of the space temperature sensors increases to above 72 degrees F (adjustable), the normally closed outside air damper shall modulate open

from min O.A. to max O.A. As space temperature decreases, the outside air damper shall modulate from 100% to the minimum position.

- D. Relief Fan Operation For All Units: When the O.A damper reaches their minimum scheduled open position as determined by an adjustable end switch, then the relief fan shall start.
- E. Relief Fan Operation: When the O.A. damper reaches its minimum scheduled open position as determined by an adjustable end switch, then the relief fan shall start and modulate airflow by its respective damper.
- F. Smoke Detection: When the presence of smoke is detected at a duct smoke detector provided under the E contract, then the fan starter circuit shall be de-energized and the EMS shall be alarmed.
- G. Filter Alarm: A differential pressure sensor across the filters shall alarm the EMS when filter pressure drop exceeds 0.5 inches w.g. (adjustable). The speed of the VFD drive shall increase to maintain total design airflow.
- H. Fan Alarm: A current sensor installed on the fan motor shall alarm the EMS when the motor current drops below or exceeds the field adjustable setpoints.
- I. Cooling: When cooling (if so indicated) is indexed to ON,
- J. Compressor shall modulate to maintain room sensor setpoint.
- K. When the supply fan is indexed to ON during occupied mode, the outside air and relief air dampers shall open to their minimum position and the discharge air algorithms shall be activated. A discharge air temperature sensor, reset by its respective space temperature sensor, shall, through its respective DDC or application specific controller, modulate the heating coil in sequence with the variable frequency drive (for AHU-1, 2, 3, 4), outside, return and relief air dampers to maintain desired space temperature. During unoccupied mode, the outside air damper shall close and the return air damper shall open for 100% recirculation and the VFD for AHU-1, 2, 3& 4 shall reduce the fan speed as required to maintain setback temperature.
- N. High occupied peak demand operation for AHU-1, 2, 3 &4: During early morning warm-up, the O.A. damper shall be closed and the system shall re-circulate 100%. As scheduled, via the OWS, such as predetermined lunch time schedule or assembly functions, the O.A. damper shall open, the relief/exhaust air damper shall open 100%, the return air damper shall close, and the heating control valve shall modulate to maintain set point occupied temperature. The VFD shall be at full speed during high occupied peak demand.

3.7 FAN SHUT-DOWN

A. When the fire alarm system goes into an alarmed mode auxiliary contact from the fire alarm system shall de-energize causing all units over 1,000 cfm such as air handlers, rooftop AC units, classroom unit s, and exhaust fans to shutdown. All systems shall be capable of reset through the fire alarms and/or the EMS. This contractor or sub controls contractor shall provide necessary relays for this operation

3.8 GENERAL

A. Refer to Control Drawing H-700 Series for additional controls requirements and information.

END OF SECTION 23 09 93

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 23 00 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Filter dryers.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Shop Drawing Scale: 1/4 inch equals 1 foot (1:50).
 - 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Welding certificates.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type L.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Brazing Filler Metals: AWS A5.8.
- E. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

- A. Diaphragm Packless Valves:
 - 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 - 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
 - 3. Operator: Rising stem and hand wheel.
 - 4. Seat: Nylon.

- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 275 deg F (135 deg C).
- B. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.
 - 2. Core: Removable ball-type check valve with stainless-steel spring.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Copper spring.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
- C. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24-V ac coil.
 - 6. Working Pressure Rating: 400 psig (2760 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
 - 8. Manual operator.
- D. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C).
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig (4820 kPa).
- E. Straight-Type Strainers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 275 deg F (135 deg C).
- F. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
 - 6. Maximum Operating Temperature: 275 deg F (135 deg C).
- G. Moisture/Liquid Indicators:

- 1. Body: Forged brass.
- 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
- 3. Indicator: Color coded to show moisture content in ppm.
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 240 deg F (116 deg C).

2.3 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.
- B. Hot-Gas and Liquid Lines: Copper, Type L (B), annealed- or drawn-temper tubing and wrought-copper fittings with brazedjoints.
- C. Hot-Gas and Liquid Lines:
 - 1. NPS 5/8 (DN 18) and Smaller: Copper, Type L (B), annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.
 - 2. NPS 1-1/4 (DN 32) and Smaller: Copper, Type L (B), drawn-temper tubing and wroughtcopper fittings with 95-5 tin-antimony soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install diaphragm packless valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- C. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

- D. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- E. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- F. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- G. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or

panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal suction lines with a uniform slope downward to compressor.
 - 2. Install traps and double risers to entrain oil in vertical runs.
 - 3. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- R. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
- D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 23 23 00

SECTION 23 31 13 – METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Double-wall round ducts and fittings.
 - 4. Sheet metal materials.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
- B. Related Sections:
 - 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible".
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, structural steel, mechanical equipment, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
- E. Field quality-control reports

1.5 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
- B. GENERAL
 - 1. All round supply, return and exhaust ductwork shall be by the manufacturer. The duct system shall consist of fittings that are factory fitted with a sealing gasket and spiral duct which, when installed according to the manufacturer's instructions, will seal the duct joints without the use of duct sealer.
 - 2. The contractor may, with the approval of the engineer, convert select rectangular ductwork to round provided that the project space limitations are properly addressed and that the overall system design static pressure not be exceeded.
- C. MATERIALS
 - 1. Unless otherwise noted, all duct and fittings shall be G-90 galvanized steel in accordance with ASTM A-653 and A-924.

2. When specified on contract documents, stainless steel type 304 or type 316 in accordance with ASTM A-240 shall be provided.

D. CONSTRUCTION

1. Unless otherwise noted, all duct and fittings shall be constructed per SMACNA's Duct Construction Standards (+10 in W.G.) shown in the following table:

Diameter (inches)	Galvanized Fittings
3-14	24
16-26	22
28-36	20
38-50	20

2. FITTINGS:

- a. All fitting ends shall come factory equipped with a double lipped, U-profile, EPDM rubber gasket. Gasket shall be manufactured to gauge and flexibility so as to insure that system will meet all of the performance criteria set forth in the manufacturer's literature. Gasket shall be classified by an internationally recognized laboratory authority to conform to ASTM E84-91a and NFPA 90A flame spread and smoke developed ratings of 25/50.
- b. All fitting ends shall be calibrated to manufacturer's published dimensional tolerance standard and associated spiral duct.
- c. All fitting ends from 3" to 24" Dia. shall have rolled over edges for added strength and rigidity.
- d. All elbows from 3" to 12" Dia. Shall be 2 piece die stamped and continuously stitch welded. All elbows 14" Dia. And larger shall be standing seam gorelock construction and internally sealed.
- e. The radius of all 90° and 45° elbows shall be 1.5 times the elbow diameter, unless otherwise noted on the contract documents to be 1.0 times the elbow diameter. The radius of all 15°, 30° and 60° elbows shall be 1.0 times the elbow diameter.
- f. All fittings that are of either spot-welded or button punched construction shall be internally sealed. When contract documents require divided flow fittings, only full body fittings will be accepted. The use of duct taps is unacceptable except for retrofit installations.
- g. All volume dampers shall be by the spiral duct manufacturer. Damper shall be fitting sized to slip into spiral duct. Damper shall have the following features:
 - (1) Locking quadrant with blade position indicator
 - (2) 2" sheet metal insulation stand-off
 - (3) Integral shaft/blade assembly
 - (4) Shaft mounted, load bearing bushings
 - (5) Gasketed shaft penetrations to minimize leakage

2.3 SHEET METAL MATERIALS

- General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards

 Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90 (Z275).
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Factory Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: White.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- E. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches (76 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

- 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
- 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- D. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure and seal classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class A.
 - 4. Outdoor, Return-Air Ducts: Seal Class A.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class B.
 - 6. Unconditioned Space, Exhaust Ducts: Seal Class B.
 - 7. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 8. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: a. Exposed: Seal Class A.
 - b. Concealed: Seal Class C.
 - 9. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 10. Conditioned Space, Return-Air Ducts:
 - a. Exposed: Seal Class B.
 - b. Concealed: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.
 Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- C. Duct system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.8 DUCT CLEANING

- A. Clean new duct systems before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
- 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Energy recovery wheels.
 - 6. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 7. Supply-air ducts, dampers, actuators, and turning vanes.
 - 8. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
- B. Supply Ducts:
 - All Systems:
 a. Pressure Class: Positive 2-inch wg (500 Pa).
- C. Return Ducts:
 - 1. All Systems:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
- D. Exhaust Ducts:
 - 1. General Exhaust Ductwork:
 - a. Pressure Class: Negative 2-inch wg (500 Pa).
- E. Outdoor-Air Ducts:
 - 1. All Systems :
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts Galvanized steel or carbon steel coated with zinc-chromate primer.
- G. Liner:
 - 1. Supply Air Ducts: Fibrous glass, Type I, 2 inches (51 mm) thick.
- H. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.

- I. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
 - c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION 23 31 13

SECTION – 23 33 00 AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Fire dampers.
 - 4. Flange connectors.
 - 5. Turning vanes.
 - 6. Duct-mounted access doors.
 - 7. Flexible connectors.
 - 8. Flexible ducts.
 - 9. Duct accessory hardware.
- B. Related Sections:
 - 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 - 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. LEED Submittal:
 - 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 "Systems and Equipment."
- C. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.

- c. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
- d. Wiring Diagrams: For power, signal, and control wiring.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- E. Source quality-control reports.
- F. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90 (Z275).
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for ducts and finish for exposed ducts.
- D. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: Comply with ASTM B 221 (ASTM B 221M), Alloy 6063, Temper T6.

- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. Nailor Industries Inc.
 - 4. Ruskin Company.
 - 5. SEMCO Incorporated.
 - 6. Vent Products Company, Inc.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 2000 fpm (10 m/s).
- D. Maximum System Pressure: 2-inch wg (0.25 kPa).
- E. Frame: 0.063-inch- (1.6-mm-) thick extruded aluminum with welded corners..
- F. Blades: Multiple single-piece blades, maximum 6-inch (150-mm) width, 0.050-inch- (1.2-mm-) thick aluminum sheet with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Extruded vinyl, mechanically locked.
- I. Blade Axles:
 - 1. Material: Stainless steel.
 - 2. Diameter: 0.20 inch (5 mm).
- J. Tie Bars and Brackets: Aluminum.
- K. Return Spring: Adjustable tension.
- L. Bearings: Synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20-gage (1.0-mm) minimum.
 - b. Sleeve Length: 6 inches (152 mm) minimum.
 - 6. Screen Mounting: Rear mounted.
 - 7. Screen Material: Aluminum.

- 8. Screen Type: Insect.
- 9. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. McGill AirFlow LLC.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Ruskin Company.
 - f. Trox USA Inc.
 - g. Vent Products Company, Inc.
 - 2. Standard leakage rating.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat-shaped, galvanized-steel channels, 0.064-inch (1.62-mm) minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch (1.62 mm) thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. McGill AirFlow LLC.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Ruskin Company.
 - f. Trox USA Inc.
 - g. Vent Products Company, Inc.
 - 2. Standard leakage rating.
 - 3. Suitable for horizontal or vertical applications.

- 4. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch- (1.2-mm-) thick extruded aluminum.
- 6. Blade Axles: Nonferrous metal.
- 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Aluminum.
- C. Jackshaft:
 - 1. Size: 1-inch (25-mm) diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zincplated steel, and a 3/4-inch (19-mm) hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. McGill AirFlow LLC.
 - 5. METALAIRE, Inc.
 - 6. Nailor Industries Inc.
 - 7. NCA Manufacturing, Inc.
 - 8. Ruskin Company.
 - 9. Vent Products Company, Inc.
 - 10. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 4000-fpm (20-m/s) velocity.
- D. Fire Rating: 1-1/2 hours.

- E. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch (1.3 or 3.5 mm) thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.

2.5 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.6 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- E. Vane Construction: Single wall for ducts up to 48 inches (1200 mm) wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Flexmaster U.S.A., Inc.
 - 5. Greenheck Fan Corporation.
 - 6. McGill AirFlow LLC.
 - 7. Nailor Industries Inc.
 - 8. Pottorff; a division of PCI Industries, Inc.
 - 9. Ventfabrics, Inc.
 - 10. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches.

d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges and two compression latches with outside and inside handles.

2.8 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0428-inch (1.1-mm) stainless steel.
- D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F (1093 deg C).
- F. Minimum Pressure Rating: 10-inch wg (2500 Pa), positive or negative.

2.9 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Ventfabrics, Inc.
 - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.

Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches (146 mm) wide attached to 2 strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.

- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
- E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).

- 2. Minimum Tensile Strength: 500 lbf/inch (88 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
- 3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).
- F. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd. (542 g/sq. m).
 - 2. Tensile Strength: 285 lbf/inch (50 N/mm) in the warp and 185 lbf/inch (32 N/mm) in the filling.
- G. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
 - 2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).
- H. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch (6-mm) movement at start and stop.

2.10 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and ployester film without adhesive (mechanically locked) supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film..
 - 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg (250 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20 m/s).
 - 3. Temperature Range: Minus 20 to plus 210 deg F (Minus 29 to plus 99 deg C).
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1-2004.
- C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

2.11 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be

pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.

- 7. At each change in direction and at maximum 50-foot (15-m) spacing.
- 8. Upstream from turning vanes.
- 9. Control devices requiring inspection.
- 10. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Connect terminal units to supply ducts directly or with maximum 12-inch (300-mm) lengths of flexible duct. Do not use flexible ducts to change directions.
- O. Connect diffusers or boots to ducts directly or with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.
- P. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.
- Q. Install duct test holes where required for testing and balancing purposes.
- R. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch (6-mm) movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00
SECTION 23 34 23 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.
 - 2. Centrifugal wall ventilators.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs with sound attenuation.
 - 7. Fan speed controllers.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.

- 2. Ceiling suspension assembly members.
- 3. Size and location of initial access modules for acoustical tile.
- 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Field quality-control reports.
- E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.6 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.7 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 2. Carnes Company.
 - 3. Greenheck Fan Corporation.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.

- 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
- 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 - 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Built-in raised cant and mounting flange.
 - 2. Overall Height: 18 inches (450 mm).
 - 3. Sound Curb: Curb with sound-absorbing insulation.
 - 4. Metal Liner: Galvanized steel.
- G. Capacities and Characteristics:
 - 1. Refer to Drawings and Schedule Sheet

2.2 CENTRIFUGAL WALL VENTILATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 2. Carnes Company.
 - 3. Greenheck Fan Corporation.
- B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
- C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.

- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 - 4. Wall Grille: Ring type for flush mounting.
 - 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.
 - 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Capacities and Characteristics:
 - 1. Refer to Drawings and Schedule Sheet.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment." All motors shall be inverter capable premium efficiency rated.
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.4 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Support units using Vibration- and seismic-control devices specified in Division 23.
- C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Division 07 Section "Roof Accessories" for installation of roof curbs.
- D. Install units with clearances for service and maintenance.
- E. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.

- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION 23 34 23

SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Adjustable bar registers and grilles.
 - 3. Fixed face registers and grilles.
- B. Related Sections:
 - 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volumecontrol dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
- C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.

E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. A-J Manufacturing Co., Inc.
 - b. Anemostat Products; a Mestek company.
 - c. Carnes.
 - d. Hart & Cooley Inc.
 - e. Krueger.
 - f. METALAIRE, Inc.
 - g. Nailor Industries Inc.
 - h. Price Industries.
 - i. Titus.
 - j. Tuttle & Bailey.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Aluminum.
 - 4. Finish: Baked enamel, color selected by Architect.
 - 5. Face Size: As indicated on HVAC plans.
 - 6. Face Style: As indicated on HVAC plans.
 - 7. Mounting: As indicated on HVAC plans.
 - 8. Pattern: As indicated on HVAC plans.
 - 9. Dampers: Radial opposed blade.
 - 10. Accessories:
 - a. Equalizing grid.
 - b. Plaster ring.
 - c. Safety chain.
 - d. Wire guard.
 - e. Sectorizing baffles.
 - f. Operating rod extension.

2.2 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. A-J Manufacturing Co., Inc.
 - b. Anemostat Products; a Mestek company.
 - c. Carnes
 - d. Dayus Register & Grille Inc.
 - e. Hart & Cooley Inc.
 - f. Krueger.
 - g. METALAIRE, Inc.

- h. Nailor Industries Inc.
- i. Price Industries.
- j. Titus.
- k. Tuttle & Bailey.
- 2. Material: Aluminum.
- 3. Finish: Baked enamel, color selected by Architect.
- 4. Face Blade Arrangement: Horizontal.
- 5. Core Construction: Removable.
- 6. Rear-Blade Arrangement: Horizontal.
- 7. Frame: 1-1/4 inches (32 mm).
- 8. Mounting Frame: Filter.
- 9. Mounting: Lay in or surface as indicated on HVAC plans.
- B. Adjustable Bar Grille:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. A-J Manufacturing Co., Inc.
 - b. Anemostat Products; a Mestek company.
 - c. Carnes.
 - d. Dayus Register & Grille Inc.
 - e. Hart & Cooley Inc.
 - f. Krueger.
 - g. METALAIRE, Inc.
 - h. Nailor Industries Inc.
 - i. Price Industries.
 - j. Titus.
 - k. Tuttle & Bailey.
 - 2. Material: Aluminum.
 - 3. Finish: Baked enamel, color selected by Architect.
 - 4. Face Blade Arrangement: Horizontal.
 - 5. Core Construction: Removable.
 - 6. Rear-Blade Arrangement: Horizontal.
 - 7. Frame: 1-1/4 inches (32 mm).
 - 8. Mounting Frame: Filter.
 - 9. Mounting: Lay in or surface as indicated on HVAC plans.
- C. Fixed Face Register
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. A-J Manufacturing Co., Inc.
 - b. Anemostat Products; a Mestek company.
 - c. Carnes.
 - d. Dayus Register & Grille Inc.
 - e. Hart & Cooley Inc.
 - f. Krueger.
 - g. Nailor Industries Inc.
 - h. Price Industries.
 - i. Titus.
 - j. Tuttle & Bailey.
 - 2. Material: Aluminum.

