232300- 2.1 - B - HANGERS AND SUPPORTS

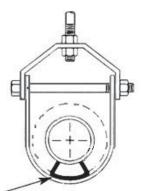

FIG. 220

CLEVIS HANGER WITH WELDED SHIELD

MATERIAL:	Carbon steel orx304k/3116xstainlessxsteetxx
FINISH:	邊內來來來了 electro galvanized.
SERVICE:	For vapor sealed lines.
ORDERING:	Specify pipe size, figure number, insulation thickness and finish.

	HANGER SIZING GUIDE THICKNESS OF PIPE INSULATION							
PIPE SIZE								
	1/2"	1/2" 1" 11/2" 2" 21/2" 3"						
1/2	1 ¹ / ₂	2 ¹ / ₂	3 ¹ / ₂	5	6	7		
3/4	2	3	3 ¹ / ₂	5	6	7		
1	2	3	4	5	6	7		
1 ¹ / ₄	2 ¹ / ₂	3 ¹ / ₂	4	5	6	7		
1 ¹ / ₂	2 ¹ / ₂	3 ¹ / ₂	5	6	7	8		
2	3	4	5	6	7	8		
2 ¹ / ₂	3 ¹ / ₂	5	6	7	8	10		
3	4	5	6	7	8	10		
3 ¹ / ₂	5	6	7	8	10	10		
4	5	6	7	8	10	10		
5	6	7	8	10	10	12		
6	7	8	10	10	12	12		
8	10	10	12	12	14	16		
10	12	12	14	16	16	18		
12	14	16	16	18	18	20		
14	16	16	18	18	20	20		
16	18	18	20	20	24	24		

WIIN WELDED SHIEL


FIG. 225

CLEVIS HANGER WITH PROTECTION SADDLE

MATERIAL:	Carbon steel or 304/316 stainless steel xx
FINISH:	Black ok electro-galvanized.
SERVICE:	For supporting insulated pipe lines.
ORDERING:	Specify pipe size, figure number, insulation thickness and finish.

	HANGER SIZING GUIDE						
PIPE SIZE		THICKNESS OF PIPE INSULATION					
OILL	1"	1½"	2"	2½"	3"		
1/2	2 ¹ / ₂	3 ¹ / ₂	5	6	7		
3/4	3	3 ¹ / ₂	5	6	7		
1	3	4	5	6	7		
1 ¹ / ₄	3 ¹ / ₂	4	5	6	7		
1 ¹ / ₂	3 ¹ / ₂	5	6	7	8		
2	4	5	6	7	8		
2 ¹ / ₂	5	6	7	8	10		
3	5	6	7	8	10		
3 ¹ / ₂	6	7	8	10	10		
4	6	7	8	10	10		
5	7	8	10	10	12		
6	8	10	10	12	12		
8	10	12	12	14	16		

PIPE COVERING PROTECTION SADDLE WELDED TO LOWER STRAP

COPPER TUBING CLEVIS HANGER

WEIGHT EACH, LBS.

.12

.12

.14

.17

.20

.38

.71

.76

.82

1.02

1.68

1.84

Е

1¹/₂

13/8

17/16

1¹¹/₁₆

2¹/₈

2⁹/16

37/8

3¹⁵/₁₆

5

51/4

5³/8

5³/8

F

¹/₂

1/2

1/2

³/₄

¹⁵/₁₆

1¹/₁₆

2¹/₁₆

2

25/8

2%/16

1 1 %

1¹/₂

MATERIAL:	Carbon steel.
FINISH:	Copper plated.
SERVICE:	For the suspension of stationary copper tubing lines.
ORDERING:	Specify tubing size and figure number.
APPROVALS:	FS WW-H-171E TYPE 12.

Α

³/8

³/8

3/8

³/8

3/8

³/8

1/2

1/2

1/2

1/2

⁵/8

5/8

В

17/8

1³/₄

1¹³/16

2¹/8

2¹/₂

2¹⁵/₁₆

47/8

4¹/₂

5⁹/16

57/8

57/8

61/16

С

2³/16

2¹/8

25/16

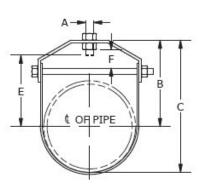
2³/₄

31/4

4

5³/₄

6¹/₈


77/8

77/8

8³/₄

9

FIG. CT420

FIG. CT200

TUBING SIZE

1/2

3/4

1

1¹/₄

1¹/₂

2

2¹/₂

3

3¹/₂

4

5

6

MATERIAL SIZE

LOWER

18ga. x 1/8

18ga. x 7/8

18ga. x 1/8

18ga. x 1/8

18ga. x 1/8

16ga. x 1/8

14ga. x 1³/16

14ga. x 1³/₁₆

14ga. x 1³/16

14ga. x 1³/16

8ga. x 11/4

8ga. x 11/4

UPPER

18ga. x 1/8

14ga. x 1/8

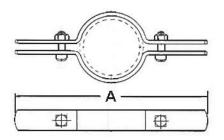
12ga. x 13/16

12ga. x 1³/₁₆

12ga. x 1³/₁₆

11ga. x 1³/₁₆

8ga. x 1¼


8ga. x 11/4

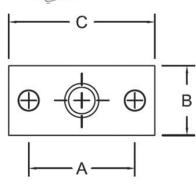
COPPER TUBING RISER CLAMP

MATERIAL:	Carbon steel.
FINISH:	Copper plated.
SERVICE:	For support of tubing risers.
ORDERING:	Specify tubing size and figure number.
APPROVALS:	MSS SP-58 & SP-69 TYPE 8
	FS WW-H-171E TYPE 8

NOMINAL TUBING SIZE	A	Material Size	REC. LOAD LBS.	WEIGHT Each, LBS.
1/2	6 ³ / ₄	¹⁄₀ x 1	225	.69
3/4	7 ¹ / ₁₆	¹/₃ x 1	225	.73
1	9 ¹ / ₄	¹/₃ x 1	250	.75
1 ¹ / ₄	9 ⁵ / ₈	¹/₀ x 1	250	.77
1 ¹ / ₂	10 ¹ /8	¹‰ x 1	500	.80
2	10³/₄	¹ /8 x 1 ¹ /4	500	1.05
2 ¹ / ₂	11 ¹ / ₄	³ /16 x 1 ¹ /4	500	1.68
3	11 ¹ / ₂	³ /16 x 1 ¹ /4	500	1.78
3 ¹ / ₂	12 ¹ /4	³ / ₁₆ x 1 ¹ / ₄	500	1.91
4	12 ³ /4	³ /16 x 1 ¹ /4	500	2.05
5	14	1/4 x 1 1/2	815	3.46
6	151/2	1/4 x 1 1/2	815	3.86

COPPER TUBING SPLIT RING HANGER

P

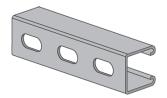

MATERIAL:	Malleable iron.
FINISH:	Copper epoxy coated (COPPER-GARD).
ORDERING:	Specify tubing size and figure number.
SERVICE:	For suspension of non-insulated stationary tubing lines.
APPROVALS:	MSS SP-58 & SP-69 TYPE 12
	FS WW-H-171E TYPE 25

TUBE SIZE	MAX. REC. Load, LBS.	A ROD SIZE	В	С	D	WEIGHT PER 100, LBS.
1/4*	180	3/8	⁹ / ₁₆	1 ³ / ₄	7/8	7.3
³ /8*	180	³ /8	⁵ /8	1 ³ / ₄	1 1/ ₁₆	8.0
1/2	180	³ /8	¹¹ / ₁₆	17/8	1 1/8	8.7
3/4	180	³ /8	¹³ / ₁₆	2 ¹ / ₄	1 3/8	9.6
1	180	³ /8	¹⁵ / ₁₆	2 ¹ / ₂	1 5/8	12.8
1 ¹ / ₄	180	³ /8	1 1/ ₁₆	27/8	17/8	14.1
1 ¹ / ₂	180	³ /8	1 ³ / ₁₆	3	2 ³ / ₁₆	17.9
2	180	³ /8	1 ⁷ / ₁₆	3 ¹ / ₂	2 ¹¹ / ₁₆	22.9
2 ¹ / ₂ *	300	1/2	17/8	4 ¹⁵ / ₁₆	2 ⁷ /16	44.9
3*	300	1/2	2 ¹ / ₈	5 ¹ /2	4 ¹ / ₁₆	66.3
4*	300	1/2	25/8	65/8	5 ¹ / ₁₆	75.3

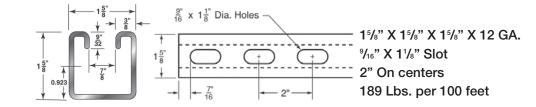
*Sizes 1/4", 3/8", 21/2", 3" and 4" are hinged style

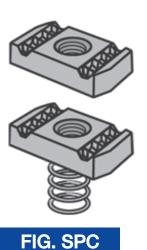
FIG. CT105

MATERIA FINISH: SERVICE ORDERIM


MATERIAL:	Malleable iron.
FINISH:	Copper epoxy coated (COPPER-GARD)
SERVICE:	For suspension of non-insulated
	stationary tubing lines.
ORDERING:	Specify tap size and figure number.

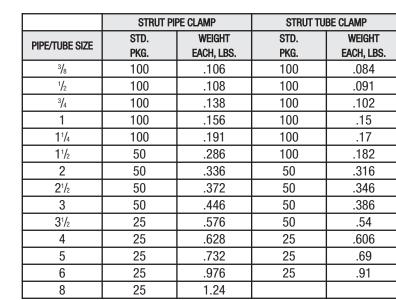
ROD SIZE	A	В	С	WEIGHT PER 100, LBS.
³ /8	1 ¹⁵ / ₁₆	1 ⁵ / ₁₆	2 ³ / ₄	17
1/2	1 ¹⁵ / ₁₆	1 5/ ₁₆	2 ³ / ₄	17


COPPER HANGER FLANGE


STRUT

MATERIAL:Carbon steelxorx304/336xstainless steelxFINISH:Pre-galvanized (ASTM-A653) or epoxy
coated green.ORDERING:Specify size, figure number, length and
finish.

FIG. SN


STRUT NUT

MATERIAL:	Carbon steel or 316 stainless steel.
FINISH:	Electro-galvanized.
ORDERING:	Specify size with or without spring and
	figure number.

	WITHOUT	r spring	WITH S	SPRING
ROD	STD.	WEIGHT	STD.	WEIGHT
SIZE	PKG. EACH, LBS.		PKG.	EACH, LBS.
1/4	100	.067	100	.076
³ /8	100	.094	100	.102
1/2	100	.09	100	.094
⁵ /8	100	.13	50	.15
3/4	100	.13	50	.15

STRUT PIPE CLAMP

MATERIAL:	Carbon steel or 304 stainless steel.
FINISH:	Electro-galvanized.
ORDERING:	Specify pipe/tube size and figure number.