- 3. Finish: Baked enamel, color selected by Architect.
- 4. Face Arrangement: Perforated core.
- 5. Core Construction: Removable.
- 6. Frame: 1-1/4 inches (32 mm) wide.
- 7. Mounting Frame: Filter.
- 8. Mounting: Lay in or surface as indicated on HVAC plans.
- 9. Damper Type: Adjustable opposed blade.
- D. Fixed Face Grille:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. A-J Manufacturing Co., Inc.
 - b. Anemostat Products; a Mestek company.
 - c. Carnes.
 - d. Dayus Register & Grille Inc.
 - e. Hart & Cooley Inc.
 - f. Krueger.
 - g. Nailor Industries Inc.
 - h. Price Industries.
 - i. Titus.
 - j. Tuttle & Bailey.
 - 2. Material: Aluminum.
 - 3. Finish: Baked enamel, color selected by Architect.
 - 4. Face Arrangement: Perforated core.
 - 5. Core Construction: Removable.
 - 6. Frame: 1-1/4 inches (32 mm) wide.
 - 7. Mounting Frame: Filter.
 - 8. Mounting: Lay in or surface as indicated on HVAC plans.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air

volume noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 37 16 - DUCTSOX HOOPS (IHS) WITH SEDONA-XM NP

PART 1 - GENERAL (Division 15, Section 15800)

1.1 DESCRIPTION OF WORK:

- A. Extent of non-metal ductwork is indicated on drawings and by requirements of this section.
- B. Types of non-metal ductwork required for this project include the following:
 - 1. Textile Air Dispersion Products.

1.2 QUALITY ASSURANCE:

- A. Building Codes and Standards:
 - 1. Product must be Classified by Underwriter's Laboratories in accordance with the 25/50 flame spread / smoke developed requirements of NFPA 90-A and UL 2518.
 - 2. All product sections must be labeled with the logo and classification marking of Underwriter's Laboratories.
- B. Design & Quality Control
 - Manufacturer must have documented design support information including duct sizing; vent, orifice, and/or nozzle location; vent, orifice, and/or nozzle sizing; length; and suspension. Parameters for design, including maximum air temperature, velocity, pressure and textile permeability, shall be considered and documented.
 - 2. Manufacturer's Environmental Product Declaration (EPD) must be inclusive of the following:
 - a. Fabric
 - b. Cutting, sewing, processing of DuctSox
 - c. Zippers
 - d. Metal suspension system parts and framework (if applicable)
 - e. Energy, water, recycled & waste of plant processing fabric & suspension
 - f. Complete packaging including boxes, bags & staples
 - g. Transportation

1.3 SUBMITTALS:

- A. Product Data: Submit manufacturer's specifications on materials and manufactured products used for work of this section.
- B. Building Code Data: Submit UL file number under which product is Classified by Underwriter's Laboratories for both NFPA 90-A and UL 2518.
- C. Provide detailed drawings confirming configuration of Textile Dispersion System (diameter, lengths, airflow, pressure, and textile permeability).
- D. Provide detailed installation instructions for components to be installed.

- E. Provide warranty and maintenance documentation.
- F. Provide product's Environmental Product Declaration (EPD) that includes the following:
 - 1. Fabric
 - 2. Cutting, sewing, processing of DuctSox
 - 3. Zippers
 - 4. Metal suspension system parts and framework (if applicable)
 - 5. Energy, water, recycled & waste of plant processing fabric & suspension
 - 6. Complete packaging including boxes, bags & staples
 - 7. Transportation

1.4 WARRANTY:

A. Manufacturer must provide a 10 Year Product Warranty for products supplied for the fabric portion of this system as well as a Design and Performance Warranty.

1.5 DELIVERY, STORAGE AND HANDLING:

- A. Protect textile air dispersion system and Hoops (IHS) components from damage during shipping, storage, and handling.
- B. Where possible, store products inside and protect from weather. Where necessary to store outside, store above grade and enclose with a vented waterproof wrapping.

PART 2 - PRODUCTS

2.1 MANUFACTURER:

Subject to compliance with requirements, choose one of the following:

A. DuctSox[®] Corporation

Phone: (866) DUCTSOX or (563) 588-5300

www.DuctSox.com

2.2 TEXTILE AIR DISPERSION SYSTEM:

- A. Hoops (IHS) System: Air diffusers shall be constructed with internal retention system.
 - 1. System shall consist of an internal 360 degree hoop system, spaced 5' on center.
 - 2. System shall be installed with a one row suspension system located 1.5" above top-deadcenter of the textile system.
 - 3. System attachment to cable or U-Track shall be made using Gliders spaced 12 inches.
 - 4. Available for diameters from 8" 60".
 - 5. One row suspension options(must specify if multiple on same project)
 - a. Cable suspension hardware to include cable, eye bolts, thimbles, cable clamps, and turnbuckle(s) as required.
 - 1. Cable suspension options(must specify if multiple on same project)
 - a. Galvanized steel cable

- b. Stainless steel cable
- c. Impregnated steel cable(required for natatorium applications)
- 2. Support lengths available in 5'(standard), 10', 15', & 30'.
- b. U-Track suspension hardware to include 8' sections of aluminum track, aluminum splice connectors, track endcaps and vertical cable support kits consisting of a length of cable with cable connectors. Radius aluminum track must be included for all horizontal/flat radius sections.
 - 1. U-Track suspension options(must specify if multiple on same project)
 - a. Galvanized steel cable
 - b. Stainless steel cable
 - c. Impregnated steel cable(required for natatorium applications)
 - 2. Support lengths available in 5'(standard), 10', 15', & 30'
- c. U-Track Surface Mount hardware to include 8' sections of aluminum track, aluminum splice connectors, track endcaps, and U-Track suspension attachments. Radius aluminum track must be included for all horizontal/flat radius sections.
 - 1. U-Track Surface Mount suspension options(must specify if multiple on same project)
 - a. U-Clip spring attachment
 - b. U-Clip spring attachment with T-Bar clip and rivet

- B. TEXTILE
 - 1. Sedona-Xm NP
 - a. Textile Construction: Filament/spun plain weave polyester treated with a machine washable anti-microbial agent by the fabric manufacturer, fire retardant in accordance with UL 2518. Also passes AS/NZS 1530.3.
 - b. Air Permeability: 0.7 (+/-0.25) CFM/ft² per ASTM D737, Frazier
 - 1. The air permeability of the fabric must NOT be created by perforating the fabric.
 - 2. The air permeability must be confirmed be third party testing to eliminate the formation of condensate on the fabric.
 - c. Weight: 6.5 oz. /yd² per ASTM D3776
 - d. Warranty: 10 years
 - 2. Textile Color
 - a. Standard: blue, white, tan, red, green, silver, black
 - b. Custom

C. TEXTILE SYSTEM FABRICATION REQUIREMENTS:

- 1. Textile system to be constructed in modular lengths (zippered) with proper radial securing clips along the length of the system.
- 2. Integrated air dispersion shall be specified and approved by manufacturer. (select only those that apply)
 - a. Linear Vents
 - Air dispersion accomplished by linear vent and permeable fabric. Linear vents must be sized in 1 CFM per linear foot increments (based on .5" SP), starting a 1 CFM through 90 CFM per linear foot. Linear vent is to consist of an array of open orifices rather than a mesh style vent to reduce maintenance requirements of mesh style vents. Linear vents should also be designed to minimize dusting on fabric surface.
 - 2. Size of vent openings and location of linear vents to be specified and approved by manufacturer.

- b. Orifices
 - 1. Air dispersion and extended throws are accomplished by reinforced orifices and permeable fabric. Reinforced laser-cut orifices retain the integrity of the opening and withstand laundry processes.
 - 2. Diameter, quantity, and location of reinforced orifices to be specified and approved by manufacturer.
- Inlet connection to metal duct via fabric draw band with anchor patches as supplied by manufacturer. Anchor patches to be secured to metal duct via. zip screw fastener – supplied by contractor.
- 4. Inlet connection includes zipper for easy removal / maintenance.
- 5. Lengths to include required intermediate zippers as specified by manufacturer.
- 6. System to include Adjustable Flow Devices to balance turbulence, airflow and distribution as needed. Flow restriction device shall include ability to adjust the airflow resistance from 0.06 0.60 in w.g. static pressure.
- 7. End cap includes zipper for easy maintenance.
- 8. Each section of the textile shall include identification labels documenting order number, section diameter, section length, piece number, code certifications and other pertinent information.
- D. DESIGN PARAMETERS:
 - 1. Textile air diffusers shall be designed from 0.25" water gage minimum to 3.1" maximum, with 0.5" as the standard.
 - 2. Textile air diffusers shall be limited to design temperatures between 0 degrees F and 180 degrees F (-17.8 degrees C and 82 degrees C).
 - 3. System overall design; diameter, length, airflow, operating static pressure and dispersion shall be designed or approved by the manufacturer.
 - 4. Do not use textile diffusers in concealed locations.
 - 5. Use textile air dispersion systems only for positive pressure air distribution components of the mechanical ventilation system.

PART 3 – INSTALLATION

3.1 INSTALLATION OF TEXTILE AIR DISPERSION SYSTEM:

A. Install chosen suspension system in accordance with the requirements of the manufacturer. Instructions for installation shall be provided by the manufacturer with product.

3.2 CLEANING AND PROTECTION:

- A. Clean air handling unit and ductwork prior to the DuctSox system unit-by-unit as it is installed. Clean external surfaces of foreign substance which may cause corrosive deterioration of facing.
- B. Temporary Closure: At ends of ducts which are not connected to equipment or distribution devices at time of ductwork installation, cover with polyethylene film or other covering which will keep the system clean until installation is completed.
- C. If DuctSox systems become soiled during installation, they should be removed and cleaned following the manufacturers standard terms of laundry.

END OF SECTION 23 37 16

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 74 13 CENTRAL STATION AIR HANDLING EQUIPMENT

PART 1: GENERAL -

- 1.1 SECTION INCLUDES
 - A. Indoor Air Handling Units.

1.2 REFERENCES

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AMCA 99 Standards Handbook.
- C. AMCA 210 Laboratory Methods of Testing Fans for Rating Purposes.
- D. AMCA 300 Test Code for Sound Rating Air Moving Devices.
- E. AMCA 500 Test Methods for Louver, Dampers, and Shutters.
- F. AHRI 410 Forced-Circulation Air-Cooling and Air-Heating Coils.
- G. AHRI 430 Central-Station Air-Handling Units.
- H. AHRI 435 Application of Central-Station Air-Handling Units.
- I. ASTMB117 Standard Practice for Operating Salt Spray Apparatus.
- J. NEMA MG1 Motors and Generators.
- K. NFPA 70 National Electrical Code.
- L. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- M. UL 723 Test for Surface Burning Characteristics of Building Materials.
- N. UL 900 Test Performance of Air Filter Units.
- O. UL 1995 Standard for Heating and Cooling Equipment.
- P. UL 94 Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
- Q. IBC 2000, 2003 International Building Code.
- R. NFPA 90A Standard for the Installation of Air Conditioning and Ventilating Systems.
- S. NFPA 5000 Building Construction and Safety Code.
- T. ASHRAE 90.1 Energy Code.
- U. AHRI Standard 1060 Rating Air-to-Air Heat Exchangers for Energy Recovery Ventilation Equipment.

V. GSA 2003 Facilities Standard - 5.9 HVAC Systems and Components.

1.3 SUBMITTALS

A. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, and electrical characteristics and connection requirements. Computer generated fan curves for each air handling unit shall be submitted with specific design operating point noted. A computer generated psychometric chart shall be submitted for each cooling coil with design points and final operating point clearly noted. Sound data for discharge, radiated and return positions shall be submitted by octave band for each unit. Calculations for required baserail heights to satisfy condensate trapping requirements of cooling coil shall be included.

B. Product Data:

- 1. Provide literature that indicates dimensions, weights, capacities, ratings, fan performance, finishes of materials, electrical characteristics, and connection requirements.
- 2. Provide data of filter media, filter performance data, filter assembly, and filter frames.
- 3. Provide manufacturer's installation instructions.

1.4 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Air Handler products specified in this section must show a minimum five years documented experience and complete catalog data on total product.

1.5 SAFETY AGENCY LISTED & CERTIFICATION

- A. Air Handling units shall be cETLus safety listed to conform with UL Standard 1995 and CAN/CSA Standard C22.2 No. 236. Units shall be accepted for use in New York City by the Department of Building, MEA 342-99-E.
- B. Air handler furnished with double width, double inlet (DWDI) fans and/or plenum fans where applicable, shall be certified in accordance with the central station air handling units certification program, which is based on AHRI Standard 430. (NOTE: Above does not apply to fan array)
- C. Air handling unit water heating & cooling coils shall be certified in accordance with the forced circulation air cooling and air heating coils certification program, which is based on AHRI Standard 410.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect and handle products to site.
- B. Accept products on site on factory-furnished shipping skids. Inspect for damage.
- C. Store in clean dry place and protect from construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

PART 2: PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. The following manufacturers are approved for use. No substitutions will be permitted.
 - 1. Daikin Applied 'Vision' Air Handler shall be the basis of design.
 - 2. Haakon
 - 3. Marlo

2.2 GENERAL DESCRIPTION

- A. Configuration: Fabricate as detailed on drawings.
- B. Performance: Conform to AHRI 430. See schedules on prints. (NOTE: above does not apply to fan array)
- C. Acoustics: Sound power levels (dB) for the unit shall not exceed the specified levels shown on the unit schedule. The manufacturer shall provide the necessary sound treatment to meet these levels if required.

2.3 UNIT CONSTRUCTION

- A. Fabricate unit with heavy gauge channel posts and panels secured with mechanical fasteners. All panels, access doors, and ship sections shall be sealed with permanently applied bulb-type gasket. Shipped loose gasketing is not allowed.
- B. Panels and access doors shall be constructed as a 2-inch nominal thick; thermal broke double wall assembly, injected with foam insulation with an R-value of not less than R-13.
 - 1. The inner liner shall be constructed of G90 galvanized steel.
 - 2. The outer panel shall be constructed of G90 galvanized steel.
 - 3. The floor plate shall be furnished with 0.044 inch thick aluminum tread plate in sections as indicated on project schedule.
 - 4. The floor plate shall be constructed as specified for the inner liner.
 - 5. A sound baffle shall be secured to the inner liner of selected fan, plenum, access, and manual sections. It shall be constructed of G60 galvanized perforated steel filled with fiberglass insulation.
 - 6. Unit will be furnished with solid inner liners.
- C. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum 5 inches of positive or 6 inches of negative static pressure. Deflection shall be measured at the panel midpoint.
- D. The casing leakage rate shall not exceed 0.50 cfm per square foot of casing surface area at design static pressure up to a maximum of +5" w.c. in positive pressure sections and -6" w.c. in negative pressure sections (.0025 m3/s per square meter of cabinet area at 1.24 kPa static pressure)

- E. The casing leakage rate shall not exceed 1% of supply air volume at design static pressure up to a maximum of +8" w.c. in positive pressure sections and -8" w.c. (1.99 kPa) in negative pressure sections.
- F. Module to module field assembly shall be accomplished with an overlapping, full perimeter internal splice joint that is sealed with bulb type gasketing on both mating modules to minimize on-site labor and meet indoor air quality standards.
- G. Access doors shall be flush mounted to cabinetry, with minimum of two six inch long stainless steel piano-type hinges, latch and full size handle assembly. Access doors shall swing outward for unit sections under negative pressure. Access doors on positive pressure sections, shall have a secondary latch to relieve pressure and prevent injury upon access.
- H. AC-4: A 6-inch formed G60 galvanized steel base rail shall be provided by the unit manufacturer for structural rigidity and condensate trapping.. The base rail shall be constructed with 12-gauge nominal for unit sizes 003 035 and 10-gauge nominal for unit sizes 040 090. The following calculation shall determine the required height of the baserail to allow for adequate drainage. Use the largest pressure to determine base rail height. (Negative)(Positive) static pressure (in) (2) + 4" = required baserail height. Should the unit baserail not be factory supplied at this height, the contractor is required to supply a concrete housekeeping pad to make up the difference.
- I. AC-1,2,3: The unit base shall be provided by others.
- J. Construct drain pans from stainless steel with cross break and double sloping pitch to drain connection. Provide drain pans under cooling coil section. Drain connection centerline shall be a minimum of 3" above the base rail to aid in proper condensate trapping. Drain connections that protrude from the base rail are not acceptable. There must be a full 2" thickness of insulation under drain pan.
- K. A sound baffle shall be secured to the inner liner of selected fan, plenum, access, and manual sections. It shall be constructed of G60 galvanized perforated steel filled with fiberglass insulation.
- L. An optional 0.044" thick aluminium treadplate shall be secured to the floor panel.