NOTE: Tubing sizes only available up to 4".

rod Size

Α

3/8

1/2

⁵/8

3/4

7/8

size Pipe

1/2 to 2

21/2 to 31/2

4 to 5

6

8

JUNIOR TOP BEAM CLAMP

MATERIAL:	Malleable Iron.
FINISH:	Black.ok.electro-galvanized.
SERVICE:	For use under roof installations with bar joist type construction where the thickness of the joist does not exceed %".
ORDERING:	Specify size, figure number, and finish.
APPROVALS:	MSS SP-58 & SP-69 TYPE 19
	FM (³/8" & ¹/2" rod)
	UL

WEIGHT PER 100, LBS.

30

39

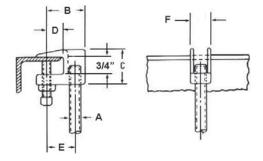
40

67

66

MAX RECOMMENDED LOAD, LBS.

350


470

550

700

1000

FIG. 640

TOP BEAM CLAMP

С

17/₁₆

1¹/₂

1¹/₂

1³/₄

1³/₄

D

3/4

3/4

³/4

11/16

1¹/₁₆

Ε

1³/₁₆

1¹/₄

1³/32

1⁵/₁₆

1⁵/₁₆

F

3/4

⁷/8

1

1¹/₄

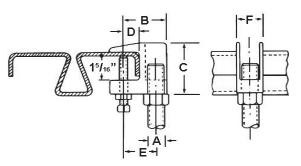
1¹/₄

В

1¹/₂

15/8

1³/4


2¹/₄

2¹/₄

- MATERIAL: Malleable Iron.
- FINISH: xBlackxox electro-galvanized.
- **SERVICE:** For use under roof installations with bar joist type construction where the thickness of the joist does not exceed 1¼".
- **ORDERING:** Specify size, figure number and finish.

rod Size A	size Pipe	MAX Recommended Load, LBS.	WEIGHT PER 100, LBS.	В	C	D	E	F
3/8	¹ / ₂ to 2	400	38	1 ⁷ / ₁₆	2	3/4	1 ³ / ₁₆	3/4
1/2	2 ¹ / ₂ to 3 ¹ / ₂	500	49	1 5/8	2 ¹ / ₁₆	3/4	1 1/4	⁷ /8
⁵ /8	4 to 5	850	66	1 ³ / ₄	2 ¹ / ₄	3/4	1 1/4	1
3/4	6	900	83	1 ⁷ /8	2 ³ /8	3/4	1 3/8	1 ³ / ₁₆

Double

PRODUCT INFORMATION

Double Shield Expansion Anchor

PRODUCT DESCRIPTION

The Double is a dual expansion machine bolt anchor particularly suited for materials of questionable strength. It can be used in solid concrete, block, brick, and stone. Job site tests are recommended when used in base materials of questionable strength.

FEATURES AND BENEFITS

- Performs in base material of questionable strength
- Internally threaded anchor for easy removability and service work
- Corrosion resistant body

APPROVALS AND LISTINGS

Federal GSA Specification – Meets the descriptive and proof load requirements of CID A-A 1923A, Type 3

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastenings. Expansion anchors shall be Double as supplied by Powers Fasteners, Inc., Brewster, NY.

SECTION CONTENTS Page No.

General Information	1
Installation and Material Specifications	1
Performance Data	2
Design Criteria	3
Ordering Information	4

Double

THREAD VERSION

UNC Thread

ANCHOR MATERIALS

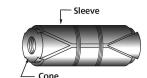
Zamac Alloy

ROD/ANCHOR SIZE RANGE (TYP.)

1/4" to 3/4" diameter

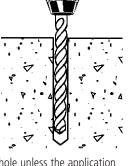
SUITABLE BASE MATERIALS

Normal-weight Concrete Hollow Concrete Masonry (CMU) Brick Masonry

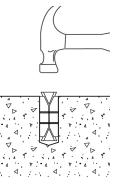

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications

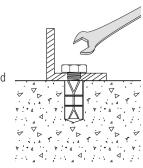
	Rod/Anchor Diameter, d					
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"
ANSI Drill Bit Size, <i>d</i> _{bit} (in.)	1/2	5/8	3/4	7/8	1	1 1/4
Max. Tightening Torque, T _{max} (ft-lbs.)	5	7	10	20	30	60
Sleeve Length (in.)	1	1 3/16	1 9/16	2	2 1/4	3 1/4
Thread Size (UNC)	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11	3/4-10
Thread Length In Cone (in.)	1/2	1/2	5/8	3/4	7/8	1 1/8
Overall Anchor Length (in.)	1 3/8	1 5/8	2	2 1/2	2 3/4	3 15/16


Material Specifications

Anchor Component	Component Material
Anchor Shield	Zamac Alloy
Cone	Zamac Alloy


Installation Guidelines

Drill a hole into the base material to the minimum depth required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Do not expand the anchor prior to installation.



Do not over drill the hole unless the application calls for a subset anchor.

Insert anchor into the hole, threaded cone end first until the outer sleeve is flush with the surface of the base material.

Position fixture, then insert screw or bolt and tighten. For maximum expansion, the upper cone should protrude slightly before setting. The bolt must engage a minimum of 2/3 of the anchor threads.

PERFORMANCE DATA

Ultimate Load Capacities for Double Expansion Anchor in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)						
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)	
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1 1/4	710	1,110	900	1,135	1,220	1,335	
(6.4)	(31.8)	(3.2)	(5.0)	(4.0)	(5.2)	(5.5)	(6.0)	
5/16	1 1/2	1,130	1,735	1,500	2,020	2,160	2,155	
(7.9)	(38.1)	(5.1)	(7.8)	(6.7)	(9.1)	(9.7)	(9.7)	
3/8	1 3/4	1,365	2,690	2,000	3,000	3,085	4,030	
(9.5)	(44.5)	(6.1)	(12.1)	(9.0)	(13.5)	(13.9)	(18.1)	
1/2	2 1/4	2,590	3,740	3,550	4,310	4,645	6,930	
(12.7)	(57.2)	(11.7)	(16.8)	(16.0)	(19.4)	(20.9)	(31.2)	
5/8	2 1/2	4,290	9,640	6,150	10,270	6,890	11,580	
(15.9)	(63.5)	(19.3)	(43.4)	(27.7)	(46.2)	(81.0)	(52.2)	
3/4	3 1/2	6,000	10,920	8,150	13,330	11,510	14,480	
(19.1)	(88.9)	(27.0)	(49.2)	(36.7)	(60.0)	(51.8)	(65.2)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

Allowable Load Capacities for Double Expansion Anchor in Normal-Weight Concrete^{1,2,3}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)						
Diameter	Embedment Depth	2,000 psi (13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)		
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1 1/4	180	280	225	285	305	335	
(6.4)	(31.8)	(0.8)	(1.3)	(1.0)	(1.3)	(1.4)	(1.5)	
5/16	1 1/2	285	435	375	505	540	540	
(7.9)	(38.1)	(1.3)	(20)	(1.7)	(2.3)	(2.4)	(2.4)	
3/8	1 3/4	340	675	500	750	770	1,010	
(9.5)	(44.5)	(1.5)	(3.0)	(2.3)	(3.4)	(3.5)	(4.5)	
1/2	2 1/4 (57.2)	650	935	890	1,080	1,160	1,735	
(12.7)		(2.9)	(4.2)	(4.0)	(4.9)	(5.2)	(7.8)	
5/8	2 1/2	1,075	2,410	1,540	2,570	1,725	2,895	
(15.9)	(63.5)	(4.8)	(10.9)	(6.9)	(11.6)	(20.3)	(13.1)	
3/4	3 1/2	1,500	2,730	2,040	3,335	2,880	3,620	
(19.1)	(88.9)	(6.8)	(12.3)	(9.2)	(15.0)	(13.0)	(16.3)	

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

с

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Double Expansion Anchor in Hollow Concrete Masonry^{1,2,3}

Rod/Anchor	Minimum	f´ _m ≥ 1,500 psi (10.4 MPa)					
Diameter	Embedment Depth	Ultima	te Load	Allowa	ble Load		
d	<i>h</i> _v	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)		
1/4	1 1/4	885	1,350	175	270		
(6.4)	(31.8)	(4.0)	(6.1)	(0.8)	(1.2)		
5/16	1 1/2	1,295	1,635	260	325		
(7.9)	(38.1)	(5.8)	(7.4)	(1.2)	(1.5)		
3/8	1 1/2	1,575	2,160	315	430		
(9.5)	(38.1)	(7.1)	(9.7)	(1.4)	(1.9)		
1/2	1 1/2	2,710	3,130	540	625		
(12.7)	(38.1)	(12.2)	(14.1)	(2.4)	(2.8)		

 Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (*f* m ≥ 1,500 psi).
 Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such

as life safety, and in sustained tensile loading applications. 3. Anchors with diameters of 3/8" and 1/2" installed in hollow concrete masonry units are limited to one anchor per unit cell.

Ultimate and Allowable Load Capacities for Double Shell Expansion Anchor in Clay Brick Masonry^{1,2}

Rod/Anchor	Minimum	Structural Brick Masonry f´ _m ≥ 1,500 psi (10.4 MPa)					
Diameter	Embedment Depth	Ultima	te Load	Allowat	ole Load		
d	<i>h</i> _v	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)		
1/4	1 1/4	1,175	1,585	235	315		
(6.4)	(31.8)	(5.3)	(7.1)	(1.1)	(1.4)		
5/16	1 1/2	1,585	2,040	315	410		
(7.9)	(38.1)	(7.1)	(9.2)	(1.4)	(1.8)		
3/8	1 3/4	1,830	3,590	365	720		
(9.5)	(44.5)	(8.2)	(16.2)	(1.6)	(3.2)		
1/2	2 1/4	3,420	5,185	685	1,035		
(12.7)	(57.2)	(15.4)	(23.3)	(3.1)	(4.7)		
5/8	2 1/2	4,460	6,055	890	1,210		
(15.9)	(63.5)	(19.8)	(27.2)	(4.0)	(5.4)		
3/4	3 1/2	6,000	7,935	1,200	1,585		
(19.1)	(88.9)	(26.7)	(35.7)	(5.3)	(7.1)		

Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

Compressive set of a construction of the co

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

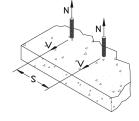
For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$$

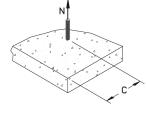
Where: N_u = Applied Service Tension Load N_n = Allowable Tension Load V_u = Applied Service Shear Load V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances¹

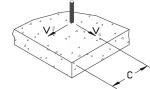
	Anchor Installed in Normal-Weight Concrete											
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor							
Spacing (s)	Tension and Shear	<i>s</i> _{cr} = 10 <i>d</i>	$F_{NS} = F_{VS} = 1.0$	s _{min} = 5d	$F_{N_{S}} = F_{V_{C}} = 0.50$							
Edge Distance (c)	Tension	C _{cr} = 12d	$F_{NC} = 1.0$	c _{min} = 5d	$F_{N_C} = 0.80$							
Edge Distance (<i>c</i>)	Shear	C _{cr} = 12d	$F_{VC} = 1.0$	Cmin = 5d	$F_{VC} = 0.50$							


1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)


Load Adjustment Factors for Normal-Weight Concrete

			Spacing, Te	nsion (<i>F_{NS}</i>)	& Shear (F _v	′s)	
Dia	. (in.)	1/4	5/16	3/8	1/2	5/8	3/4
S _{cr}	(in.)	2 1/2	3 1/8	3 3/4	5	6 1/4	7 1/2
Smi	n (in.)	1 1/4	1 9/16	1 7/8	2 1/2	3 1/8	3 3/4
	1 1/4	0.50					
ŝ	1 9/16	0.63	0.50				
(inches)	1 7/8	0.75	0.60	0.50			
ij	2 1/2	1.00	0.80	0.67	0.50		
S	3 1/8		1.00	0.83	0.63	0.50	
ing	3 3/4			1.00	0.75	0.60	0.50
Spacing,	5				1.00	0.80	0.67
S	6 1/4					1.00	0.83
	7 1/2						1.00


Notes: For anchors loaded in tension and shear, the critical spacing (s_{CT}) is equal to 10 anchor diameters (10*d*) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 5 anchor diameters (5*d*) at which the anchor achieves 50% of load.

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12 d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 8 anchor diameters (8 d) at which the anchor achieves 80% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 8 anchor diameters (8*d*) at which the anchor achieves 50% of load.

			Edge Di	stance, Ten	sion (<i>F_{NC}</i>)		
Dia	. (in.)	1/4	5/16	3/8	1/2	5/8	3/4
Ccr	(in.)	3	3 3/4	4 1/2	6	7 1/2	9
C _{mi}	in (in.)	2	2 1/2	3	4	5	6
	2	0.80					
(inches)	2 1/2	0.90	0.80				
L 2 1	3	1.00	0.88	0.80			
U U	3 3/4		1.00	0.90			
	4			0.93	0.80		
Distance,	4 1/2			1.00	0.85		
list	5				0.90	0.80	
	6				1.00	0.88	0.80
Edge	7 1/2					1.00	0.90
1	9						1.00

Edge Distance, Shear (F_{v_c})

1/2

6

4

0.50

0.63

0.75

1.00

5/8

7 1/2

5

0.50

0.70

1.00

3/4

9

6

0.50

0.75

1.00

3/8

4 1/2

3

0.50

0.75

0.83

1.00

ORDERING INFORMATIO	Ν

Double Expansion Anchor

1/4

3

2

0.50

0.75

1.00

5/16

3 3/4

2 1/2

0.50

0.70

1.00

Dia. (in.)

Cmin (in.)

2

2 1/2

3 3 3/4

4

4 1/2

5

6

7 1/2

9

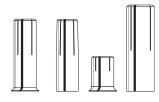
Ccr (in.)

Edge Distance, c (inches)

Catalog Number	Rod/Anchor Diameter	Drill Diameter	Overall Length	Minimum Hole Depth	Standard Box	Standard Carton	Wt./ 100
9510	1/4"	1/2 "	1 3/8"	1 1/4"	50	500	4
9515	5/16"	5/8"	1 5/8"	1 1/2"	50	500	7 1/2
9520	3/8"	3/4"	2"	1 3/4"	50	250	12 1/2
9525	1/2"	7/8"	2 1/2"	2 1/4"	25	250	18
9530	5/8"	1"	2 3/4"	2 1/2"	25	100	25 1/2
9535	3/4"	1 1/4"	3 15/16"	3 1/2"	10	50	54 1/2

© 2011 Powers Fasteners, Inc. All Rights Reserved. For the most current product information please visit www.powers.com.

с


To set anchor flush with surface:

(see Table on page 73).

INSTALLATION STEPS

Multi-Set II[®]

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Drop-In, shell-type anchors feature an internally threaded, all-steel shell with expansion cone insert and flush

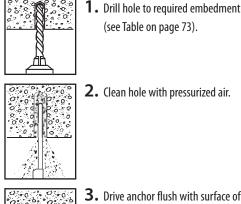
embedment lip. "Anchors are manufactured from zinc-plated carbon steel, 18-8 stainless steel and 316 stainless steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications.

Anchors should be tested to ASTM E488 criteria and listed by ICC (formerly ICBO). Anchors should also be listed by the following agencies as required by the local building code: UL, FM, City of Los Angeles, California State Fire Marshal and Cal Trans.

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII)


Underwriters Laboratories

Factory Mutual

City of Los Angeles - #RR2748

California State Fire Marshal

Caltrans

- **3.** Drive anchor flush with surface of concrete.
- **4.** Expand anchor with setting tool provided (see chart). Anchor is properly expanded when shoulder of setting tool is flush with top of anchor.

To set anchor below surface:

Drill hole deeper than anchor length. Thread bolt into anchor. Hammer anchor into hole until bolt head is at desired depth. Remove bolt and set anchor with setting tool.

Multi-Set II Drop-In Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

B	OLT	ANG	HOR	MIN. EM	BEDMENT	ANCHOR			TENSION	Lbs. (kN)			SHEAR	SHEAR Lbs. (kN)	
-	IA. (mm)	-	IA. mm)		PTH (mm)	ТҮРЕ	f′c = 2000 PSI (13.8 MPa)			f'c = 4000 PSI (27.6 MPa)		6000 PSI 4 MPa)	f'c _>2000 PSI (13.8 MPa)		
1/4	(6.4)	3/8	(9.5)	1	(25.4)		1,680	(7.5)	2,360	(10.5)	2,980	(13.3)	1,080	(4.8)	
3/8	(9.5)	1/2	(12.7)	1-5/8	(41.3)	RM, RL or CL-Carbon	2,980	(13.3)	3,800	(16.9)	6,240	(27.8)	3,160	(14.1)	
1/2	(12.7)	5/8	(15.9)	2	(50.8)	or	3,300	(14.7)	5,840	(26.0)	8,300	(36.9)	4,580	(20.4)	
5/8	(15.9)	7/8	(22.2)	2-1/2	(63.5)	SRM-18-8 S.S. or SSRM-316 S.S.	5,500	(24.5)	8,640	(38.4)	11,020	(49.0)	7,440	(33.1)	
3/4	(19.1)	1	(25.4)	3-3/16	(81.0)		8,280	(36.8)	9,480	(42.2)	12,260	(54.5)	10,480	(46.6)	

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For continuous extreme low temperature applications, use stainless steel.

Combined Tension and Shear Loading—for Multi-Set Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load

Vs = Applied shear load

Pt = Allowable tension load

Vt = Allowable shear load

Red Head 1-800-899-7890

10/09 www.itwredhead.com

Multi-Set II Ultimat Drop-In Anchors Lightwo

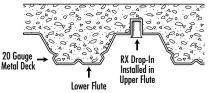
Ultimate Tension and Shear Values (Lbs/kN) in Lightweight Concrete*

D	BOLT ANCHOR MINIMUM DIA. DIA. EMBEDMENT In. (mm) In. (mm) DEPTH		DMENT	ANCHOR TYPE			HT CONCRETE SI (20.7 MPa)		LOW					
	. ,		. ,	ln. (mm)		TENS Lbs. (SHE Lbs. (ISION . (kN)	SHE Lbs.	EAR (kN)
3/8	(9.5)	1/2	(12.7)	1-5/8	(39.7)	RM, RL or CL-Carbon or	2,035	(9.1)	1,895	(8.4)	3,340	(14.9)	4,420	(19.6)
1/2	(12.7)	5/8	(15.9)	2	(50.8)	SRM-18-8 S.S. or	2,740	(12.2)	2,750	(12.2)	3,200	(14.2)	4,940	(22.0)
5/8	(15.9)	7/8	(22.2)	2-1/2	(63.5)	SSRM-316 S.S.	4,240	(18.9)	4,465	(19.9)	5,960	(26.5)	5,840	(26.0)
3/4	(19.1)	1	(25.4)	3-3/16	(81.0)		5,330	(23.7)	6,290	(28.0)	8,180	(36.4)	9,120	(40.6)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II **Recommended Edge and Spacing Distance Requirements* Drop-In Anchors** ANCHOR **EDGE DISTANCE** SPACING **MIN. ALLOWABLE** BOLT DRILL BIT EMBEDMENT MIN. EDGE DIA. SIZE DEPTH TYPE **REQUIRED TO DISTANCE AT WHICH REQUIRED TO** SPACING In. (mm) **OBTAIN MAX.** LOAD FACTOR APPLIED **OBTAIN MAX. BETWEEN ANCHORS** In. (mm) In. (mm) WORKING LOAD =.80 FOR TENSION WORKING LOAD LOAD FACTOR APPLIED =.70 FOR SHEAR =.80 FOR TENSION In. (mm) In. (mm) =.55 FOR SHEAR In. (mm) In. (mm) 1/4(6.4) 3/8 (9.5)1 (25.4)1 - 3/4(44.5)7/8 (22.2)3 - 1/2(88.9)1 - 3/4(44.5)RM, RL 5-11/16 3/8 (9.5) 1/2 (12.7) 1-5/8 (41.3) 2-7/8 (73.0) 1-7/16 (36.5) (144.5) 2-7/8 (73.0) or CL-Carbon 1/2 (12.7) 5/8 (15.9) 2 (50.8) 3-1/2 (88.9) 1-3/4 (44.5) 7 (177.8) 3-1/2 (88.9) or SRM-18-8 S.S. or (111.1)2-3/16 8-3/4 (15.9)2-1/2 4-3/8 (55.6) (222.3)4-3/8 (111.1)5/8 7/8 (22.2)(63.5) SSRM-316 S.S. 3/4 (19.1) 1 (25.4) 3-3/16 (81.0) 5-5/8 (142.9) 2-13/16 (71.4) 11-3/16 (284.2) 5-5/8 (142.9)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.


Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) for RX-seriesDrop-In Anchors(3/4" and 1" Embedment)*

BOLT DIA.	DRILL BIT	EMBEDMENT	2500 PSI (17.2	MPa) CONCRETE	4000 PSI (27.6 M	IPa) CONCRETE	HOLLO	W CORE
In. (mm)	SIZE In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION SHEAR TENSION Lbs. (kN) Lbs. (kN) Lbs. (kN)			SHEAR Lbs. (kN)
3/8 (9.5)	1/2 (12.7)	3/4 (19.1)	1,571 (7.0)	2,295 (10.2)	1,987 (8.8)	2,903 (12.9)	1,908 (8.5)	2,401 (10.7)
1/2 (12.7)	5/8 (15.9)	1 (25.4)	2,113 (9.4)	2,585 (11.5)	2,673 (11.9)	3,270 (14.5)	2,462 (11.0)	2,401 (10.7)

* The tabulated values are for RX anchors installed at a minimum of 12 diameters on center and minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameters spacing and 3 diameter edge distance provided the values are reduced 50 percent. Linear Interpolation may be used for intermediate spacings and edge margins.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set IIAnchoring Overhead in 3000 PSIDrop-In AnchorsLightweight Concrete On Metal Deck

ANCHOR	DRIL	L HOLE	EMBE	DMENT	3000PSI (20.7 MPa) CONCRETE							
		METER (mm)	In. (mm)	ULTIMATE TE Lbs.	NSION LOAD (kn)	ALLOWABLE WO Lbs. (
RX-38 Drop-In	1/2	(12.7)	3/4	(19.1)	Upper Flute	1,410	(6.3)	353	(1.6)			
					Lower Flute	1,206	(5.4)	301	(1.3)			

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

#7 W/ **Red Head**® 1-800-899-7890

HEX HEAD MACHINE BOLT

MATERIAL:	Carbon steel XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FINISH:	Rectx electro or hot-dipped galvanized.
SERVICE:	For use as a fastening device.
ORDERING:	Specify size, figure number and finish. Length of bolt is measured from under the head to the extreme point. Sizes as shown are carried in stock, other sizes are also available.