2.4 FAN ASSEMBLIES

- A. AC-4: Acceptable fan assembly shall be a single width, single inlet, class II, direct-drive type plenum fan dynamically balanced as an assembly, as shown in schedule. Maximum fan RPM shall be below first critical fan speed. Fan assemblies shall be dynamically balanced by the manufacturer on all three planes. Provide access to motor and fan assembly through hinged access door.
- B. AC-1,2,3: Acceptable fan assembly shall be a double width, double inlet, class II, belt-drive type housed forward curved fan dynamically balanced as an assembly, as shown in schedule. Maximum fan RPM shall be below first critical fan speed. Fan assemblies shall be dynamically balanced by the manufacturer on all three planes and at all bearing supports. Copper lubrication lines shall be provided and extend from the bearings and attached with grease fittings to the fan base assembly near access door. If not supplied at the factory, contractor shall mount copper lube lines in the field. Fan and motor shall be mounted internally on a steel base. Provide access to motor, drive, and bearings through hinged access door.

C. Fan and motor shall be mounted internally on a steel base. Factory mount motor on slide base that can be slid out the side of the unit if removal is required. Provide access to motor, drive, and bearings through hinged access door. Fan and motor assembly shall be mounted on 2" deflection spring vibration type isolators inside cabinetry. Seismic snubbers shall be provided.

2.5 BEARINGS, SHAFTS, AND DRIVES

- A. Bearings: Basic load rating computed in accordance with AFBMA ANSI Standards. The bearings shall be provided on the motor with the fan wheel mounted directly on the motor shaft, AMCA arrangement 4.
- B. Bearings: Basic load rating computed in accordance with AFBMA ANSI Standards.
- C. Shafts shall be solid, hot rolled steel, ground and polished, keyed to shaft, and protectively coated with lubricating oil. Hollow shafts are not acceptable.
- D. AC-4: The fan wheel shall be direct coupled to the motor shaft. The wheel width shall be determined by motor speed and fan performance characteristics.
- E. AC-1,2,3: V-Belt drives shall be cast iron or steel sheaves, dynamically balanced, bored to fit shafts and keyed. Fixed sheaves, matched belts, and drive rated based on motor horsepower. Minimum of 2 belts shall be provided on all fans with 10 HP motors and above. Standard drive service factor minimum shall be 1.1 S.F. for 1/4 HP 7.5 HP, 1.3 S.F. for 10 HP and larger, calculated based on fan brake horsepower.

2.6 ELECTRICAL

- A. Fan motors shall be manufacturer provided and installed, Open Drip Proof, premium efficiency (meets or exceeds EPAct requirements), single speed, 460V / 60HZ / 3P. Complete electrical characteristics for each fan motor shall be as shown in schedule.
- B. The air handler(s) shall be ETL and ETL-Canada listed by Intertek Testing Services, Inc. Units shall conform to bi-national standard ANSI/UL Standard 1995/CSA Standard C22.2 No. 236.
- C. Wiring Termination: Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclosed terminal lugs in terminal box sized to NFPA 70.
- D. Manufacturer shall provide ASHRAE 90.1 Energy Efficiency equation details for individual equipment to assist Building Engineer for calculating system compliance.
- E. Installing contractor shall provide GFI receptacle within 25 feet of unit to satisfy National Electrical Code requirements.

2.7 COOLING AND HEATING COILS

A. Certification: Acceptable water cooling, water heating, steam, and refrigerant coils shall be certified in accordance with AHRI Standard 410 and bear the AHRI label. Coils exceeding the scope of the manufacturer's certification and/or the range of AHRI's standard rating conditions will be considered provided the manufacturer is a current member of the AHRI Forced

Circulation Air-Cooling and Air-Heating Coils certification programs and that the coils have been rated in accordance with AHRI Standard 410. Manufacturer must be ISO 9002 certified.

- B. Direct expansion refrigerant cooling coil shall be provided. Provide access to coil(s) for service and cleaning. Enclose coil headers and return bends fully within unit casing. Unit shall be provided with coil connections that extend a minimum of 3" beyond unit casing for ease of installation. Coil connections must be factory sealed with grommets on interior and exterior panel liners to minimize air leakage and condensation inside panel assembly. If not factory packaged, Contractor must supply all coil connection grommets and sleeves. Coils shall be removable through side and/or top panels of unit without the need to remove and disassemble the entire section from the unit.
 - 1. Sweat type copper suction headers shall be provided.
 - 2. Fins shall have a minimum thickness of 0.0075 inch aluminum plate construction. Fins shall have full drawn collars to provide a continuous surface cover over the entire tube for maximum heat transfer. Tubes shall be mechanically expanded into the fins to provide a continuous primary to secondary compression bond over the entire finned length for maximum heat transfer rates. Bare copper tubes shall not be visible between fins.
 - 3. Coil tubes shall be 5/8 inch OD seamless copper, 0.020 inch nominal tube wall thickness, expanded into fins on 1 1/2-inch centers, brazed at joints.
 - 4. Sweat type copper suction connections located at the bottom of the suction headers for gravity oil drainage. Coils shall be uniformly circuited in a counterflow manner for either single circuit, row, face, interlaced, or interlaced face split capacity reduction as shown on unit schedule. Pressure type liquid distributors used. Coils shall be tested with 315 pounds air pressure under warm water, and suitable for 250 psig working pressure.
 - 5. Coil casing shall be a formed channel frame of galvanized steel.

2.8 FILTERS

- A. Furnish flat filter in mixing box section with 2-inch filter. Provide side loading and removal of filters.
- B. Furnish flat panel filter section with 2-inch filter. Provide side loading and removal of filters.
- C. Filter media shall be UL 900 listed, Class I or Class II.
- D. Filter Magnehelic gauge(s) shall be furnished and mounted by equipment manufacturer.

2.9 AC-4 ONLY: ELECTRIC HEAT

- A. The air handling unit shall include a UL recognized slip-in style electric heat section. Voltage, size KW, steps and control voltage shall be scheduled.
 - 1. Open coil heating elements shall be 80% nickel and 20% chromium; steps shall be arranged to prevent stratification when operating at less then full capacity. Elements for draw-through air handling units shall be derated to 35 watts per square inch.
 - 2. Element terminals shall be stainless steel; insulators and bracket bushings shall be nonporous ceramic and securely positioned. Terminals shall be machined crimped to elements.

- 3. Frame should be constructed of heavy gauge galvanized steel with galvanized steel brackets, stiffening ribs and gussets spot welded to the frame.
- 4. Terminal box shall be spot welded construction with solid, hinged cover, totally enclosed, without louvers or grilles per the UL standard.
- 5. Airflow direction shall be scheduled. Heater control panel shall be located on same side of unit as drive on fan.
- Safety devices: a disc-type automatic reset thermal cutout, pressure differential airflow switch, and door interlock switch shall be furnished for primary over temperature protection. All safety devices shall be serviceable through the terminal box without removing the heater from the unit.
- 7. Wiring Diagrams: a unique wiring diagram shall be furnished for each heater. Diagram shall include recommended supply wire gauges per NEC and fuse sizes. Typical Wiring Diagrams are not acceptable.
- 8. Built-in components shall include safety devices, disconnecting break magnetic contactors, transformer with primary fusing per UL, pressure type airflow switch set at .05" WC, supplementary circuit fuses per NEC (one set fuses per 48 amp circuit), and separate load and terminal blocks to accept conductors as shown on the electrical plan.
- 9. The following control type shall be available: SCR 0-10 VDC: (SCR Vernier Control 0-10 VDC)

2.10 ADDITIONAL SECTIONS

- A. Access section shall be provided for access between components.
- B. Mixing box section shall be provided with no outside air opening and top return air opening with or without parallel low leak airfoil damper blades. Dampers shall be hollow core galvanized steel airfoil blades, fully gasketed and have continuous vinyl seals between damper blades in a galvanized steel frame. Dampers shall have stainless steel jamb seals along end of dampers. Linkage and ABS plastic end caps shall be provided when return and outside air dampers sized for full airflow. Return and outside air dampers of different sizes must be driven separately. Damper Leakage: Leakage rate shall be less than two tenths of one percent leakage at 2 inches static pressure differential. Leakage rate tested in accordance with AMCA Standard 500.

PART 3: EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's Installation & Maintenance instructions.

3.2 ENVIRONMENTAL REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

END OF SECTION 23 74 13

SECTION 23 74 16 – PACKAGED ROOFTOP AIR CONDITIONERS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Packaged Rooftop air conditioners.

1.2 REFERENCES

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AMCA 99—Standards Handbook
- C. AMCA 210—Laboratory Methods of Testing Fans for Rating Purposes
- D. AMCA 500—Test Methods for Louver, Dampers, and Shutters.
- E. AHRI 340/360 Unitary Large Equipment
- F. NEMA MG1—Motors and Generators
- G. National Electrical Code.
- H. NFPA 70—National Fire Protection Agency.
- I. SMACNA—HVAC Duct Construction Standards—Metal and Flexible.
- J. UL 900—Test Performance of Air Filter Units.

1.3 SUBMITTALS

A. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, electrical characteristics, and connection requirements.

- B. Product Data:
 - 1. Provide literature that indicates dimensions, weights, capacities, ratings, fan performance, and electrical characteristics and connection requirements.
 - 2. Provide computer generated fan curves with specified operating point clearly plotted.
 - 3. Manufacturer's Installation Instructions.

1.4 OPERATION AND MAINTENANCE DATA

A. Maintenance Data: Provide instructions for installation, maintenance and service.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum five years documented experience, who issues complete catalog data on total product.

B. Startup must be done by trained personnel experienced with rooftop equipment.

C. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters and remote controls are in place, bearings lubricated, and manufacturers' installation instructions have been followed.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect and handle products to site.

B. Accept products on site and inspect for damage.

C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design: Daikin Applied

2.2 GENERAL DESCRIPTION

A. Furnish as shown on plans, Daikin Applied Rebel Single Zone Heating and Cooling Unit(s) model DPS. Unit performance and electrical characteristics shall be per the job schedule.

- B. Configuration: Fabricate as detailed on prints and drawings:
 - 1. Return plenum / economizer section
 - 2. Filter section
 - 3. Cooling coil section
 - 4. Supply fan section
 - 5. Gas heating section.
 - 6. Condensing unit section
- C. The complete unit shall be cETLus listed.
- D. The unit shall be ASHRAE 90.1-2019 compliant and labeled.

E. Each unit shall be specifically designed for outdoor rooftop application and include a weatherproof cabinet. Each unit shall be completely factory assembled and shipped in one piece. Packaged units shall be shipped fully charged with R-32 Refrigerant and oil.

F. The unit shall undergo a complete factory run test prior to shipment. The factory test shall include a refrigeration circuit run test, a unit control system operations checkout, a unit refrigerant leak test and a final unit inspection.

G. All units shall have decals and tags to indicate caution areas and aid unit service. Unit nameplates shall be fixed to the main control panel door. Electrical wiring diagrams shall be attached to the control panels. Installation, operating and maintenance bulletins and start-up forms shall be supplied with each unit.

H. Performance: All scheduled EER, IEER, capacities and face areas are minimum accepted values. All scheduled amps, kW, and HP are maximum accepted values that allow scheduled capacity to be met.

I. Warranty: The manufacturer shall provide 12-month parts only warranty. Defective parts shall be repaired or replaced during the warranty period at no charge. The warranty period shall commence at startup or six months after shipment, whichever occurs first.

2.3 CABINET, CASING, AND FRAME

A. Panel construction shall be double-wall construction for all panels. All floor panels shall have a solid galvanized steel inner liner on the air stream side of the unit to protect insulation during service and maintenance. Insulation shall be a minimum of 1" thick with an R-value of 7.0 on sizes 3-17 tons, and 2" thick with an R-value of 13 for 16-31 Tons, and shall be 2 part injected foam. Panel design shall include no exposed insulation edges. Unit cabinet shall be designed to operate at total static pressures up to 5.0 inches w.g.

B. Exterior surfaces shall be constructed of painted galvanized steel, for aesthetics and longterm durability. Paint finish will include a base primer with a high-quality polyester resin topcoat. Finished, unabraded panel surfaces shall be exposed to an ASTM B117 salt spray environment and exhibit no visible red rust at a minimum of 3,000 hours exposure. Finished, abraded surfaces shall be tested per ASTM D1654, having a mean scribe creepage not exceeding 1/16" at 1,000 hours minimum exposure to an ASTM B117 salt spray environment. Measurements of results shall be quantified using ASTM D1654 in conjunction with ASTM D610 and ASTM D714 to evaluate blister and rust ratings.

C. Service doors shall be provided on the fan section, filter section, control panel section, and heating vestibule in order to provide user access to unit components. All service access doors shall be mounted on multiple, stainless-steel hinges and shall be secured by a latch system. Removable service panels secured by multiple mechanical fasteners are not acceptable.

D. The unit base shall overhang the roof curb for positive water runoff and shall seat on the roof curb gasket to provide a positive, weathertight seal.

2.4 OUTDOOR/RETURN AIR SECTION

A. (DOAS-1&2 REFRIGERATION CONTROLS ONLY) Unit shall be provided with an outdoor air economizer section. The economizer section shall include outdoor, return, and exhaust air dampers. The economizer operation shall be fully integral to the mechanical cooling and allow up to 100% of mechanical cooling if needed to maintain the cooling discharge air temperature. The outdoor air hood shall be factory installed and constructed from galvanized steel finished with the same durable paint finish as the main unit. The hood shall include moisture eliminator

filters to drain water away from the entering air stream. The outside and return air dampers shall be sized to handle 100% of the supply air volume. The dampers shall be parallel blade design. Damper blades shall be gasketed with side seals to provide an air leakage rate of 1.5 cfm / square foot of damper area at 1" differential pressure in according with testing defined in AMCA 500. A barometric exhaust damper shall be provided to exhaust air out of the back of the unit. A bird screen shall be provided to prevent infiltration of rain and foreign materials. Exhaust damper blades shall be lined with vinyl gasketing on contact edges. Control of the dampers shall be by a factory installed direct coupled actuator. Damper actuator shall be of the modulating, spring return type.

B. (DOAS-1&2, LOBBY, AND FITNESS) (Daikin Applied UltraSeal low leak dampers shall be provided. Damper blades shall be fully gasketed and side sealed and arranged vertically in the hood. Damper leakage shall be less than 1.5 CFM/Sq. Ft. of damper area at 1.0 inch static pressure differential. Leakage rate to be tested in accordance with AMCA Standard 500. Damper blades shall be operated from multiple sets of linkages mounted on the leaving face of the dampers. Control of the dampers shall be from a factory installed actuator.

C. Control of the outdoor dampers shall be by a factory installed actuator. Damper actuator shall be of the modulating type. Damper to open when supply fan starts, and close when supply fan stops.

D. Economizer assembly Fault Detection and Diagnostics (FDD) shall be 90.1, IECC, and California Title 24 compliant. MicroTech III controls shall display a warning, and write a warning to the BAS, if the economizer malfunctions in accordance with 90.1, IECC, and Title 24 specifications.

2.5 ENERGY RECOVERY (DOAS-1&2)

A. The rooftop unit shall be designed with a track so the entire energy recovery wheel cassette can slide out from the rooftop unit to facilitate cleaning

B. The unit shall have 2" Merv 8 filters for the outdoor air before the wheel to help keep the wheel clean and reduce maintenance. Filter access shall be by a hinged access door with $\frac{1}{4}$ turn latches.

C. The matrix design shall have channels to reduce cross contamination between the outdoor air and the exhaust air. The layers shall be effectively captured in aluminum and stainless-steel segment frames that provide a rigid and self-supporting matrix. All diameter and perimeter seals shall be provided as part of the cassette assembly and shall be factory set. Drive belt(s) of stretch urethane shall be provided for wheel rim drive without the need for external tensioners or adjustment.

D. The total energy recovery wheel shall be coated with silica gel desiccant permanently bonded without the use of binders or adhesives, which may degrade desiccant performance. The substrate shall be lightweight polymer and shall not degrade nor require additional coatings for application in marine or coastal environments. Coated segments shall be washable with detergent or alkaline coil cleaner and water. Desiccant shall not dissolve nor deliquesce in the presence of water or high humidity.

E. Wheels shall be provided with removable energy transfer matrix. Wheel frame construction shall be a welded hub, spoke and rim assembly of stainless, plated and/or coated steel and

shall be self-supporting without matrix segments in place. Segments shall be removable without the use of tools to facilitate maintenance and cleaning.

F. Wheel bearings shall be selected to provide an L-10 life in excess of 400,000 hours. Rim shall be continuous rolled stainless steel. Wheels shall be connected to the shaft by means of taper lock hubs.

G. The exhaust air fan shall be a direct drive SWSI plenum fan. The exhaust fan shall be sized for the airflow requirements per the construction schedule. The unit controller shall control the exhaust fan to maintain building pressure. A VFD shall be provided for the exhaust fan motor, or the exhaust fan motor shall be an ECM motor. The rooftop unit shall have single point electrical power connection and shall be ETL listed

H. (REFRIGERATION ONLY CONTROLS) Energy recovery wheel operation and defrost will be operated by a third-party microprocessor controller.

2.6 EXHAUST FAN

A. Exhaust fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with aluminum fan blades that are continuously welded to the hub plate and end rim. The exhaust fan shall be a direct drive fan mounted to the motor shaft. Belts and sheaves are not acceptable due to the additional maintenance.

B. The fan motor shall be a totally enclosed EC motor that is speed controlled by the rooftop unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

C. The unit DDC controller shall provide building static pressure control. The unit controller shall provide proportional control of the exhaust fans from 25% to 100% of the supply air fan designed airflow to maintain the adjustable building pressure setpoint. The field shall mount the required sensing tubing from the building to the factory mounted building static pressure sensor.

2.7 FILTERS

A. Unit shall be provided with a draw-through filter section. The filter rack shall be designed to accept a 2" prefilter and a 4" final filter. The unit design shall have a hinged access door for the filter section. The manufacturer shall ship the rooftop unit with 2" MERV 8 and 4" MERV 14 filters.