		WEIGHT PER HUNDRED, LBS.													
DIAMETER		LENGTH OF BOLT IN INCHES													
OF BOLT	1½	1¾	2	21/4	2 ½	2¾	3	3¼	31⁄2	3¾	4	4½	5	5½	6
3/8	9	10	11	-	-	-	-	-	-	-	-	-	-	-	-
1/2	18	20	21	22	24	25	27	-	-	-	-	-	-	-	-
⁵ /8	31	33	35	37	39	41	43	46	48	50	52	56	61	65	69
3/4	49	52	55	58	61	64	67	70	73	76	80	86	92	98	105
⁷ /8	-	-	-	-	89	93	98	102	106	110	115	123	131	140	148
1	-	-	-	_	_	128	134	139	145	150	156	167	178	189	200
1 ¹ / ₈	_	_	_	-	_	-	-	_	193	-	207	221	235	249	263
1 ¹ / ₄	-	-	-	-	-	-	_	-	-	-	-	-	302	320	337

FIG. 785

STANDARD HEX NUTS

FIG. 790

HEAVY DUTY HEX NUTS

- **ORDERING:** Specify rod size, figure number and finish.

ROD SIZE	WEIGHT PE	R 100, LBS.
NUD SIZE	FIG. 785	FIG. 790
1/4	0.74	1.2
³ /8	1.60	3.2
1/2	3.75	6.6
⁵ /8	7.33	12
3/4	11.9	19
7/8	19.0	30
1	28.3	43
1 1/8	40.3	59
1 1⁄4	54.3	79
1 ³ / ₈	73.0	102
11/2	94.3	131

ROUND STEEL WASHERS

MATERIAL: FINISH: xxx kx electro or hot-dipped galvanized.

ORDERING:

Specify rod size, figure number and finish.

SIZE OF BOLT	OUTSIDE DIAMETER	DIAMETER OF Hole	WEIGHT PER 100, LBS.
1/4	3/4	⁵ / ₁₆	0.67
³ /8	1	⁷ / ₁₆	1.50
1/2	1 ³ /8	⁹ / ₁₆	3.90
5/8	1 ³ /4	¹¹ / ₁₆	7.80
3/4	2	¹³ / ₁₆	11.00
7/ ₈	2 ¹ / ₄	¹⁵ / ₁₆	15.00
1	2 ¹ / ₂	1 1/16	19.00
1 1/8	2 ³ / ₄	11/4	22.00
1 ¹ / ₄	3	1 ³ /8	26.00
1 ¹ / ₂	3 ¹ / ₂	1 ⁵⁄/8	38.00

FIG. 800

LOCK WASHER

MATERIAL:	Carbon steel ox XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FINISH:	X Reack or electro-galvanized.
ORDERING:	Specify size, figure number and finish.

ROD SIZE	inside Diameter	WIDTH OF Steel	THICKNESS OF STEEL	WEIGHT PER 100, LBS.
³ /8	⁷ / ₁₆	.141	.094	7
1/2	⁹ / ₁₆	.171	.125	15
⁵ /8	¹¹ / ₁₆	.203	.156	26
3/4	¹³ / ₁₆	.234	.188	43

FIG. 805

STEEL WASHER PLATE

FINISH: x Black electro or hot-dipped galvanized.

SERVICE: For use as a heavy duty washer to suspend hanger rods.

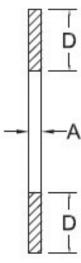
ORDERING: Specify rod tapping size, figure number and finish.

ROD SIZE	WEIGHT PER 100, LBS.	SIZE OF STOCK
3/8	62	3 x 3 x ¹ / ₄
1/2	62	3 x 3 x ¹ / ₄
⁵ /8	92	3 x 3 x ³/ ₈
3/4	164	4 x 4 x ³ / ₈
7/ ₈	220	4 x 4 x ¹ / ₂
1	220	4 x 4 x ¹ / ₂

CONTINUOUS THREADED ROD

ORDERING: Specify rod diameter, figure number, length and finish.

ROD SIZE	WEIGHT PER 100, LBS.	MAX. REC. Load, LBS.
1/4	12	240
⁵ / ₁₆	20	300
³ /8	30	610
1/2	54	1130
⁵ /8	85	1810
3/4	120	2710
7/ ₈	170	3770
1	225	4960
1 ¹ / ₈	280	6230
11/4	350	8000
13/8	450	9000
1 ¹ / ₂	500	11630


FIG. 760

HANGER ROD

- MATERIAL: Carbon steel or 2004/32/16xstrain/essx steelxx
- FINISH: XXBlack Xxelectro or hot-dipped galvanized.
- **SERVICE:** For use in applications for attaching hangers to structural attachments. Threaded on both ends and can be furnished in standard lengths of 8" 240"
- **ORDERING:** Specify rod diameter, figure number, length, thread length and finish.

ROD SIZE A	STANDARD ROD THREAD LENGTH D, IN.	MAX. REC. LOAD, LBS. 650° F
1/4	2 ¹ / ₂	240
³ /8	2 ¹ / ₂	610
1/2	2 ¹ / ₂	1130
⁵ /8	2 ¹ / ₂	1810
3/4	3	2710
7/8	3 ¹ / ₂	3770
1	4	4960

Submittal Information

Tapcon[®] Concrete and **MasonryAnchors**

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK

The "original masonry" anchor that cuts its own threads into concrete, brick, or block. Maximum performance is achieved because the Tapcon Anchor, the Condrive Installation Tool, and the carbide-tipped Tapcon Drill Bits are designed to work as a system. It is essential to use the Condrive tool and the correct drill bit to assure consistent anchor performance.

Now available in 410 stainless steel.

APPROVALS/LISTINGS

ICC Evaluation Service, Inc. - #ESR-1671 ICC Evaluation Service, Inc. – #ESR-2202 Miami-Dade County - #07-0315.03 Florida Building Code

Hex Head style on Tapcon Anchors is available for majority of fixture anchoring needs

Climaseal[®] **Coating** is standard on all Tapcon anchors to provide extended corrosion resistance

Now available in 410 Stainless Steel

Phillips Flat Head style is available when flush seating is necessary in countersink applications

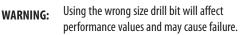
Advanced Threadform cuts into masonry materials for greater pullout values

Lengths of Tapcon Anchors range from 1-1/4" to 4" in 3/16" and up to 6" in 1/4" diameters.

Nail-Type Point guides the anchor into the pre-drilled hole. Excellent for wood to

INSTALLATION STEPS

Read instructions before using (installation)!



If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-899-7890. Failure to follow these instructions can result in serious personal injury.

- 1. Select proper fastener diameter / head style / length a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole
 - a) Choose appropriate drill bit based upon diameter of Tapcon Anchor.
 - b) Drill hole minimum ?" deeper than Tapcon Anchor to be embedded.
 - Minimum anchor embedment: 1″
 - Maximum anchor embedment: 1-3/4"
- 3. Drive Anchor

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

3/16" diameter has a 1/4" slotted hex washer head (HWH) 1/4" diameter has a 5/16" slotted hex washer head (HWH)

3/16" diameter uses a #2 phillips flat head (PFH) 1/4" diameter uses a #3 phillips flat head (PFH)

PERFORMANCE TABLE

Tapcon Anchors

s Ultimate Tension and Shear Values (Lbs/kN) in Concrete

AN	ANCHOR MIN. DEPTH OF		f	′c = 2000	PSI (13.8 N	1Pa)	f'c = 3000 PSI (20.7 MPa)				f'c = 4000 PSI (27.6 MPa)				f'c = 5000 PSI (34.5 MPa)					
DIA. In. (mm)		EMBEDMENT In. (mm)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)			SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/16	(4.8)	1	(25.4)	600	(2.7)	720	(3.2)	625	(2.8)	720	(3.2)	650	(2.9)	720	(3.2)	800	(3.6)	860	(3.8)	
		1-1/4	(31.8)	845	(3.7)	720	(3.2)	858	(3.8)	720	(3.2)	870	(3.9)	720	(3.2)	1,010	(4.5)	860	(3.8)	
		1-1/2	(38.1)	1,090	(4.8)	860	(3.8)	1,090	(4.8)	860	(3.8)	1,090	(4.8)	860	(3.8)	1,220	(5.4)	860	(3.8)	
		1-3/4	(44.5)	1,450	(6.5)	870	(3.9)	1,455	(6.5)	870	(3.9)	1,460	(6.5)	990	(4.4)	1,730	(7.7)	990	(4.4)	
1/4	(6.4)	1	(25.4)	750	(3.3)	900	(4.0)	775	(3.4)	900	(4.0)	800	(3.6)	1,360	(6.1)	950	(4.2)	1,440	(6.4)	
		1-1/4	(31.8)	1,050	(4.7)	900	(4.0)	1,160	(5.2)	900	(4.0)	1,270	(5.6)	1,360	(6.1)	1,515	(6.7)	1,440	(6.4)	
		1-1/2	(38.1)	1,380	(6.1)	1,200	(5.3)	1,600	(7.2)	1,200	(5.3)	1,820	(8.1)	1,380	(6.1)	2,170	(9.7)	1,670	(7.4)	
		1-3/4	(44.5)	2,020	(9.0)	1,670	(7.4)	2,200	(9.8)	1,670	(7.4)	2,380	(10.6)	1,670	(7.4)	2,770	(12.3)	1,670	(7.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

PERFORMANCE TABLE

	Tapcon Anchors	Ultimate Tension and Shear Values (Lbs/kN) in Hollow Block									
ANCHOR DIA. In. (mm)	ANCHOR EMBEDMENT In. (mm)	LIGHTWEIG TENSION Lbs. (kN)	HT BLOCK SHEAR Lbs. (kN)	MEDIUM W TENSION Lbs. (kN)	/EIGHT BLOCK SHEAR Lbs. (kN)						
3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)						
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)						

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

1/4

3

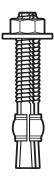
NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

PERFORMANCE TABLE

Tapcon® Allowable Edge and Spacing Distances Anchors ANCHOR PARAMETER **CONCRETE MASONRY UNITS (CMU)** NORMAL WEIGHT CONCRETE LOAD REDUCTION DIA. FULL CAPACITY **REDUCED CAPACITY** LOAD REDUCTION FULL CAPACITY **REDUCED CAPACITY** Inch (Critical Distance Inches) (Minimal Distance Inches) FACTOR (Critical Distance Inches) (Minimal Distance Inches) FACTOR Spacing Between Anchors - Tension 3/16 1-1/2 0.73 1-1/2 1.00 3 1/4 0.84 4 2 0.66 4 2 Spacing Between Anchors - Shear 3/16 3 1-1/2 0.83 3 1-1/2 1.00 1/4 4 0.82 0.81 2 4 2 3/16 0.71 4 0.91 Edge Distance - Tension 1-7/8 1 2 2 1/4 2-1/2 1 - 1/40.78 4 0.88 Edge Distance - Shear 3/16 2-1/4 1-1/8 0.70 4 2 0.93

1-1/2

0.59


For SI: 1 inch = 25.4 mm

2

0.80

Trubolt Wedge

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Trubolt Wedge anchors feature a stainless steel expansion clip, threaded stud body, nut and washer. Anchor bodies are made of plated carbon steel, hot-dipped galvanized carbon steel, type 304 stainless steel or type 316 stainless steel as identified in the drawings or other notations.

Trubolt+ Wedge anchors consist of a high-strength threaded stud body, expansion clip, nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

APPROVALS/LISTINGS

Trubolt[®] Wedge Anchors

ICC Evaluation Service. Inc. # ESR-2251

- Category 1 performance rating
- 2006 IBC compliant
- Meets ACI 318 ductility requirements
- Tested in accordance with ACI 355.2 and ICC-ES AC193
- For use in seismic zones A & B
- 1/4", 3/8" & 1/2" diameter anchors listed in ESR-2251

Underwriters Laboratories

Factory Mutual

- City of Los Angeles #RR2748
- California State Fire Marshall

Caltrans

Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerlyGSA: FF-S-325 Group II, Type 4, Class 1)

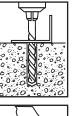
ICC Evaluation Service, Inc. # ESR-2427

-Category 1 performance rating

-2006 IBC and 2009 IBC compliant

-Meets ACI 318 ductility requirements

-Tested in accordance with ACI 355.2 and ICC-ES AC193


-Listed for use in seismic zones A, B, C, D, E, & F

-3/8", 1/2", 5/8" & 3/4" diameter anchors listed in ESR-2427

City of Los Angeles - #RR25867

*T N***/ Red Head 1-800-899-7890**

INSTALLATION STEPS

to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

1. Select a carbide drill bit with a diameter equal

2. Clean hole or continue drilling additional depth to accommodate drill fines.

3. Assemble washer and nut, leaving nut flush with end of anchor to protect threads. Drive anchor through material to be fastened until washer is flush to surface of material.

4. Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

LENGTH INDICATION CODE *

CODE	LENGT	H OF ANCHOR	CODE	LENG	TH OF ANCHOR
А	1-1/2 < 2 (38.1 < 50.8)		K	6-1/2 < 7	(165.1 < 177.8)
В	2 < 2-1/2	(50.8 < 63.5)	L	7 < 7-1/2	(177.8 < 190.5)
C	2-1/2 < 3	(63.5 < 76.2)	М	7-1/2 < 8	(190.5 < 203.2)
D	3 < 3-1/2	(76.2 < 88.9)	N	8 < 8-1/2	(203.2 < 215.9)
Ε	3-1/2 < 4	(88.9 < 101.6)	0	8-1/2 < 9	(215.9 < 228.6)
F	4 < 4-1/2	(101.6 < 114.3)	Р	9 < 9-1/2	(228.6 < 241.3)
G	4-1/2 < 5	(114.3 < 127.0)	Q	9-1/2 < 10	(241.3 < 254.0)
Н	5 < 5-1/2	(127.0 < 139.7)	R	10 < 11	(254.0 < 279.4)
Ι	5-1/2 < 6	(139.7 < 152.4)	S	11 < 12	(279.4 < 304.8)
J	6 < 6-1/2	(152.4 < 165.1)	T	12 < 13	(304.8 < 330.2)

*Located on top of anchor for easy inspection.

APPENDIX C: Strength Design Performance values in accordance to 2006 and 2009 IBC ITW RED HEAD TRUBOLT + WEDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2006 and 2009 IBC

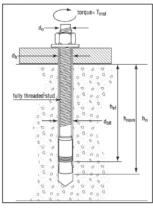
TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION¹

						Nomin	nal Anchor	Diamotor	(inch)4			lge Ancho
Characteristic	Symbol	Units	3/8	011			2"	Diameter		8"	3/4	4"
Anchor category	1, 2 or 3	_	1	-			<u>z</u> 1			0 1	3/-	
Minimum effective embedment depth	hef	in	1-5	/8		2 3-1/4			2-3/4	4-1/4	3-3	/4
Minimum concrete member thickness	h _{min}	in	4	5	4	6	6	8	6	6-1/4	7	8
Critical edge distance	¢ac	in	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10
	ac		a for Steel S	strengths -	- Tension ar	nd Shear	, _	_				
Minimum specified yield strength	fy	psi	60,0)00		55,	000		55,	000	55,0	000
Minimum specified ultimate strength	futa	psi	75,0	000		75,	000		75,	000	75,0	000
Effective tensile stress area (neck)	A _{se}	in ²	0.0	56		0.1	119		0.1	183	0.2	66
Effective tensile stress area (thread)	A _{se}	in ²	0.0	75		0.1	142		0.2	217	0.3	32
Steel strength in tension	N _{sa}	lbf	4,2	00		8,9	925		13,	725	19,9	50
Steel strength in shear, uncracked or cracked concrete ⁶	v _{sa}	lbf	1,8	30		5,1	175		8,9	955	14,9	70
Steel strength in shear – seismic loads	v _{eq}	lbf	1,5	45		5,1	175		8,9	955	11,775	
Strength reduction factor <i>f</i> for tension, steel failure mod		0.7	75	0.75				0.75		0.75		
Strength reduction factor <i>f</i> for shear, steel failure modes	2		0.6	50		0.	65		0.	65	0.6	5
	Data for C	oncrete E	Breakout Co	ncrete Pry	out Strengt	hs in Tensio	on and Shea	ar				
Effectiveness factor – uncracked concrete	k _{uncr}	—	24	4		2	24		2	4	24	ł
Effectiveness factor – cracked concrete	k _{cr}	-	1	7	17				1	7	17	
Modification factor for cracked and uncracked concrete ³	$\Psi_{c,N}$	—	1.	0		1	.0		1.0		1.0	
Coefficient for pryout strength	к _{ср}	—	1.	0	1	.0	2	.0	2	.0	2.	0
Load-bearing length of anchor	le	in	1.6	25	2	.0	3.	25	2.75	4.25	3.7	'5
Strength reduction factor ϕ for tension, concrete failure m	odes, Condition B ²		0.6	55		0.	65		0.	65	0.6	5
Strength reduction factor ϕ for shear, concrete failure mo	des, Condition B ²		0.7	70		0.	70		0.	70	0.7	0
			Data	for Pullout	Strengths							
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Foo	tnote ⁵	See Foo	otnote ⁵	6,	540	5,430	8,900	See Foo	tnote ⁵
Pullout strength, cracked concrete	N _{p,cr}	lbf	See Foo	tnote ⁵		See Foo	otnote ⁵		See Foo	otnote ⁵	See Foo	tnote ⁵
Pullout strength for seismic loads	N _{eq}	lbf	See Foo	tnote ⁵		See Foo	otnote ⁵		See Footnote ⁵	6,715	See Foo	tnote ⁵
Strength reduction factor f for tension, pullout failure m	odes, Condition B ²		See Foo	tnote ⁵		0.	65		0.	65	See Foo	tnote ⁵
			Add	itional And	hor Data							
Axial stiffness in service load range in uncracked concrete	b _{uncr}	lbf/in	100,	000		250	,000		250	,000	250,	000
Axial stiffness in service load range in cracked concrete For SI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.4	b _{cr}	lbf/in	40,0			20,	000		20,	000	20,0	00

For SI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, 1 lbf • 102/in - 17,500 N/m.

¹ The 1/2", 5/8" and 3/4" diameter Trubolt+ Wedge Anchors are ductile steel elements as defined by ACI 318 D.1. The 3/8" diameter Trubolt+ is considered ductile under tension loading and brittle under shear loading.

² All values of ϕ apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate ϕ factor must be determined in accordance with ACI 318 D.4.4.


³ For all design cases $\Psi_{C,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{Cr}) or uncracked concrete (k_{uncr}) must be used.

⁴ The actual diameter for the 3/8" diameter anchor is 0.361" for the 5/8" diameter anchor is 0.615" and the 3/4" diameter anchor is 0.7482".

⁵ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁶ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

TRUBOLT + WEDGE INSTALLATION INFORMATION

Parameter	Notation	Units	Nominal Achor Diameter (inch)										
			3	/8		1,	/2		5/8		3/4		
Anchor outer diameter	d ₀	inches	inches 0.361			0	.5		0.615		0.7482		
Nominal carbide bit diameter	d _{bit}	inches	3	/8		1	/2		5	/8	3/	/4	
Effective embedment depth	h _{ef}	inches	1-:	5/8	1	2	3-1	1/4	2-3/4	4-1/4	3-3	3/4	
Minimum anchor embedment depth	h _{nom}	inches		2	2-	1/2	3-3/4		3-1/4	4-3/4	4-3	4-3/8	
Minimum hole depth ¹	h _o	inches	2-	1/4	2-3	3/4	4		3-1/2	5	4-5/8		
Minimum concrete member thickness ¹	h _{min}	inches	4	5	4	6	6	8	6	6-1/4	7	8	
Critical edge distance ¹	c ac	In.	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10	
Minimum anchor spacing ¹	s _{min}	In.	3-1/2	2-1/2	6	5-3/4	4	5-3/4	8	6	6	6	
Minimum edge distance ¹	۲ _{min}	In.		3		(5		7-1/2	5	7-1/2	7-1/2	
Minimum overall anchor length	I	inches	2-1/2		3-3	3/4	4-1	1/2	4-1/4	6	5-1/2		
Installation torque	T _{inst}	ft-lb	3	0	45				90		110		
Minimum diameter of hole in fastened part	dh	inches	1,	/2		5	/8		3/4		7/8		

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

ITW Red Head[®]

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX C: Strength Design Performance values in accordance to 2006 and 2009 IBC

Anchor Notation	Anchor Embedment Depth	Effective Embedment Depth	Allowable Tension Load
	(inches), h _{nom}	(inches), h _{ef}	(lbs)
3/8	2	1-5/8	1,090
1/2	2-1/2	2	1,490
1/2	3-3/4	3-1/4	2,870
E /0	3-1/4	2-3/4	2,385
5/8	4-3/4	4-1/4	3,910
3/4	4-3/8	3-3/4	3,825

TRUBOLT WEDGE ANCHOR ALLOWABLE STRESS DESIGN (ASD) VALUES FOR ILLUSTRATIVE PURPOSES

For SI: 1 inch = 25.4 mm, 1 ft-lb = 4.45N.