B. All units shall be provided with a through the wall minihelic filter gauge that displays filter loading on the exterior of the unit.

2.8 COOLING COIL

A. The indoor coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be complete with a factory piped cooling coil and an ASHRAE 62.1 compliant double sloped drain pan.

B. The direct expansion (DX) cooling coils shall be fabricated of seamless high efficiency copper tubing that is mechanically expanded into high efficiency aluminum plate fins. Coils shall be a multi-row, staggered tube design with a minimum of 3 rows. All cooling coils shall have an interlaced coil circuiting that keeps the full coil face active at all load conditions. All coils shall be factory leak tested with high pressure air under water.

C. The cooling coil shall have an electronic controlled expansion valve. The unit controller shall control the expansion valve to maintain liquid subcooling and the superheat of the refrigerant system.

D. The refrigerant suction lines shall be fully insulated from the expansion valve to the compressors.

E. The drain pan shall be stainless steel and positively sloped. The slope of the drain pan shall be in two directions and comply with ASHRAE Standard 62.1. The drain pan shall have a minimum slope of 1/8" per foot to provide positive draining. The drain pan shall extend beyond the leaving side of the coil. The drain pan shall have a threaded drain connection extending through the unit base.

F. A drain pan overflow safety shall shut off the unit and issue a warning before over flow occurs.

2.9 HOT GAS REHEAT (DOAS-1&2)

A. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser.

B. Hot gas reheat coil shall be a Micro Channel design. The aluminum tube shall be a micro channel design with high efficiency aluminum fins. Fins shall be brazed to the tubing for a direct bond. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.

C. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- $2^{\circ}F$.

D. Each coil shall be factory leak tested with high-pressure air under water.

2.10 SUPPLY FAN

A. Supply fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with fan blades that are continuously welded to the hub plate and end rim. The supply fan shall be a direct drive fan mounted to the motor shaft. Belts and sheaves are not acceptable due to the additional maintenance.

B. (DOAS-2 and Gym) All fan assemblies shall employ solid steel fan shafts. Heavy-duty pillow block type, self-aligning, grease lubricated ball bearings shall be used. Bearings shall be sized to provide a L-50 life at 250,000 hours. The entire fan assembly shall be isolated from the fan bulkhead with a flexible collar and mounted on 1" spring isolators.

C. All fan assemblies shall be statically and dynamically balanced at the factory, including a final trim balance, prior to shipment.

D. Supply fan and motor assembly combinations larger than 8 hp or 22" diameter shall be internally isolated on 1" deflection, spring isolators and include removable shipping tie downs.

E. (DOAS-1, Lobby, and Fitness) The fan motor shall be a totally enclosed EC motor that is speed controlled by the rooftop unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

F. (DOAS-2 and Gym) The motor shall be T Frame and open drip proof. Overload protection and speed control is provided by the factory installed VFD and rooftop unit controller. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

G. The supply fan shall be capable of airflow modulation from 30% to 100% of the scheduled designed airflow. The fan shall not operate in a state of surge at any point within the modulation range.

1. All Supply and Exhaust Fans shall include a factory installed flow measuring station. Airflow needs to be readable through the unit controller and building automation system.

2.11 VARIABLE AIR VOLUME CONTROL

A. <u>DOAS Units</u>: The unit controller shall proportionally control the Electronically Commutated Motors (ECM) on the supply and exhaust fans. The supply fan shall be controlled to maintain an adjustable duct pressure setpoint. A duct static pressure sensor shall be factory mounted in the control panel. The field shall furnish and install the pneumatic tubing for the duct static pressure sensor and the building pressure sensor. The field shall furnish and install the outdoor air pressure sensor.

B. <u>Single-Zone Units:</u> The unit controller shall proportional control the ECM motors on the supply fan based on space temperature. The unit controller shall increase/decrease the speed of the supply fan in order to maintain the space temperature within its setpoint and dead band. The unit controller shall provide discharge air temperature control with the compressor modulation.

C. The unit manufacturer shall install all power and control wiring.

D. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.

2.12 HEATING SECTION

A. The rooftop unit shall include a natural gas heating section. The gas furnace design shall be one natural gas fired heating module factory installed downstream of the supply air fan in the heat section. The heating module shall be a tubular design with in-shot gas burners.

B. The module shall be complete with furnace controller and control valve capable of 5:1 (7-tons or less) or 12:1 (10-tons and larger) modulating operation.

C. The heat exchanger tubes shall be constructed of stainless steel

D. The module shall have an induced draft fan that will maintain a negative pressure in the heat exchanger tubes for the removal of the flue gases.

E. Each burner module shall have two flame roll-out safety protection switches and a high temperature limit switch that will shut the gas valve off upon detection of improper burner manifold operation. The induced draft fan shall have an airflow safety switch that will prevent the heating module from turning on in the event of no airflow in the flue chamber.

F. The factory installed DDC unit control system shall control the gas heat module. Field installed heating modules shall require a field ETL certification. The manufacturer's rooftop unit ETL certification shall cover the complete unit including the gas heating modules.

2.13 HEAT PUMP HEATING

A. The evaporator coil, condenser coil, compressors and refrigerant circuit shall be designed for heat pump operation. The refrigerant circuit shall contain a 4-way reversing valve for the heat pump operation. The outdoor coil shall have an electronic expansion valve to control the refrigerant flow. The unit controller shall modulate the expansion valve to maintain compressor operation within the compressor operational envelope.

B. The refrigerant system shall have a pump-down cycle.

C. The unit shall have a natural gas furnace for hybrid heating. When the heatpump operation cannot maintain the discharge air temperature setpoint the natural gas furnace shall temper the airstream to the discharge air temperature setpoint.

2.14 CONDENSING SECTION

A. Outdoor coils shall have seamless copper tubes, mechanically bonded into aluminum platetype fins. The fins shall have full drawn collars to completely cover the tubes. A sub-cooling coil shall be an integral part of the main outdoor air coil. Each outdoor air coil shall be factory leak tested with high-pressure air under water.

B. Fan motors shall be an ECM type motor for proportional control. The unit controller shall proportionally control the speed of the condenser fan motors to maintain the head pressure of the refrigerant circuit in ambient conditions up to 125°F]. Mechanical cooling shall be provided to 0°F. Heat Pump Heating shall be provided to -10F. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase.

C. The condenser fan shall be low noise blade design. Fan blade design shall be a dynamic profile for low tip speed. Fan blade shall be of a composite material.

D. The unit shall have scroll compressors. One of the compressors shall be an inverter compressor providing proportional control. The unit controller shall control the speed of the compressor to maintain the discharge air temperature. The inverter compressor shall have a separate oil pump and an oil separator for each compressor that routes oil back to the compressor instead of through the discharge line.

E. Pressure transducers shall be provided for the suction pressure and head pressure. Temperature sensor shall be provided for the suction temperature and the refrigerant discharge temperature of the compressors. All of the above devices shall be an input to the unit controller and the values be displayed at the unit controller.

F. Refrigerant circuit shall have a bypass valve between the suction and discharge refrigerant lines for low head pressure compressor starting and increased compressor reliability. When there is a call for mechanical cooling the bypass valve shall open to equalizing the suction and discharge pressures. When pressures are equalized the bypass valve shall close and the compressor shall be allowed to start.

G. Each circuit shall be dehydrated and factory charged with R32 Refrigerant and oil.

2.15 ELECTRICAL

A. Unit wiring shall comply with NEC requirements and with all applicable UL standards. All electrical components shall be UL recognized where applicable. All wiring and electrical components provided with the unit shall be number and color-coded and labeled according to the electrical diagram provided for easy identification. The unit shall be provided with a factory wired weatherproof control panel. Unit shall have a single point power terminal block for main power connection. A terminal board shall be provided for low voltage control wiring. Branch short circuit protection, 115-volt control circuit transformer and fuse, system switches, and a high temperature sensor shall also be provided with the unit. Each compressor and condenser fan motor shall be furnished with contactors and inherent thermal overload protection. Supply fan motors shall have contactors and external overload protection. Knockouts shall be provided in the bottom of the main control panels for field wiring entrance.

B. A GFI receptacle shall be unit mounted. The receptacle shall be powered by a factory installed and wired 120V, 15 amp power supply. The power supply shall be wired to the line side of the unit's main disconnect, so the receptacle is powered when the main unit disconnect is off. This option shall include a GFI receptacle, 2.0 KVA transformer and a branch circuit disconnect. The electrical circuit shall be complete with primary and secondary overload protection.

C. An optional fused disconnect and 65,000 amp SCCR capability shall be provided.

2.16 CONTROLS

A. (REFRIGERATION ONLY CONTROLS) The stand-alone DDC controllers shall not be dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor shall maintain existing set points and operate stand-alone if the unit loses either direct connect or network communications. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. All factory and user set schedules and control points shall be maintained in nonvolatile memory. No settings shall be lost, even during extended power shutdowns.

B. (REFRIGERATION ONLY CONTROLS) Provide a microprocessor based system to control all refrigeration functions including compressor speed, condenser fan function, unit safety protection, including compressor minimum run and minimum off times, and diagnostics. This system shall operate the unit at peak efficiency utilizing variable head pressure control and electronic expansion valve while maintaining the cooling, or heating in heat pump operation,

call per third party control. The microprocessor control shall consist of only direct expansion required temperature sensors, pressure sensors, controller and keypad/display operator interface. Refrigeration sensors and controller shall be factory mounted, wired and tested.

C. The microprocessor controls shall be solely dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. No commissioning settings shall be lost, even during extended power shutdowns.

D. The microprocessor controls shall be dependent on starting and stopping of the unit via terminal strip control and logic. The control system shall be capable of providing a remote alarm indication. The microprocessor shall provide compressor capacity & status, defrost status (heat pump only), condensate overflow alarm, and dirty filter alarm.

E. All digital and analog inputs and outputs shall be protected against damage from transients or incorrect voltages. All field wiring shall be terminated at a separate, clearly marked terminal strip.

F. The keypad interface shall allow convenient navigation and access to the commissioning functions. The unit keypad/display character format shall be 4 lines x 20 characters. All control settings shall be password protected against unauthorized changes. For ease of service, the display format shall be English language readout. Coded formats with look-up tables will not be accepted. The user interaction with the display shall provide the following information as a minimum:

- 1. Supply and exhaust fan speed control
- 2. Refrigeration alarm details.
- 2.16.1 A2L Leak Mitigation (APPLIES TO COMPRESSORIZED PACKAGE ROOFTOP UNITS) Refrigerant Detection System (RDS) for compressorized rooftop equipment using A2L refrigerant.

A. Compressorized rooftop equipment using A2L refrigerant shall come equipped with a factory installed Refrigerant Detection System (RDS) in compliance with UL60335-2-40. The factory-installed unit controller will respond and control the unit to comply with UL60335-2-40 according to the alarm status of the refrigerant detection system. See the unit Operations Manual for a detailed sequence of operations.

B. The Refrigerant Detection System (RDS) shall consist of the following components:

1. Dedicated A2L Refrigerant Detection Control Board

2. Refrigerant Sensor or Sensors. The number of sensors will vary based on the product and configuration as needed to comply with UL requirements.

C. Operation and Monitoring:

1. The refrigerant sensor or sensors communicate with the refrigerant detection control board. The refrigerant sensors detect the presence of the A2L refrigerant outside of the sealed refrigeration piping and communicate the levels to the refrigerant detection control board. The refrigerant detection controller communicates the RDS status to the factory-installed unit controller.

2. Alarm Communication: The unit controller will communicate RDS alarms based on the RDS status in the same way as any other alarm. Alarms are triggered by the following: 1)
Refrigerant detected above 15% of the refrigerant lower flammability level (LFL); 2) Refrigerant Sensor Fault.

- a. A customer relay is provided for the field to connect directly to the refrigerant detection control board as an alternative means to receive the above two alarm statuses.
- b. A customer relay is provided for the field to connect directly to the refrigerant detection control board as an alternative means to receive the above two alarm statuses.
- D. Factory unit wiring diagrams must show the refrigerant leak detection system wiring.

2.17 ROOF CURB

A. A prefabricated heavy gauge galvanized steel, mounting curb shall be provided for field assembly on the roof decking prior to unit shipment. The roof curb shall be a full perimeter type with complete perimeter support of the air handling section and condensing section. The curb shall be a minimum of 14" high and include a nominal 2" x 4" wood nailing strip. Gasket shall be provided for field mounting between the unit base and roof curb.

END OF SECTION 23 74 16

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 74 23 - PACKAGED, OUTDOOR, HEATING ONLY-MAKEUP AIR UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes indirect gas-fired heating or heating/make-up air units. Each unit shall be constructed in a horizontal configuration and shall incorporate additional product requirements as listed in the "PRODUCTS" section of this specification. If unit is intended for installation on a concrete slab, verify design requirements and construction responsibility for the slab.

1.2 SUBMITTALS

- A. All information in this document, as provided by Modine Manufacturing Company, is provided without representation or warranty of any kind as to the user or any other party, including, without limitation, ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR NON-INFRINGEMENT. To the greatest extent permitted by applicable law, Modine Manufacturing Company assumes no liability, and the user assumes all liability and risk, for the use or results from the use of this document or the information contained herein, whether as modified by the user or not. This document must be carefully reviewed by the Engineer to ensure it meets the requirements of the project and local building code(s).
- B. As Modine Manufacturing Company has a Continuous Product Improvement program, it reserves the right to change design and specifications without notice.

1.3 QUALITY ASSURANCE

- A. The duct furnace(s) shall include ETL design certification for use in both the US and Canada to the ANSI Z83.8 latest revision, standard for "Gas Unit Heater and Gas-Fired Duct Furnaces" for safe operation, construction, and performance.
- B. The complete system featuring duct furnace(s) and blower section (and cooling and downturn sections if applicable) shall include ETL design certification and the unit nameplate shall include the ETL/ETL Canada listed mark for use in both the US and Canada and must conform to UL 60335-2-40:2022 Ed.4 and be certified to CSA C22.2#60335-2-40:2022 Ed.4 "Household and Similar Electrical Appliances Safety Part 2 40: Particular Requirements for Electrical Heat Pumps, Air-Conditioners, and Dehumidifiers". This includes UL 60335-1 "Household and Similar Electrical Appliances Part 1: General Requirements".
- C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum ten years documented experience.

PART 2 - PRODUCTS

2.1 GENERAL

A. Furnish and install an indirect gas-fired heating or heating/make-up air unit. Unit shall be fully assembled, wired, and tested prior to shipment. If unit is intended for installation on a concrete slab, verify design requirements and construction responsibility for the slab.

2.2 MANUFACTURERS

A. The basis-of-design product for the indirect gas-fired heating or heating/make-up air unit is based on the Airedale model OBP.

2.3 MECHANICAL CONFIGURATION

- A. Unit(s) shall have right side access, when looking into the discharge, and include:
 - 1. Furnace section(s) controls.
 - 2. Blower section containing a supply blower and motor with bottom support to provide rigidity. The blower connection shall be flexible with ¼" gasket to prevent sound transmission into the supply ductwork.
 - 3. Electrical section isolated from the supply air stream including a hinged access door. Separate conduit entry points shall be provided for both high and low voltage electrical connections. Provisions must be included for side access electrical connections for slab mounted units and bottom electrical connections for roof curb mounted units.

2.4 CABINET

- A. Duct Furnace
 - 1. The duct furnace unit casing shall be constructed of not less than 18 gauge aluminized steel and shall be painted with a baked-on gray-green polyester powder paint (7 mil thickness) for corrosion resistance.
 - 2. All duct furnace access side doors shall have heavy duty, draw tight, quarter turn latches.
- B. Blower Section
 - 1. The blower section shall be constructed of not less than 18 gauge aluminized steel and shall be painted with a baked-on gray-green polyester powder paint (7mil thickness) for corrosion resistance.
 - 2. All blower section access side doors shall have heavy duty, draw tight, quarter turn latches.
 - 3. The blower cabinet shall be insulated as noted below.
 - 4. The blower cabinet shall include double wall construction as noted below.
- C. Insulation
 - 1. Insulation shall be 1 inch, 1½ lb density acoustical and thermal insulation. The insulation shall be made of glass fibers bonded with a thermosetting resin and

overlaid with a fire-resistant black acrylic coating for additional strength. The acrylic coating must meet the requirements of ASTM C 665 for fungi resistance.

- 2. Double wall construction shall include a 22 gauge aluminized steel liner that covers the insulation to comply with ASHRAE 62.1 to prevent mold growth, allow easy cleaning, and protection of the insulation from the airstream and from entering the airstream.
- D. Other Construction
 - 1. Roof shall be designed for maximum roof rigidity and prevention of standing water and perimeter drip edges to prevent water from dripping into the access doors.
 - 2. Unit shall be designed to reduce air leakage and infiltration through the cabinet. Continuous gasket sealing shall be included between panels and between access doors and openings to reduce air leakage.
 - 3. The unit shall be provided with a 14 gauge, galvanized steel mounting base with lifting and anchoring holes. The base is designed for either curb or slab mounting.
- E. Unit shall include an inlet hood with screen that shall be pre-assembled from the factory and provided with internal baffles to prevent water entrainment in the supply air stream.