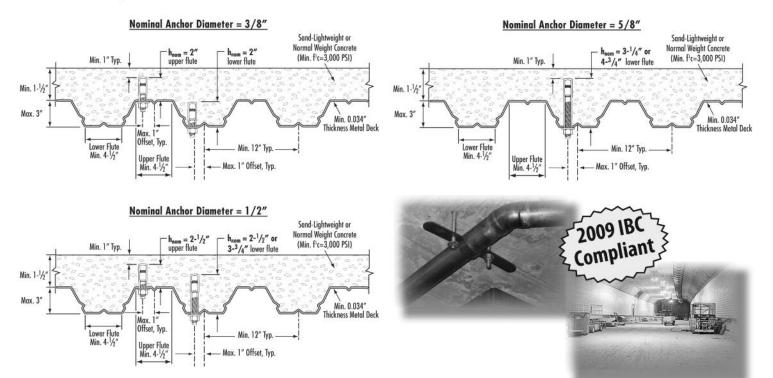
Design Assumptions:

1 Single anchor with static shear load only.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48


⁵ Values do not include edge distance or spacing reductions.

ITW RED HEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION FOR INSTALLATION IN THE SOFFIT OF CONCRETE FILL ON METAL DECK FLOOR AND ROOF ASSEMBLIES

TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION

			Nominal Anchor Diameter							
		Units	3/8"	1/	2"	5/8"				
Characteristic	Symbol		Upper /Lower	Upper /Lower	Lower Only	Lower Only	Lower Only			
			$h_{ef} = 1-5/8"$	h _{ef} = 2"	h _{ef} = 3-1/4"	h _{ef} = 2-3/4"	$h_{ef} = 4-1/4"$			
Pullout strength, uncracked concrete over metal deck	Np, deck, uncr	lbf	2,170	2,515	5,285	3,365	6,005			
Pullout strength, cracked concrete over metal deck	Np, deck, cr	lbf	1,650	1,780	4,025	2,405	5,025			
Reduction factor for pullout strength in tension, Condition B	φ				0.65	59 V				
Shear strength, uncracked concrete over metal deck	Vp, deck, uncr	lbf	1,640	2,200	3,790	2,890	6,560			
Reduction factor for steel strength in shear	φ		0.60	0.65						
Anchor embedment depth	h _{nom}	in	2.0	2.5	3.75	3.25	4.75			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

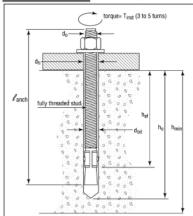
APPENDIX B: Strength Design Performance values in accordance to 2006 IBC

ITW RED HEAD TRUBOLT WEDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC193 AND ACI 355.2, IN ACCORDANCE WITH 2006 IBC

TRUBOLT WEDGE ANCHOR DESIGN INFORMATION^{1,2,3}

Trubolt [®]
Wedge Anchors

						N	lominal Anc	hor Diamete	er		weuge /			
DESIGN INFORMATION	Symbol	Units	1/4		3.	/8	1,	/2	5.	/8	3	/4		
Anchor O.D.	d ₀	in	0.2	250	0.3	375	0.5	00	0.6	525	0.7	750		
Effective embedment	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4		
Minimum member thickness	h _{min}	in	4	4	4	5	5	6	5	8	6	8		
Critical edge distance	¢ _{ac}	in	2-5/8	3	2-5/8	5-1/4	3-3/4	6-3/4	5	8	7	9		
Minimum edge distance	¢ _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2		
Minimum anchor spacing	s _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2		
Min. Specified Yield Strength	fy	lb/in ²					55,	000						
Min. Specified Ultimate Strength	futa	lb/in ²	75,000											
Effective tensile stress area	A _{se}	in ²	0.0	0.032 0.078 0.142 0.2				226	0.3	34				
Steel strength in tension	Ns	lb	2,3	385	5,815		10,	645	16,950		25,	050		
Steel strength in shear	Vs	lb	1,4	430	2,975	3,490	4,450	6,385	6,045	10,170	10,990	15,030		
Pullout strength, uncracked concrete	N _{p,uncr}	lb	1,392	1,706	2,198	3,469	2,400	4,168	4,155	6,638	8,031	10,561		
Anchor Category (All anchors are ductile								1						
Effectiveness factor k _{uncr} uncracked conc	rete						2	4						
Axial stiffness in service load range	β	lb/in	14,651	9,385	17,515	26,424	32,483	26,136	42,899	21,749	43,576	28,697		
Coefficient for variation for axial stiffness	in service load	range	34	47	28	45	17	33	55	22	63	28		
Strength reduction factor ϕ for tension,	teel failure mo	des	0.75											
Strength reduction factor ϕ for shear, ste	trength reduction factor ϕ for shear, steel failure modes					0.65								
Strength reduction factor ϕ for tension, co	ength reduction factor ϕ for tension, concrete failure modes, Condition						0.	65						
Strength reduction factor ϕ for shear, con	crete failure mo	odes, Condition B	в 0.70											


¹ Trubolt+ Anchor Design Strengths must be determined in accordance with ACI 318-05 Appendix D and this table

² The Trubolt+ Wedge Anchor is a ductile steel element as defined by ACI 318 D.1

³ 1/4", 3/8", & 1/2" diameter data is listed in ICC-ES ESR-2251.

TRUBOLT WEDGE ANCHOR (INSTALLED) TRUBOLT WEDGE INSTALLATION INFORMATION

Trubolt[®] Wedge Anchors

	Cumbol	Unite				Nomina	al Ancho	r Diame	ter (in.)			
	Symbol	Units	1/4		3,	3/8		1/2		/8	3/4	
Anchor outer diameter	d _o	in	0.	0.25		0.375		0.5		525	0.7	/50
Nominal carbide bit diameter	d _{bit}	in	1/4		3/8		1/2		5/8		3/4	
Effective embedment depth	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
Min hole depth	ho	in	2	2-1/2	2-1/2	3-3/8	2-3/4	4-1/4	3-3/4	5-1/4	4-3/4	6
Min slab thickness	h _{min}	in		4		5	5	6	5	8	6	8
Installation torque	T _{inst}	ft-lb		4		25		55		90		10
Min hole diameter in fixture	dh	in	5/	5/16		7/16		9/16		11/16		/16

APPENDIX B: Strength Design Performance values in accordance to 2006 IBC

TRUBOLT WEDGE PULLOUT STRENGTH (Np, unc) (POUNDS)¹

	···	unc, (i conco)			wedge Anchors
Nominal Anchor	Effective		Concrete Comp	ressive Strength	
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f'c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi
1/4	1-1/2	1,392	1,525	1,610	1,822
1/4	2	1,706	1,869	1,947	2,151
3/8	1-3/4	2,198	2,408	2,621	3,153
3/8	2-5/8	3,469	3,800	3,936	4,275
1/2	1-7/8	2,400	2,629	3,172	4,520
1/2	3-3/8	4,168	4,520	4,520	4,520
E /0	2-1/2	4,155	4,155	4,376	5,578
5/8	4	6,638	6,900	7,968	10,157
2/4	3-1/2	8,031	8,322	9,610	12,251
3/4	4-3/4	10,561	10,561	10,561	12,251

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

1 Values are for single anchors with no edge distance or spacing reduction.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT UNCRACKED CONCRETE 1-6

Nominal Anchor	Effective		Concrete Compressive Strength									
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f'c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi							
1/4	1-1/2	611	670	707	800							
1/4	2	749	821	855	945							
3/8	1-3/4	965	1,058	1,151	1,385							
5/6	2-5/8	1,524	1,669	1,729	1,878							
1/2	1-7/8	1,054	1,155	1,393	1,985							
1/2	3-3/8	1,831	1,985	1,985	1,985							
5/8	2-1/2	1,825	1,825	1,922	2,450							
5/8	4	2,915	3,030	3,499	4,461							
2/4	3-1/2	3,527	3,655	4,221	5,381							
3/4	4-3/4	4,638	4,638	4,638	5,381							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension load only.

² Concrete determined to remain uncracked for the life of the anchorage.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

⁴ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁵ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48

⁶ Values do not include edge distance or spacing reductions.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC SHEAR (ASD), STEEL (POUNDS)¹⁻⁵

Nominal Anchor Diameter (in.)	Effective Embedment Depth (in.)	Allowable Steel Capacity, Static Shear
1/4	1-1/2	628
1/4	2	028
3/8	1-3/4	1,307
3/8	2-5/8	1,533
1/2	1-7/8	1,954
1/2	3-3/8	2,804
5/8	2-1/2	2,655
5/8	4	4,467
3/4	3-1/2	4,827
5/4	4-3/4	6,601

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa Design Assumptions:

¹ Single anchor with static shear load only.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

Trubolt®

Wedge Anch

Trubolt

PERFORMANCE TABLE

	Wedge	Ancho		Ultimate	e Ter	sio	n an	d Sh	ear \	/alu	es (L	bs/k	kN) in Concrete*			
ANCHOR DIA. In. (mm)	INSTALLATION TORQUE Ft. Lbs. (Nm)	DEI	DMENT PTH (mm)	ANCHOR TYPE	f'c TENS Lbs. (ION	SI (13.8 M SHE Lbs.	AR	f'c TENS Lbs.		I (27.6 MP) SHE Lbs. (AR	f'c TENS Lbs. (5I (41.4 MI SHE Lbs. (AR
1/4 (6.4)	4 (5.4)	1-1/8 1-15/16 2-1/8	(28.6) (49.2) (54.0)		1,180 2,100 2,260	(5.2) (9.3) (10.1)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,780 3,300 3,300	(7.9) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,900 3,300 3,300	(8.5) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)
3/8 (9.5)	25 (33.9)	1-1/2 3 4	(38.1) (76.2) (101.6)		1,680 3,480 4,800	(7.5) (15.5) (21.4)	2,320 4,000 4,000	(10.3) (17.8) (17.8)	2,240 5,940 5,940	(10.0) (26.4) (26.4)	2,620 4,140 4,140	(11.7) (18.4) (18.4)	2,840 6,120 6,120	(12.6) (27.2) (27.2)	3,160 4,500 4,500	(14.1) (20.0) (20.0)
1/2 (12.7)	55 (74.6)	2-1/4 4-1/8 6	(57.2) (104.8) (152.4)	WS-Carbon or WS-G	4,660 4,660 5,340	(20.7) (20.7) (23.8)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	5,100 9,640 9,640	(22.7) (42.9) (42.9)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	7,040 10,820 10,820	(31.3) (48.1) (48.1)	7,040 8,160 8,160	(31.3) (36.3) (36.3)
5/8 (15.9)	90 (122.0)	2-3/4 5-1/8 7-1/2	(69.9) (130.2) (190.5)	Hot-Dipped Galvanized or WW-304 S.S.	6,580 6,580 7,060	(29.3) (29.3) (31.4)	7,120 9,600 9,600	(31.7) (42.7) (42.7)	7,180 14,920 15,020	(31.9) (66.4) (66.8)	7,120 11,900 11,900	(31.7) (52.9) (52.9)	9,720 16,380 16,380	(43.2) (72.9) (72.9)	9,616 12,520 12,520	(42.8 (55.7) (55.7)
3/4 (19.1)	110 (149.2)	3-1/4 6-5/8 10	(82.6) (168.3) (254.0)	or SWW-316 S.S.	7,120 10,980 10,980	(31.7) (48.8) (48.8)	10,120 20,320 20,320	(45.0) (90.4) (90.4)	10,840 17,700 17,880	(48.2) (78.7) (79.5)	13,720 23,740 23,740	(61.0) (105.6) (105.6)	13,300 20,260 23,580	(59.2) (90.1) (104.9)	15,980 23,740 23,740	(71.1) (105.6) (105.6)
7/8 (22.2)	250 (339.0)	3-3/4 6-1/4 8	(95.3) (158.8) (203.2)		9,520 14,660 14,660	(42.3) (65.2) (65.2)	13,160 20,880 20,880	(58.5) (92.9) (92.9)	14,740 20,940 20,940	(65.6) (93.1) (93.1)	16,580 28,800 28,800	(73.8) (128.1) (128.1)	17,420 24,360 24,360	(77.5) (108.4) (108.4)	19,160 28,800 28,800	(85.2) (128.1) (128.1)
1 (25.4)	300 (406.7)	4-1/2 7-3/8 9-1/2	(114.3) (187.3) (241.3)		13,940 14,600 18,700	(62.0) (64.9) (83.2)	16,080 28,680 28,680	(71.5) (127.6) (127.6)	20,180 23,980 26,540	(89.8) (106.7) (118.1)	22,820 37,940 37,940	(101.5) (168.8) (168.8)	21,180 33,260 33,260	(94.2) (148.0) (148.0)	24,480 38,080 38,080	(108.9) (169.4) (169.4)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For Tie-Wire Wedge Anchor, TW-1400, use tension data from 1/4" diameter with 1-1/8" embedment.

* For continuous extreme low temperature applications, use stainless steel.

TruboltUltimate Tension and Shear Values (Lbs/kN) inWedge AnchorsLightweight Concrete*

ANCHOR DIA. In. (mm)	DIA. TORQUE		DE	DMENT PTH (mm)	ANCHOR TYPE		LIGHTWEIGH f'c = 3000 PS			LI	ER FLUTE OF S GHTWEIGHT C f'c = 3000 PSI	ONCRETE FILL	
						TENS Lbs. (SHE Lbs. (TENSION Lbs. (kN)		SHI Lbs.	
3/8 (9.5)	25	(33.9)	1-1/2 3	(38.1) (76.2)	WS-Carbon or	1,175 2,825	(5.2) (12.6)	1,480 2,440	(6.6) (10.9)	1,900 2,840	(8.5) (12.6)	3,160 4,000	(14.1) (17.8)
1/2 (12.7)	55	(74.6)	2-1/4 3 4	(57.2) (76.2) (101.6)	WS-G Hot-Dipped Galvanized or	2,925 3,470 4,290	(13.0) (15.4) (19.1)	2,855 3,450 3,450	(12.7) (15.3) (15.3)	3,400 4,480 4,800	(15.1) (19.9) (21.4)	5,380 6,620 6,440	(23.9) (29.4) (28.6)
5/8 (15.9)	90	(122.0)	3 5	(76.2) (127.0)	WW-304 S.S. or	4,375 6,350	(19.5) (28.2)	4,360 6,335	(19.4) (28.2)	4,720 6,580	(21.0) (29.3)	5,500 9,140	(24.5) (40.7)
3/4 (19.1)	110	(149.2)	3-1/4 5-1/4	(82.6) (133.4)	SWW-316 S.S.	5,390 7,295	(24.0) (32.5)	7,150 10,750	(31.8) (47.8)	5,840 7,040	(26.0) (31.3)	8,880	(39.5)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

PERFORMANCE TABLE

Trubolt Recommended Edge and Spacing Distance Requirements Wedge Anchors for Shear Loads*

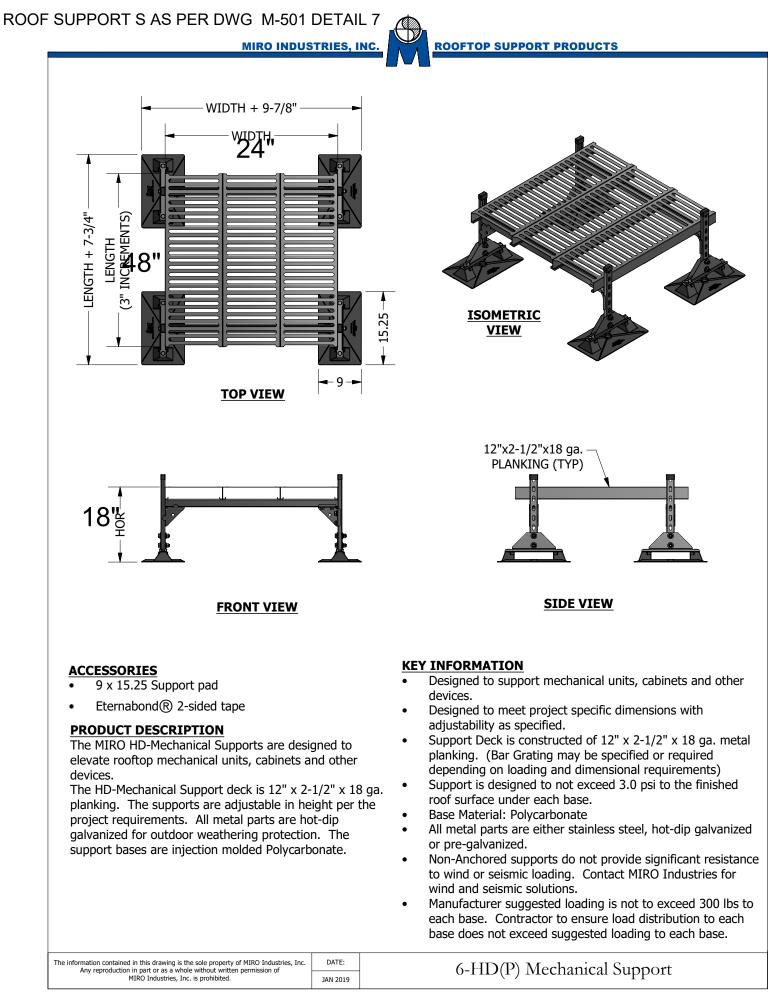
ANCHOR DIA. In. (mm)	EMBEDME DEPTH In. (mm		ANCHOR TYPE	EDGE DI REQUII OBTAIN WORKIN In. (1	RED TO I MAX. Ig load	DISTANCI THE LOA APPLI	. EDGE E AT WHICH ID FACTOR ED = .60 (mm)	MIN. EDGE AT WHI LOAD F. APPLIEI In. (r	CH THE Actor D = .20	REQUI OBTAI WORKI	CING RED TO N MAX. NG LOAD mm)	SPACING ANCHORS LOAD F	LOWABLE BETWEEN 5 In. (mm) FACTOR D = .40
1/4 (6.4)		(28.6) (49.2)		2 1-15/16	(50.8) (49.2)	1-5/16 1	(33.3) (25.4)			3-15/16 3-7/8	(100.0) (98.4)	2 1-15/16	(50.8) (49.2)
3/8 (9.5)		(38.1) (76.2)	WS-Carbon	2-5/8 3-3/4	(66.7) (95.3)	1-3/4 3	(44.5) (76.2)	 1-1/2	(38.1)	5-1/4 6	(133.4) (152.4)	2-5/8 3	(66.7) (76.2)
1/2 (12.7)		(57.2) 104.8)	or WS-G	3-15/16 5-3/16	(100.0) (131.8)	2-9/16 3-1/8	(65.1) (79.4)	1-9/16	(39.7)	7-7/8 6-3/16	(200.0) (157.2)	3-15/16 3-1/8	(100.0) (79.4)
5/8 (15.9)		(69.9) 130.2)	Hot-Dipped Galvanized	4-13/16 6-7/16	(122.2) (163.5)	3-1/8 3-7/8	(79.4) (98.4)	1-15/16	(49.2)	9-5/8 7-11/16	(244.5) (195.3)	4-13/16 3-7/8	(122.2) (98.4)
3/4 (19.1)		(82.6) 168.3)	or WW-304 S.S.	5-11/16 6-5/16	(144.5) (160.3)	3-3/4 5	(95.3) (127.0)	2-1/2	(63.5)	11-3/8 9-15/16	(288.9) (252.4)	5-11/16 5	(144.5) (127.0)
7/8 (22.2)		(95.3) 158.8)	or SWW-316 S.S.	6-9/16 8-1/2	(166.7) (215.9)	4-5/16 6-1/4	(109.5) (158.8)	3-1/8	(79.4)	13-1/8 12-1/2	(333.4) (317.5)	6-9/16 6-1/4	(166.7) (158.8)
1 (25.4)		108.0) 187.3)		7-7/8 10-1/16	(200.0) (255.6)	5-1/8 7-3/8	(130.2) (187.3)	3-11/16	(93.7)	15-3/4 14-3/4	(400.1) (374.7)	7-7/8 7-3/8	(200.0) (187.3)

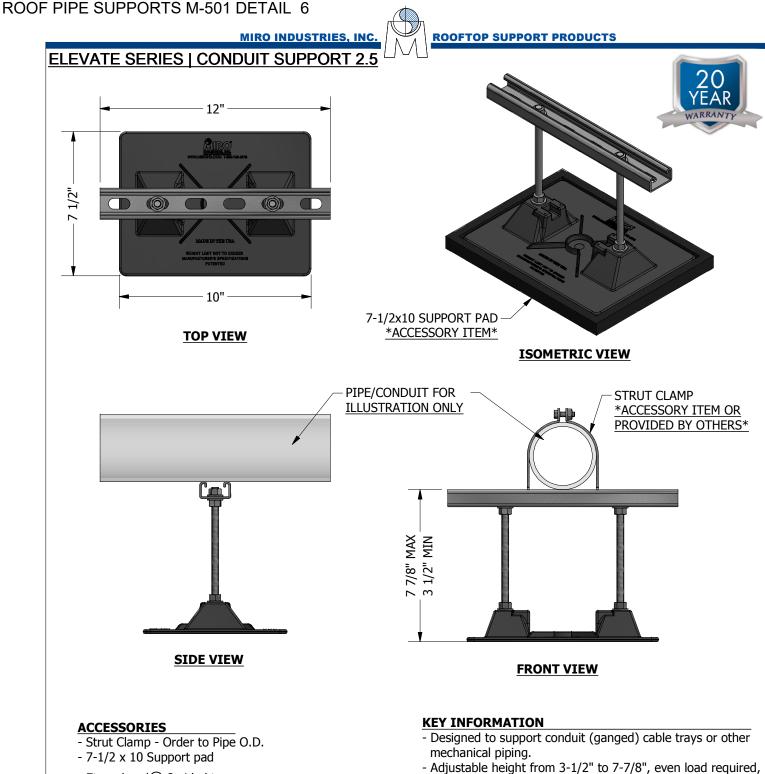
* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Trubolt Recommended Edge and Spacing Distance Requirements Wedge Anchors for Tension Loads*