2.5 AIR CONTROL CONFIGURATION

- A. Unit airflow control configuration shall be fresh air dampers with no return air opening for 100% outside air applications. The actuator shall be two-position.
 - 1. All fresh air dampers are ultra-low-leak with self-compensating stainless steel side seals and galvanized steel blades with edge seals. Dampers shall have a maximum Class I leakage resistance (less than 4 CFM/ft² at 1" W.C.) when tested in accordance with AMCA Standard No. 500, Test Methods for Louvers, Dampers, and Shutters.
- B. The damper actuator shall be mounted directly to the shaft of the fresh air damper. If return air dampers are provided, a damper linkage rod shall be provided to set the positions of the opposed dampers. As one damper opens, the opposing damper closes.
 - 1. The damper actuator shall be on-off, spring return so when power is disconnected, the damper closes the outside air opening.
 - 2. The damper actuator shall have one normally open and one normally closed end switch to prove that the damper has opened.
 - 3. Damper controls shall be as outlined in the "CONTROLS" section.

2.6 HEATING SYSTEM

- A. The unit shall have an indirect fired gas heating section.
 - 1. The gas heat section shall consist of two single furnaces in series. Each furnace rating is 1/2 the total heat rating of the unit.
 - 2. The venting shall be a power exhausted arrangement. The unit shall be tested to insure proper ignition when the unit is subjected to 40 mile per hour wind velocities.
 - 3. A step down transformer from 460V supply voltage to 115V shall be provided for operation of the power exhauster motor.
 - 4. The gas heating section shall be configured for use with Natural Gas. The inlet gas pressure shall be 6-7" W.C. minimum, not to exceed 14" W.C.

- 5. The thermal efficiency of the section shall be a minimum of 81% for all air flow ranges resulting in a temperature rise range of 20°F-60°F.
- 6. The heat exchanger(s) shall be made of 20 gauge 409 stainless steel tubes and headers. The flue collector box shall be made of 20 gauge aluminized steel.
- 7. The burner(s) shall be made of the same material as the heat exchanger with a thickness of not less than 28 gauge. Burner(s) shall have non-clogging, slotted ports with a stainless steel separator strip designed for good lighting characteristics without noise of extinction. The burner(s) shall be located for service removal without disconnecting the main gas supply piping.
- 8. Each heat exchanger tube shall be individually and directly flame-fired. The heat exchanger tube shall be contoured and dimpled to provide efficient heat transfer and crimped to allow for thermal expansion and contraction.
- 9. The heat exchanger(s) seams and duct connections shall be certified to withstand 3.0" W.C. external static pressure without burner flame disturbance.
- 10. The bottom of the unit shall be angled for draining any condensation to the corners of the unit. The condensation shall be removed through openings in the bottom pan.
- 11. The drain pan shall be constructed of 20 gauge 409 stainless steel.
- 12. The gas manifold(s) piping shall allow for gas piping connection on the side of the unit for slab mounted units and through the unit bottom for roof curb mounted units. The manifold(s) shall include a ground joint union for ease of servicing of the orifices without removing the burner assembly or main gas valve string.
- 13. Gas connections to the furnaces shall consist of individually piped manifolds with separate gas valves and separate ignition controllers.
- 14. A 1/8" manifold pressure tap shall be located after all valves to test the manifold pressure directly before the main burner orifices.
- 15. The orifices provided may include adjustable air shutters for controlling the primary air mixture.
- 16. Orifices shall be sized for operation at 0-2000 feet elevation above sea level.
- 17. The unit shall be provided with a single phase gas control transformer to step down the supply voltage to 24V.
- 18. The ignition controller(s) shall be 100% shut-off with continuous retry for natural gas.
- 19. The solid state ignition system shall intermittently light the pilot each time the system is energized. Once the pilot is proven, the main gas valve shall open and allow gas flow to the main burner.
- 20. Each furnace shall include an automatic reset high limit switch.
- 21. The unit shall include an air flow proving switch to insure air flow across the heat exchanger before allowing the gas controls to be energized.
- 22. Each furnace shall include an optional low gas pressure switch(s) prevents the burner from firing if the inlet gas pressure is below the minimum gas pressure.
- 23. Each furnace shall include an optional high gas pressure switch(s) which prevents the burner from firing if the manifold gas pressure is above the maximum manifold gas pressure.
- B. The unit gas controls shall be provided with the following:
 - 1. An electronic modulating gas valve and combination gas valve on the primary furnace and two-stage combination gas valves on successive furnace(s), ignition control on each furnace, and modulating control from the unit mounted microprocessor controller as described in the "Temperature Controls" section of "CONTROLS".
 - 2. The gas controls can modulate the capacity of a single furnace from 40 to 100% of full fire, but by locking out a furnace, turndown is further reduced to 20% as a system.

2.7 SUPPLY AIR BLOWER AND MOTOR

- A. The unit shall contain a single supply blower that is supported from the bottom to prevent the blower flanges supporting the weight of the motor. The blower shall be a double width, double inlet (DWDI) forward curved, belt driven assembly.
 - 1. The blower shall have heavy duty, pillow block ball bearings.
 - 2. The blower assembly shall include motor and blower vibration isolation using rubberin-shear grommets.
- B. The blower motor shall meet the following requirements:
 - 1. The motor type shall be Open Drip Proof (ODP).
 - 2. The motor shall be premium efficiency to meet the Energy Independence and Security Act requirements.
 - 3. The motor shall be rated for 460/60/3Ph supply voltage.
 - 4. The motor bearings shall be ball bearings rated for 200,000 hours. Motors not marked as having permanently lubricated bearings will include grease fittings for periodic lubrication.
 - 5. The motor shall be inverter duty rated.
 - 6. The motor wiring shall be in flexible metal BX conduit.
 - 7. The motor shall be provided with an adjustable motor sheave to allow for minor adjustment of the blower rpm at the job site.
 - 8. The motor shall be controlled by a shipped loose factory supplied variable frequency drive.
 - 9. The field installed variable frequency drive shall be provided with a field installed UL Type 1 Conformity accessory kit.
 - 10. Supply air blower controls shall be as outlined in the "CONTROLS" section.

2.8 FILTERS

- A. Filter Rating: Filters shall be pleated disposable filters with a Minimum Efficiency Reporting Value of MERV 13 per ASHRAE standard 52.2.
- B. The unit shall include a differential pressure switch wired to the main unit microprocessor controller to warn when the filters may be dirty based on a preset maximum pressure drop.

2.9 ELECTRICAL

- A. The unit shall have an electrical control center where all high and low voltage connections are made.
 - 1. All electrical components shall carry UL, ETL, or CSA listing.
 - 2. The unit shall have a job specific wiring diagram affixed to the interior of the control compartment access door.
 - 3. Unit shall have single point power lugs to land the power feed conductors from a single power source.
 - 4. Separate line voltage and low voltage terminal strips shall be provided and all terminal blocks and wires shall be individually numbered.
 - 5. All electrical wires in the control panel shall be run in an enclosed raceway.
 - 6. A single step down transformer shall be provided for all unit controls.

- B. The unit shall be supplied with a factory installed non-fusible dead-front disconnect switch to disconnect power to the unit for servicing.
- C. The unit shall be supplied with a 115V GFCI service receptacle mounted in the blower compartment. This requires a separate 115V power supply.

2.10 CONTROLS

- A. The unit shall include a Carel programmable microprocessor controller mounted in a controls compartment outside the airstream. The controller will be programmed with the Modine Controls System(TM) to operate the unit in an energy efficient manner using pre-engineered control strategies. The controller will monitor output from sensors within each unit subsystem and automatically adjust unit operating parameters to maintain programmed setpoints and strategies.
 - 1. The control system shall contain LED's and/or LCD interface to indicate the power status, communications status, and fault conditions that arise during operation. Fault conditions indicated include but are not limited to supply air sensor failure, outdoor air sensor failure, space sensor failure, mechanical cooling failure, mechanical heating failure, low supply temperature alarm, high supply temperature alarm, and control temperature cooling or heating failure. The controller shall also monitor outside temperature for heating and cooling circuit lockout during mild conditions. If temperatures fall below the low supply temp alarm point, the unit shall be shut down.
 - 2. The Carel controller shall be capable of independent stand-alone operation with field configuration, setpoint adjustment, and scheduling accomplished at the unit with an integral user interface that includes a backlit LCD display, keypad, and status LEDs to allow the programming of the control parameters (set point, differential band, alarm thresholds) and basic functions by the user (ON/OFF and display of the controlled values).
 - 3. Remote Control User Interface: The unit shall be provided with a Carel model pDG1 hand-held user interface for the factory Microprocessor Controller. The device features a backlit LCD display and keyboard that displays status of controllers inputs and outputs, allows for unoccupied/occupied set-point changes, displays service settings, allows adjustment of control parameters, and is used for troubleshooting the unit. The device shall be field wired to the unit microprocessor controller via the Carel pLAN network using shielded cable by others.
 - 4. The controller shall have a full calendar schedule for occupied, unoccupied, and holiday scheduling.
 - 5. The controller shall retain all programmed values in non-volatile memory in the event of a power failure.
 - 6. The Carel controller shall include a pCONet interface to provide the ability to communicate and integrate with BACNet® MS/TP communication networks.
- B. Damper Controls: The damper controls subsystem shall be controlled by the microprocessor controller as follows:
 - 1. The damper control shall be 2-position where the fresh air damper opens to 100% outside air when occupied. The fresh air damper closes when the unit is unoccupied or off.
- C. Supply Fan Controls: The supply fan controls subsystem shall be controlled by the microprocessor controller as follows:

- 1. The supply fan control shall be modulating variable frequency drive control based on speed communicated by the Building Management System to a controller R/W variable, within the limits of the unit.
- D. Temperature Controls: The temperature controls subsystem shall be controlled by the microprocessor controller as follows:
 - 1. Supply Air Temperature Control The Carel controller shall monitor and control the supply air temperature to maintain the desired supply air temperature.
 - 2. The microprocessor controller shall monitor the following sensors to achieve the control strategy described above:
 - a. An outside air temperature only sensor shall be shipped loose for field installation in the outdoor environment.
 - b. A supply air temperature only sensor shall be shipped loose for field installation in the supply air ductwork, downstream from the unit discharge to ensure sensing of properly mixed airflow.
- E. Other Optional Controls: The unit shall be provided with the following additional controls:
 - 1. Unit External Enable Relay: The unit shall be provided with a relay wired to a digital input on the unit microprocessor controller that starts the unit in Occupied mode based on contact closure from an external control device by others.
 - 2. A manual reset supply air fire stat shall shut the system down if the temperature at the limit switch location exceeds 200°F.
 - 3. A blower door switch that shuts the blower down when the blower door is opened.

2.11 ROOF CURB

- A. Roof Curb: The unit shall be supplied with a knocked down, field assembled and installed roof curb.
 - 1. Construction: The curb shall be 16" high to meet the National Roofing Contractors Association requirements. The curb shall be constructed of 16 gauge galvanized steel and include wood nailing strips and assembly hardware.
 - 2. Insulation: The roof curb shall be fully insulated with 1 inch, 1-1/2 lb. density acoustical and thermal insulation. The insulation shall be made of glass fibers bonded with a thermosetting resin and overlaid with a fire-resistant black acrylic coating for additional strength. The acrylic coating must meet the requirements of ASTM C 665 for fungal resistance.
 - 3. Gasketing: Curb gasketing shall be furnished with the curb and is to be affixed to the curb immediately before mounting of the rooftop unit to provide an air seal.
 - 4. Installation: The curb shall be designed for installation on a flat, non-sloped roof.
- PART 3 EXECUTION

3.1 EXAMINATION

A. Prior to start of installation, examine area and conditions to verify correct location for compliance with installation tolerances and other conditions affecting unit performance. See unit Installation & Service Manual.

- B. Examine roughing-in of plumbing, electrical and HVAC services to verify actual location and compliance with unit requirements. See unit Installation & Service Manual.
- C. Proceed with installation only after all unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installation shall be accomplished in accordance with these written specifications, project drawings, manufacturer's installation instructions as documented in manufacturer's Installation & Service Manual, Best Practices and all applicable building codes.

3.3 CONNECTIONS

- A. In all cases, industry Best Practices shall be incorporated. Connections are to be made subject to the installation requirements shown above.
- B. Piping installation requirements are specified in Division 22 (Plumbing). Drawings indicate general arrangement of piping, fittings and specialties.
- C. Duct installation and connection requirements are specified in Division 23 (Heating Ventilating and Air Conditioning).
- D. Electrical installation requirements are specified in Division 26 (Electrical).

3.4 FIELD QUALITY CONTROL

A. Refer to section 01 40 00 "Quality Requirements" for additional requirements.

3.5 SYSTEM STARTUP

A. Start-up units in accordance with manufacturer's start-up instructions. Test controls and demonstrate compliance with requirements. Replace damaged or malfunctioning controls and equipment.

3.6 WARRANTY

- A. Standard Unit Warranty:
 - 1. Components excluding Heat Exchangers, Coils, Condensers, Burners, Sheet Metal: Two years from date of first beneficial use by buyer or any other user, within two years from date of resale by buyer in any unchanged condition, or within 30 months from date of shipment from seller, whichever occurs first.
 - 2. For units equipped with Modine Controls System All Components Warranty: Two years from date of first beneficial use by buyer or any other user, within two years from date of resale by buyer in any unchanged condition, or within 30 months from date of shipment from seller, whichever occurs first.
 - 3. Coils, Heat exchangers, Sheet Metal: one year from date of first beneficial use by buyer or any other user, within one year from date of resale by buyer in any

unchanged condition, or within eighteen months from date of shipment from seller, whichever occurs first.

END OF SECTION 23 74 23

THIS PAGE INTENTIONALLY LEFT BLANK

23 81 29 VARIABLE REFRIGERANT VOLUME HVAC SYSTEM

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Variable refrigerant volume HVAC system includes:
 - 1. Outdoor/Condensing unit(s):
 - a. Size Range: 6 to 40 Tons Nominal

1.2 QUALITY ASSURANCE

- A. MANUFACTURER QUALIFICATIONS:
 - The units shall be tested by a National Recognized Testing Laboratory (NRTL), in accordance with ANSI/UL 1995 – Heating and Cooling Equipment and bear the Listed Mark.
 - 2. All wiring shall be in accordance with the National Electric Code (NEC).
 - 3. The system will be produced in an ISO 9001 and ISO 14001 facility, which are standards set by the International Standard Organization (ISO). The system shall be factory tested for safety and function.
 - 4. The condensing unit will be factory charged with R410A.

1.3 DELIVERY, STORAGE AND HANDLING

A. Unit shall be stored and handled according to the manufacturer's recommendations.

1.4 WARRANTY

A. STANDARD LIMITED WARRANTY

- 1. Complete warranty details available from your local Daikin representative or at <u>www.daikincomfort.com</u>.
- 2. Daikin North America LLC warrants original owner of the non-residential building, multifamily residence or residence in which the Daikin products are installed that under normal use and maintenance for comfort cooling and conditioning applications such products (the "Products") will be free from defects in material and workmanship. This warranty applies to compressor and all parts and is limited in duration to ten (10) years starting from the "installation date" which is one of the two dates below:
 - a. The installation date is the date that the unit is originally commissioned, but no later than 18 months after the manufacture date noted on the unit's rating plate.
 - b. If the date the unit is originally commissioned cannot be verified, the installation date is three months after the manufacture date.

PART 2 PRODUCTS

- 2.1 MANUFACTURERS
- A. DESIGN BASIS:
 - The HVAC equipment basis of design is Daikin North America. All bidders shall furnish the minimum system standards as defined by the base bid model numbers, model families or as otherwise specified herein (see Appendix A HVAC Equipment Alternate General Information). In any event, the contractor shall be responsible for all specified items and intents of this document without further compensation.

2.2 HVAC SYSTEM DESIGN

- A. SYSTEM DESCRIPTION:
 - 1. <u>ACC-1,2,3,4 and HPCC1,2,3,4,7,8:</u> The variable capacity heat pump air conditioning system shall be a Daikin Variable Refrigerant Volume Series (heat or cool model) system as specified.
 - 2. <u>HPCC-5,6,9,10</u>: The variable capacity heat recovery air conditioning system shall be a Daikin Variable Refrigerant Volume Series (heat or cool model) system as specified.
 - a. A dedicated hot gas pipe shall be required to ensure optimum heating operation performance.
 - b. Two-pipe, heat recovery systems utilizing a lower temperature mixed liquid/gas refrigerant to perform heat recovery are not acceptable due to reduced heating capabilities.
 - 3. The system shall consist of multiple evaporators using PID control, REFNET[™] joints and headers and Daikin VRV[®] condenser unit.
 - 4. The condenser shall be a direct expansion (DX), air-cooled heat pump, multi-zone airconditioning system with variable speed inverter driven compressors using R-410A refrigerant.
 - 5. The condensing unit may connect an indoor evaporator nominal capacity up to 200% of the condensing unit nominal capacity. All zones are each capable of operating separately with individual temperature control.
 - 6. The Daikin condensing unit shall be able to connect to indoor unit models CXTQ, FXFQ, FXHQ, FXHQ, FXLQ, FXLQ, FXSQ, FXTQ, FXDQ, FXZQ, FXUQ, FXEQ, FXAQ and

FXMQ_MF, and shall range in capacity from 5,800 Btu/h to 96,000 Btu/h in accordance with Daikin's engineering data book detailing each available indoor unit.