ANCH DIA In. (m	Α.	DE	DMENT PTH mm)	ANCHOR TYPE	EDGE DI REQUIF OBTAIN WORKIN In. (r	RED TO I MAX. G LOAD	MIN. ALL EDGE DIS' WHICH T FACTOR APF In. (1	TANCE AT HE LOAD PLIED = .65	TO OBTA	NG LOAD	MIN. ALL SPACING A The Load Applied In. (r	T WHICH Factor D = .70
1/4	(6.4)	1-1/8 1-15/16 2-1/8	(28.6) (49.2) (54.0)		2 1-15/16 1-5/8	(50.8) (49.2) (41.3)	1 1 13/16	(25.4) (25.4) (20.6)	3-15/16 3-7/8 3-3/16	(100.0) (98.4) (81.0)	2 1-15/16 1-5/8	(50.8) (49.2) (41.3)
3/8	(9.5)	1-1/2 3 4	(38.1) (76.2) (101.6)		2-5/8 3 3	(66.7) (76.2) (76.2)	1-5/16 1-1/2 1-1/2	(33.3) (38.1) (38.1)	5-1/4 6 6	(133.4) (152.4) (152.4)	2-5/8 3 3	(66.7) (76.2) (76.2)
1/2	(12.7)	2-1/4 4-1/8 6	(57.2) (104.8) (152.4)	WS-Carbon or WS-G Hot-Dipped	3-15/16 3-1/8 4-1/2	(100.0) (79.4) (114.3)	2 1-9/16 2-1/4	(50.8) (39.7) (57.2)	7-7/8 6-3/16 9	(200.0) (157.2) (228.6)	3-15/16 3-1/8 4-1/2	(100.0) (79.4) (114.3)
5/8	(15.9)	2-3/4 5-1/8 7-1/2	(69.9) (130.2) (190.5)	Galvanized or	4-13/16 3-7/8 5-5/8	(122.2) (98.4) (142.9)	2-7/16 1-15/16 2-13/16	(61.9) (49.2) (71.4)	9-5/8 7-1/16 11-1/4	(244.5) (195.3) (285.8)	4-13/16 3-7/8 5-5/8	(122.2) (98.4) (142.9)
3/4	(19.1)	3-1/4 6-5/8 10	(82.6) (168.3) (254.0)	WW-304 S.S. or SWW-316 S.S.	5-11/16 5 7-1/2	(144.5) (127.0) (190.5)	2-7/8 2-1/2 3-3/4	(73.0) (63.5) (95.3)	11-3/8 9-15/16 15	(288.9) (252.4) (381.0)	5-11/16 5 7-1/2	(144.5) (127.0) (190.5)
7/8	(22.2)	3-3/4 6-1/4 8	(95.3) (158.8) (203.2)		6-9/16 6-1/4 6	(166.7) (158.8) (152.4)	3-5/16 3-1/8 3	(84.1) (79.4) (76.2)	13-1/8 12-1/2 12	(333.4) (317.5) (304.8)	6-9/16 6-1/4 6	(166.7) (158.8) (152.4)
1	(25.4)	4-1/2 7-3/8 9-1/2	(114.3) (187.3) (241.3)		7-7/8 7-3/8 7-1/8	(200.0) (187.3) (181.0)	3-15/16 3-11/16 3-9/16	(100.0) (93.7) (90.5)	15-3/4 14-3/4 14-1/4	(400.1) (374.7) (362.0)	7-7/8 7-3/8 7-1/8	(200.0) (187.3) (181.0)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.


Combined Tension and Shear Loading—for Trubolt Anchors


Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load Vs = Applied shear load Pt = Allowable tension load Vt = Allowable shear load

"TW **Red Head**" 1-800-899-7890

- Eternabond R 2-sided tape

PRODUCT DESCRIPTION

A pipe support with "strut" used to support roof-mounted electrical conduit, solar piping, gas pipes and other mechanical piping. Pipes rest on a 12" length of strut which is mounted on the base. The pipes can be fastened by using the appropriate pipe clamp.

This document, attachments, and all of the information therein are the property of MIRO Industries, Inc. The information contained is loaned, subject to return upon demand, and is not to be used directly or indirectly in any way detirmental to our inferest. Further, the information contained therein shall not be used, in whole or in part, except when allowed by written authorization from MIRO Industries, Inc.

- Adjustable height from 3-1/2" to 7-7/8", even load required, maximum load is 115 lbs.
- 12 per case, 31 lbs. per case
- Recommended spacing is not to exceed 10 feet centers depending upon the load. Make certain each stand is properly elevated to even load weight at all stands.
- Base Material: Polycarbonate
- All metal parts are either stainless steel or hot-dip galvanized.

2.5-Conduit Support-7 - ELEVATE

Snap 'N Shield™ Pipe Support

Size Range:

2¹/4" (57.1mm), 3¹/4" (82.5mm), 4¹/4" (107.9mm), 5¹/4" (133.3mm), 6¹/4" (158.7mm), and 8⁵/8" (219.1mm) Shield Openings

Material: Plastic - Black & White

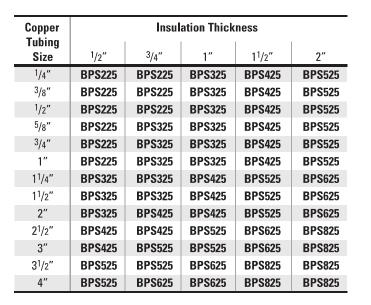
Features:

- Ideal for horizontal pipe runs.
- Offers maximum protection for insulated pipe.
- Snaps directly onto channel.
- Shield length is 12" (304.8mm).
- Fast, easy installation no tools required.
- Snap-on design eliminates shield movement, preventing insulation damage that can lead to costly leaks.
- Allows pipe to expand without damaging the insulation.
- Protects insulation from damage caused by rubbing against other pipes and fittings.
- Designed for side-by-side installations.
- The most reliable, durable, and cost-effective way to protect your insulation.
- Patent Pending.

Order By: Part number.

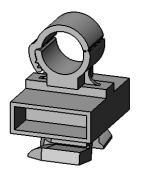
Technical Specifications

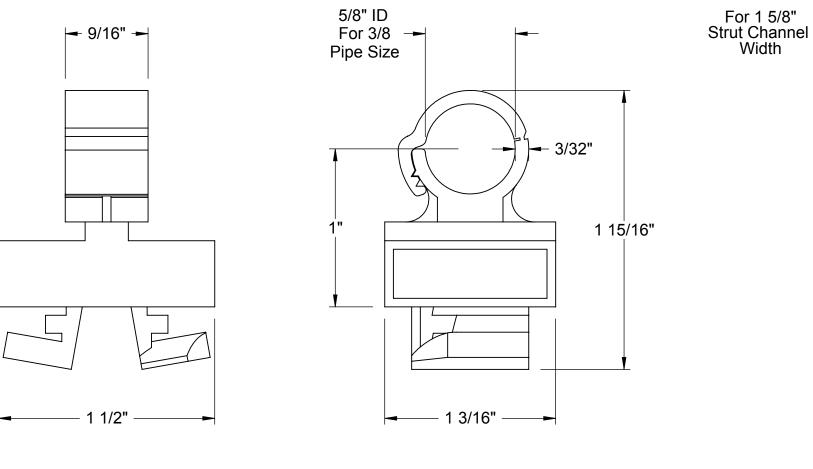
Applications:	Refrigeration, Air Conditioning, and Plumbing
Material:	 Basell Pro-Fax 8523 Polypropylene Copolymer UV resistant Operating temperature -40°F (-40.0°C) to +178°F (81.1°C) Paintable (Preserves mechanical properties even after painting) Non-adhesive surface for linear expansion of thermal insulation
Certification:	UL Classified for USA (UL-723 (ASTM E84)) and ULC listed for Canada (ULC-S102.2). Meets UL94 HB flammability standards


All dimensions in charts and on drawings are in inches. Dimensions shown in parentheses are in millimeters unless otherwise specified.

Snap'N Shield[™] Pipe Support

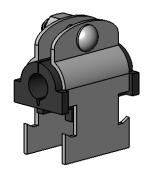
Black Shields Part Number	White Shields Part Number	Gray Shields Part Number	Inside Opening in. (mm)	Approx. Wt./100 Lbs. (kg)
BPS225B	BPS225W		2 ¹ /4″ (57)	26 (11.8)
BPS325B	BPS325W		3 ¹ /4″ (82)	37 (16.8)
BPS425B	BPS425W		4 ¹ /4″ (108)	52 (23.6)
BPS525B	BPS525W		5 ¹ /4" (133)	69 (31.3)
BPS625B	BPS625W		6 ¹ /4" (159)	83 (37.6)
BPS825B	BPS835W	BPS825G	8 ¹ /4″ (209)	103 (46.7)
BPSCB	BPSCW		Universal Cover	22 (10.0)

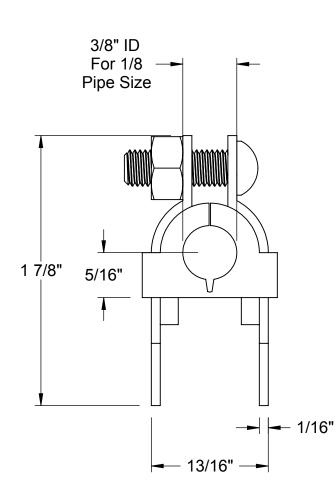

Inside Opening

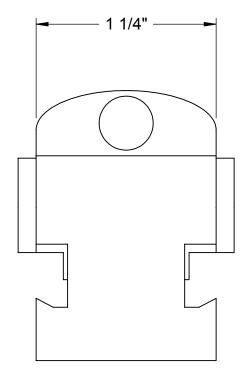


0	
all	

Sch.	Insulation Thickness				
40/80 Pipe	1/2″	³ /4″	1″	1 ¹ /2″	2″
1/4"	BPS225	BPS225	BPS325	BPS425	BPS525
3/8"	BPS225	BPS225	BPS325	BPS425	BPS525
1/2″	BPS225	BPS325	BPS325	BPS425	BPS525
3/4"	BPS225	BPS325	BPS325	BPS425	BPS525
1″	BPS325	BPS325	BPS425	BPS525	BPS625
1 ¹ /2″	BPS325	BPS325	BPS425	BPS525	BPS625
1 ¹ /2″	BPS325	BPS425	BPS425	BPS525	BPS625
2″	BPS425	BPS425	BPS425	BPS525	BPS625
2 ¹ /2″	BPS425	BPS525	BPS525	BPS625	BPS825
3″	BPS525	BPS525	BPS625	BPS625	BPS825
3 ¹ /2″	BPS525	BPS625	BPS625	BPS825	BPS825
4″	BPS625	BPS625	BPS825	BPS825	BPS825


All dimensions in charts and on drawings are in inches. Dimensions shown in parentheses are in millimeters unless otherwise specified.




h

McMASTER-CARR® 🚓	PART NUMBER	3656T83	
http://www.mcmaster.com © 2016 McMaster-Carr Supply Company	Strut-Mount Clamp for		
Information in this drawing is provided for reference only.	Insulated Tubing		

For 1 5/8" Strut Channel Width

http://www.mcmaster.com © 2016 McMaster-Carr Supply Company Information in this drawing is provided for reference only.

Vibration-Damping Strut-Mount Clamp