- The indoor units shall be connected to the condensing unit utilizing Daikin's REFNET[™] specified piping joints and headers to ensure correct refrigerant flow and balancing. T style joints are not acceptable for a variable refrigerant system.
- 7. Operation of the system shall permit either individual cooling or heating of each indoor unit simultaneously. Each indoor unit or group of indoor units shall be able to provide set temperature independently via a local remote controller, an Intelligent Controller, an Intelligent Manager or a BMS interface.
- <u>HPCC-5,6,9,10</u>: Operation of the system shall permit either individual cooling or heating of each indoor unit simultaneously or all of the indoor units associated with each branch of the cool/heat selector box (BSQ_T / BS_Q54T / BSF_Q54T). Each indoor unit or group of indoor units shall be able to provide set temperature independently via a local remote controller, an Intelligent Controller, an Intelligent Manager or a BMS interface.
 - a. Branch selector boxes:
 - 1) The branch selector boxes shall have the capacity to control up to 290 MBH (cooling) downstream of the branch selector box.
 - Each branch of the branch selector box shall consist of three electronic expansion valves, refrigerant control piping and electronics to facilitate communications between the box and main processor and between the box and indoor units.
 - 3) The branch selector box shall control the operational mode of the subordinate indoor units. The use of three EEV's ensures continuous heating during defrost (multiple condenser systems), no heating impact during changeover and reduced sound levels.
 - b. The use of solenoid valves for changeover and pressure equalization shall not be acceptable due to refrigerant noise.

B. VRV EMERION FEATURES AND BENEFITS

- 1. Voltage Platform Heat Pump condensing units shall be available with a 460V/3ph/60 Hz power supply.
- 2. Single-module outdoor units shall be available from 6 to 20 T in nominal cooling capacity and can be combined to offer up to 40 T in a dual-module configuration, which helps

minimize the overall space required for mechanical equipment and optimize total project costs.

- 3. The condensing unit shall feature a sealed E-box with a minimum of IP55 rating to provide high dust and moisture protection for reliability
- 4. Gas Furnace Connectivity Heat Pump condensing units shall be connectable to Daikin Communicating gas furnaces with AFUE ranging from 80% to 97%.
- System shall be capable of connecting to multiple VRV A-coils (CXTQ) paired with Daikin Communicating gas furnaces allowing for options of gas or heat pump heating to optimize operational costs based on changing utility costs.
- 6. The system shall be able to switch between heat pump heating and gas furnace heating at a field selectable change-over temperature which can be configured via condensing unit field settings.
- 7. Each system shall be able to enlarge from single to dual module without the need for installed main pipe size changes. The manufacturer shall provide predefined pipe sizes and design rules ensuring reliable system operation and offering design flexibility in phased installation applications.
- 8. Stable Operation System shall provide stable inverter operation at varied ambient conditions.
- 9. No Drain Pan Heater System shall be capable of heating operation without the need for a drain pan heater. If alternate manufacturer is chosen, an additional drain pan heater shall be provided by the manufacturer.
- 10. Auto Changeover System shall, below the field selected outdoor ambient temperature provide signal to initiate auxiliary or back up heat.
- 11. Advanced Zoning A single system shall provide for up to 64 zones.
- 12. Independent Control Each indoor unit shall use a dedicated electronic expansion valve with up to 2000 positions for independent control.
- 13. VFD Inverter Control and Variable Refrigerant Temperature Each condensing unit shall use high efficiency, variable speed all "inverter" based flash vapor injection compressor(s) coupled with inverter fan motors to optimize part load performance. The system capacity and refrigerant temperatures shall be modulated automatically to set suction and condensing pressures while varying the refrigerant volume for the needs of the cooling or heating loads. The control will be automatic and customizable depending on load and weather conditions.

- a. Indoor shall use PID to control superheat to deliver a comfortable room temperature condition and optimize efficiency.
- 14. Configurator software Each system shall be available with configurator software package to allow for remote configuration of operational settings and also for assessment of operational data and error codes.
 - a. If this software is not provided by an alternate manufacturer, for each individual outdoor unit the contractor shall do the settings manually and keep detailed records for future maintenance purposes.
- 15. Each system shall include a built-in data recorder that can store up to 40 minutes of operational data which can help identify the issue in case of a product failure.
- 16. Heating during Defrost and Oil Return. Reverse cycle (cooling mode) in these modes shall not be permitted due to the potential reduction in space temperature.
- 17. Low Ambient Cooling Each system shall be capable of low ambient cooling operation to -4°FDB (-20°CDB).
- 18. Independent Control Each indoor unit shall use a dedicated electronic expansion valve for independent control.
- 19. Flexible Design
 - a. Systems shall be capable of up to 540ft (165m) of linear piping between the condensing unit and furthest located indoor unit.
 - b. Systems shall be capable of up to 3,280ft (1,000m) total "one-way" piping in the piping network.
 - c. Systems shall have a vertical (height) separation of up to 361 ft between the condensing unit and the indoor units.
 - d. Systems shall be capable of up to 295ft (90m) from the first REFNET[™] / branch point.
 - e. The condensing unit shall have the ability to connect an indoor unit evaporator capacity of up to 200% of the condensing unit nominal capacity.
 - f. Systems shall be capable of 98ft (30m) vertical separation between indoor units.
 - g. Condensing units shall be supported with a fan motor ESP up to 0.32" WG as standard to allow connection of discharge ductwork and to prevent discharge air short circuiting.
- 20. Oil return Each system shall be furnished with a centrifugal oil separator and active oil recovery cycle.

- 21. Simple wiring Systems shall use 16/18 AWG, 2 wire, stranded, non-shielded and non-polarized daisy chain control wiring.
- 22. Each condensing unit shall include a multi-functional digital display that can provide system operation status such as operating refrigerant temperatures, pressures, outdoor electronic expansion valve opening and compressor operation time.
- 23. Each condensing unit shall include a service window that can provide easy access to system field settings and operation status without completely removing the condensing unit panel.
- 24. Advanced diagnostics Systems shall include a self-diagnostic, auto-check function to detect a malfunction and display the type and location.
- 25. Each condensing unit shall incorporate contacts for electrical demand shedding with optional 3 stage demand control with 12 customizable demand settings.
- 26. Advanced controls Each system shall have at least one remote controller capable of controlling up to 16 indoor units.
- 27. Each system shall be capable of integrating with open protocol BACnet, LonWorks and Modbus building management systems.
- 28. Low sound levels Each system shall use indoor and condensing units with quiet operation as low as 27 dB(A).
- 29. The system shall be certified and listed in OSHPD directory for seismic certification
- 30. The condensing unit can be installed up to 200 ft above the ground without requiring any additional field modifications to the unit to comply with the Florida Miami Dade Wind code requirements.
- 31. The condensing unit shall be factory equipped with a Schrader valve for connection to a pressure relief kit for compliance with City of Chicago Pressure relief code.
- C. PERFORMANCE:
 - 1. Cooling Operation:
 - a. The standard operating range will be 23°FDB (-5°CDB) ~ 122°FDB (50°CDB).
 - b. Cooling mode indoor room temperature range will be 57-77°FWB (13.9 25°CWB).
 - 2. Heating Operation:
 - a. The standard operating range in heating will be -13° 61°FWB (-25 15.6°CWB).

- 1) If an alternate equipment manufacturer is selected, the mechanical contractor shall provide, at their own risk and cost, all additional material and labor to meet low ambient operating condition and performance
- Heating mode indoor room temperature range will be 59°FDB 80°F DB (15°CDB 26.7°CDB).

2.3 EQUIPMENT

- A. ELECTRICAL:
 - 1. The power supply to the condensing unit shall be 460V / 3ph / 60 Hz. Voltage Range: $416V 508V (\pm 10\%)$
 - Each multi-module outdoor condensing unit shall include a ventilated NEMA 3R UL508A Single-Point Power Panel (SPPP) with Thru-the-Door main input disconnect <u>for</u> <u>termination by the EC on the line side lugs</u>. This field-installed panel shall be rated for 100 kAIC and include Class J, Time delay, dual element fuses, voltage/phase monitoring, fused primary/secondary control transformer, and all required branch circuit protection. <u>Power wiring between SPPP and individual module terminal blocks shall be</u> <u>provided by EC</u>.

B. WIRING:

- 1. The control voltage between the indoor and condensing unit shall be 16VDC nonshielded, stranded 2 conductor cable.
- 2. The control wiring shall be a two-wire multiplex transmission system, making it possible to connect multiple indoor units to one condensing unit with one 2-cable wire, thus simplifying the wiring installation.
- 3. The control wiring shall be 16/18 AWG, 2 wire, non-polarity, non-shielded, stranded
- C. REFRIGERANT PIPING:
 - The system shall be capable of refrigerant piping up to 540ft (165m) actual or 623ft (190m) equivalent from the condensing unit to the furthest indoor unit, a total combined liquid line length of 3,280ft (1,000m) of piping between the condensing and indoor units, without any oil traps or additional components
 - 2. REFNET[™] piping joints and headers shall be used to ensure proper refrigerant balance and flow for optimum system capacity and performance.
 - a. T style joints shall not be acceptable as this will negatively impact proper refrigerant balance and flow for optimum system capacity and performance.

2.4 OUTDOOR/CONDENSING UNIT

- A. GENERAL:
 - 1. The condensing unit is designed specifically for use with VRV series components.
 - 2. The refrigeration circuit of the condensing unit shall consist of Daikin inverter scroll P-Type compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports, liquid receiver and suction accumulator.
 - 3. Liquid and suction lines must be individually insulated between the condensing and indoor units.
 - 4. The condensing unit can be wired and piped with access from the left, right, rear or bottom.
 - 5. The connection ratio of indoor units to condensing unit shall be permitted up to 200% of nominal capacity.
 - 6. Each condensing system shall be able to support the connection of up to 64 indoor units dependent on the model of the condensing unit.
 - 7. The sound pressure level standard shall be that value as listed in the Daikin engineering manual for the specified models at 3 feet from the front of the unit. The condensing unit shall be capable of operating automatically at further reduced noise during night time or via an external input.
 - 8. The system will automatically restart operation after a power failure and will not cause any settings to be lost, thus eliminating the need for reprogramming.
 - 9. The condensing unit shall be modular in design and should allow for side-by-side installation.
 - 10. The following safety devices shall be included on the condensing unit; high pressure sensor and switch, low pressure sensor with switch, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
 - 11. To ensure the liquid refrigerant does not flash when supplying to the various indoor units, the circuit shall be provided with a sub-cooling feature.
 - 12. Oil recovery cycle shall be automatic occurring 2 hours after start of operation and then every 8 hours of operation.
 - 13. The condensing unit shall be capable of heating operation at -13°F (-25°C) wet bulb ambient temperature without additional low ambient controls or an auxiliary heat source.

B. UNIT CABINET:

- 1. The condensing unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed galvanized steel panels coated with a baked enamel finish.
- 2. Each condensing unit shall have a three-segment panel design which allows for direct access to outdoor fans, critical mechanical and electrical components separately for ease of installation and service.
- 3. Each outdoor unit shall have separate knock-outs for both refrigerant piping and wiring on the bottom panel.
- C. FAN:
 - 1. The condensing unit shall consist of one or more propeller type, direct-drive fan motors that have multiple speed operation via a DC (digitally commutating) inverter.
 - The condensing unit fan motor shall have multiple speed operation of the DC (digitally commutating) inverter type, and be of high external static pressure and shall be factory set as standard at 0.12 in. WG. A field setting switch to a maximum 0.32 in. WG pressure is available to accommodate field applied duct for indoor mounting of condensing units.
 - 3. The condensing unit shall have configurable settings for intermittent fan operation to help minimize snow accumulation on fan blades when the system is off.
 - 4. Each outdoor unit fan shall be a vertical discharge configuration and the nominal airflow rate for each module will range from 6,200CFM to 14,505 CFM dependent on model specified.
 - 5. The fan motor shall have inherent protection and permanently lubricated bearings and be mounted.
 - 6. The fan motor shall be provided with a fan guard to prevent contact with moving parts.
- D. SOUND:
 - 1. Night setback control of the fan motor for low noise operation by way of automatically limiting the maximum speed shall be a standard feature. Operation sound level shall be selectable from 3 steps:
 - a. Night Model Level 1 = 55 dB(A), Level 2 = 50 dB(A), Level 3 = 45 dB(A)

E. CONDENSER COIL:

- 1. The condenser coil shall be manufactured from copper tubes expanded into aluminum fins to form a mechanical bond.
- 2. The heat exchanger coil shall be of a waffle louver fin and rifled bore tube design to ensure high efficiency performance.
- 3. The heat exchanger on the condensing units shall be manufactured from Hi-X seamless copper tube with N-shape internal grooves mechanically bonded on to aluminum fins to an e-Pass Design.
- 4. The fins shall be coated with an anti-corrosion hydrophilic blue coating as standard from factory with a salt spray test rating of 1000hr per ASTM B117 test standards.
- 5. The outdoor coil shall have three-circuit heat exchanger design eliminating the need for a drain pan heater. The lower part of the coil shall be used for inverter cooling and be on or off during operation enhancing the defrost operation.
 - a. An alternate manufacturer must provide a drain pan heater to enable adequate defrosting of the unit in defrost operation.
- 6. The condensing unit shall be factory equipped with condenser coil guards on all sides.

F. COMPRESSOR:

- 1. The Daikin inverter scroll compressors shall be variable speed (PVM inverter) controlled which is capable of changing the speed to follow the variations in total cooling and heating load as determined by the suction gas pressure as measured in the condensing unit.
 - a. In addition, samplings of evaporator and condenser temperatures shall be made so that the high/low pressures detected are read every 20 seconds and calculated. With each reading, the compressor capacity (INV frequency) shall be controlled to eliminate deviation from target value.
 - Non-inverter-driven compressors, which may cause starting motor current to exceed the nominal motor current (RLA) and require larger wire sizing, shall not be allowed.

- 2. The inverter driven compressors in the condensing unit shall be of highly efficient reluctance DC (digitally commutating), hermetically sealed scroll "P-type".
- 3. Neodymium magnets shall be adopted in the rotor construction to yield a higher torque and efficiency in the compressor instead of the normal ferrite magnet type.
 - a. At complete stop of the compressor, the neodymium magnets will position the rotor into the optimum position for a low torque start.
- 4. The capacity control range shall be as low as 1% to 100%.
- 5. The compressor's motor shall have a cooling system using discharge gas, to avoid sudden changes in temperature resulting in significant stresses on winding and bearings.
- 6. Each compressor shall be equipped with a crankcase heater, high pressure safety switch, and internal thermal overload protector.
- 7. Oil separators shall be standard with the equipment together with an intelligent oil management system.
- 8. The compressor shall be mounted on vibration dampening rubber grommets to minimize the transmission of vibration, eliminating the standard need for external spring isolation.
- 9. In the event of compressor failure, the remaining compressors, if applicable, shall continue to operate and provide heating or cooling as required at a proportionally reduced capacity. The microprocessor and associated controls shall be manually activated to specifically address this condition for single module and manifold systems.
- 10. In the case of multiple condenser modules, combined operation hours of the compressors shall be balanced by means of the Duty Cycling Function, ensuring sequential starting of each module at each start/stop cycle, completion of oil return, completion of defrost or every 8 hours. When connected to a central control system sequential start is activated for all system on each DIII network.

2.5 BRANCH SELECTOR UNITS (HPCC-5,6,9,10)

- A. GENERAL:
 - 1. SINGLE-PORT BRANCH SELECTOR BOX
 - a. The BSQ36TVJ, BSQ60TVJ, and BSQ96TVJ, are designed specifically for use with VRV IV, VRV IV X, VRV EMERION, VRV AURORA, and T-series Water Cooled heat recovery system components.
 - b. The single port branch selector boxes BSQ_T shall provide individual control and changeover for one group of indoor units.
 - c. These BSQ_T branch controllers shall support low ambient cooling down to $-4F^{\circ}$ to connected indoor units.
 - d. These selector boxes shall be factory assembled, wired, and piped.
 - e. These branch selector boxes shall have a heat-by-pass control loop inside the units to prevent overheating of space during heating cycles
 - f. These selector boxes must be mounted indoors.
 - g. When simultaneously heating and cooling, the units in heating mode shall energize their subcooling electronic expansion valve.
 - 2. STANDARD MULTI-PORT T-SERIES BRANCH SELECTOR BOX
 - a. The BS4Q54TVJ, BS6Q54TVJ, BS8Q54TVJ, BS10Q54TVJ and BS12Q54TVJ, are designed specifically for use with VRV IV, VRV IV X, VRV EMERION, VRV AURORA, and T-series Water Cooled heat recovery system components.
 - b. These branch selector boxes shall provide individual control and changeover for multiple groups of indoor units.
 - c. These selector boxes shall be factory assembled, wired, and piped.
 - d. These selector boxes must be mounted indoors.
 - e. When simultaneously heating and cooling, the units in heating mode shall energize their subcooling electronic expansion valve.
 - 3. MULTI-PORT FLEX BRANCH SELECTOR BOX SERIES
 - a. The BSF4Q54TVJ, BSF6Q54TVJ, and BSF8Q54TVJ are designed specifically for use with VRV IV, VRV IV X, VRV EMERION VRV AURORA, and T-series Water Cooled heat recovery system components.

- b. These branch selector boxes shall provide individual control and changeover for multiple groups of indoor units.
- c. These branch selector boxes shall allow for Field selectable LEFT/RIGHT/PASS THROUGH piping configuration.
- d. These branch selector boxes shall allow multiple branch selector boxes to be connected downstream of the first Branch selector box in series in series.
- e. These Branch selector boxes when connected in series shall be able to support a total indoor load of up to 230MBH.
- f. The EEV heads and motors used in the branch selector box shall be accessible via a quick access panel without disassembly of the electrical box.
- g. The electrical box of the 4-port branch selector box shall be field re-locatable to left, right, and back side of the main cabinet.
- h. These branch selector boxes shall allow connected indoor units to operate in cooling mode down to -4F without any additional field installed accessories
- i. Labels shall be displayed close to the incoming 3 pipes to facilitate clear identification and eliminate cross piping.
- j. The branch selector boxes shall employ EEV with the ability to control up to 6000 pulses
- k. These selector boxes shall be factory assembled, wired, and piped.
- I. These selector boxes must be mounted indoors.
- m. When simultaneously heating and cooling, the units in heating mode shall energize their subcooling electronic expansion valve.

B. UNIT CABINET

- 1. These units shall have a galvanized steel plate casing.
- 2. Each cabinet shall house 3 electronic expansion valves for refrigerant control per branch.
- 3. The cabinet shall contain one subcooling heat exchanger per branch.
- 4. The unit shall have sound absorption thermal insulation material made of flame and heat resistant foamed polyethylene.
- 5. Nominal sound pressure levels shall be measured and published on the submittals by the manufacturer. The sound levels must not exceed the values below.

- 6. If an alternative manufacturer is selected, the mechanical contractor shall provide, at their own cost and expense, any additional material and labor to meet the below published sound levels
- C. REFRIGERANT VALVES:
 - 1. The unit shall be furnished with 3 electronic expansion valves per branch to control the direction of refrigerant flow. The use of solenoid valves for changeover and pressure equalization shall not be acceptable due to refrigerant noise.
 - 2. The refrigerant connections must be of the braze type.
 - 3. In multi-port units, each port shall have its own electronic expansion valves. If common expansion/solenoid valves are used, redundancy must be provided.
 - 4. Multiple indoor units may be connected to a branch selector box with the use of a REFNET[™] joint provided they are within the capacity range of the branch selector.
- D. CONDENSATE REMOVAL:
 - 1. The unit shall be hermetically sealed to prevent condensation build up inside the unit, and not require use of a secondary condensate collection pan. A safety device or secondary drain pan shall be installed by the mechanical contractor to comply with the applicable mechanical code, if an alternate manufacturer is selected.
- E. ELECTRICAL:
 - 1. The unit electrical power shall be 460 volts, 1 phase, 60 hertz.
 - 2. The unit shall be capable of operation within the limits of 187 volts to 255 volts.
 - 3. The minimum circuit amps (MCA) shall be 0.1 and the maximum overcurrent protection amps (MOP) shall be 15.
 - 4. The control voltage between the indoor and condensing unit shall be 16VDC nonshielded 2 conductor cable.

2.6 INDOOR/EVAPORATOR UNITS

- 2.6.1 FXMA CONCEALED CEILING DUCTED UNIT (High Static)
 - A. General Requirements:
 - 1. All indoor/evaporator units shall be factory assembled and tested DX-fan coil units, operable with refrigerant R32.
 - 2. All units shall be completely factory assembled and tested, and shall be charged with dehydrated air prior to shipment from the factory.
 - 3. All units shall be equipped with an electronic expansion valve controlled using a PID loop to automatically adjust the refrigerant flow rate through the unit.
 - 4. All units shall be equipped with a programmed drying operation that dehumidifies while limiting changes in room temperature when used with Daikin remote controllers BRC1NRV71.
 - 5. All units shall feature self-diagnostics, auto-restart functionality, 3-minute fused time delay, and a test run switch.
 - 6. All refrigerant piping, both liquid and suction, shall be fully insulated from the outdoor unit.
 - B. Indoor Unit:
 - The Daikin indoor unit FXMA shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, flare connections, condensate drain pan, condensate drain pump, condensate safety shutoff and alarm, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch. The unit shall be equipment with automatically adjusting external static pressure logic that is selectable during commissioning. This adjusts the airflow based on the installed external static pressure.
 - 2. The indoor unit shall have a factory installed refrigerant leak sensor built in. If a leak is detected, the unit shall go into circulation mode and provide full airflow. The unit shall have signal output in event of leak to connect to external ventilation, damper, alarm etc.
 - 3. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
 - 4. Both refrigerant lines shall be insulated from the outdoor unit.
 - 5. The indoor units shall be equipped with a return air thermistor.
 - 6. The indoor unit will be separately powered with 208~230V/1-phase/60Hz.

- 7. The voltage range will be 253 volts maximum and 187 volts minimum.
- C. Unit Cabinet:
 - 1. The unit cabinet shall be constructed of heavy gauge galvanized steel.
 - 2. The unit shall be internally insulated and shall be capable of installation in indoor environments up to 80% relative humidity without requiring additional field installed insulation.
 - 3. The unit shall ship from the factory in a rear-return configuration and shall be fieldconvertible to a bottom-return configuration.
 - 4. The unit shall be equipped with a return air thermistor.
 - 5. The cabinet shall be constructed with sound absorbing foamed fiber-less closed cell polystyrene and polyethylene insulation.
- D. Fan:
 - 1. The fan shall be a direct-drive, brushless DC fan motor with (3) user-selectable fan speeds (H, M, L).
 - 2. The unit shall be equipment with automatically adjusting external static pressure logic selectable during commissioning.
 - 3. The unit shall be equipped with internal controls to allow the fan to automatically select the operating fan curve to deliver nominal airflow CFM (within +/- 10%) when the connect ductwork has been designed with a total external static within the range of the FXMA. This setting shall be accessible as a setting to be used during startup and commissioning of the system
 - 4. The fan motor shall be capable of Auto fan speed control when the unit is connected to the BRC1NRV71 Navigation Remote Control. The Auto fan speed control shall automatically adjust the unit's fan speed in response to the difference between the indoor unit's current set point and the current room temperature measurement. The Auto fan speed control shall utilize (5) fan speeds.
 - 5. The fan motor shall be internally isolated using rubber grommets to reduce transmission of vibrations to the unit.
 - 6. The airflow rate shall be available in three settings.
 - 7. The fan motor shall be thermally protected.

E. Fan Blade

- 1. The fan blade shall be constructed of lightweight polymer.
- 2. The fan blade shall be statically and dynamically balanced to minimize vibration.
- F. Coil:
 - 1. Coils shall be of the direct expansion type, constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
 - 2. The coil shall be of a waffle louver fin and high heat exchange, rifled bore tube design to ensure highly efficient performance.
 - 3. The coil shall be 2 or 3 row cross fin copper evaporator coil with 18 fpi design, completely factory tested.
 - 4. The refrigerant connections shall be flare connections.
 - 5. Factory mounted thermistors shall be installed on the liquid and gas lines.
- G. Condensate Drainage
 - 1. The unit shall be equipped with a condensate drain pan under the coil.
 - 2. The condensate drain outlet shall be of PVC construction and VP25 (1" ID, 1-1/4" OD).
 - 3. The unit shall be equipped with a factory-integral condensate pump capable of 25-5/16" lift from the condensate drain outlet. The condensate pump shall be equipped with a float switch to automatically stop unit operation and provide a system error code in the event drain pan water level rises too high.

- H. Electrical:
 - 1. Provide a separate power supply connection of 208/230V, 1 phase, 60 hertz. The allowable voltage range shall be 187 to 253 volts.
 - 2. Refer to the engineering data book for all other electrical data including MCA, MOCP, and FLA values.
 - 3. The transmission (control) wiring distance between the indoor unit and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
 - 4. The transmission (control) wiring between the indoor unit and the remote controller shall be a maximum distance of 1,640 feet.
- I. Control:
 - 1. The unit shall be controlled with a Daikin remote controller to perform input functions necessary to operate the system.
 - 2. The unit shall be compatible with interfacing with a building management system (BMS) via optional BACnet or LonWorks gateways.
 - 3. The unit shall be compatible with a Daikin Intelligent Touch Manager advanced multizone controller.

2.7 FXTA – MULTI-POSITION AIR HANDLING UNIT

A. General: Daikin indoor unit FXTA shall be a floor mounted vertical, horizontal left, horizontal right, or downflow air handling unit, operable with refrigerant R32, equipped with an electronic expansion valve and direct-drive ECM type fan with constant CFM programming, for installation within a conditioned space. When installed in a vertical configuration it shall have top discharge air and bottom return air. When installed in a horizontal right or horizontal left configuration, it shall have a horizontal discharge air and horizontal return air. When installed in a downflow configuration it shall have bottom discharge and top return air. This compact design with pre-painted heavy-gauge steel casing shall be available in capacities from 9,500 Btu/h to 60,000 Btu/h. Model numbers are FXTA09AAVJUA, FXTA12AAVJUA, FXTA18AAVJUA, FXTA24AAVJUA, FXTA30AAVJUA, FXTA36AAVJUA, FXTA42AAVJUA, FXTA48AAVJUA, FXTA54AAVJUA, and FXTA60AAVJUA to be connected to outdoor unit model RXTA VRV-S Heat Pump. The FXTA_TB series may also be specified to utilize a factory integral disconnect switch. Model numbers including the factory disconnect are FXTA09AAVJUD, FXTA12AAVJUD, FXTA18AAVJUD, FXTA24AAVJUD, FXTA30AAVJUD, FXTA36AAVJUD, FXTA42AAVJUD, FXTA48AAVJUD, FXTA54AAVJUD, and FXTA60AAVJUD. A KRCS01-6B dremote temperature sensor kit shall be required for all FXTA indoor units not utilizing the thermistor in the Daikin remote controller BRC1NRV71. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism

that dehumidifies while limiting changes in room temperature when used with Daikin remote control BRC1NRV71.

- B. Indoor Unit:
 - 1. The Daikin indoor unit FXTA_AA components shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, brazed connections, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch.
 - 2. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
 - 3. Both refrigerant lines shall be insulated from the outdoor unit.
 - 4. Return air shall be through an optional or field supplied filter.
 - 5. Condensate draining shall be made via gravity or external condensate pump.
 - 6. The indoor unit will be separately powered with 208~230V/1-phase/60Hz.
 - 7. The voltage range will be 253 volts maximum and 187 volts minimum.
- C. Unit Cabinet:
 - 1. The cabinet shall be constructed with sound absorbing, foil-faced insulation to control air leakage.
 - 2. Select an installation location with adequate structural support, space for service access and clearance for air return and supply duct connections.
 - 3. A field supplied secondary drain pan shall be installed where required by national, state, or local code.
- D. Fan:
 - 1. The fan shall be a direct-drive Sirocco type fan, statically and dynamically balanced impeller with high and low fan speeds available.
 - 2. The fan motor shall operate on 208/230 volts, 1 phase, 60 hertz with a motor output range 0.2 to 1.0. HP.
 - 3. The airflow rate shall be available in high setting.
 - 4. The fan motor shall be thermally protected.
 - 5. Fan motor external static pressure for nominal airflow:

- E. Filter:
 - 1. The return air shall be filtered by means of an optional or field supplied filter.
- F. Coil:
 - 1. Coils shall be of the direct expansion type constructed from aluminum tubes expanded into aluminum fins to form a mechanical bond.
 - 2. The coil shall be of a waffle louver fin and high heat exchange, rifled bore tube design to ensure highly efficient performance.
 - 3. The coils shall be a 2- to 4-row cross fin copper evaporator coil with 14 to 16 fpi design completely factory tested.
 - 4. The refrigerant connections shall be brazed connections and the condensate will be 3/4 inch outside diameter PVC.
 - 5. A thermistor will be located on the liquid and gas line.
- G. Electrical:
 - 1. A separate power supply will be required of 208/230 volts, 1 phase, 60 hertz. The acceptable voltage range shall be 187 to 253 volts.
 - 2. Transmission (control) wiring between the indoor and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
 - 3. Transmission (control) wiring between the indoor unit and remote controller shall be a maximum distance of 1,640 feet.
- H. Control:
 - 1. The unit shall have controls provided by Daikin to perform input functions necessary to operate the system.
 - 2. The unit shall be compatible with interfacing with a BMS system via optional LonWorks or BACnet gateways.
 - 3. The unit shall be compatible with a Daikin Intelligent Touch Manager advanced multizone controller.
- 2.8 Remote Controllers
 - A. Daikin VRV local remote controllers are compatible with all VRV indoor units. The remote controller wiring consists of a non-polar two-wire connection to the indoor unit. The local remote controllers may be wall-mounted and can be adjusted to maintain the optimal

operation of the connected indoor unit(s). Temperature setpoint can be adjusted in increments of 1°F/°C. In the cases where a system or unit error may occur, the VRV controllers will display a two-digit error code and the unit address. The local remote controllers do not need to be addressed.

- B. Madoka Remote Controller BRC1H71W
 - The Madoka Remote Controller can provide control for all VRV indoor units. The remote controller wiring consists of a non-polar two-wire connection to the indoor unit at terminals P1/P2. The Madoka Remote Controller is wall mounted and can be adjusted to maintain the optimal operation of the connected indoor unit(s). The Madoka Remote Controller does not need to be addressed.
 - 2. A maximum of 2 Madoka remote controllers can be placed in the same indoor unit control group.
 - 3. Mounting:
 - a. The Madoka Remote Controller can be mounted onto a drywall.
 - b. The Madoka Remote Controller can be mounted onto an electrical component box.
 - c. Mounting plate, screws, and anchors are provided in the packaging.

- 4. Display Features:
 - a. The Madoka Remote Controller is approximately 3.35" x 3.35" x 0.98" in size with a 1.00" x 1.51" LCD display.
 - b. The contrast of the LCD display shall be adjustable.
 - c. The brightness of the LCD display backlight shall be adjustable.
 - d. The controller LED light brightness shall be adjustable or turned off
 - 1) The LED light shall be able to indicate different status: blue on for indoor unit on, off for indoor unit off, green for Bluetooth connection, and red for error.
 - e. Display language shall be selectable from English, French or Spanish.
 - f. Selectable display text mode, icon mode, text scale mode, and icon scale mode
 - The remote controller shall be able to set to a scale view with a slider to adjust the setpoint ±3 °F from a reference temperature where actual setpoint and room temperature are not displayed.
 - g. Status icons on the home screen are configurable to be displayed or hidden.
 - 1) The setpoint can be displayed or hidden when the indoor unit is off.
 - 2) The room temperature, operation mode can be displayed or hidden from the home screen
 - 3) The operation mode can be displayed or hidden when the indoor unit is off
 - 4) The fan speed can be displayed, hidden, or hidden only when the indoor unit is off.
 - 5) The louver position can be displayed, hidden, or hidden only when the indoor unit is off.
 - 6) The master-controller icon can be displayed, hidden, or hidden only when the indoor unit is off.
 - 7) The error, setback, under-centralized-control, and standby icon can be displayed or hidden.
 - h. The controller shall display temperature setpoint in one-degree increments with a range of 60-90°F (16-32°C)
 - i. Display of temperature information shall be configurable for Fahrenheit or Celsius

- j. Error codes will be displayed with a two-digit code in the event of system abnormality/error.
- k. The remote controller shall have two levels of menu access: user/ administrator and installer.
- I. The admin menu and installer menu can be protected by a password to prevent unauthorized access.

- 5. Basic Operation:
 - a. Capable of controlling a group of up to 16 indoor units.
 - b. Controller shall control the following group operations:
 - 1) On/Off, Operation Mode (Cool, Heat, Fan, Dry and Auto* (*for both VRV Heat Recovery and Heat Pump Systems))
 - 1. Configure only the essential modes to be selectable remove unnecessary mode selection(s) from display
 - 2) Independent Cooling and Heating setpoints in the occupied mode
 - 1. Dual setpoints (individual Cool and Heat setpoints with minimum setpoint differential 0 8°F (0 4°C) default 2°F (1°C)) or Single setpoint
 - 3) Independent Cooling Setup and Heating Setback setpoints in the unoccupied mode
 - 4) Fan Speed
 - 1. Up to 5 speeds (dependent on indoor unit type)
 - 5) Vane direction and oscillation (dependent on indoor unit type)
 - 6) Airflow direction
 - 1. Up to 5 louver positions and swing or auto louver
 - 7) Individual airflow
 - 1. Provides individual control of up to four (4) louvers on an indoor unit.
 - 8) Dual airflow
 - 1. Provides control of both internal and external louver positions
 - 9) Automatic draft protection
 - 1. Automatically prevents air flow from blowing directly on occupants.
 - 10) The controller shall be able to limit the user adjustable setpoint ranges individually for cooling and heating in the occupied period.
 - 11) The controller shall be able to lock its buttons.
 - 12) The controller shall be able to assign indoor unit group address.
- 13) The controller shall be able to assign the indoor unit and outdoor unit Airnet address.
- 14) Filter indicator
 - 1. Filter service indicator shall be displayed after 100, 1250 or 2500 (default) hours of run time configurable via field setting
- 15) Clock (12/24 hour) display
- 16) Automatic adjustment for Daylight Savings Time (DST)
 - 1. Set changeover period (second Sunday in March / first Sunday in November)
- 6. Programmability:
 - a. The Controller shall support Auto-changeover mode for both Heat Pump and Heat Recovery systems, therefore, allowing the optimal room temperature to be maintained by automatically switching the indoor unit's mode between Cool and Heat according to the room temperature and temperature setpoint.
 - 1) Changeover to cooling mode shall occur at cooling setpoint + 1°F (0.5°C) as the primary changeover deadband and takes the guard timer into consideration
 - 1. Configurable from $1 4^{\circ}F(0.5 2^{\circ}C)$
 - b. Changeover to cooling mode shall occur at the primary changeover deadband to cooling + 1°F (0.5°C) as the secondary changeover deadband.
 - 1) Configurable from $1 4^{\circ}F (0.5 2^{\circ}C)$
 - c. Changeover to heating mode shall occur at heating setpoint 1°F (0.5°C) as the primary changeover deadband and takes the guard timer into consideration
 - 1) Configurable from $1 4^{\circ}F(0.5 2^{\circ}C)$
 - d. Changeover to heating mode shall occur at the primary changeover deadband to heating 1°F (0.5°C) as the secondary changeover deadband.
 - 1) Configurable from $1 4^{\circ}F(0.5 2^{\circ}C)$
 - e. 1 hour guard timer
 - 1) Upon changeover, guard timer will prevent another changeover during this period.

- 2) Guard timer is ignored by a change of setpoint manually from either the Multizone Controller, Remote Controller, or by schedule.
- 3) The Guard timer is also ignored if the space temperature reaches the secondary changeover deadband (configurable from 1 4°F (0.5 2°C)) from the primary changeover deadband, and the guard timer has been activated
- 4) 60 minutes as default, configurable to 15, 30, or 90 minutes
- f. The controller shall support the Auto-setback by sensor function (dependent on indoor unit type)
 - 1) The cooling and heating setpoints shall gradually relax (configurable) internally when the room is determined to be unoccupied
 - 1. The internal setpoint shall return to the original setpoint when room occupancy is detected
- g. The controller shall support the Auto-off by sensor function (dependent on indoor unit type)
 - 1) The indoor unit shall turn off when it is determined that the room is unoccupied after a specified time has elapsed
 - 1. The indoor unit shall be turned on manually when occupancy is detected
- h. The controller shall support the Filter Auto Clean function to be performed once a day (dependent on indoor unit type)
 - Eight (8) time periods (00:00-03-00, 03:00-06:00, 06:00-09:00, 09:00-12:00, 12:00-15:00, 15:00-18:00, 18:00-21:00, 21:00-00:00) shall be available to select from to enable the automatic filter cleaning function
 - 1. Default time period (00:00 to 3:00) shall be used if the period for filter auto cleaning is not specified
 - 2) The indoor unit shall be stopped during auto filter cleaning function operation
- The room temperature shall be capable of being sensed at either the Remote Controller, the indoor unit return air temperature sensor (default), or Remote Temperature Sensor (KRCS01-1B/KRCS01-4B/KRCS01-6B/ KRCS01-2UA/KRCSH2018-01) configured through the field settings.
- j. The controller shall support room temperature offset range of -5.4°F (-3.0°C) to 5.4°F (3.0°C) during Cool, Heat, Fan and Auto modes configured through the field settings.

- C. Connectivity
 - 1. The remote controller shall come with a Bluetooth connectivity to allow for quick configuration using Android/IOS App. The following settings can be set through the app:
 - a. Field settings
 - b. Airnet address setting
 - c. Indoor unit settings (depends on indoor unit model)
 - 1) Enable/disable filter auto clean and time
 - 2) Enable/disable auto draft prevention
 - 3) Enable/disable auto setback: increment,
 - 4) Auto-setback by sensor
 - 5) Auto-off by sensor
 - d. Setpoint configuration
 - 1) Dual/Single
 - 2) Minimum setpoint differential
 - e. Setpoint range limitation for cooling and heating respectively
 - f. Enable/Disable setback function
 - 1) Cooling and heating setback temperature
 - 2) Cooling and heating setback recovery differential
 - g. Remote controller function prohibition
 - 1) Prohibit buttons
 - 2) Prohibit mode change
 - 3) Prohibit fan speed change
 - 4) Prohibit louver direction change
 - 5) Prohibit setpoint change
 - 6) Prohibit specific mode(s): Auto, Cool, Heat, Fan, and Dry

- h. Display setting
 - 1) Date and time with DST
 - 2) C/F selection
 - 3) Backlight and LED light brightness
 - 4) Heat and Cool reference setpoint for scale view display mode
- i. Admin menu password
- j. Installer menu password
- 2. The Bluetooth app shall have two level of access: administration mode, and installer mode. A QR code needs to be scanned in order to access the installer mode
- 3. The Bluetooth app shall allow users to create and save setting templates and allow user to send pre-configured template to multiple controllers.
- 4. The Bluetooth app shall be capable of browsing the settings from the indoor unit and controller.
- 2.9 DMS502B71: Interface for use in BACnet
 - A. General
 - 1. The Interface for use in BACnet shall provide the ability for a Building Management System (BMS) to control all VRV, SkyAir, and Daikin RA and FTXS indoor units with the use of the KRP928BB2S RA Adapter.
 - It shall be capable of controlling a maximum of 2 DIII-Net systems or 64 indoor unit groups (128 indoor units) connected to a maximum of 10 outdoor units on each DIII-Net system. Each DIII-Net system is independent of each other, and each DIII-Net system will terminate on its own DIII-Net port (2 DIII-Net ports standard).
 - The Optional DIII Board (DAM411B51) can be added to the interface. This option provides 2 additional DIII-Net ports to the interface; a total of 4 DIII-Net ports (maximum of 64 indoor unit groups per DIII-Net port) which can handle a maximum of 256 indoor unit groups (512 indoor units) and 40 outdoor units.
 - 4. The Interface for use in BACnet shall support operations superseding that of the Daikin centralized controller, local remote controller, system configuration, daily/weekly scheduling, monitoring of operation status, and malfunction monitoring.

- 5. The Interface for use in BACnet uses a standard open protocol based on ANSI/ASHREA Standard 135. The BACnet Interface has been certified by the BACnet Testing Laboratories (BTL). The BACnet Interface is compatible with BACnet IP (ISO16484-5).
- 6. The interface wiring shall consist of a non-polar two-wire connection to the terminals F1F2 (out-out) of the outdoor unit. The Interface for use in BACnet is wall mounted and is used as a translator between the BACnet Building Management System (BMS) and the VRV DIII-Net communication bus to maintain the optimal operation of the connected indoor unit(s).
- 7. The Interface for use in BACnet can be used in conjunction with following remote controllers to control the same indoor unit groups,
 - a. BRC1E71/72/73 (Navigation Remote Controller)
 - b. BRC2A71 (Simplified Remote Controller),
 - c. BRC4C82/ 7E83/ 7C812/ 7E818 (Wireless Remote Controller),
 - d. BRC1H71W (Madoka Remote Controller)
 - e. No more than 2 remote controllers can be placed in the same group. The remote controller shall require daisy chain wiring for grouping multiple indoor units (up to 16) together.
- 8. The Interface for use in BACnet can be used in conjunction with following centralized controllers to control the same indoor unit groups,
 - a. DCS601C71 (Intelligent Touch Controller (ITC)) with or without the DCS601A72 (ITC DIII Plus Adapter)
 - b. DCM601A71 (intelligent Touch Manager (iTM)) with or without the DCM601A72 (iTM Plus Adapter)
- 9. Manual addressing is required of each indoor unit group associated with the Intelligent Touch Controller, intelligent Touch Manager and the Interfaces for use in BACnet.
- The Interface for use in BACnet shall be equipped with one RJ-45 Ethernet port to support interconnection with a network PC via the Internet or Local Area Network (LAN). The Ethernet connection shall be capable of transmission on 10Base-T and/or 100Base-TX connection at 100 Mbps.
- The Interface for use in BACnet shall be capable of being configured as a foreign device. It shall be capable of communicating across BACnet Broadcast Management Devices (BBMD) in different subnet networks.

- 12. The Interface for use in BACnet shall be capable of supporting Change of Value (COV) notification for all available objects.
- 13. The Daikin BACnet Setup Tool shall be available so that certified commissioning personnel/facility staff can securely log into each Interface for use in BACnet via a PC to support the configuration and testing of the Interface for use in BACnet.
- 14. Mounting: The Interface for use in BACnet shall be mounted on the wall or in an enclosure.

B. Features:

- 1. The Interface for use in BACnet shall be approximately 10.81" x 10.34" in size.
- 2. LED display provides the interface's operational status and alarm.
- 3. The Interface for use in BACnet shall be capable of displaying indoor unit objects on the BACnet building management system.
- 4. The Interface for use in BACnet shall provide the BACnet building management system the capability to command the setpoint temperature in 1°F (0.10°C) increments with a range acceptable to indoor unit. Display of temperature setpoint information shall be configurable for Fahrenheit or Celsius
- 5. The Interface for use in BACnet shall provide the BACnet building management system the capability to display the room temperature in 0.10^oF (0.10^oC) increments Display of room temperature information shall be configurable for Fahrenheit or Celsius
- 6. Error codes generated by the indoor units, outdoor units, branch selector boxes, and remote controllers shall be displayed on the BACnet building management system in the event of system abnormality/error with a two-digit error code as specified by Daikin. Communication errors between the Interface for use in BACnet and the BACnet building management system shall be displayed with a red flashing LED on the Interface for use in BACnet
- C. Basic Operation:
 - The Interface for use in BACnet will provide up to 31 objects that can be monitored/controlled via the BACnet building management system (see the Interface for use in BACnet Design Guide – EDUS72-749C) Capable of controlling up to 64 indoor unit groups (128 indoor units) per DIII-Net port (2 DIII-Net ports standard). Optional DIII Board (DAM411B51) can be added to increase DIII-Net ports to a total of 4 DIII-Net ports.

This provides a total of 256 indoor unit groups (512 indoor units) that can be monitored and controlled via the BACnet building management system

- 2. The Building Management System shall control the following group operations:
 - a. On/Off
 - b. Operation Mode (Cool, Heat, Fan, Auto, and Dry)
 - c. Single setpoint setting for Cooling and Heating in the occupied mode.
 - d. Fan status
 - e. Fan Speed
 - f. Up to 3 speeds (dependent upon indoor unit type)
 - g. Vane direction (dependent upon indoor unit type), 5 fixed positions or swing positions
 - h. Remote controller permit/prohibit of On/Off, Mode, and Setpoint
 - i. Filter sign reset for indoor units
 - j. Disable the Intelligent Touch Controller or Manager.
 - k. Forced off for indoor units
 - I. Forced Thermo-off for indoor units
 - m. Energy saving offset of indoor unit setpoint
 - n. Compressor status
 - o. Thermo-on status
 - p. Heater status
- 3. Capable of providing battery backup power for up to 3 years in total time for the clock for settings stored in non-volatile memory

- D. Programmability:
 - 1. The BACnet building management system shall support weekly schedule settings through its programming.
 - a. The schedule shall support the indoor unit On/Off
 - b. Each scheduled event shall specify time and target group
 - c. Each scheduled event shall include On/Off, Operation Mode, Occupied Cooling Setpoint, Occupied Heating Setpoint, Setup (Cooling) setback setpoint, Setback (Heating) setback setpoint, Remote Controller On/Off Permit/Prohibit, Remote Controller Mode Permit/Prohibit, Remote Controller Setpoint Permit/Prohibit, and Timed Override Enable
 - d. Setback (Cooling) and Setback (Heating) setpoints when unit is Off (unoccupied) by Group
 - e. An override shall be provided for use enabling indoor unit operation during the unoccupied period by the BACnet building management system programming.
 - 2. The BACnet building management system shall support auto-changeover through its programming.
 - a. Auto-change shall provide changeover for both Heat Pump and Heat Recovery systems based upon the group configurations. This will allow for the optimal room temperature to be maintained by automatically switching the indoor unit's mode between Cool and Heat in accordance with the room temperature and setpoint temperature.
 - b. Changeover shall change the operation mode of the indoor unit that is set as the Changeover Master. The Changeover Master indoor unit shall then change the operation mode of all indoor unit groups daisy chained on the same DIII-Net communication bus to the same outdoor unit in the Heat Pump system or the same branch selector box in the Heat Recovery system.
 - c. Changeover to cooling mode shall occur when the room temperature is great than or equal to the cooling setpoint, Differential to be determined by BACnet building management system programming
 - d. Changeover to heating mode shall occur when room temperature is less than or equal to the heating setpoint. Differential to be determined by BACnet building management system programming
 - e. Guard timer: Upon changeover, guard timer will prevent another changeover during this period. Guard timer should be ignored by a change of setpoint manually from the BMS, Intelligent Touch Controller, Remote Controller, or by schedule. Guard timer to

be configured by BACnet building management system programming (30 minute minimum recommended)

3. The Interface for use in BACnet shall support force shutdown of associated indoor unit groups.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of compressor and condenser units.
- B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- C. Examine walls, floors, and roofs for suitable conditions where compressor and condenser units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.
- B. Install heat pump units on mounting base.
- C. Install roof-mounting units on equipment supports specified in Division 07.
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

- A. Comply with requirements for piping in other Division 23 Sections. Drawings indicate general arrangement of equipment, and specialties.
- B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- C. Connect precharged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.
- D. Connect refrigerant piping to air-cooled compressor and condenser units; maintain required access to unit. Install furnished field-mounted accessories. Refrigerant piping and specialties are specified in Division 23 Section "Refrigerant Piping."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - 2. Leak Test: After installation, charge system with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor operation and unit operation, product capability, and compliance with requirements.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify proper airflow over coils.
- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- D. Compressor and condenser units will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.
- 3.5 STARTUP SERVICE
 - A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - a. Inspect for physical damage to unit casing.
 - b. Verify that access doors move freely and are weathertight.
 - c. Clean units and inspect for construction debris.
 - d. Verify that all bolts and screws are tight.
 - e. Adjust vibration isolation and flexible connections.
 - f. Verify that controls are connected and operational.
 - B. Lubricate bearings on fan motors.
 - C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
 - D. Adjust fan belts to proper alignment and tension.

- E. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.
- F. Measure and record airflow and air temperature rise over coils.
- G. Verify proper operation of condenser capacity control device.
- H. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- I. After startup and performance test, lubricate bearings.
- 3.6 DEMONSTRATION
 - A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain compressor and condenser units.

END OF SECTION 23 81 29

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 82 16 - AIR COILS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of air coils that are not an integral part of air-handling units:
 - 1. Electric.
- B. Related Sections include the following:
 - 1. Division 23 Sections for air coils that are integral to air-handling units.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each air coil. Include rated capacity and pressure drop for each air coil.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which coil location and ceiling-mounted access panels are shown and coordinated with each other.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For air coils to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance:
 - 1. Comply with ASHRAE 15 for refrigeration system safety.
 - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 - 3. Comply with applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."

1.5 PROJECT CONDITIONS

A. Altitude above Mean Sea Level: 500 feet.

PART 2 - PRODUCTS

2.1 ELECTRIC COILS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Brasch Manufacturing Co., Inc.
 - 2. Chromalox, Inc., Wiegand Industrial Division; Emerson Electric Company.
 - 3. Dunham-Bush, Inc.
 - 4. INDEECO.
 - 5. Trane.
- D. Coil Assembly: Comply with UL 1995.
- E. Heating Elements: Coiled resistance wire of 80 percent nickel and 20 percent chromium; surrounded by compacted magnesium-oxide powder in tubular-steel sheath; with spiral-wound, copper-plated, steel fins continuously brazed to sheath.
- F. Heating Elements: Open-coil resistance wire of 80 percent nickel and 20 percent chromium, supported and insulated by floating ceramic bushings recessed into casing openings, and fastened to supporting brackets.
- G. High-Temperature Coil Protection: Disk-type, automatically reset, thermal-cutout, safety device; serviceable through terminal box without removing heater from duct or casing.
 - 1. Secondary Protection: Load-carrying, manually reset or manually replaceable, thermal cutouts; factory wired in series with each heater stage.
- H. Frames: Galvanized-steel channel frame, minimum 0.0625 inch (1.6 mm) thick for flanged mounting.
- I. Control Panel: [Unit mounted with disconnecting means and overcurrent protection. Include the following controls:
 - 1. Magnetic contactor.
 - 2. Mercury contactor.
 - 3. Toggle switches; one per step.
 - 4. Step controller.
 - 5. Time-delay relay.
 - 6. Pilot lights; one per step.
 - 7. Airflow proving switch.

- J. Refer to Division 23 Section "Instrumentation and Control for HVAC" for thermostat.
- K. Thermostats: 3-Stage Wall-mounted thermostats, with temperature range from 50 to 90 deg F (10 to plus 32 deg C), and 2.5 deg F (1.4 deg C) throttling range.
- L. Capacities and Characteristics:
 - 1. Coil Face Dimensions: As indicated on Drawings.
 - 2. Mounting: Flanged.
 - 3. Air Side:
 - a. Flow Rate: 12,620 cfm.
 - b. Face Velocity: 1100 fpm.
 - c. Static Pressure Drop: 0.62 inches wg.
 - d. Entering Temperature: 60 deg F.
 - e. Leaving Temperature: 85 deg F.
 - 4. Electrical Characteristics:
 - a. Capacity: 80 kW.
 - b. Number of Steps: SCR.
 - c. Volts: 480.
 - d. Phase: 3.
 - e. Hertz: 60.
 - f. Full-Load Amperes: 96.
 - g. Minimum Circuit Ampacity: 125.
 - h. Maximum Overcurrent Protection: 125.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine ducts, plenums, and casings to receive air coils for compliance with requirements for installation tolerances and other conditions affecting coil performance.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before coil installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install coils level and plumb.
- B. Install coils in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."
- C. Install stainless-steel drain pan under each cooling coil.
 - 1. Construct drain pans with connection for drain; insulated and complying with ASHRAE 62.1-2004.
 - 2. Construct drain pans to extend beyond coil length and width and to connect to condensate trap and drainage.
 - 3. Extend drain pan upstream and downstream from coil face.

- 4. Extend drain pan under coil headers and exposed supply piping.
- D. Install moisture eliminators for cooling coils. Extend drain pan under moisture eliminator.
- E. Straighten bent fins on air coils.
- F. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to coils to allow service and maintenance.
- C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Instrumentation and Control for HVAC," and other piping specialties are specified in Division 23 Section "Hydronic Piping."
- D. Connect steam piping with gate valve and union and steam condensate piping with union, strainer, trap, and gate valve to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Instrumentation and Control for HVAC," and other piping specialties are specified in Division 23 Section "Steam and Condensate Heating Piping."
- E. Connect refrigerant piping according to Division 23 Section "Refrigerant Piping."
- F. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, operate electric coils to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 23 82 16